
Simulation of LAN Interconnection via ATM

by

Kurt Damm

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of the

Department:
Major:

Requirements for the Degree of

MASTER OF SCIENCE

Electrical Engineering and Computer Engineering
Computer Engineering

Signatures have been redacted for privacy

Iowa State University
Ames, Iowa

1994

11

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION

1.1 The BISDN Services

1

3

CHAPTER 2. THE BISDN PROTOCOL REFERENCE MODEL 10

2.1 Physical Layer.

2.2 ATM Layer

2.2.1 ATM Cell Header Functionality

2.2.2 Virtual Paths and Virtual Connections

2.3 ATM Adaptation Layer.

2.3.1 AAL type 3/4 .

2.3.2 AAL type 5 . .

CHAPTER 3. THE DEVELOPED OPNET MODEL.

3.1 The OPNET Simulation Tool

3.1.1 General Description of OPNET

3.1.2 The Network Domain

3.1.3 The Node Domain .

3.1.4 The Process Domain

3.1.5 Statistics

3.2 Model Scope and Limitations

11

13

13

15

17

18

22

25

25

25

26

27

27

29

30

111

3.3 The Model Simulation Attributes 34

3.3.1 The Model Attributes of the ATM Nodes. 34

3.3.2 The Model Attributes of the ATM Switches 35

3.3.3 The Model Attributes of the FDDI VBR Stations 36

3.3.4 The Model Attributes of the FDDI CBR Stations 38

3.3.5 The Model Attributes of the FDDI-ATM Bridges 38

3.4 The ATM Nodes 39

3.4.1 The Process Model of the ATM Nodes 40

3.5 The ATM Switches 42

3.5.1 The Process Model of the ATM Switches. 43

3.6 The FDDI Subnetworks . 46

3.6.1 The FDDI Stations 46

3.6.2 The FDDI-ATM Bridge 51

CHAPTER 4. CONDUCTED SIMULATIONS AND RESULTS. 61

4.1 Overview...................... 61

4.2 Comparison of AAL type 3/4 and AAL type 5 63

4.3 Simulation of Bursty Traffic 66

4.4 Combination of VBR Traffic and CBR Traffic at the ATM switch 69

4.5 Combination of VBR Traffic and CBR Traffic in the FDDI Subnetworks 73

4.6 Variation of the Transmission Capacity of the FDDI Subnetwork to

ATM Switch Communication Links

CHAPTER 5. CONCLUSIONS

BIBLIOGRAPHY

75

77

79

IV

APPENDIX A. ABBREVIATIONS 82

APPENDIX B. OPNET PROCESS MODEL REPORTS. 84

APPENDIX C. DESCRIPTION OF THE OPNET FDDI EXAM-

PLE MODEL. .. 122

APPENDIX D. DESCRIPTION OF THE SIMULATION PARAM-

ETERS 146

Table 1.1:

Table 1.2:

Table 1.3:

Table 1.4:

Table 1.5:

v

LIST OF TABLES

Conversational Broadband Services

Retrieval Broadband Services .

Messaging Broadband Services

Distribution Broadband Services with User-Individual Presen­

tation Control .

Distribution Broadband Services without User-Individual Pre-

5

7

8

8

sentation Control 9

Figure 2.1:

Figure 2.2:

Figure 2.3:

VI

LIST OF FIGURES

The BISDN Protocol Reference Model.

The Layer Functions

The ATM Cell Header Format at the User-Network Interface

11

12

14

Figure 2.4: The ATM Cell Header Format at the Network-Network Interface 14

Figure 2.5: The Relationship of Virtual Connections, Virtual Paths and

the Physical Medium 16

Figure 2.6: The Original AAL Type Distinction 18

Figure 2.7: The AAL Type 3/4 CPCS_PDU Frame Format. 19

Figure 2.8: The AAL Type 3/4 SAR_PDU Packet Format 20

Figure 2.9: Schematic AAL Type 3/4 Segmentation

Figure 2.10: The AAL Type 5 CPCS_PDU Packet Format.

Figure 2.11: Schematic AAL Type 5 Segmentation

Figure 3.1:

Figure 3.2:

Figure 3.3:

Figure 3.4:

Figure 3.5:

Figure 3.6:

The Network Model ..

The FDDI Subnetwork

The Virtual Paths of the Model

The Extended Model Attributes of the ATM Switch

The ATM Node Model

The ATM Node Process Model.

21

23

24

31

32

33

35

40

41

VB

Figure 3.7: The ATM Switch Node Model

Figure 3.8: The ATM Switch Process Model

Figure 3.9: The Statistical Interrupts for the Queue Length Statistic

Figure 3.10: The Node Model of the FDDI Stations

Figure 3.11: The Process Model of the VBR Traffic Generator.

Figure 3.12: The Node Model of the ATM-FDDI Bridge ..

Figure 3.13: The Process Model of the FDDI-ATM Bridge.

Figure 4.1: An Example C-Shell Script

Figure 4.2: Maximum Queue Length at the ATM Switch as a Function

of the VBR Throughput for CBR = 422Mb/s and VBR Peak

43

44

45

47

49

51

53

62

Rate = 22-51Mb/s using AAL Type 3/4. 64

Figure 4.3: Maximum Queue Length at the ATM Switch as a Function

of the VBR Throughput for CBR = 422Mb/s and VBR Peak

Rate = 22-51Mb/s using AAL Type 5 65

Figure 4.4: Maximum Queue Length at the ATM Switch as a Function of

the VBR Throughput for CBR = 422Mb/s, VBR Peak Rate

= 22-51Mb/s, and Burstiness = 10 68

Figure 4.5: Maximum Queue Length at the ATM Switch as a Function of

the VBR Throughput for CBR = 422Mb/s, VBR Peak Rate

= 44-102Mb/s, and Burstiness = 10 69

Figure 4.6: Maximum Queue Length at the ATM Switch as a Function of

the Mean Burst Length for CBR = 422Mb/s and VBR Peak

Rate = 60Mb/s , 70

Vlll

Figure 4.7: Maximum Queue Length at the ATM Switch as a Function

of the VBR Throughput for CBR = 426Mb/s and VBR Peak

Rate = 22-51Mb/s .. 71

Figure 4.8: Maximum Queue Length at the ATM Switch as a Function of

the CBR Throughput between the FDDI Networks for CBR

(FDDI) = 5-50Mb/s, CBR(ATM) = 422Mb/s, and VBRPeak

Rate = 51Mb/s 74

Figure 4.9: Simulation with varying Transmission Capacity of the FDDI

Subnetwork to ATM Switch Communication Links 75

1

CHAPTER 1. INTRODUCTION

Today most networks are dedicated to a special service, e.g., telephony or data

transmission [1, 2]. ISDN standards were developed to support different services on

the same network. ISDNs are now in an early stage of implementation. Despite the

enthusiasm during the development of ISDN, it faces considerable difficulties on be­

coming established in the marketplace. Reasons for this may include the lack of new

attractive services and the limited bandwidth [1, 2]. The International Telecommu­

nications Union-Telecommunication Standardization Sector (ITU-TSS)-the former

CCITT-is now in the process of standardization of a broadband ISDN (BISDN).

This BISDN concept is intended to overcome the above mentioned shortcomings of

the ISDN. The progress made in VLSI and optical transmission technology made new

network concepts feasible. One of these new concepts is the asynchronous transfer

mode (ATM). ITU-TSS has chosen ATM to become the transmission technique for

the BISDN. ATM relies on the low bit error rate of the optical transmission medium.

Therefore, all flow and error control has been shifted to the network boundaries. Fur­

thermore, to make the processing at intermediate nodes easier, ATM is based on fixed

sized packets called cells. An ATM cell consists of a 48 bytes data field and a five

bytes header. In ATM, the cells of one channel are not restricted to a certain slot as

in the synchronous transfer mode (STM). An ATM cell can always take the next free

2

slot. If there is no data to transmit unassigned cells which contain no information

are inserted at the switch output and are discarded at the input of the next switch.

One of the conceptual problems to deal with in the BISDN is the combination

of constant-bit-rate (CBR) traffic and varying-bit-rate (VBR) traffic. The challenge

is to achieve high transmission link utilizations while maintaining a high quality of

service. In this thesis, a model was developed using a simulation tool called OPNET.

The model was intended to simulate the combination of VBR and CBR traffic in

an ATM based network. Several simulations were made to investigate some of the

problems which arise due to the combination of the distinct traffic types. The results

were used to discuss network management concepts described in the literature to deal

with this problems. Furthermore, common parameters used to describe bursty traffic

were investigated and the ATM adaptation layer type 3/4 and the ATM adaptation

type 5 were compared.

The solution to the above mentioned problems might be crucial for the BISDN to

be able to compete against specialized network concepts [3]. Furthermore, a better

understanding of the CBR-VBR traffic interactions is needed to be able to deal

with the traffic exchange with hosts and future LANs in the Giga bits per second

range. Another important impact of this improved understanding might be a better

utilization of advanced video coding techniques based on the transmission of only non­

redundant information. These techniques may lower the bandwidth requirements of

video transmissions considerably but cause more traffic variance over time.

The remainder of this chapter gives an overview over future BISDN services and

its classification according to ITU -TSS.

3

1.1 The BISDN Services

The BISDN services are intended to be used by private customers as well as by

businesses. It is crucial for the success of the BISDN that it is able to offer new

services in a cost effective manner and that it can easily adapt to new, future services

whose characteristics are not yet defined or even totally unknown. Those services may

include data transmission, audio and video transmission (still and moving pictures)

or arbitrary mixtures of the above mentioned components. A service consisting of

different service components is called a multimedia service. One example of a mul­

timedia service is a multiparty desktop conference system. The technical issues of

such a system (MERMAID) are discussed in [4]. Multimedia services are very likely

to play an important role in the telecommunication market in the near future.

ITU-TSS defines in its Recommendation 1.211 two different service types. The

two types are interactive services and distribution services. The interactive services

are further subdivided in conversational, messaging and retrieval services. In the

distribution services a distinction is made on whether or not there is a user-individual

presentation control.

The Tables 1.1-1.5 show examples of future BISDN services as defined by ITU­

TSS [5, 1].

The conversational services are two way real-time communication services. Ex­

amples are shown in Table 1.1. The interconnection of LANs falls within this service

class. Video-telephony and video conferencing are other examples which are expected

to become very popular.

Retrieval Services allow a customer to get information stored in public libraries

on demand. This information might be multimedia and ranges from travel informa-

4

tion to remote medical image communication. For further examples refer to Table 1.2.

Table 1.3 shows examples of messaging services. Messaging services are services

without real-time constraints that are used for the exchange of (multimedia) mes­

sages. Possible services in this category are enhancements to existing electronic mail

serVIces.

The key word in distribution services with a user-individual presentation con­

trol is cabletext. Cabletext is an enhancement to the existing videotext and may

incorporate multimedia information to such systems (see Table 1.4).

Distribution services without a user-individual presentation control are also called

broadcast services. Important members of this service class are HDTV and electronic

newspapers. Table 1.5 shows a more exhaustive list of examples.

Type of m­
formation
Moving PIC­

tures (video)
and sound

Sound

5

Table 1.1: Conversational Broadband Services

Examples of broad­
band services
Broadband
video-telephony

Broadband
Multipoint­
Videoconference

Video-surveillance

Video / audio infor­
mation transmission
servIce

Multiple sound-
program signals

Applications

Communication for the transfer of voice
(sound), movmg pictures, and video
scanned still images and documents be­
tween two locations

• Tele-education

• Tele-shopping

• Tele-advertising

Multipoint communication for the trans­
fer of voice (sound), moving pictures, and
video scanned still images and documents
between more than two locations

• Tele-education

• Business conference

• Tele-advertising

• Building security

• Traffic monitoring

• TV signal transfer

• Video/audio dialogue

• Contribution of information

• Multi-lingual commentary channels

• Multiple program transfers

Data

Document

6

Table 1.1 (Continued)

High speed unre­
stricted digital infor­
mation transmission
serVIce

High volume file
transfer service

High speed teleaction

High speed telefax

High resolu­
tion image communi­
cation service

• High speed data transfer

- LAN interconnection

- MAN interconnection

- Computer-computer intercon-
nection

• Transfer of video information

• Transfer of other information types

• Still image transfer

• Multi-site interactive CAD/CAM

• Data file transfer

• Real-time control

• Telemetry

• Alarms

User-to-user transfer of text, images, draw­
ings, etc.

• Professional images

• Medical images

• Remote games

Document communi- User-to-user transfer of multimedia
cation service documents

Type of m­
formation
Text, data,
graphics,
sound, still
Images, mov­
ing pictures

7

Table 1.2: Retrieval Broadband Services

Examples of broad­
band services
Broadband videotext

Video retrieval
servIce

High resolution Im­
age retrieval service

Applications

• Videotex including moving pictures

• Remote education and training

• Telesoftware

• Tele-shopping

• Tele-advertising

• News retrieval

• Entertainment purposes

• Remote education and training

• Entertainment purposes

• Remote education and training

• Remote Professional Image commu­
nication

• Remote Medical image communica­
tion

Document retrieval Multi-media retrieval from information
servIce centers, archives, etc.
Data retrieval service Telesoftware

8

Table 1.3: Messaging Broadband Services

Type of m- Examples of broad- Applications
formation band services
Moving plC- Video mail service Electronic mailbox service for the trans-
tures (video) fer of moving pictures and accompanying
and sound sound
Document Document mail Electronic mailbox for multimedia

serVIce documents

Table 1.4: Distribution Broadband Services with User-Individual Presentation Con­
trol

Type of m- Examples of broad- Applications
formation band services
Text, graph- Full channel broad-
ICS, sound, cast videography

• Remote education and training
still images

• Tele-advertising

• News retrieval

• Telesoftware

9

Table 1.5: Distribution Broadband Services without User-Individual Presentation
Control

Type of lll- Examples of broad- Applications
formation band services
Data High speed unre-

stricted digital infor-
• Distribution of unrestricted data

mation distri bu tion
serVIce

Text, Document distribu-
graphics, still tion service

• Electronic newspaper
Images

• Electronic publishing

Moving Video information
pictures and distribution service

• Distribution of video/audio signals sound

Video Existing quality TV TV program distribution
distribution
service (NTSC, PAL,
SECAM)
Extended quality TV TV program distribution
distribution service

• Enhanced defi-
m-

tion TV distri-
bution service

• High quality
TV

High definition TV TV program distribution
distribution service
Pay-TV TV program distribution
(pay-per-view, pay-
per-channel)

10

CHAPTER 2. THE BISDN PROTOCOL REFERENCE MODEL

The BISDN Protocol Reference Model (PRM) as defined by the ITU-TSS is

shown in Figure 2.1. It consists of three planes: the user plane, the control plane,

and the management plane. The user plane is responsible for the transfer of user

data while call control and connection control functions fall into the responsibility of

the control plane. The management plane incorporates two different functionalities.

These are the layer management functions and the plane management functions.

The layer management functions take care of the management of the resources and

parameters at the respective layer. Functions relating to the whole system are part

of the plane management functions. In addition, the plane management functions

provide coordination between all planes.

The functions of the higher layers are not yet defined. On the other hand,

considerable progress has been made by ITU-TSS in the standardization of the ATM

Adaptation Layer (AAL), the ATM layer, and the Physical Layer. Figure 2.2 shows

the functions of these layers and their sublayers.

A short description of the illustrated layers and their respective functions is given

in the following sections.

Higher Layers

AAL

11

Management Plane
.....

...

User Plane

Higher Layers

AAL

ATMLayer

Physical Layer

Figure 2.1: The BISDN Protocol Reference Model

2.1 Physical Layer

The Physical Layer consists of two sublayers. The two sublayers are the Physical

Medium (PM) and the Transmission Convergence (TC) sublayer. The functions of

the PM sublayer are divided into two sections, one dealing directly with the physical

medium and the other handling the bit timing. The functions dealing with the

physical medium are those functions concerned with the bit transmission and bit

alignment, the line coding, and the electrical/optical conversion (if needed).

While bits are already recognized by the PM sublayer, the TC sublayer performs

the tasks concerned with transmission frames. Furthermore, the TC sublayer gener-

12

· .
1 1 CPcs Common functions 1
i CS i Convergence

~ : i SSCS Service specific functions 1
< ~ ~ .. -.................. _ _ ... _--.------_. -..... _ _._ ... ---_ _-.. · . · .

: SAR : Segmentation and reassambly .

Generic Flow Control

Cell header generation/extraction

Cell VPINCI translation

Cell multiplex and demultiplex

Cell rate decoupling

HEC header sequence generation/verification

Cell delineation

Transmission frame adaption

Transmission frame generation/recovery
.............. ,. ... -.. ..

· · · Bit timing
PM : · · : Physical medium

·
1: CPCS and SSCS are only defmed for AAL type 3/4 and AAL type 5.

Figure 2.2: The Layer Functions

13

ates the HEC header sequence for outgoing cells and verifies the HEC sequence for

incoming cells. In addition, the HEC header sequence provides the means for the cell

delineation. Finally, the function known as cell rate decoupling inserts unassigned

cells during transmission and discards received unassigned cells.

2.2 ATM Layer

The ATM layer is independent of the underlying physical medium and performs

four functions as shown in Figure 2.2. The basic functional unit of the ATM layer is

the ATM cell. Its functions are described in the following sections.

2.2.1 ATM Cell Header Functionality

There are two different ATM cell headers defined by ITU-TSS. The cell header

formats are shown in Figure 2.3 and Figure 2.4. One header format is used at the

User-Network-Interface (UNI), the other at the Network-Network-Interface (NNI).

The difference between those two header formats is the four bit Generic Flow

Control (GFC) field. It is only used at the UNI. At the NNI the four bits are used to

enhance the Virtual Path Identifier (VPI) field from eight to twelve bits. The GFC

field is part of congestion control strategies. Congestion control comprises three

parts. First, an ATM network user must specify the traffic he intends to incorporate

into the network. This traffic description is then used to determine whether or not

this data is allowed to enter the network, i.e., whether or not the call is admitted.

Finally, some kind of policing is needed to control the parameters agreed upon at

the call establishment. The role of the GFC is to control terminals attached to user

networks. The mechanisms to reach this goal are not yet defined [1, 2]. However,

8

8

14

bit

7 6 5 4 3 2 1

GFC VPl 1

VPl VCl 2

VCl 3

VCl PTl RES CLP 4

HEC 5

Figure 2.3: The ATM Cell Header Format at the
User-Network Interface

bit

7 6 5 4 3 2 1

VPl 1

VPl VCl 2

VCl 3

VCl PTl RES CLP 4

HEC 5

Figure 2.4: The ATM Cell Header Format at the
Network-Network Interface

b
Y
t
e

b
Y
t
e

15

congestion control has been the subject of intense research (e.g., [6, 7, 8, 9]) and some

controversy about its technical and economical feasibility [10, 11].

The ATM routing field consists of the VPI and the Virtual Channel Identifier

(VCI). Its use is described in the next section. The two bit Payload Type Identifier

(PTI) field is used to distinguish user information and Operation and Maintenance

(OAM) cells. Furthermore, it is used in the AAL type 5 to indicate the last segment

of a segmented CPCS_PDU (see Section 2.3.2). The Reserved (RES) field has not yet

been defined. It is intended to provide the means to further enhance the cell header

functionality. The Cell Lost Priority (CLP) may be used to tag cells exceeding

the guaranteed bandwidth (CLP=1). Those cells should be first discarded in the

case of network congestion. Finally, the Reader Error Control (REC) field, which is

processed by the physical layer, provides the means to detect bit errors in the cell

header. This is particularly important since faulty routing information can lead to

the wrong delivery of cells. A misrouted cell may disturb two connections: the one

it was originally destined for and the one it was accidently delivered to. I.e., the

connections experience cell loss and cell gain, respectively.

2.2.2 Virtual Paths and Virtual Connections

The BISDN is based on virtual connections. A virtual connection (VC) is identi­

fied by a Virtual Connection Identifier (VCI). Several VCIs are put together to form

a virtual path (VP). A VP is identified by a Virtual Path Identifier (VPI). VCI and

VPI constitute the routing field of the ATM cell header. The relationship between

VCs, VPs and the physical medium is shown in Figure 2.5.

As can been seen, a VCI has only to be unique within a VP. The VP in turn

16

VCI 1

VCI2

VCI3
PHYSICAL

VCII MEDIUM
VCI2

Figure 2.5: The Relationship of Virtual
Connections, Virtual Paths and
the Physical Medium

has only significance within one physical link. In other words the combination of

VC and VP give the complete routing information within one link. VPIs and or

VCIs are changed on a per link basis. In nodes where only VPs are switched (ATM

crossconnects) the VCs within a VP remain unchanged.

The concept of VPs simplifies the resource management of ATM networks [12].

The reserved capacity of a VP need to be updated to keep track of changes in the

flow of traffic, but this has to be done not as frequent as if the capacity would only

be allocated on a VC basis. VCs are usually reserved on a per call basis and released

when they are no longer needed. If there is already a VP with sufficient resources for

the anticipated connection, no call processing has to be done at intermediate nodes

[12].

Another advantage of the use of VCs is that it provides the means to decouple

the components of multimedia services, e.g., video telephony. One could start a call

17

without video and later start and stop the video transmission [2].

2.3 ATM Adaptation Layer

The ATM Adaptation Layer (AAL) consists of two sublayers. These two sublay­

ers are the Convergence Sublayer (CS) and the Segmentation and Reassembly (SAR)

sublayer.

The CS is service dependent and might be empty for some services. It encap­

sulates user data and provides transmission and error detection facilities. These

functions are provided on the basis of user specific logical units such as bytes, bit

streams or variable length packets.

The SAR sublayer converts CS packets to ATM cells (segmentation) at the User­

Network-Interface (UNI) and restores the CS packets upon reception of all segments

from the ATM network (reassembly). The SAR sublayer provides transmission and

error detection on a per cell basis.

At present, there are four different AAL types defined by the ITU-TSS. Orig­

inally, the distinction was made according to the timing relation, the bit rate, and

the connection mode (see Figure 2.6).

One AAL type was defined for each service class. ATM Adaptation Layer type 3

(for Class C data) and AAL type 4 (for Class D data) emerged to one standard,

namely AAL type 3/4. Simultaneously, a new AAL was proposed by the LAN indus­

try. This proposal is now being standardized by ITU-TSS as AAL type 5 [13]. For

the AAL type 3/4 and the AAL type 5 the CS is further subdivided into the Service

Specific Convergence Sublayer (SSCS) and the Common Part Convergence Sublayer

(CPCS). The CPCS provides the necessary means to transport variable sized data

18

CLASS A 1 CLASSB CLASSC I CLASSD

Tmring relation between Required Not required
source and destination

Bit rate Constant I Variable

Connection mode Connection oriented I Connectionless

Figure 2.6: The Original AAL Type Distinction

across a virtual connection. The SSCS may incorporate functions like flow control

and retransmission. It is expected that the SSCS is an empty layer for most services

during the introduction phase of BISDN [13]. Therefore, the SSCS is assumed to be

an empty layer throughout the thesis and is not mentioned in subsequent sections.

Since the AAL type 3/4 and AAL type 5 were of special interest for this thesis,

they are described in more detail in the following sections.

2.3.1 AAL type 3/4

Two frame formats are of particular interest in the AAL. These are the packet

formats of the CPCS_PDU and the SAR_PDU.

The frame format of a CPCS_PDU for AAL type 3/4 is shown in Figure 2.7.

The Common Part Identifier (CPI) is used to indicate if the Buffer Allocation size

(BAsize) field is used. If CPI is set to zero, the BAsize field contains an estimate

of the size of the current CPCS_PDU. It is intended to be used at the receiving

side to preallocate sufficient buffer space for the reception of the CPCS_PDU. The

Beginning tag (Btag) and the Ending tag (Etag) fields are used for the purpose of

error detection. Their value is set to a equal value prior to transmission and must

19

CPCSPDU CPCS PDU payload
header

..

CPI

CPCS PDU header. 4 bytes
*CPI (Common Part Identifier): 1 byte
*Btag (Beginning tag): 1 byte
*BAsize (Buffer Allocation size): 2 bytes

PAD CPCSPDU
trailer

..
.

r~': I E~ I Length

CPCS PDU trailer: 4 bytes
* AL (Alignment): 1 byte
*Etag (ending tag): 1 byte
*Length (of payload): 2 bytes

PAD (Padding field): 0-3 bytes

Figure 2.7: The AAL Type 3/4 CPCS_PDU Frame Format

not be the same for two successive frames. The Padding (PAD) field assures that the

CPCS_PDU payload is aligned on a four bytes boundary. The Alignment (AL) field

pads the trailer to four bytes. The Length field reports the length of the CPCS_PDU

payload.

The format of a AAL type 3/4 SAR.J>DU is shown in Figure 2.8. The Segment

Type (ST) field indicates the message type of the SAR_PDU. There are four defined

segment types. These are the Single-Segment Message (SSM), the Begin of Message

(BOM), the Continuing of Message (COM), and the End of Message (EOM). The

Sequence Number (SN) field is used to number the segments of one CPCS_PDU and

provides the means to detect lost or wrongly delivered segments. The Multiplexing

Identifier (MID) distinguishes different ATM packet streams which are multiplexed

into one virtual connection. The Length Indicator (LI) field indicates the number of

useful bytes in the SAR.J>DU payload. Its value is always 44 for BaM and COM

SARPDU
header

sri SN

SAR PDU header. 2 bytes

MID

*ST (Segment Type): 2 bits

*SN (Sequence Number): 4 bits

20

SAR PDU payload

*MID (Multiplexing Identification): 10 bits

SAR PDU trailer: 2 bytes

SARPDU
trailer

CRC

*U (Length Indicator): 6'bits

*CRC (Cyclic Redundancy Check): 10 bits

SAR PDU payload: 44 bytes

Figure 2.8: The AAL Type 3/4 SAR_PDU Packet Format

segments and may vary from 0-44 for SSM and EOM messages. Finally, the Cyclic

Redundancy Check (CRC) provides the means to detect bit errors.

The schematic procedure of the segmentation as defined for AAL type 3/4 is

shown in Figure 2.9. A higher layer PDU is adopted as a AALSDU. A four byte

header and a four byte trailer is added to the AAL_SDU to generate a CPCS_PDU.

This CPCS_PDU is then divided into 44 byte segments. These segments are adopted

as SARJ>DU payloads. The last payload might be not entirely filled with useful

information, i.e., with information corresponding to the segmented CPCS_PDU. Each

SARJ>DU payload is encapsulated with a two byte header and a two byte trailer to

form a SARJ>DU. The SARJ>DU is then passed to the ATM layer. In the ATM

layer the SAR_PDU is adopted as the ATM cell payload. An ATM header is added

to form a ATM cell. This cell is passed to the Physical layer and subsequently sent

to the respective destination.

At the receiving side the reverse functions are performed. The Physical layer

21

AALSDU

A! !
Al C i

: P: CPCS PDU CPCS PDU CPCS PDU
L i! header payload trailer

~ f~l·~-······-············~·················-····-···._ _ ... _
3 i:. A SAR PDU SAR PDU

header SAR PDU payload trailer

I ! R

41

A

T

M

ATMcell
header ATM cell payload

To the Physical Layer

Figure 2.9: Schematic AAL Type 3/4 Segmentation

passes a received cell to the ATM layer. At the ATM layer the header is stripped

off and the data field, i.e., the SARJ>DU is passed to the SAR sublayer. The SAR

sublayer first checks the CRC to find out if the received SAR_PDU is error free. If

an error is detected the SARJ>DU is discarded. AAL type 3/4, however, provides

the means to pass partly reassembled CPCS_PDUs to the CPCS user entity. A

CPCS_PDU which is to be reassembled is identified by the MID. The reception of

a SARJ>DU with the ST field indicating a BOM causes the SAR sublayer to start

the reassembly of a new CPCS_PDU. A CPCS_PDU with the same MID which

has not yet been completely reassembled indicates an error. This is because ATM

22

guarantees the cell sequence integrity. The cell sequence integrity also insures that

subsequently received COM segments with the same MID have to have consecutive

sequence numbers. Similarly, an EOM segment has to have the SN following the SN

of the last received COM segment. Otherwise, an error has occurred, i.e., a segment

has been lost or gained. If an EOM segment arrives, the CPCS_PDU is reassembled

and passed to the epcs sublayer. In the CPCS sublayer the Btag and Etag fields

are compared. If they do not have equal values, an error has occurred. Next, the

CPCS sublayer checks if the reported length of the CPCS_PDU matches the length

of the reassembled CPCS_PDU. If no error has been detected, the AAL_SDU is

decapsulated and passed to the CPCS user.

2.3.2 AAL type 5

In the AAL type 5 approach all SAR_PDU payload encapsulation has been

removed. Furthermore, the Btag, Etag and BAsize fields of the CPCS_PDU are

omitted. Through the low error probability of fiber optic technology it is sufficient

to shift responsibility for the multiplexing to higher layers and to simplify the error

detection facilities [13].

The frame format of the CPCS_PDUs for AAL type 5 is shown in Figure 2.10.

The error detection of the CPCS_PDUs is taken care of by means of a four byte

CRC. The LI is set to the length of the CPCS_PDU payload. It provides the means

to detect a segment loss or gain in the rare cases where the CRC is not able to detect

such errors. The use of the CPI field has not been defined. It is set to zero. The

CPCS-User-to-User indication (CPCS-UU) provides the means to exchange one byte

of data between two peer CPCS user entities. The PAD field is responsible to align

23

CPCS PDU payload

CPCS PDU trailer: 8 bytes
*CPCS-UU (user-to-user indication): 1 byte
*CPI (Common Part Identifier): 1 byte
*Length (of CPCS PDU payload): 2 bytes
*CRC (Cyclic Redundancy Check): 4 bytes

PAD (Padding): 0-47 bytes

CPCSPDU
trailer

Figure 2.10: The AAL Type 5 CPCS_PDU Packet Format

the CPCS_PDU on a 48 byte boundary.

The simplified segmentation of an AAL_SDU is shown in Figure 2.11. An AAL­

SDU passed to the CPCS is adopted as the CPCS_PDU payload. An eight bytes

header and the padding field are added to form the CPCS_PDU. The fields in the

header are set as described above. In the SAR sublayer the CPCS_PDU is divided

into 48 bytes segments. These segments are passed to the ATM layer where an ATM

header is added. The ATM cells are then passed to the physical layer and sent to

their respective destination.

There are only two different SAR_PDUs in AAL type 5. They are distinguished

by the value of the ATM-Iayer-user-to-ATM-Iayer-user (AUU) parameter in the Pay­

load Type Indication (PTI) field of the ATM cell header. The AUU is set to one

for the last (or the only) segment of the CPCS_PDU. In all other segments, AUU

24

: AALSDU
!

A CI

A
pj

CPCS PDU payload Padding CPCSPDU

C!
trailer

L
S i

t

Y

P
e A SAR PDU payload

5
R

~ ~
A

I

~ ~
T

ATMcell
ATM cell payload header

M
1/

To the Physical Layer ,

Figure 2.11: Schematic AAL Type 5 Segmentation

is set to zero. At the receiving side, the reception of an ATM cell with AUU set to

one indicates the last segment of a CPCS_PDU has been received. This initiates the

reassembly of the received segments to restore the original CPCS_PDU. In case the

CRC did not detect an error and the length reported in the Length field matches the

length of the reassembled CPCS_PDU payload, the AAL_SDU is decapsulated and

is delivered to the AAL user process. A segment arriving after a segment with A UU

set to one is considered the beginning of a new CPCS_PDU.

25

CHAPTER 3. THE DEVELOPED OPNET MODEL

Before the developed model is described, an overview over the OPNET simula­

tion tool is given. An exhaustive description of OPNET can be found in [14, 15].

The following is a basic description that is intended to make the model description

easier to understand.

3.1 The OPNET Simulation Tool

3.1.1 General Description of OPNET

OPNET provides the means to model the behavior and to evaluate the perfor­

mance of communication networks and distributed systems. This is done by using

discrete event simulation.

The modeling consists of three phases

• Specification

• Data collection and simulation

• Analysis

The relationship between these phases is as follows. First, a specification (=system

model) is developed. This specification is then compiled to an executable program.

26

During the execution of the program, the behavior of the system is simulated and

statistical data is collected. Then, the collected data is analyzed. After analyzing the

data, the above mentioned cycle might be repeated several times to either change the

model or run the simulation program again using different parameters. If the devel­

oped model is reasonably accurate, the collected data should represent the behavior

and/or performance of the actual system.

The specification of an OPNET model is achieved using four tools or editors.

They are called

• Network

• Node

• Process

• Parameter

The network, node and process editors are called the three modeling domains of

OPNET. They are in a hierarchical relationship to each other. The parameter editor

may be used in either of the three modeling domains and is used to provide modeling

parameters and data structures.

3.1.2 The Network Domain

The main purpose of the network domain is to define the topology of the model.

The building blocks needed to define the topology of the model described later in

this chapter, were subnetworks, fixed communication nodes, and duplex point-to­

point communication links. Subnetworks provide the means to introduce several

27

hierarchical levels within the network domain. There is no limit on the number

of subnetworks used, but eventually there has to be a subnet consisting only of

communication nodes and links. Fixed communication nodes are connected to each

other with communication links. The behavior of the fixed communication node is

determined by the chosen node model. The node model is edited in the node domain.

3.1.3 The Node Domain

The node model may represent a variety of computing and communication de­

vices, e.g., bridges or workstations. The node model is build using modules. Generally

speaking, there are two different kinds of modules. There are modules whose behav­

ior is pretty much predefined and can only be influenced changing built in attribute

values. Modules of this class are ideal generators, point-to-point transmitter, and

point-to-point receiver. On the other hand, there are processor and queue modules

whose behavior can be customized by means of process models. The process models

are defined in the process domain.

The node model can be build using any number of modules. There are two

ways in which the modules can be connected to each other. One way is using packet

streams, the other way is using statistical wires. Packet streams are used to transmit

data packets while statistical wires are used to transmit single numerical values or

control information.

3.1.4 The Process Domain

As mentioned above, a process model specifies the behavior of a queue or process

module in the node domain. The process model is defined using a state transition

28

diagram (STD). In the STD, actions are taken after being invoked by an interrupt. An

interrupt may be caused by different events, e.g., the arrival of a packet, a statistical

interrupt or the begin or the end of the simulation and so on. A special interrupt is

the self interrupt. A self interrupt is scheduled by the process model itself. This will

cause the process model being invoked again at a later time.

The STD has some features which go beyond that of traditional finite state

machines:

• The STD maintains state variables to keep state information.

• Upon entry or exit of a state, arbitrary complex actions can be taken using

C-programming and predefined functions, called Kernel Procedures (KPs) [16,

17]. These actions are called entry and exit executives, respectively. Typical

actions of these executives are the change of state information, sending a packet,

updating statistics and so on.

• The transition between states might be based on conditions. In addition, func­

tions may be performed every time the transition is traversed.

• Model attributes provide the means to generalize the model.

A state of the STD can be either forced or unforced (the forced states are drawn

bold in the figures). An unforced state is a stable state, i.e., it takes another interrupt

to leave this state. Forced states are entered and left in one invocation. They have

mainly the purpose to make the STDs easier to read (provide flow chart like modeling

[14]). A special state of the STD is the initial state. The purpose of the initial state

is to set up everything for the actual simulation. This may include the initialization

29

of state variables, registering of global statistics, loading of distribution functions,

storing of model attributes in state variables, and so on. Typically, the initial state is

invoked by a begin of simulation interrupt and is not entered again once the simulation

has started.

Transitions specify a change from one state to another (sometimes the beginning

and the ending state is the same). Usually, the change of states is based on some

condition. A condition is a boolean expression that determines if a state transition

is to be committed. Special forms of transitions are the default transition and the

unconditional transition. The default transition is taken if, after the reception of

an interrupt, no other condition is true. This is sometimes used to prevent run

time errors caused by false interpreted interrupts. An unconditional transition is a

transition that advances the process model to another state without any condition

bound to it. A common use of unconditional transitions is to jump back from a forced

to an unforced state after all actions related to the forced state have been taken.

3.1.5 Statistics

As was described above, the goal of developing a model of a system is to find

something out about the behavior and/or performance of that system. The collection

of statistical data during the execution of a simulation program provides an important

help to reach this goal. There are two different kinds of statistics in OPNET. These

statistics are the output vector statistics and the output scalar statistics, or vector

and scalar statistics for short. A vector statistic typically records a simulation value

(e.g., the delay experienced by a packet) over the simulation time. The data of a

vector statistic are collected during a single execution of the simulation program.

30

In contrast, scalar statistics gain their data from several program executions. The

data of the scalar statistics of one program execution are organized as a group of

independent system values (e.g., mean and peak queue lengths). A scalar statistic

shows the relationship between two system parameters instead of the value of one

system parameter over time. Typically, each point in the scalar statistic correspond

to the data collected during one simulation run.

Statistics can be either global or local. A local statistic collects data from within

only one process module, while global statistics can be influenced by different mod­

ules.

3.2 Model Scope and Limitations

The first goal of this thesis was to develop a model that makes it possible to

simulate the behavior of an ATM based network. The focus of the work was to see

how an ATM based network performs if varying-bit-rate (VBR) and constant-bit-rate

(CBR) traffic is combined. More specific, the case was considered where two FDDI

networks are connected over an ATM network.

The network configuration shown in Figure 3.1 was chosen. It is built symmet­

rically consisting of the ATM nodes ATM_l and ATM_4, the ATM switches ATM_2

and ATM_3, and the subnetworks FDDLl and FDDL2. The model for the FDDI

subnetworks is shown in Figure 3.2. A FDDI usually connects several stations (up to

1000 [IS]). Since the focus of this work was not on FDDI and to save simulation time,

the FDDI network in the model consists of only three stations. The three stations

divide the functionality of the FDDI among each other: one generates all the bursty

traffic of the network (vbr_station), one all the constant-bit-rate traffic (cbr_station),

31

0..-. -Iiti

Figure 3.1: The Network Model

and, one station bridges the traffic destined to the other FDDI network to the ATM

network (Jddi_atm_link).

There are three different methods for the exchange of data between FDDI net­

works via ATM networks [19]. The data exchange can be done using either a router

or a bridge. Therefore, th~ term bridge should stand for both in the following de-

scription.

In the first approach, each bridge maintains a semi-permanent VC to each bridge

of networks it might want to exchange data with. This method can also be used to

emulate an extended LAN if the LAN s are owned by the same corporation.

In the second approach, each bridge keeps a semi-permanent VC to a connec­

tionless server rather than to other bridges. The connectionless server than forwards

the data to the corresponding destination network. This method is more economical

as the number of LANs that want to exchange data increases.

In the third approach, a VC is established every time data is to be exchanged and

32

_station

Figure 3.2: The FDDI Subnetwork

released when no longer needed. This is very appealing since the network resources

are only reserved when needed, but this might put a considerable burden on the

signalling system.

The first approach was chosen for the model. This confirms with the expec­

tation that semi-permanent VPs between bridges are to be used for the LAN-LAN

interconnection in early stage ATM networks [20].

In the scope of this work, it is assumed that the traffic between the ATM nodes

ATM_l and ATM_4 and vise versa is constant, and that no traffic originated in the

ATM nodes is destined for the FDDI networks. Similarly, no data generated at the

FDDI networks is destined for an ATM node. To make the above outlined traffic

assumptions feasible, four VPs were considered as shown in Figure 3.3. These VPs

are set up at the initialization of the OPNET model and are determined by the value

of appropriate model simulation attributes.

As was mentioned above, the interest of the thesis was rather on the combination

of VBR and CBR traffic than on a detailed protocol modeling. This statement is

33

VPl
VP2

o· ~
ATM_l ATM_2 ATM_3 ATM_4

t t VP3 j t ~ ~ ~ ~ ~ ~ ;., ~ ~ ;., ;.,

VP4 .. E E C C C C E C C E E C

Figure 3.3: The Virtual Paths of the Model

also the reason that the ATM functions are not explicitly modeled according to their

layered representation.

The two major functions performed by an ATM switch are the VPIjVCI trans­

lation and the routing of cells from the input to the output lines [1]. Furthermore,

the switch inserts cells containing no information at the output whenever there is

no data to transmit. These unassigned cells are discarded at the input of the next

switch. This principle, known as cell rate decoupling, has not been incorporated in

the model. Cell rate decoupling is necessary to provide the means for ATM switching

at this high speed but is not needed to model it. The VPljVCI translation, i.e.,

the changing of cell headers, has been omitted in the model since it has no influence

on the collected data. The routing of cells is performed in a pure output queueing

approach. The performance of output queueing is optimal in terms of the delay in

34

relation to the throughput. On the other hand, pure output queueing switches tend

to have severe implementation problems [21]. Since this work is not concerned about

the implementation of switches, the output queueing approach was adopted. The

modeled switch performs better than a real world switch and is not concerned about

drawbacks of a particular switch design.

ATM switching is a very complex task on its own. For a detailed discussion on

ATM switching refer to the literature. A good description of different switch designs

can be found in [2]. [21] comprises a good discussion of different queueing strategies

and [22] includes a comparison of different switching architectures.

Packet formats used in the model may differ from their specifications. The

differences are mentioned in the model description, where appropriate.

The segmentation and reassembly (SAR) of FDDI MAC frames follows the de­

scription in Section 2.3. The same assumptions were made, i.e., it was assumed that

the SSCS is empty. Therefore, SSCS is not mentioned in the description of the SAR

process.

Before the model is described in more detail, an overview over the available

model attributes is given.

3.3 The Model Simulation Attributes

3.3.1 The Model Attributes of the ATM Nodes

src.interarrival args: This attribute originates in the ideal generator module of the

ATM node. It is used to determine the number of packets to be generated at

the ATM node. Its value is 1/number of packets to be generated.

35

proc.VPLSET: This attribute originates in the process model atm_nd_proc. It

determines the value to which the VPI field of the ATM cells originated at this

node is set. This value determines where the cells are routed to as shown in

Figure 3.3.

proc.VECTOR_STAT_ENABLE: This attribute originates in the process model

atm_nd_proc. It signals whether or not the vector statistic about the end-to-end

delay experienced by the ATM cells is to be recorded.

o

(ATM_2) Attributes

! extended attrs. --)

atm_sw.VPI_ATM_LOCAL 3

~
atm_sw. VPI_ATlCREMOTE 4

~ atm_sw.VPI_FDDI_LOCAL : 1
2 atm sw. VPI FDDI REMOTE 2 - --

atm_sw.STAT_ENABLE enabled

~ xmt_fddi[OJ.data rate promoted
rcv_fddi[OJ.data rate promoted

Figure 3.4: The Extended Model Attributes of the ATM Switch

3.3.2 The Model Attributes of the ATM Switches

Figure 3.4 shows the extended simulation model attributes of the ATM Switch

ATM_2. They are described in general below.

atm-Bw. VPLATM_LOCAL, atm-Bw.VPLATM_REMOTE,

36

atm-sw.VPLFDDLLOCAL, atm-sw.VPLFDDLREMOTE: These four val­

ues originate in the process model atm_sw_proc and constitute the routing table

for atm_sw. They are used to transmit the ATM cells according to the virtual

paths shown in Figure 3.3. The suffixes LOCAL and REMOTE stands for

one hop and two hops away, respectively. VPLATM_LOCAL for ATM_2 (see

Figure 3.4), for example, corresponds to the model attribute VPLSET of the

ATM node one hop away, i.e., ATM_l, which has the value three.

atm-sw.STAT_ENABLE: This attribute originates in the process model atm_sw­

proc and determines whether or not the scalar statistics of the ATM switch are

to be recorded.

xmLfddi[O].data rate: This attribute originates in the point-to-point transmitter

module xmLfddi in the node model atm_sw. It determines the transmission

capacity of the point-to-point transmitter in bits per second, and thus the time

it takes to transmit a packet from the ATM switch to the FDDI subnetwork.

rev _fddi[O] .data rate: This attribute originates in the point-to-point receiver mod­

ule rcv_fddi in the node model atm_sw. It determines the transmission capacity

of the point-to-point receiver in bits per second and thus the time it takes to

receive a packet from the FDDI subnetwork at the ATM switch.

3.3.3 The Model Attributes of the FDDI VBR Stations

This model is based on the OPNET FDDI example model. A copy of the model

description from [23] can be found in Appendix C. In the following the model at­

tributes not contained in the original model are explained. They all originate in the

37

process model fddLgen_ vbr of the processor module llc_src.

llc-.Src.dest-I"ing_id: This attribute indicates to which value the field desLring_id

of the Interface Control Information (ICI) fddLmac_req_II is to be set. The

value determines to which FDDI network the FDDI frame should be delivered.

llc-.Src. vbr _gen_seed-I, llc-.Src. vbr _gen-.Seed-II: These two attributes are the

seed numbers to initialize the random number generator used to determine

the random numbers in fddi_gen_vbr.

llc-.Src.traffic_dist: This attribute determines the function according to which the

frames at this station are to be generated.

llc-.Src.idle_dist: This attribute contains the function which determines the distri­

bution of the idle periods in the process model fddi_gen_vbr. The outcome of

the distribution idle_dist is used to schedule a self interrupt. This interrupt

than determines the end of a busy period.

llc-.Src.idle_disLarg: This attribute is the parameter of the above mentioned func­

tion idle_dist. Its value is the mean outcome of the distribution in seconds.

The function and the parameter together determine the actual outcome of the

distribution.

llc-.Src.busy _dist: This attribute contains the function which determines the distri­

bution of the busy periods in the process model fddi_gen_vbr. The outcome of

the distribution busy_dist is used to schedule a self interrupt. This interrupt

than determines the end of a idle period.

38

llc..src.idle_dist_arg: This attribute is the parameter of the above mentioned func­

tion busy_dist. Its value is the mean outcome of the distribution in seconds.

The function and the parameter together determine the actual outcome of the

distribution.

3.3.4 The Model Attributes of the FDDI CBR Stations

This model is based on the OPNET FDDI example model. A copy of the

model description from [23] can be found in Appendix C. The model attributes

llc_src.desLring_id and llc_src.traffic_dist are not contained in the original model.

These two attributes correspond to the attributes llcsrc.desLring_id and llc_src.traf­

fic_dist of the VBR stations described above.

3.3.5 The Model Attributes of the FDDI-ATM Bridges

bridge_proc.VPLSET: This attribute originates in the process model bridge­

aaI5_proc. It determines the value to which the VPI field of the ATM cells­

produced due to the segmentation of FDDI frames-at this node is set. This

value determines where the cells are routed to as shown in Figure 3.3.

bridge_proc.STAT_ENABLE: This attribute originates in the process model

bridge_aa15_proc and determines whether or not the scalar statistics of the

FDDI-LAN bridge are to be recorded.

xmLatm[O].data rate: This attribute originates in the point-to-point transmitter

module xmLatm in the node model bridge_nd. It determines the transmission

capacity of the point-to-point transmitter in bits per second and thus the time

39

it takes to transmit a packet from the FDDI subnetwork to the ATM switch.

rev _atm[O].data rate: This attribute originates in the point-to-point receiver mod­

ule rev_atm in the node model bridge_nd. It determines the transmission capac­

ity of the point-to-point receiver in bits per second and thus the time it takes

to receive a packet from the from the ATM switch at the FDDI subnetwork.

maeJ3yne bandwidth, mae.T-Req, mae.station-.address, mae.ringid: These

four attributes correspond to the attributes of the OPNET FDDI Example

Model. As mentioned before, a copy of the description from [23] can be found

in Appendix C.

3.4 The ATM Nodes

An ATM node in the model has to accomplish several tasks. It has to receive

cells destined for the node, use the information they contain to update statistics, and

destroy the packet to free the memory associated to it. On the other hand, it has to

assign a VPI value to the cells originated at this node and send the cells to the ATM

switch. The OPNET node model for the ATM nodes is shown in Figure 3.5.

The model consists of four modules. The point-to-point receiver rev gets the

cells destined for the node. The point-to-point transmitter xmt sends the cells which

were produced by the ideal generator sre to the ATM switch. The actual processing

of the cells takes place in the ATM node process model atm_nd_proe (see Figure 3.6)

which resides in the process module proe.

40

xmt

Figure 3.5: The ATM Node Model

3.4.1 The Process Model of the ATM Nodes

The ATM node process model atm_nd_proe is shown in Figure 3.6. It is composed

of five states. Each state is described below:

init: The in it state registers a global statistics handler for a statistic to record the

end-to--end delay experienced by the received cells. Another task performed is

to retrieve the value of the module attribute VPLSET. VPLSET is used to set

the VPI field in the cell header for packets produced at this node.

After the initialization is done, an unconditional transition is made to the idle

state.

idle: In the idle state the process model waits for an event to happen. An event

can be either the arrival of a cell from the ideal generator sre, the arrival of a

cell from the point-to-point receiver rev, or the end of the simulation. Either of

these events causes a transition to another state, xmt, rev or slats, respectively.

xmt: The xmt state is encountered when a packet from the sre module arrives. The

actions taken are, get the packet, set the VPI field in the header, and send the

41

---- ~

"---Ittf(r-;-;-;~n'" ... -:,.->

.....
.....

- - (default)

.....

'" \
J

;'

;';' (P.CVjUUU:VJU.)

Figure 3.6: The ATM Node Process Model

....

packet to rev (and thus to the ATM switch). After finishing, an unconditional

transition is made back to the idle state.

rev: The rev state handles the arrival of a cell at the point-to-point receiver. After

retrieving the packet, the end-to-end delay is calculated and the peak end-to-

end delay is updated, if appropriate. If the flag VEC_STAT_ENABLE is set,

the end-to-end delay is recorded in a global statistic. Note that for longer

simulation runs the end-to-end delay statistic will result in huge vector output

files (16 bytes per received packet). Therefore, one might not always want to

record this statistic. Finally, the received cell is destroyed to free the memory

42

associated with it, and an unconditional transition is made back to the idle

state.

stats: The transition to the stats state is committed when the the simulation is

finished and the end of simulation interrupt had been enabled.

The statistic of interest is the peak end-to-end delay. It records the longest

end-to-end delay experienced by a ATM cell during the simulation run. Note

that only one of the two ATM nodes has to write this statistic since its value

is determined by a global variable accessed by both nodes.

3.5 The ATM Switches

The work of the ATM switch is to route incoming cells to the appropriate output.

No data originates at the switch. The OPNET node model for the ATM switches

(ATM_2 and ATM_3) is shown in Figure 3.7.

The ATM switch node model contains one point-to-point transmitter and one

point-to-point receiver for each (duplex) communication link attached to it. The

communication lines connect the switch to an ATM node, a FDDI subnetwork, and

the other ATM switch (see Figure 3.1). The actual cell switching between these

attached nodes is done by the ATM switch process model atm_sw_proc (see Figure 3.8)

ruling the behavior of the processor module atm_sw.

The statistical wires (doted lines) provide the means to gather statistical infor­

mation about the switch-to-switch connection. In addition, the information about the

queue length of packets awaiting transmission to the other switch might be used in a

model enhancement to decide whether or not a new incoming cell is to be discarded.

43

Figure 3.7: The ATM Switch Node Model

3.5.1 The Process Model of the ATM Switches

The process model atm_sw_proc is shown in Figure 3.8. Its three states are

described below:

initial: In the initial state, the value of the variable max_queue_length, representing

the maximum queue length at the link between the ATM switches, is set to

zero (no packets, no queue). The second function of this state is to store

routing information contained in the module attributes VPLATM_LOCAL,

VPLATlvLREMOTE, VPLFDDLLOCAL and VPLFDDLREMOTE in the

state variables vpil-4. The routing information corresponds to the virtual

paths shown in Figure 3.3. It is used in the route_pk state to deliver the cells

to their correct output line. After initializing, the process model atm_sw_proc

makes an unconditional transition to the idle state.

44

, , (PK_.RlUcrV.AL) , ,

/
",

",

\
\

i
/

ft---~ .. (((-;-:;7:1'1-: - _ -

/

/
/

/
/ I

/ I
/ I

/ I

" I
,/ J , /

I ".

'~-- - ~ ~

, ,
" " ,

\ ,
\ "
\ , , \

., "
-- ___ -JA

(default)

Figure 3.8: The ATM Switch Process Model

idle: IIi the idle state, atm_sw_proc is waiting for the arrival of an ATM packet, a

statistic interrupt, or an end of simulation interrupt.

In the case that a packet arrives on one of the three point-to-point receivers,

atm_sw_proc makes a transition to the state route_pk.

In the model, only one of the many possible interrupts of the statistical wires

[14] is enabled. This interrupt occurs when the length of the waiting queue

for the transmission to the other ATM switch rises (see Figure 3.9). Upon the

arrival of the interrupt, the function max_q_size_sw is executed. The function

is declared in the Function Block of atm_sw_proc. It reads the current queue

size and compares it to its recorded maximum queue length. In the case of a

45

xmt_atm_sw (O).pksize -> atm_sw.instat (2)

m intrpt m.ethod : scheduled
delay : 0.0 (sec.)
rising edge trigger : enabled

~ falling edge trigger : disabled
repeated value trigger : disabled
zero crossing trigger : disabled

m low threshold trigger : disabled
high threshold trigger : disabled --

Figure 3.9: The Statistical Interrupts for the Queue Length
Statistic

new highest value, the recorded maximum queue length is updated. After the

execution of the function max_q_size_sw, atm_sw_proc returns to the idle state.

The other possible event is an end of simulation interrupt. This interrupt causes

a transition to the state stats.

route_pk: As indicated by the name, this state is responsible for the routing of the

received packets to their respective output. To accomplish this, the VPI field

of the received packet is compared to the routing information at this node (see

description of the initial state) and then sent to the corresponding point-to-

point transmitter. After the transmission of the cell, atm_sw_proc returns to

the idle state.

stats: In the state stats, a variety of scalar statistics is to be recorded. These statis-

tics are the ATM switch throughput (in packets and Mb/s), the mean packet

delay at the switch, the mean and maximum queue length on the connection

to the other switch, and the utilization of the switch-to-switch link.

46

3.6 The FDDI Subnetworks

The OPNET models of the stations in the FDDI subnetworks are based on

the FDDI example model provided by OPNET. It is described in [23]. A copy of the

description is added to the thesis as Appendix C. In the following, only changes made

to the existing FDDI model are shown. The name of changed models, packet formats

and ICls were formed keeping the original name and appending a.1l. The formats of

the MAC frame fddi_macfr and the interface control information ici_mac_req were

changed to make the exchange of MAC frames between different FDDI rings feasible.

A field, desLring_id, was added to both; a second field, srcring_id, was introduced

to fddLmac_fr. Note that these two packet fields are artificial (therefore, the field

length is set to zero). In a real life bridge approach, the bridge finds out about the

destination ring address on its own, i.e., the addressing is transparent to the FDDI

user. Since the focus of this work is not on the FDDI protocol or address resolution

procedures, this simple solution has been adopted.

3.6.1 The FDDI Stations

The OPNET node model for the FDDI stations is that provided by OPNET.

It is shown in Figure 3.10. However, there are changes in the process models of

the FDDI stations. The differences between the process model mac used in the

OPNET example model and the model described here are changes made to the logic

to deal with the additional fields of fddi_mac_fr and fddi_mac_req. Different process

models were used for the llc_src and the llc_sink processor modules in the cbr_station

and the vbr_station. This has been done to be able to produce the different traffic

characteristics and to file separate statistics for both. The different process models

47

Figure 3.10: The Node Model of the FDDI Stations

are described in the remainder of this section.

fddLgen-II: The process model fddi_gen_II is the process model used for llc_src of

the cbr_station. It is based on the model fddi_gen of the OPNET FDDI example

model. The most changes made correspond to the new fields in Jddi_mac_fr_II

and Jddi_mac_req_lI. Furthermore, the model attribute traffic_dist was intro­

duced. Traffic_dist contains the function which determines the packet arrival

distribution. Note that during simulations, this process model was only used

to produce synchronous traffic with a constant arrival rate. This was achieved

by the selection of the model parameters (see Appendix D), i.e., this model is

more general than necessary to be used in this work.

fddLsink_cbr: The process model fddi_sink_cbr is ruling the behavior of the pro-

cessor module lIc_sink in cbr_station. It is essentially the same as the original

process model fddi_sink. It was changed to be able to record separate statistics

for the CBR and VBR traffic.

48

fddLgen_ vbr: Probably one of the most difficult tasks in describing the behavior

of VBR traffic sources is to find a suitable model to get accurate results. A

recent paper [24] concludes that the widely used Poisson models are very likely

to underestimate buffer requirements and cell delays. This is particularly true

for the modeling of several independent sources. Independent sources modeled

using the Poisson model result in a less bursty overall traffic characteristic.

According to the findings in [24] the opposite is true, the aggregate traffic's

burstiness is intensified.

As mentioned above, the VBR traffic in this model is produced using only

one source. The principle of the process model fddi_gen_vbr is similar to the

'Interrupted Poisson Source' described in the literature (e.g., [25,26]). The idea

is that the traffic consists of busy and of idle periods. During busy periods,

packets might be generated while no packets are produced during idle periods.

The functions and parameters which determine the transition between the idle

state and the busy state (and vise versa) as well as the generation of FDDI

packets can be chosen using model attributes (see Section 3.3.3).

The OPNET process model fddi_gen_vbr is shown in Figure 3.11. It is used

to produce the traffic characteristics outlined above. In the following its three

states are described in more detail.

init: The init state comprises the same functions as described for the init

state of fddi_gen_II. In addition, Marsaglia's random number generator

is initialized using the two seed numbers given in the model attributes

vbr_gen_seed_I and vbr_gen_seed-II. This additional random number gen-

49

(NEXT_BUSY_PERIOD)

11----.II>iU'II_-=~,/II-~~~~-~~o~~ 9
A \

I \
I \

I \
\

.~ , --.--~

Figure 3.11: The Process Model of the VBR Traffic Generator

erator was used to be able to separate the outcome of the VBR traffic from

all other random events. In OPNET, all processes using random numbers

draw these numbers from the same source. This causes all random num-

ber outcomes to change if one parameter of one random distribution is

changed (either direct or indirect). This was not desirable for some of the

simulations where it was of interest to observe how different network con-

figurations handle exactly the same traffic. Marsaglia's random number

generator was chosen to reach this goal. It has a long range of random

numbers and was shown to pass stringent tests for randomness [27].

Furthermore, the distributions for the transition from the idle state to

the busy state (busy_dist) and the transition back from the busy state to

the idle state (idle_dist) are set up. After initialization, traffiLgen_ vbr

makes an unconditional transition to the idle state. Note that for the

conducted simulations only asynchronous VBR traffic was produced at

this process model. This was achieved using the appropriate parameters

50

(see Appendix D). The described model is not restricted to this type of

traffic.

idle: The idle state is the state representing the periods during which no pack­

ets are generated. No action is taken if the chosen arrival rate was zero.

This means, there are no busy periods for this particular case. Other­

wise, every time the init state is entered, an self interrupt is scheduled

to start a new busy period. This self interrupt is determined by the dis­

tribution busy_dist (accessed by the distribution pointer nxLbusy_ptr). If

the interrupt occurs, a state transition to the busy state is committed

and another self interrupt is scheduled. This interrupt is ruled by the

distribution idle_dist (accessed by the distribution pointer nxLidle_ptr)

and determines the simulation time at which the busy period ends, i.e.,

fddi_gen_ vbr switches back to the idle state.

busy: Upon entering the busy state, an self interrupt is scheduled to determine

the time a packet is to be produced. This is done according to the distri­

bution traffic_dist (accessed by the distribution pointer inter_disLptr).

While in the busy state, two events of interest may occur. These two

events are the arrival of a packet or the end of the busy period. In the

case of a packet arrival, the same actions are taken as in fddi_gen_II. If

the event is the end of the busy period, the pending interrupt for the next

packet arrival is canceled and traffic_gen_vbr makes a transition back to

the idle state.

51

bridge""p roc mac

Figure 3.12: The Node Model of the ATM-FDDI Bridge

fddLsink_vbr: The only difference between llc_sink_vbr and llc_sink_cbr is the nam-

ing of the statistics. Here the prefix vbr is used instead of cbr. The different

names make it possible to distinguish the statistics for both stations.

3.6.2 The FDDI-ATM Bridge

The node model for fddi_atm_link is bridge node. The model is shown in Fig­

ure 3.12. It is a combination of the node models of an ATM node and a FDDI

station. The ATM part consists of the modules xmLatm, rcv_atm, and bridge_proc.

The modules mac, phy_tx, and phy_rx comprise the FDDI part. The xtm_atm and

rcv_atm modules form the interface to the ATM switch. The process model residing

in the processor module bridge_proc performs the functions of the ATM layer and the

AAL.

As mentioned before, the protocol functions are not explicitly modeled according

to their layered representation. Simulations were made using two different AAL

functionalities, namely AAL type 3/4 and AAL type 5. The corresponding process

models are bridge_aaI3_4_proc and bridge_aaI5_proc. The process models perform

52

three major functions:

• Segment packets submitted by the MAC entity and send the produced ATM

cells to the ATM switch.

• Reassemble arriving ATM packets to reproduce the originally sent MAC frames

and sent them to the processor module mac.

• Gather statistical information about the link between the ATM switch and the

bridge.

The two process models look alike. Figure 3.13, therefore, represents both models.

A more detailed description is provided below.

3.6.2.1 The Process Model bridge_aaI3A_proc. Several functions are

defined in the Function Block of this model. The functions are intended to simplify

the programs in the main body of the process model. Most of the functions are used to

maintain a list to store information about partly received CPCS_PDUs. Details about

the functions are mentioned in the state description, where appropriate. Otherwise,

refer to Appendix B.

In the following each state of bridge_aa13_4_proc is discussed in detail.

init: The first task performed by the init state is to store the process model attribute

VPLSET in a state variable. It is later used to set the VPI field of the ATM

packets sent to the ATM switch. Next, the state variable multiplex_id repre­

senting the multiplexing identifier (MID) of the SAR_PDU is set to zero. The

identifier is used to distinguish different packet streams multiplexed into one

ATM packet stream. Note that only one MID is needed for the chosen model

53

..... -

/
/

\ / " ,,/ --'
(defa.ult)

(FDDI_JUUcrVJlL)

/ ,. ,
I
I
I
I

."
-'" .,,-

{END SIM~
-----~---o

....

Figure 3.13: The Process Model of the FDDI-ATM Bridge

assumptions (for the connection between the two FDDI networks). Further­

more, the value of the variables b_tag and e_tag is set to zero. As was described

in section 2.3.1, the only constraint for the begin_tag and end_tag fields of the

CPCS_PDU packet frames is that the value of the fields has to be different

for consecutive frames. The approach taken here is that the field values are

increased by one for each new CPCS_PDU. Another necessary initialization is

to set the start pointer of the list for partially received CPCS_PDUs to NIL.

Since no cell has been sent or received, there is no entry in the list. Finally, the

value of the maximum queue length for packets awaiting transmission to the

54

ATM switch is set to zero for the same reasons.

idle: The idle state is the steady state of the process model. Actions are taken for

interrupts representing one of the following events:

• the arrival of a FDDI MAC frame from mac.

• the arrival of an ATM cell from the ATM switch.

• the grow in the length of the waiting queue at the link to the ATM switch.

• the end of the simulation.

Upon reception of a FDDI MAC frame, bridge_aaI3_4_proc makes a transition to

the segment state. Similarly, the reception of an ATM cell causes it to switch

to the reassemble state. The statistic interrupt representing the grow of the

waiting queue is handled the same way as described in atm_sw_proc. Finally,

an end of simulation interrupt causes a state transition to the stats state.

segment: The purpose of the segment state is to encapsulate the received FDDI

MAC frames and transform them into ATM cells according to AAL type 3/4.

The process is shown in Figure 2.9 and was described in general in Section 2.3.1.

After reception of a FDDI MAC frame, the frame is encapsulated in a CPCS­

PDU. The size of the padding field and the total size of the CPCS_PDU are

calculated. Furthermore, a new value for the begin_tag and end_tag fields is

provided. Then, the according fields of the CPCS_PDU are set. The PTI and

BAsize fields of the header and the AL field of the trailer are omitted since they

have no purpose for the simulation (their length is added to the b_tag and Ltag

fields, respectively).

55

The remainder of the segment state is concerned with the division of the

CPCS_PDUs into 44 bytes SARJ>DU payloads and their encapsulation. Logic

is provided to assign the correct values to the SAR..PDU fields. The modeled

fields are the segment type, the sequence number, the length indicator, and the

multiplexing identifier fields. The CRC field is contained in the packet format

sar_pdu, but no action is taken to determine an actual field value. It is set to

some default value. Special care must be taken in simulating the SAR_PDU

payload field. Note that the packet length of a simulated packet is rather a

logical value than a physical value. Therefore, the task of segmenting a packet

is not to divide a storage area into equal sized pieces. The goal to achieve is

to produce the exact number of segments that correspond to the actual num­

ber of segments one would get from a real segmentation. In other words, in

the simulation new packets are produced rather than an existing one divided

into pieces. All the information that is contained in the original packet is sent

with the last segment. This means, if a CPCS_PDU is to be segmented into

N segments, than N packets are produced. The SAR..PDU payload field of the

packets one through N-l is empty, and the last packet contains a pointer to the

original CPCS_PDU.

After all ATM cells are produced and sent to the ATM switch, segment makes

an unconditional transition back to the idle state.

reassemble: The reassemble state performs the reverse functions of the segment

state, i.e., it rebuilds a segmented CPCS_PDU, strips off the header and trailer,

and sends the recovered FDDI MAC frame to bridge_proc. The reassembly

of the CPCS..PDUs is done by means of a linked list. Each entry in the list

56

corresponds to one CPCS_PDU currently in the process of reassembly. A list

element is identified by the multiplexing identifier (MID). Note that currently

only one MID is needed (for the connection between the two FDDI networks).

The more general case was assumed to be able to easily enhance the simulations,

e.g., to destine traffic from the ATM nodes to the FDDI networks.

As mentioned in the description of the segment state, the simulation of the

segmentation and reassembly process is a logical rather than a physical mat­

ter. Therefore, the reception of segments is only registered, but no actual data

is stored. The registration is done by keeping track of the sequence number.

In ATM, the sequence integrity is guaranteed. Thus, the sequence number of

consecutive received segments of one CPCS_PDU must always be consecutive

numbers. Otherwise, an error has occurred. Segments arriving out of order

are discarded. Another error condition that is checked is if there is a BOM

segment with a MID corresponding to a CPCS_PDU that has not been com­

pletely reassembled. In this case, the incompletely reassembled CPCS_PDU is

discarded.

The original CPCS_PDU is restored using the information contained in the last

segment (EOM). After the CPCS_PDU is reassembled, final error checking is

performed. This is done in comparing the length of the reassembled CPCS_PDU

with the length reported in the length indicator field of the CPCS_PDU. Fur­

thermore, the begin and end tags are compared. If an error is detected, the

CPCS_PDU is discarded. Otherwise, the FDDI MAC frame is decapsulated

and sent to the FDDI subnetwork (mac in fddi_atm_link). In any case, after

the reception of an EOM segment, the corresponding entry in the list is deleted.

57

If a received ATM cell is processed and all subsequent actions are taken,

bridge_aaI3_4_proc makes an unconditional transition back to the idle state.

stats: The stats state is responsible for the recording of several scalar statistics after

the end of the simulation. These statistics are:

• the throughput in packets and Mb/s from the ATM switch to the FDDI

subnetwork

• the maximum queue length and the mean packet delay experienced by

ATM packets transmitted to the ATM switch

• the utilization of the link from the FDDI subnetwork to the ATM switch

3.6.2.2 The Process Model bridge_aaI5_proc. The other process model

for the processor module bridge_proc is bridge_aaI5_proc. The process of segmentation

and reassembly according to the specifications of AAL type 5 was described in general

in section 2.3.2. No MID is defined in AAL type 5 SAR_PDUs. Therefore, only one

CPCS_PDU can be reassembled at a time. This means considerable simplifications for

the model. No list has to be maintained for partially received packets. As mentioned

before, the process model looks exactly the same as bridge_aaI3_4_proc and is shown

in Figure 3.13. The states as coded for bridge_aaI5_proc are described below:

init: the variables address (storing the value of the model attribute VPLSET) and

max_quueue_length are initialized as in bridge_aaI3_4_proc. In addition, a new

variable num_of_segments is set to zero. This variable contains the number of

segments received from the CPCS_PDU currently in the process of reassembly.

After initialization, an unconditional transition is made to the idle state.

58

idle: The idle state of bridge_aaI5_proc is the same as in bridge_aaI3_4_proc.

segment: First, a received FDDI MAC frame is encapsulated in a CPCS_PDU. Note

that the CPCS_PDU format for AAL type 5 is different from the format used for

AAL type 3/4 (see Figures 2.7 and 2.10). The CPCS_PDU packet fields needed

for simulation are the Padding and Length fields. Their value is calculated, and

the according packet fields are set. After setting of the fields, the CPCS_PDU is

segmented, i.e., divided into 48 byte pieces. The Padding field assures that the

CPCS_PDU is aligned on a 48 octet boundary. No SARYDU encapsulation

has to be performed. Therefore, the segmentation process is simply:

1. get the number of needed segments (N)

2. produce N-1 ATM packets

• set the PTI field in the cell header to zero

• set the SAR_PDU to NIL

• send the packets

3. produce the ATM cell for the last segment

• set the PTI field in the cell header to one

• set the SAR_PDU to point to the original CPCS_PDU

• send the packet

After all cells are sent to the ATM switch, bridge_aaI5_proc makes a transition

back to the idle state.

reassemble: In the reassemble state, two different kinds of ATM packets may arrive.

They are distinguished according to the value of the PTI field in the cell header.

59

A value of zero corresponds to a first or intermediate segment (BOM or COM

in AAL type 3/4 terminology, respectively). A PTI value of one signals the

reception of the last or the only segment sent (EOM or SSM, respectively).

All that has to be done is to count the number of received segments for the

CPCS_PDU that is currently reassembled. The number is stored in the state

variable num_of_segments. After reception of a cell with PTI set to one, the

CPCS_PDU is reassembled. If the length reported in the length field fits the

length of the reassembled frame (= no segments are gained or lost), the FDDI

MAC frame is decapsulated and sent to mac in bridge_nd. Otherwise, the

wrongly reassembled CPCS_PDU is discarded. Finally, an unconditional tran­

sition back to the idle state is made.

3.6.2.3 The Process Model fddLmac_bridge. The process model fddi_mac­

bridge is similar to fddi_mac_II. The MAC entities of the FDDI stations (Jddi_macII)

fetch only the packets from the rjng which are destined for that particular station

whereas fddi_macbridge fetches all packets which are destined for the other FDDI

network. To accomplish this, the conditions for sending a received packet back on the

ring (in the state FR_RECEIVE and for stripping the frame off the ring (transition

macro STRIP) are modified. Furthermore, the received MAC frames are forwarded

to the processor module bridge_proc rather than to a higher layer entity. On the other

hand, packets reassembled at bridge_proc have to be sent on the FDDI ring. All that

fddLmac_bridge has to do is to queue the newly reassembled packets at the end of

the queue of packets awaiting transmission to the FDDI ring and register its interest

for data transmission, if not already done. This registration is needed for the token

60

acceleration mechanism described in [23] (see Appendix C). These actions are taken

in the state ENQUEUE. This state was introduced to replace the state ENCAPSU­

LATE used in fddi_mac-II. The state ENCAPSULATE was no longer needed since

no new packets are produced at the node fddi_atm_link.

61

CHAPTER 4. CONDUCTED SIMULATIONS AND RESULTS

4.1 Overview

The final version of the developed OPNET model was presented in the previous

chapter. In this chapter, an overview over the conducted simulations using this model

will be given. An OPNET simulation program can be executed within the tool or

from the UNIX shell. In the former case, the model attributes are entered in a

simulation table. In the latter, case there are two options for communicating the

model attributes to the program. These two options are using an environment file

or including the parameters in the command line. The last approach was chosen
".

for the conducted simulation runs. All necessary UNIX commands were included

in c-shell script files. An example of such a shell script is shown in Figure 4.1.

This offers a convenient way to run the same program with different parameters by

simply changing one (or a few) parameter value(s) while leaving the rest unchanged.

The drawback of this approach is that it is somewhat awkward to get an overview

over the chosen values and their meaning. Therefore, an easier to read list of the

chosen parameters for the simulation runs described later in this chapter is given in

Appendix D.

As was described in the previous chapter, the process model fddi_gen_vbr was

developed to simulate the behavior of a bursty traffic source. During the simula-

62

~ ~eed_10d-121 ~ ~eed_vbr_I-911 ~ seed_vbr_II-810~ ~eed_vbr_III-191 ~ seed_vbr_IV-333
~ link_cap-ll0000000 ~ vbr_arrival_rate-1S00 ~ cbr_arrival_rate-300
foreach ata_src_arg (1.082£-06 1.OS5E-06 1.029E-06 1.005£-06 9.815£-07 9.S93E-07 9.38£-07 9.177£-07)
dt.~ia -duration 0.4 -"top.rDDI_l. fddi_aba_link.x.t_atmIOI. data rate" Slink_cap -"top.FDDI_2.fddi_at
a_link. x.t_ata[OJ. data rate" Slink_cap -verbose_sia '1'RtJE -upd_int 0.1 -~eed S~eed_lILod -os_file aalS_
ata_392_462!b_fddi_ln_40_1101b_vbr_48Mb_TIRr_0.001_~c_bw_0.S -"top.ATM_1.~rc.interarrival arg~" Sa
bL_src_arg -"top. ATM_4. ~rc. interarrival args" 1.082£.06 -"top. AD1_2.x.t_fddi[OJ. data rate" Slink_cap
-"top.AD1_2.rcv_fddi[OJ.data rate" Slink_cap -"top.AD1_3.x.t_fddi[OJ.data rate" Slink_cap -"top.ATM

_3.rcv_fddi[OJ.data rate" Slink_cap -"top.FDDI_l.vbr_~tation.llc_src.traffic_dist" ~onential -"top
.FDDI_1.vbr_~tation.llc_src.vbr_gen_seed_I" Sseed_vbr_I -"top.FDDI_l.vbr_station.llc_~rc.vbr_gen_see
d_II" Sseed_vbr_II -"top.rDDI_l.vbr_station.llc_src.arrival rate" Svbr_arrival_rate -"top.FDDI_1.vbr
_station.llc_src.aean pk length" 32000 -top.FDDI_l.vbr_station.llc_~rc.idle_dist ~onential -top.FD
DI_l.vbr_station.llc_src.idle_dist_arg 0.002 -top.rDDI_1.vbr_station.llc_src.busy_dist e~onential -
top.rDDI_l.vbr_station.llc_src.busy_dist_arg 0.01 -top. rDDI_1. vb r_s tati on. mac. T_Req 4.0 -"top.FDDI_1
. cbr_station. llc_src.arrival rate" 0.0 -"top.rDDI_1.cbr_station.llc_src.lILean pk length" 32000 -"top.
FDDI_1. cbr_station.aac. sync bandwidth" 0.5 -top.FDDI_1.cbr_~tation.aac.T_Req 0.001 -"top.FDDI_1.fddi
_atm_link.aac.~ync bandwidth" 0.5 -top.rDDI_1.fddi_ata_link.mac.T_Req 4.0 -"top.FDDI_1.vbr_~tation.l
lc_~rc.traffic_dist" e~onential -"top.FDDI_2.vbr_station.llc_src.vbr_gen_seed_I" Sseed_vbr_III -"to
p.FDDI_2.vbr_station.llc_~rc.vbr_gen_seed_II" Sseed_vbr_IV -"top.FDDI_2.vbr_station. llc_src. arrival
rate" 0.0 -"top.FDDI_2.vbr_station.llc_src.aean pk length" 32000 -top.FDDI_2.vbr_~tation.llc_src.idl
e_di~t e~onential -top. FDDI_2. vbr_station. llc_src. idle_dist_arg 0.002 -top.FDDI_2.vbr_station.llc_s
rc.busy_dist ~onential -top.FDDI_2.vbr_station.llc_src.bU5Y_dist_arg 0.01 -"top.FDDI_2.vbr_~tation
.nac.T_Req" 4.0 -"top.FDDI_2.cbr_~tation.llc_src.arrival rate" 0.0 -"top.FDDI_2.cbr_station.llc_src.
aean pk length" 32000 -"top.FDDI_2. cbr_station.aac. sync bandwidth" 0.5 -top.FDDI_2.cbr_station.aac.T
_Req 0.001 -"top.FDDI_2. fddi_ata_link.lILac. sync bandwidth" 0.5 -top.rDDI_2.fddi_ata_link.mac.T_Req 4.
o -"top.FDDI_1.fddi_atm_link.rcv_ataIOJ.data rate" Slink_cap -"top.rDDI_2.fddi_ata_link.rcv_abL(OJ.d
ata rate" Slink_cap -station_latency lE-07 -prop_delay 3.3E-06 -accelerate_token 1 -"spawn station" 1
~ link_cap = (Slink_cap - 10000000)
end

Figure 4.1: An Example C-Shell Script

tions conducted in this work, the state transitions and cell generation followed the

exponential distribution described in [16]. The ratio of the duration of the average

idle period to the duration of the average busy period was used as a measurement

for the burstiness. Increased burstiness was simulated in increasing the idle periods

and increasing the probability of the packet arrival during the busy period by the

same factor, i.e., the average data arrival rate remained the same. If not mentioned

otherwise, the burstiness of the VBR traffic in the described simulations was chosen

to be five.

It turned out that it was only possible to simulate packet arrivals in the order

of 105-107 within reasonable program execution. time. To be able to get useful

63

simulation results for events like cell loss probabilities in ATM, which occur with

probabilities of 10-7-10-9, it is necessary to simulate about 1010_1012 packets.

The obtained results, however, are still useful to show some problems that may arise

in an ATM based network but are not accurate enough to make a statement about

real world resource requirements.

In the following sections, the different sets of conducted simulation runs are

described in more detail and their results are discussed.

4.2 Comparison of AAL type 3/4 and AAL type 5

The principles of AAL type 3/4 and AAL type 5 were described in section 2.3

and the implementation in the model was shown in the previous chapter. This sec­

tion documents simulation results for the two different AALs. The (CBR) traffic at

the ATM node was chosen to be 422Mb/s and FDDLLINE_CAP was chosen to be

80Mb/s. No CBR traffic was generated at the FDDI subnetworks. The VBR peak

arrival rates were varied from 22Mb/s to 51Mb/s with a burstiness of five. For a

complete list of the chosen model simulation attributes refer to Appendix D.

The Figures 4.2 and 4.3 show the maximum queue length at the ATM switch

in relation to the VBR throughput for simulation runs using bridge_aaI3_4_proc and

bridge_aaI5_proc, respectively. Not surprisingly, using the AAL type 3/4 resulted in

longer maximum queue lengths. The queue lengths were slightly higher for small

amounts of VBR traffic but increased with increasing VBR traffic. The differences

were as high as eleven ATM packets for the above described simulations and might

even be higher if more data is to be transmitted over the ATM network.

Note that exactly the same VBR traffic was generated for both simulations.

64

40 r-------~------~------._------~------_.------~------_,

I I I I I I.
15 I I I I III ~ ____ _

II

I I I I II

30 -----,----+ I'll ~----H--
25 I III I' .. I . ·1 --t-----

I I I I

I
I I· i I I I

• I I. I •• I I I 20 1--____ -1-- ! I I .L.. ____ -L-____ _

I . I I I I I
Ii· • I I I I
I I I I I I

15 ~-----+'---·---·4·i----~·!·-·--·--I~-----~I---_+I-----___ •• i .. I • I I I I
iii I I I

I .. I I I I I
I I I I I I

10 t--.-----r-----------T-------r I r-------I"""--------
. i·· I I I I I

I I I I I I
I I I I I I
! I I I ! I
4 10

vn, Throughp .. t (bib/lOco"') (_1 •• 06)

Figure 4.2: Maximum Queue Length at the ATM Switch as
a Function of the VBR Throughput for CBR =
422Mb/s and VBR Peak Rate = 22-51Mb/s usmg
AAL Type 3/4

Therefore, one can compare the outcome for every pair of programs executed with the

same parameters but a different process model for bridge_proc. Such a pair is identified

by exactly the same value for the VBR throughput since this value is determined by

the FDDI throughput rather than the ATM throughput. The ATM throughput is

higher for AAL type 3/4 due to the additional overhead for the SAR_PDU payload

encapsulation. So, in order to transmit one 4000 byte FDDI MAC frame over an

ATM network, it takes 92 cells using AAL type 3/4 compared to 84 cells using AAL

type 5.

The extended encapsulation in AAL type 3/4 provides the means to pass partly

reassembled CPCS_PDUs to higher layer entities (This feature was not modeled in

65

lIuiala Queue Length at. Uu 11m ... it.ch

so i I I
I I I

I I I
I I I

I
I
I •

I
I
I
I •

I
I.

I I I I I I
25 1-----1 ---1 I I ~---___r_-------

I I

I I I I I I
.. I

I I I I
I I. 1 • I

I I

I I
I I I I I I

20 I-----+!--------t---------t-------;------t---------r------
I I I .. I I I· I I I I I I

I
I I I I I I

I • I I I I
i I I I I

15 j-------t------.-i"- ! ----;-----;------;-1--------

I I I I I I'
•• I •• I • I I I I

I I I I I I

I
I I I I I I

I I I I I
10 -·-------i~I:---- . T i ,-----T------

I I I I

I I I I I
I I I I I
! i I I I

Figure 4.3: Maximum Queue Length at the ATM Switch as
a Function of the VBR Throughput for CBR =
422Mb/s and VBR Peak Rate = 22-51Mb/s usmg
AAL Type 5

10

this model, since a bridge could not use faulty information, anyway). These higher

layer entities may then recover parts of the correctly received data. AAL type 5

doesn't provide this feature. One faulty segment results in the lost of the whole

CPCS_PDU. In the case the last segment is lost, the following CPCS_PDU is lost,

too. However, it was shown in [13] that the additional overhead of AAL type 3/4

pays off only for cell loss rates of approximately 2.6 * 10-3 and worse, which is far

worse than what is expected from an ATM network.

An interesting feature of AAL type 5 is that it makes Selective Discarding feasi­

ble. Selective Discarding means that if one segment of a CPCS_PDU is to be discarded

(due to congestion) all but the last segment of that CPCS_PDU are also discarded.

66

The last segment need to be kept to indicate the start of the next CPCS_PDU at

the receiving entity. This strategy is very appealing in many ways. First, the re­

maining segments of a corrupted CPCS_PDU would have to be retransmitted even

if they would arrive at their destination without error. Second, the discarding of

these (worthless) segments reduces traffic during a congested period. Otherwise,

they might cause congestion on subsequent switches and might lead to the discarding

of other packets.

The Selective Discarding strategy is easy to implement: If a cell with AUU set

to zero (in the PTI field of the cell header) is to be discarded, all subsequent cells

of this VC are discarded until a cell with AUU set to one arrives. This strategy is

not feasible (with respect to the computational burden) for AAL type 3/4 since the

information about the beginning and the end of a segmented CPCS_PDU is contained

in the data field of the ATM cell and not in the cell header [13].

The AAL type 5 approach outperformed the AAL type 3/4 approach. Fur­

thermore, the AAL type 5 is expected to be used for LAN-LAN interconnections in

BISDNs. Therefore, the AAL type 5 strategy was used for all other simulations.

4.3 Simulation of Bursty Traffic

The parameters to describe the VBR traffic should be accurate, on the one hand

side, but have to be easy and fast to measure, on the other hand. Some parameters

commonly used to describe bursty traffic are:

• the peak rate during the burst

• the average arrival rate

67

• the burst length

• the peak/average ratio

• the frequency of burst arrivals

If one adapts the widely used peak to average arrival rate ratio as a measurement

for the burstiness, there are two ways to simulate increased burstiness. One can either

increase the peak arrival rate (and keep the same average arrival) or one can decrease

the average arrival rate, i.e., increase the duration of the idle periods.

Figure 4.3 shows the maximum queue length at the ATM switch in relation to

the VBR throughput. The peak data arriving rate of the VBR traffic was varied from

22Mb/s to 51Mb/s and the ratio of idle to busy periods was chosen to be five.

Figure 4.4 represents the obtained simulation results for the same parameters

accept that the ratio of idle to busy periods was increased to ten. As can be seen, the

maximum queue lengths at the ATM switch are about the same for both simulations.

In another set of simulation runs, the VBR peak arrival rates were doubled, i.e.,

varied from 44Mb/s to 102Mb/s. The ratio of idle to busy periods was unchanged

(=10). This results in the double peak and in the double average data arrival rate,

i.e., the ratio of the peak arrival rate to average arrival rate remains the same. The

maximum queue length in relation to the VBR throughput for this set up is shown

in Figure 4.5. It is obvious to see that the maximum queue length for this set

of simulation runs is considerably higher than in the two above mentioned sets of

simulation runs. This suggests that the peak data arrival rate has an important

impact on the network resources needed to handle a data burst. The duration of

the idle periods made no difference for this simulations but might be an important

68

.... ~ flu t Length ~t thl Im!I SWitch

30
I I I
I 1
I I II"

I I I I I"
25 -.-----f-----.l-----l------l I -+-----

I I I I I
I ! I I" I I I I I
I I I I

I I I I I 1
20 _____ -1 ______ L ___ J_..:_~ __ _L __ " __ L _____ 1 ______ "

i I I I I I
I I I I "I I
I I I ! I I

I" I I I I I
I I I I I I

15 r-------t : --~ : ---+-------t----

10

5
1.5

I I I I I I
I I I ! I I
I" I I I I I
I I I I I I
iii I I I
I I " I I I I
• ! I I ! -t : -----

I I

I I
I I
I I

I I
2.5 3.5 4 4.5

"1 nr''';bFa.t (bih/.IOODd) (xlt+06)

Figure 4.4: Maximum Queue Length at the ATM Switch as
a Function of the VBR Throughput for CBR =
422Mb/s, VBR Peak Rate = 22-51Mb/s, and Bursti­
ness = 10

parameter to determine the degree of statistical multiplexing that can be applied.

The mean burst length for the three simulations described above was the same.

To find out more about the impact of the burst length on the maximum queue length

at the ATM switch, a set of simulation programs were executed where the mean

burst length was varied from 0.002-0.02 seconds. The peak arrival rate for these

programs was chosen to be 60Mb/s. The maximum queue length at the ATM switch

in relation to the mean burst length is shown in Figure 4.6. As can be seen in

the figure, longer bursts may result in severe increase of the maximum queue lengths.

These maximum queue lengths are even higher than those obtained with substantially

higher VBR peak arrival rates. This confirms to findings of a study mentioned in [12]

69

lIaimla Queue Lcngth at the: JmI Stritoh

10 r-----,-----~------r_----,_----_r----_.------,_----_.----_,

I I I I I I I 1 1 1 I'

10 r----t- 1 -1 I -+----t-----
I I 1 1 I I I I

'0 r----t------;------t---t- ! -;----t-----t---
I 1 1 I 1 1 1 1

1 I I I I I I I 1----+ 1 I 1 1,,1 1 1 50 I 1 1 1 ,1----i---t----t------
1 1 1 1 1 1 ,r I
I I I I' I I I 1

40 ---t------;--- 1 j----;----;------t- -t----
I I 1 I" 1 1 I 1
1 1 1 1 1 I' 1 1
1 1 ' 1 ' I 1 ' I I 1
1 1 'I I I I 1 I

30 ---t- I I r----;----;------t-------t-----

20

1 1 I I I I I I
1 I I' I I 1 I 1
I 'I I ' 1 II! I
1 1 I 1 I ! I I I I I -r--l---r--i----l-----
1 1 1 I I I 1 I

I " 'I ' 'I I I I 1 I
10 '------!..--+I -- I iii -t----t-----j

1 1 I 1 I I I
1 1 1 1 I 1 I
1 1 1 I I I 1
1 1 I! 1 I I

10 11

Figure 4.5: Maximum Queue Length at the ATM Switch as
a Function of the VBR Throughput for CBR =
422Mb/s, VBR Peak Rate = 44-102Mb/s, and
Burstiness = 10

which concludes that long intensive bursts highly increase the probability of queue

overflows. The burst length and data arrival rates in the simulation discussed here

result in a mean of ((0.002-0.02s)*60Mb/s) = 120-1200Mb = 15-150kbytes per burst,

which is not unusual for applications like file transfer.

4.4 Combination of VBR Traffic and CBR Traffic at the ATM switch

In this set of simulation runs, only VBR traffic was generated in the FDDI

subnetworks. In addition, only traffic in one direction was considered (i.e., no traffic

on the VPs two and four-see Figure 3.3). The transmission capacity between the

two ATM switches (SW _LINE_CAP) was chosen to be 500Mb/s. The packet arrival

70

200 r-----~-------I~----~I------~------~I------~I------~------,

I I L __ l_0_-L __ _
I I I I I

I 1 I I I
eo 1------+----l

11

: I I t---+---
. J..-

1

1 I J ____ L __
70 f-----·+----+I------ I I I

I I I I I I
I I I I I I
I I I I I I I

50 ------+-----t----t----+---t----t-----t--------
I I ° I I I I I
I I I J J J J
I I I I I I I

50 ------+-----t------t----+-----r-------+-----t-------
I I I I I I I
I I I I I I I
I I I I I ! I

---~ r---I I I I I
I I I I I

40

I J I I I
30 ! I ! -j---f---

I I I i
I I I I
I I I I

20 ~---~I __ --~--~=I=_--~~--~~---~I=--~~I ~ __ ~
0.0025 0.005 0.0075 0.02 0.0225 0.015 0.0175 O.OZ

~u"st l.U\gth (nOlAds)

Figure 4.6: Maximum Queue Length at the ATM Switch as a
Function of the Mean Burst Length for CBR =
422Mb/s and VBR Peak Rate = 60Mb/s

rates at ATM_1 and at vbr_station were varied in several simulation runs. The focus

was on the relationship between the CBR traffic and the VBR peak rate on the one

side and SW _LINE_CAP on the other side. Note that the VBR peak rate with respect

to the ATM network is determined by the capacity of the point-to-point link between

the FDDI subnetwork FDDL1 and the ATM switch ATM_2 (FDDLLINE_CAP). A

higher peak arrival rate at the FDDI station vbr_station only results in a longer burst

at the ATM switch. However, the parameters were chosen so that the peak data rate

at vbr_station was smaller than or equal to the above mentioned line capacity.

First let us consider the case where the CBR traffic and the VBR traffic together

are equal to or less than SW _LINE_CAP. The maximum queue length at the ATM

71

.0 r-------r-------.-------.-------,-------,--------.------~ I II I I ' ,
I I I ,

70 r-------+II-------+I-------rl------,-;------~.i'--------~----~

I I 'I

60 r-----l I" '1--

1
""" 1------'+-------

50 1-------+ --+ t-----t-----+----'----
'II ,I , III I I I

I ' " I I I
I I I I I I

40 I--------t "I' , I ' I "t----r-'--------\

I I I I I I , ,I .. I , I I I I I I I I I

II " II I I I I I I I I
I I I I I I

30

20 ~------t--"..!-' --"i------j------t------i-----t------
I I I I I I I I I I I I I I I I I I

10 ~------~I------~I------~!------~I------~I------~I~----~,
4 ro

9D. n.r'''A1lt (bit.., n4) (,,1 .. 05>

Figure 4.7: Maximum Queue Length at the ATM Switch as
a Function of the VBR Throughput for CBR -
426Mb/s and VBR Peak Rate = 22-51Mb/s

switch for this particular case was always two packets, i.e., one packet arrived while

a previous one had not yet finished transmission.

Figure 4.3 shows the results of an example were the combined traffic of ATlvLl

and vbr_station was slightly higher than SW _LINE_CAP, i.e., CBR traffic = 422Mb/s,

FDDLLINE_CAP = 80Mb/s, SW _LINE_CAP = 500Mb/s. For a complete list of the

used parameters refer to Appendix D. As can be seen in the Figure, this configuration

results in moderate to high queue lengths at the switch. If the CBR traffic is further

increased, this results in very high queue lengths which can not be tolerated. In the

case shown in Figure 4.7, the CBR was increased to 426Mb / s.

Similar simulations were made for

72

• CBR = 452-456Mb/s, FDDLLINE_CAP = 50Mb/s, SW _LINE_CAP = 500Mb/s

• CBR = 442-446Mb/s, FDDLLINE_CAP = 60Mb/s, SW _LINE_CAP = 500Mb/s

• CBR = 432-436Mb/s, FDDLLINE_CAP = 70Mb/s, SW _LINE_CAP = 500Mb/s

• CBR = 412-416Mb/s, FDDLLINE_CAP = 90Mb/s, SW _LINE_CAP = 500Mb/s

• CBR = 402-406Mb/s, FDDLLINE_CAP = 100Mb/s, SW _LINE_CAP = 500Mb/s

• CBR = 392-396Mb/s, FDDLLINE_CAP = 110Mb/s, SW _LINE_CAP = 500Mb/s

The simulations made using this parameters obtained similar results.

The results shown above strongly encourage a Peak Rate Allocation scheme for

incorporation of VBR traffic into an ATM network. Peak Rate Allocation means that

on any virtual connection (VC) the resources are allocated to be able to transmit data

at the peak rate, i.e., this VC could as well support a CBR cell stream at the peak

rate. Furthermore, the sum of the peak rates of the VCs on one transmission link is

equal to or less than the maximum transmission rate of the link. ITU -TSS proposes

Peak Rate Allocation schemes to be used in an early stage of ATM networks [12].

This strategy is easy to implement and easy to understand for the ATM network user

[12, 28]. The link utilization, on the other hand, is poor if there is a considerable VBR

portion of the overall network traffic. Although Peak Rate Allocation could guarantee

that there are no queue overflows in the described model, this could be different in

more complex network topologies [12]. However, this strategy is considered to be

able to offer high performance in terms of cell lost probabilities.

Considerable research has been done to find solutions that achieve statistical

gains in ATM networks compared to Peak Rate Allocation [12, 28, 29].

73

The authors in [29] claim to achieve gains of up to more than ten compared to

Peak Rate Allocation while maintaining a low cell rate loss ratio «= 10-8). On the

other hand, the proposed strategy results in higher processing overhead and higher

call blocking probabilities.

Another approach, called Fast Buffer Reservation, also claims to result in 'dra­

matic improvements' over Peak Rate Allocation [28]. This approach would increase

the hardware costs by approximately 10%. No additional signaling is necessary. The

biggest drawback of this approach is that it requires non-standard ATM cell headers

to put no further restrictions on the network.

4.5 Combination of VBR Traffic and CBR Traffic in the FDDI

Subnetworks

As mentioned before, FDDI provides a priority scheme which gives CBR traffic

a preference over VBR traffic. In the previous section, the CBR traffic in the FDDI

subnetworks was assumed to be zero. In this section, the focus is on the influence

of CBR traffic in the FDDI on the overall traffic to be transferred over the ATM

network. To accomplish this, the simulation parameters were chosen to let the VBR

peak arrival rate unchanged while the CBR data arrival rate was changed from 5-

50Mb/s. The VBR traffic was set up to flow from FDDLI to FDDL2. The CBR

traffic was set up to flow in the opposite direction. Note that the CBR traffic could

as well be traffic which originates and ends on FDDLl.

Figure 4.8 shows the resulting maximum queue lengths at the ATM switch

ATM_2. It is obviously to see that, if there is a significant amount of CBR traffic, the

bursty traffic is "tamed", and the maximum queue lengths shrink considerably. This

so

Z5

ZO

15

10

74

I i I I I I I
, I I I I I r I' I I I

I I I I I
I I I I I , ~ , I' . I I I
I I I I I I I

I , I , I I I I
I I I I I
I I I I I
~ I I I I
I I I I I
I , I' , I I I
I I I I I I I I , I I I I I
I I I I I
I I I I I
I I , I, I I
I I I I I
I I I I J

I I ! I I
I I I I I I J

I I I , I I
I ! I' I' I
J I I I I
I I I I I
I I i

, I' ,
I I I I

I I I I I , i i I ,
I I J J I
I I I ! I
I I I I I ,
I I I ! I
I I I ! I
I I I i I

4 ,
tn. n.:'''Rut (I>it.'SI.on4) (x1"07)

Figure 4.8: Maximum Queue Length at the ATM Switch as
a Function of the CBR Throughput between the
FDDI Networks for CBR (FDDI) = 5-50Mbjs,
CBR(ATM) = 422Mb/s, and VBR Peak Rate =
51Mb/s

is another example that shows the difficulties to make useful statements about the

VBR traffic. Even if one knew exactly the behavior of the VBR sources, no statement

of their impact on the ATM network could be made since this is highly dependent

on the CBR traffic on the FDDI ring. The CBR traffic is independent of the VBR

traffic and may not be known in advance.

75

CBJl ~ .. k J!n4-to-1:n4 D'~ (lI.ends) (xO.OOl)

2

I I I I I I I I I I I
I I I I I I
I I I L -1----:-----I I I I

I I I I I
I I I I I I
I I I I I I

I I I - I -
I I I I I I

I I I I I I
I I I I I
I I I

-1 _______ , I I I ! I
I I I I ! I
I I I I I I
I I I I I I
I I I I I -t----
I I I I I I
I , I I I I
I I I I I I
I I I I

---1 _____ -1 ____

I I I I I I
I I I I I I
I I , I I I
I I I I I I
I I ---t- ! ! -
I I I j I I
I I I I I I
I I I I I I

-1- I
---L ____ J ___ ---1. _____

I i I I i I
I I I I I I
I I I I I I
I I I I I I

-t i I I -j-----t------
I I I i I I
I I I I I I
I I I

8

7

4

I I 1 I

50 '0 70 10 90 100 110
0

40

Figure 4.9: Simulation with varying Transmission Capacity of
the FDDI Subnetwork to ATM Switch Communica­
tion Links

4.6 Variation of the Transmission Capacity of the FDDI Subnetwork to

ATM Switch Communication Links

The maximum transmission rate of an FDDI network is 100Mb/s. To transmit

lOOMb/s of FDDI traffic over a BISDN, using AAL type 5 adaptation, a transmission

capacity of llOMb/s is necessary. So, in order to be able to transmit FDDI traffic

between the two FDDI subnetworks, without introducing a further queueing delay at

the UNI, one has to choose FDDLLINE_CAP to be 110Mb/s. Usually, the traffic to

be exchanged between FDDls is far less than this maximum transmission capacity.

The question arises if it is justifiable to afford this high transmission capacity.

Figure 4.9 shows the maximum end-to-end delay experienced by the CBR traffic

76

exchanged between the two FDDI subnetworks in relation to the different values for

FDDLLINE_CAP. The VBR and CBR data was chosen to be 9.6Mb/s. The bursti­

ness of the VBR traffic was five, i.e, the VBR peak traffic was approximately 48Mb/s.

For a complete list of the simulation model attributes refer to Appendix D. Note

that the traffic to be exchanged between the two FDDI subnetworks was exactly the

same for all eight simulation runs. It can be seen that FDDLLINE_CAP for the given

traffic might be chosen to be less than the maximum transmission capacity without

adding significantly to the maximum end-to-end delay. Choosing FDDLLINE_CAP

to be 80MB/s, for example, adds only slightly more than one millisecond to the

maximum end-to-end delay of the CBR traffic. This suggests that it is worth con­

sidering a value of FDDLLINE_CAP below the maximum transmission capacity of

llOMb/s if the timing constraints of the envisaged applications is not too stringent.

If Peak Rate Allocation is used, the reduction of FDDLLINE_CAP results in better

switch-to-switch line utilizations.

77

CHAPTER 5. CONCLUSIONS

The combination of VBR traffic and CBR traffic puts considerable constraints

on the network resources and management strategies that deal with it.

The bursty traffic is highly variable. This makes it very difficult to determine

the parameters to describe the traffic accurately. For the conducted simulations, it

turned out that the performance of the network was highly dependent on the peak

data arrival rate (during a burst) and the burst length. By contrast, the average

arrival rate, the peak to average arrival rate, and the burst interarrival rate did not

significantly influence the simulation results. However, these parameters might be

important to determine the possibility of statistical multiplexing. Other simulation

results showed that the influence of a data burst on the ATM network can be influ­

enced by LAN protocols and priority schemes. This fact makes it even more difficult

to describe data bursts accurately. The obtained results strongly encourage the use

of a Peak Rate Allocation scheme in early stage BISDNs.

The results obtained in a comparison between ATM adaptation layer type 3/4

and ATM adaptation layer type 5 suggest that ATM adaptation layer type 5 is very

likely to become the standard used for LAN-LAN interconnections via ATM. This

confirms to findings in [13] which were based on an analytical comparison.

The simulations concerned with the value of the transmission capacity of the

78

communication link between the LAN and the ATM switch showed that the trans­

mission capacity might be less than the rate needed to transmit at the LAN speed

for the transmission of moderate amounts of data within fair timing limits.

The simulations were limited by the order of packets that could be simulated

within reasonable time. To overcome this shortcoming, it would be worth investi­

gating whether strategies like Importance Sampling can be introduced to OPNET

simulation models. Importance Sampling was shown to cut down execution time

for calculating ATM cell blocking probabilities by orders of magnitude [30]. Since

the same simulation program is executed several times with different simulation pa­

rameters and/or seeds for the random number generator to collect data for scalar

statistics, executing the simulation programs with a programming scheme like PVM

on a cluster of workstations would further enhance the order of packets which can be

simulated.

There are still a lot of open questions concerned with the combination of VBR

traffic and CBR traffic in the same network. One basic problem is to find an accurate

model to describe the behavior of bursty traffic. Therefore, the feedback from early

stage BISDN implementations will play an important role in solving these problems.

79

BIBLIOGRAPHY

[1] Rainer Handel and Manfred N. Huber. Integrated Broadband Networks: An In­
troduction to ATM-Based Networks. Addison-Wesley Publishers Ltd., Reading,
Mass., 1991.

[2] Martin de Pricker. Asynchronous Transfer Mode: Solution for Broadband ISDN.
Ellis Horwood Books in Computing Science. Series in Computer Communica­
tions and Networking. Ellis Horwood, New York, 1991.

[3] A. E. Eckberg. B-ISDN/ATM traffic and congestion control. IEEE Network,
6(5):28-37, September 1992.

[4] Shiro Sakata. B-ISDN multimedia workstation architecture. IEEE Communica­
tions Magazine, 31(8):64-67, August 1993.

[5] William Stallings. ISDN: An Introduction, chapter Broadband ISDN, pages 332-
353. Integrated Services Digital Networks. Macmillian, New York, 1989.

[6] Adrian E. Eckberg, Bharat T. Doshi, and Richard Zoccolillo. Controlling conges­
tion in B-ISDN / ATM: Issues and strategies. IEEE Communications Magazine,
29(9):64-70, September 1991.

[7] Tadanobu Okada, Hirokazu Ohnishi, and Naotaka Morita. Traffic control in
asynchronous transfer mode. IEEE Communications Magazine, 29(9):58-62,
September 1991.

[8] Setiadi Yazid and H. T. Mouftah. Congestion control methods for BISDN. IEEE
Communications Magazine, 30(7):42-47, July 1992.

[9] James W. Roberts. Variable-bit-rate traffic control in B-ISDN. IEEE Commu­
nications Magazine, 29(9):50-56, September 1991.

80

[10] Chin-Tau Lea. What should be the goal for ATM. IEEE Network, 6(5):60-66,
September 1992.

[11] Stephen M. Walters. A new direction for broadband ISDN. IEEE Communica­
tions Magazine, 29(9):39-42, September 1991.

[12] John Burgin and Dennis Dorman. Broadband ISDN resource management: The
role of virtual paths. IEEE Communications Magazine, 29(9):44-48, September
1991.

[13] Grenville J. Armitage and Keith M. Adams. Packet reassembly during cell loss.
IEEE Network, 7(5):26-34, September 1993.

[14] MIL 3, Inc., 3400 International Drive NW, Washington, DC 20008. OPNET
Modeling Manuel 2.0, 1993. Release 2.4.

[151 MIL 3, Inc., 3400 International Drive NW, Washington, DC 20008. OPNET
External Interface Manuel 6.0, 1993. Release 2.4.

[16] MIL 3, Inc., 3400 International Drive NW, Washington, DC 20008. OPNET
Simulation /(ernal Manuel 5.0, 1993. Release 2.4.

[17] MIL 3, Inc., 3400 International Drive NW, Washington, DC 20008. OPNET
Simulation /(ernal Manuel 5.1, 1993. Release 2.4.

[18] Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, Englewood Cliffs,
N. J., second edition, 1988.

[19] Scott L. Sutherland and John Burgin. B-ISDN interworking. IEEE Communi­
cations Magazine, 31(8):60-63, August 1993.

[20] Martin De Prycker. ATM switching on demand. IEEE Network, 6(2):25-28,
March 1992.

[21] Achille Pattavina. Nonblocking architectures for ATM switching. IEEE Com­
munications Magazine, 31(2):38-48, February 1993.

[22] Ellen Witte Zegura. Architectures for ATM switching systems. IEEE Commu­
nications Magazine, 31(2):28-37, February 1993.

[23] MIL 3, Inc., 3400 International Drive NW, Washington, DC 20008. OPNET
Example Models Manuel 8.0, 1993. Release 2.4.

81

[24] Will E. Leland, Walter Willinger, Murad S. Taqqu, and Daniel V. Wilson. On
the self-similar nature of ethernet traffic. In SIGCOM '93: Conference Pro­
ceedings: Communication Architectures, Protocols, and Applications, September
13-17, 1993, San Francisco, California, USA, pages 183-193. Association for
Commputing Machinery, New York, 1993.

[25] Ibrahim W. Habib and Tarek N. Saadawi. Multimedia traffic characteristics in
broadband networks. IEEE Communications Magazine, 30(7):48-54, July 1992.

[26] Daniel B. Schwartz. ATM scheduling with queueing delay predictions. In SIG­
COM '93: Conference Proceedings: Communication Architectures, Protocols,
and Applications, September 13-17, 1993, San Francisco, California, USA,
pages 205-211. Association for Commputing Machinery, New York, 1993.

[27] George Marsaglia, Arif Zaman, and Wai Wan Tsang. Toward a universal random
number generator. Statistics (3 Probability Letters, 8(1):35-39, January 1990.

[28] Jonathan S. Turner. Managing bandwith in ATM networks with bursty traffic.
IEEE Network, 6(5):50-58, September 1992.

[29] Tomonori Aoyama, Ikuo Tokizawa, and Ken-Ichi Sato. ATM VP-based broad­
band networks for multimedia services. IEEE Communications Magazine,
31(4):30-39, April 1993.

[30] Qinglin Wang and Victor S. Frost. Efficient estimation of cell blocking probabil­
ity for ATM systems. IEEEjACM Transactions on Networking, 1(2):230-235,
April 1993.

82

APPENDIX A. ABBREVIATIONS

AAL
AL
ATM
AUU
BAsize
BISDN
Btag
BOM
CAD
CAM
CBR
CCITT

CLP
CPCS
CPI
CRC
CS
COM
EOM
Etag
FDDI
GFC
HDTV
HEC
ICI
ISDN
ITU-TSS

ATM adaptation layer
Alignment (field)
Asynchronous transfer mode
ATM-Iayer-user-to-ATM-Iayer-user indication
Buffer allocation size
Broadband integrated services digital network
Beginning tag
Begin of message
Computer-aided design
Computer-aided manufacturing
Constant-bi t-rate
Comite Consultatif International
Telegraphique et TeIephonique
Cell loss priority
Common part convergence sublayer
Common part identifier
Cyclic redundancy check
Convergence sublayer
Continuing of message
End of message
Ending tag
Fiber-distributed data interface
Generic flow control
High definition television
Header error control
Interface control information
Integrated services digital network
International Telecommunications Union -
Telecommunication Standardization Sector

LAN
LI
LLC
MAC
MERMAID

MID
NNI
OAM
PAD
PDU
PM
PRM
PTI
PVM
RES
SAR
SDU
SN
SRC
SSCS
SSM
ST
STD
STM
TC
TTRT
UNI
UU
VBR
VC
VCI
VLSI
VP
VPI
XMT

83

Local area network
Length indicator
Logical link control
Medium access control
Multimedia environment for remote
multiple-attendee interactive decision-making
Multiplexing identifier
Network-network interface
Operation and maintenance
Padding (field)
Protocol data unit
Physical medium (sublayer)
Protocol reference model
Payload type identifier
Parallel virtual machine
Reserved
Segmentation and reassembly
Service data unit
Sequence number
Source
Service specific convergence sublayer
Single-segment message
Segment type
State transition diagram
Synchronous transfer mode
Transmission convergence (sublayer)
Target token rotation timer
User-network interface
User-to-user indication
Varying-bit-rate
Virtual connection
Virtual channel identifier
Very-large-scale integration
Virtual path
Virtual path identifier
Transmit

84

APPENDIX B. OPNET PROCESS MODEL REPORTS

85

Process Model Report: atm_nd-PfOC I Moo Mar1421:17:131994 I Pace 1014

Process Model Attributes
attribute value
VPI_SET promoted
VECTOR STAT ENABLE promoted

Header Block
,. global variablt .,
doublc aIm_cte_peU_dclay = 0.0;
int scalar_staUla&-alm_nd = 0;

5 ,. packet strt!am dt![lIIitioflS .,
#denne RCV _IN_STRM 0
#denne SRC_IN_STRM 1
#denne XMT_OUCSTRM 0

10 ,. trQASitioll macros·'
#denne SRC_ARRIV AL (up _Intrpt_ type 0 = OPC_lNfRPT _STRM && \

up _Intrpt _ strm 0 = SRC_L'CSTRM)

#denne RCV _ARRIVAL (up _Intrpt _type 0 = OPC_lNfRPT _STRM && \
15 up Jntrpt _sUm 0 = RCV _IN_S1RM)

#denne END_OF _SIM up _Intrpt _type() = OPC_INTRP'CENDSL\f

State Variable Block
Gshandlc 'de..gsh;
in! \address;
Objid 'module_id;
Boolean \vec_stat_nag;

I Temporary Va,la.1e BloCk I Packet .plcptr;
doublc cte_dclay;

forced stale Inlt
attribute
name
enter execs
exit execs
status

enter execs Inlt

value
init
(See below.)
(empty)
forced

de..gsh = up_statJlubal_re& ("ete_delay");
,. Get IPIOd..It ID .,
modulc_id = up _Id _sclfO;
/. Gd VPI from prouII attributes .,

5 up _Ima _ obL aUr.-2't (modulc_id, "VPI_ SET", &address);
up _Ima _ubL aUr Jet (modulc_id, "VECTOR_STAT_ENABLE", &vec_stal_Oag);

tVDe default value
integer 2
toaale disabled

tvoe default value
string st
textlist (See below.)
textlist (empty)
toaale unforced

86

Process Model Report: abn_ncCproc I Moo Mar 1421 :17:131994 I Page 2 of 4

IrtInsilion Inlt -> Idle
attribute value tVDB default value
name tr_8 string tr
condition string
executive string
color RGB333 color RGB333
drawina stvle soline toaale soline

forced stille xmt
attribute value tvoe default value
name xmt string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced tooole unforced

enter execs xmt
,. gel produced paWl *'
pkptr = op Jlk Jet (SRC_IN_STRM);
,. Set VPI[uld ofpacUI*'
opJlk_ord_sct (plcpu, -VPI-, address);

5 '* Send paWl 10 traflSminer *'
op Jlk_ scod(p!CPtr, XMe OlIT _STRM);

transition xmt-> Idle
attribute value tvoe default value
name tr_1 string tr
condition string
executive string
color RGB333 color RGB333
drawina stvle soline toaale soline

uriforced stille Idle
attribute value tvoe default value
name idle string st
enter execs (empty) textlist (empty)
exit execs (empty) text list (empty)
status unforced toaale unforced

IrtInsition Idle-> xmt
attribute value tVDe default value
name tr_O string tr
condition SRC_ARRIVAL string
executive string
color RGB333 color RGB333
drawina stvle soline toaale soline

87

Process Model Report: atnLnd..Pf'OC I Mon Mar 14 21:17:131994 I Page 3 of 4

transition Idle -> Idle
attribute value type detaun value
name tr_2 string tr
condition default string
executive string
color RGB333 color RGB333
drawina stvle spline tooole spline

transition Idle -> rev
attribute value tvoe detaun value
name tr_3 string tr
condition ReV_ARRIVAL string
executive string
color RGB333 color RGB333
drawina stvle spline toaale spline

transition Idle -> stats
attribute value type detaun value
name tr_9 string tr
condition END_OF_SIM string
executive string
color RGB333 color RGB333
drawino stvle spline tooole spline

forced sIDle rev
attribute value type detaun value
name rcv string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced tooole unforced

enter execs rev
pkptr = op yk.J:d (RCV _IN_STRM);
etc_delay =op_slm_Ume 0 - opyk_aeaUoD_Ume.J:d (pkptr);
,. /cup trac/c of pmk delay value *1
if (ete_delay > atm_etc-JlCU:_delay)

5 atm_etc-JlCU:_delay = etc_delay;
1* If the vector statistic is OIabWl record e1\d-to-oul delay *1
if (vee_stat_flag = OPC_TRUE)

op _stat J1obal_ wrtte (ete-8sh, etc_delay);
op yk_ destroJ (pkptr);

transition rev -> Idle
attribute value tyoe default value
name trJ string tr
condition string
executive string
color RGB333 color RGB333

stvle soline toaale soline

88

Process Model Report: aln'LndJ)l'oc I Mon Mar 14 21:17:141994 I Page 4 of 4

unforced stale stats
attribute value tVDe default value
name stats string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status unforced toaale unforced

enter execs stats
1* AI eM of simulation, sallar stalislic.r are wriuen oul .,
1* OnJy one 1IOde has 10 do lhis .,
if (I scalar _staUla&-atm_nd){

,. Set flag to sigNJI that lhe sallar stalislics are wriuen ow .,
5 sca1ar_stacl18&-atm_nd = 1;

op_stat_scalar_wrlte ("ATM_Peak End-to-End Delay (sec.1 ., atm_ete_peak_delay);

}

89

I Moo Mar1421:18:231994! Page 1 of4

Process Model Attributes
attribute value tyQe
VPI_ATM_LOCAL promoted integer
VPI_ATM_REMOTE promoted integer
VPI_FDDI_LOCAL promoted integer
VPIJDOLREMOTE promoted integer
STAT ENABLE promoted tOQQle

Header Block
,.. TralUitiofi macros *'
#denne PK_ARRIV AL (op _Intrpt _type 0 = OPC_INTRPT_S'JR.\!)

#denne QUEUE_SIZE_GROWS (op Jntrpt_ type 0 = OPC_INTRPT _STAT && \
5 op Jnlept _ stat 0 = QUEUE_LENGTII_STA T)

,.. Pawl Slreams ./
10 #denne fDDI_OlITPUT_STRM 0

#denne ATM_NODE_OlITPllT_S'JR.\1 1
#denne ATM_SwrrCH_OlJl'PUT_S'JR.\1 2

,.. Statistic inputs */

15 #denne MEAN_DELAY _STAT 0
#denne MEAN_PKSIZE_STA T 1
#denne QUEUE_LENGTII_STA T 2
#denne PK_ THRUPUT _STAT 3
#denne UTIUZA nON_STAT 4

20 #denne BIT_THRUPUT_STAT 5

State Variable Block
Objid 'module_id;
int \vpi-pk, \vpil, \vpi2, \vpi3, \vpi4;
double 'malcqueue_length;

Temoorarv Variable BlOCk
Packet .ptptr;
Boolean scalar_ write_flag;
void ma'UI_size_sw 0;
void recvrd_stats_sw 0;

Function Block
~•... ,
,.. lI'WC_q_sjzeJw() ./ , .. /
,.. This [WV::liofi dJermiJus 1M mazimum queue of tJu ATM

5 ,.. Iratt.rmiler challMllefigth duriflg 1M simuliJtiOfi TIUI

./

./
~ ...•.•.....•••... ,
void max_,!-size_sw 0

{
10 double queue_length;

default value
0
1
2
3
disabled

90

I Mon Mar 14 21:18:231994 I Page 2 of 4

/. Read 1M tI_qwue size·'
queue_lmgth=op_5taUocaIJud(QUEUE_LENGTICSTAT);
/. CMcJc if it is a new maximum ./

15 if (queue_lmgth > msx_queue_length)
max_queue_length = queue_lmgth;

unforced stllte Idle
attribute value
name idle
enter execs (empty)
exit execs (empty)
status unforced

traruition Idle -> route. Dk
attribute value
name tr_O
condition PK_ARRIVAL
executive
color RGB333
drawina stvJe soline

traruition Idle -> Idle
attribute value
name tr_1C
condition default
executive
color RGB333
drawina stvJe soline

transition Idle -> Idle
attribute value
name tr_12
condition QUEUE_SiZE_GROWS
executive max_q_size_swO
color RGB333
drawina style soline

transidon Idle -> stats
attribute value
name tr_13
condition END_SIM
executive
color RGB333
drawinQ style soline

fort:ed stllte route Dk
attribute value
name route-pk

tVJ)e default value
string st
textlist (empty)
textlist (empty)
tOQQle unforced

tVJ)e default value
string tr
string
string
color RGB333
toaale spline

tvoe default value
string tr
string
string
color RGB333
toaale soline

tvoe default value
string tr
string
string
color RGB333
toaale soline

type default value
string tr
string
string
color RGB333
tOQQle soline

type default value
string st

91

enter execs
exit execs
status

(See below.)
(empty)
forced

werexecs route ~k
,.. GI!l arrived pacJul·'
pkptr = 0p"'pkJ:d (op)ntrpt_strm 0);
,.. Gd VPI/rompacJul[lt!ld Vp/·,
op Jlk _ nfd Jet (pkptr, 'VP I" , &vpi-pk);

5 ,.. St!1ld pacJullO according Oulpul slrtam .,
'·Iflllt! pacJul isfrom lhe rt!11lOll! FDDI·1IOdt!·,
,.. seNl illo lhe locoJ FDDI·1IO<k .,
if (vpi-pk = vpi4)

0p"'pk_send (pkpa-, FDDI_OUTPUT_STRM);
10 ,..If lilt! pacUI is fromlhe rt!11lOll! ATM·1IOdt! ./

,. seNl illo lhe local ArM·nodl! ./
if (vpi-pk = vpi2)

op"pk_send (pkptr, ATM_NODE_OUTPUT_STR\1);
"'If /hI! pacJul isfrom lilt! 10aJ/ FDDI· or ATM·nodl! ./

15 ,.. seNl illo lhi! olhu ATM·swilch ./
if (vpi-pk = vpi3 1\ vpi-pk = vpi 1)

0p"pk _send (pkptr, ATM_swrrcH_OlrrpU'CSTRM);

transition route ~pk -> Idle
attribute value
name tr_4
condition
executive
color RGB333
drawino stvle spline

forced stille Initial
attribute value
name initial
enter execs (See below.)
exit execs (empty)
status forced

enur execs InHlal
/. Gel modl./I! ID ./
modult!_id = op)d _ RIfO;
,.. Gd tht! VP/s!rom lhe procl!ssattribules·'
op _Ima _ obL aUr Jet (modulc_id, "VP I _ ATM _LOCAL" , &vpil);

5 op_lma_obLaUrJet (modulc_id, 'VPI_ATM_REMOTE", &vpi2);
op_lma_obLaUrJd(module_id, "VPIJDDI_LOCAL", &vpi3);
op _Ima _ obLaur Jet (modulc_id, "VPIJDDI_REKlTE", &vpi4);

"'/1Ii/ia1iZt! max qwt!uc It!ng/h ./
10 mu_queue_length = 0.0;

I Mon Mar1421:18:241994 I Page30f4

teX1list
teX1list
to Ie

tVDe
string
string
string
color
tOQole

type
string
teX1list
textlist
tOQole

(See below.)
(empty)
unforced

default value
tr

RGB333
seline

default value
st
(See below.)
(empty)
unforced

92

Process Model Report: atm sw-p"oc I Men Mar 14 21:18:241994 1 Page 4 of 4

transition Initial -> Idle
attribute value tVDe default value
name tr_6 string tr
condition string
executive string
color RGB333 color RGB333
drawino stvle seline tooole seline

unforced stale Slats
attribute value tVDR default value
name stats string st
enter execs (See below.) textlist (See below.)
exit execs (empty) text list (empty)
status unforced tooole unforced

ent" execs stats
,. R~cord scalar sllltistics·'
op _Ima _ obL attr _get (module_id. - STAT_ENABLE", &scaJar_write_f1ag);
if (scalar_ write_flag = OPC_ TRUE)(

,. Record JiMI statistics .,
5 op_slal_!ltlllu_ wrlte("ATM Switch Throughput IMb/.)", (op_slal_localJead (BIT_TIIRUPUT_STA1) 11()()()()oo»;

op_slal_stalar_wrlte("Mean Packet Delay at ATM Switch",Op_slal_locaIJead(MEAN_DELAY_STA1);
op_slal_stalar_wrlte("Mean Queue Length at ATM Switch", op_slal_locaIJead (MEAN_PKSIZE_STA1);
op_slal_!ltlllar_ wrlte("Maximum Queue Length at ATM Switch", mu_queue_lengtb);
op_slal_!ltlllar_wrlte("Packet Throughput at ATM Switch", Op_slaUocalJead (PK_TIIRUPUT_STA1);

10 op_slal_!ltlllar_ wrlte("Utilization of Switch to Switch Link", op_slal_locaIJead (UTll.IZATION_STA1);
}

93

I Mon Mar 14 21:19:101994 I Paae 1 of 14

Process Model Attributes
attribute value
VPLSET promoted
STAT ENABLE cromoted

Header Block
1* packLl slTeam de[lIIuioflS "'
#denne fDDUN_STRM 0
#denne ATM_IN_STRM 1
#denne fDDCOUT_STRM 0

5 #denne ATM_OUT_STRM 1

'" Statistical iltpUlS dqlllUio1l "'
#denneMEAN_DELAY_STAT 0
#denne MEAN_PKSiZE_ST AT 1

10 #denneQUEUE_LENGTlCSTAT 2
#denne PK_TIIRUPUT _STAT 3
#denne UTILIZATION_STAT 4
#denne BrCTIIRUPUT_STAT S

15 1* Pawl size deji1litio1lS *'
#denne ATM_PK_SiZE 424
#denneSAR_PK_SIZE 384
#denne SAR_PDU_PA YLOAD_SiZE 44
#denneHEADER_SiZE 4

20 #denne TRAn.ER_SiZE 4

'* Sgmelll type defi1litio1lS *'
#denne BOM 10
#denne COM 00

25" #denne EOM 01
#denne SSM 11

1* ITtJ1ISuio1l macTOS *'
#denne fDDCARRIVAL (op_lntrpt_type 0 = OPC_INTRPT_STR.\1 && \

30 op_lntrpt_strm 0 = fDDCIN_STR.\i)

#denne A TM_ARRIV AL (op _Intrpt _type 0 = OPC_INTRPT _STR~1 && \
op _Intrpt _ strm 0 = A TM_IN_STRM)

tvoe
integer
tooole

35 #denne QUEUE_SiZE_GROWS (op_lntrpt_type 0 = OPC_INTRPT_STAT && \
op_lntrpt_SUt 0 = QUEUE_LENGTICSTAT)

#denne END_SIM (op_lntrpt_type 0 = OPC_INTRPT_ENDSIM)

40 typedef SlrUCt rev _fddUlk (
int
int
SlrUCt rev 3ddi_pk
SlrUCt rev _fddi_pk

4S) pk_list;

pUd;
1ast_5eq..nlDllber;
*prev..Jlk:
°next_pk;

default value
2
disabled

94

Process Model Report: bridge_aal3 4J)1'OC I Mon Mar 14 21:19:101994 1 Page 2 of 14

I State Variable Block
int \b_tag, 'e_tag;
int \address, 'multiplex_id;
Objid 'module_id;
plelist· \start-pIr;

5 double 'max_queue_length;
Boolean ~taUlag;

TemDOrarv Variable Block
Packet .pkplr, .cpcs-Pdu_pkptr, 'sar..J!kptr;
double ete_delay_seg, ete_delayjddi;
int rev _b_tag, rev _e_tag;
int fddi..J!k_size;

5 int cpcs..J!du_payload_size;
int cpcs..J!du_totaCpk_size;
int num_oCaIIII_pks;
int Iast..J!k-paylo*Uize;
int 0°

10 int se&...type, Ieogth_ind;
int mulUd, seq..number;
int pk_length;
int pad;
Packet ·payIoad-ptr.

15 pk_list 'list-ptr;

void aIIII-pk_se.nd(packet');
void seuar_pk_fds(Packet', in!, in!, in!, Packet', int);
void set_5ar_pkjds_ssm(packet', Packet', int);

20 void add_pk_to_list (in!, int);
pk_list 'rmd-pk (int);
void del..J!kjrom_list (pk_list');
void max_q_size_fddi 0;
void record_stats_fddi 0;

25

Function Block
/ .••.••.....•.••••.•.•....•.•.....•..•....•.....•.....••.••.. , ,. *' ~ ••...•..•••••..••••....••....•••........................... ,
1* FlUlCtiOfi gm a poilllt!T 10 a SAR·PDU *'

5 1* • t!1IC4psuJau 1M SAR·PDU ill a AIM packt!1 *'
1* • St!NU the pad:t!1 *'
~ ... ,
void atm_pk_send (fkUar-pkpIr)

10 Paclcet 'fkuar_pkp!r;
(
Packet 'atm-pkptr;

atm_pkptr = op Jlk_ create Jml("atm_pK ");
15 ,. copy SAR pad:t!I /oATM pad:t!I dauJ[uld .,

op Jlk_Drd_sd (llm-pkpIr, "data", fkt_sar_pkptr);

'* &1 VPI fit!ld of packt!1 *'

95

Process Model Report: bridQe. 8813 4J)1'oc

Op Jlk_nfd_set (8Im-pkptr, "VP I", address);

'* Set total ATM paoot size *'
20 oPJlk_total_slze_set(8Im-pkptr, ATM_PK_SIZE);

25

'* Send packet 10 trQ/lSmittu *'
opJlk_send(atm_pkptr, ATM_OtIT_STR\f);

I MonMar1421:19:111994 TPage30f14

,. ••• **/

'* *' ,. ... ,
1* FUllCtion gets a poilller to a SAR ·PDU and accordillg jield

30 1* vallUS for segmellled packets
1* .[uls the namedjidds if the specifiedSAR·PDU
1* with the submitted values

*' *' "' "' ,. ..••••.•..•..••.•..•....••...••....•....•.••••.•..•••.....• /
35 void set_sar...pk_fds (sarptr, se&-type, se'l-oumber, mid, payload-ptr, pk_leogth)

Packet .sarptr, ·payload_ptr; .
int se&-type, SC'I-oumber, mid, pk_leogtb;
(

'* Set the jidds if SAR packet "'
40 opJlk_nfd_set (sarptr, "seqment_type", se&-type);

op JIk_nfd_set (sarptr, "sequence _nurr.be r", SC'I-oumber);
opJlk_nfd_set (sarptr, "mul tiplexinq_id", mid);
'" Only the /ast segmelll gets the origittal data "'
if (se&-type == EOM)

45 opJlk_nfd_set (sarptr, "sar_pduyayload", payloalCpIr);
op Jlk _ nfd _ set (sarptr, "lenqth _ i nd icator", pk_lengtb);
op Jlk _total_size _set (S81ptr, SAR]K_SIZE);

50 ,. •.....•.....••••...•..........•.......•...............••.•. ,
1* "' , ..••••..••..••....••...........••.....•..................... /
1* FUllCtion gets a poilller loa SAR·PDU and accordi1lgjield

55 '" vallUS for si1lgle packets '* . [uls lhe named fields if lhe specified SAR ·PDU
1* with the submitled values

*' *' .,
*' ,. •.••.....•••....••...••.....•.•...........•...........•.•.. ,

60 void set_sar...pk3ds_S5m (sarptr, payload_pII", pk_leogtb)
Packet "sarptr, "payloa,Cptr;
int pk_leogtb;
(
,. S~t the jields of SAR packel *'

65 opJlk_nfd_set (sarpcr, "seqment_type", SSM);

70

op Jlk_ nfd_set (sarpcr, "sa r ydu _pay load", pay1oad-ptr);
op Jlk _nfd_ set (sarpcr, "lenQt h_ indicator", pk_lengtb);
Op Jlk _ total_size _set (S81ptr, SAR_PK_SIZE);

,. ... ,
1* "' ,. ... ,

75 1* Gets a poilllU to a list eiDlWtI
1* • if the list elemelll is the /aSI list elDlWtt *' .,

,. it rdurfU lhe the poillUr it gol as <VI argumelll
,. - otherwise the fUIIClioll caUs itself with lhe
,. poilller 10 lhe 11m elemtlll ill the /isl

96

I Moo Mar 14 21 :19:11 1994 I Page 4 of 14

80 , •• /

plOist *fmd_cud_oUist (list-plI')
pk_list *list-p1I';
{

85 pk_list *last..,pk:
1* debuggillg message *1
if (op "'priL odb _Itrace _adln("1 ist _test"»

prm~("Received order to find the end of the list - struct_ptr- \d\n",list_pII'r.
1* Check if it is the /asl elemelll iIIlhe lisl *1

90 if (list..,pIl'->neXl..,pk = OPe_NIL>!
,. debuggillg message *1
if (op "'priL odb _Itrace_ actlve("li st _test"»

printf("Found end of the list returned pointer= \d\n",list_pII');
,. RelUTllthe poilllU 10 the Iasllisl demelll *1

95 relllm list..,plr;

else

1* debuggillg message *1
100 if (op...pl'l:_odb-'trace_actlve(" list_test "»

printf("Recursiv call structure_ptr~ \d\n",list_pII'->next-!*);
1* Recursiv call wilh poilller 10 lhe IIU1lisl demelll as argumOll *1
Iast-!* = fmd_cud_oClist (list..,pll'->nexcpk);
,. debuggillg message *1

105 if (op ...p1'l:_ odb -,trace _ actlve("li st _test"»
printf("Re",,~siv call four.d end of list - retu~,,~d \:j\n",Iast_pk);

,. RelUTII poilller to lhe /aslJisl elemelll *1

return Iast_pk;
}

110

~ .•..•..•••.•...••..•••••..••......•••...................... ,
*1

115 ~ ••• ,

1* fills ill strucllUe for the IItW lisl e/emelll
1* alld adds lhe lIew lisl elemelll as the Iasllisl demtllt

*1
*1

~ ... ,
120 void add-!*_to_list (pk_id, seq..Dumber)

int pk_id, seqJlumber;
{
pk_list *Iast-pk. *S1rUCCPU;

125 1* debuggillg menage *1
if (op "'prJL odb -'trace _ actlve("list _test"»

prmtf("Received order to add packet to list pk_id: \d seq_number: \d\n",pk_id, seq..Dumber);
1* AUoca/e memory for the lIew /isl elemelll *1
struct..,pll' = (pk_list *) malloc (sizeof(pk_list»;

130 1* Fill ill variables of the /leW lisl elemelll *1
struct..,pll'->pk_id = pk_id;
struct..,pIl'->last_seq..Dumber = seq_Dumber;
1* The /leW lisl denwd is /lOW lhe Iasl OM illlhe lisl *1

stnJct..,pIl'->neXl..,pk = OPe_NIL;
135 I· debuggillg message .,

97

Process Model Report: brldae_aaJ3_4....proc

if (op ...PI'&_ odb _Itrace_actlve("1 ist _test "»{
printf("Fllled in values in structure \n");

I Mon Mar 14 21:19:121994 I Page 5 of 14

printf("pk_id - 'd seq_no ~ 'd\n",struct_ptr->pl::_id, struct_ptr->1ast_seq_number);
printf("Asslgned pointer to structure - 'd\n",struct_plr);

140 }
/. Check if the list is empty ./
if (start-PIT = OPC_Nll.) {

,. debuggillg ~sage */

if (op -PI'&_ odb_ltrace_ actlve("list _ test"»
145 printf("I am the only packet - startyointer was OPV_NIL\n");

,. The pacut is 1M [lrst OM */

,. - set the poillter to the first list eumelll */

start-ptr = struct-ptr.
,. - set the poillter to 1M /lUI list tlemelll to NUU ./

150 f· (siltCe there is 110 other tlemDIt ill 1M lut) ./
struct_ptr->prev _pit = OPC_NIL;

}
else{

,. The list is IICt empty·/
155 ,. debuggillg ~sage·/

if (op ...p1'&_odb _Itrace_ active(" list _test "»{

}

printf("There is a packet in the list - called function to find the end of the list\n");
printf("Parameter start_ptr~ 'd\n", start..,ptr);

160 /. FiNlthe eNl of 1M list */

1astJ'k = find_end_oUist (start_ptr);
f· Register our list tlemelll as lIat list tlemelll ./
lastJ'k->nextJ'k = SlrUct-ptr;
/. Register 1M fomu:r eNl of 1M lut as our precessor·f

165 struct_pu->prev _pit = last-pl::;

170 , •• ,

,. fiNl...!" _ill _ Ust() ./ , •.......•••••...•............•••..••.......••.•............. /
,. Checks if 1M specified list tlemelll
,. be/ollgs to 1M speci[w:t packed idelllifltr

175 /. - YES = returll poilller to 1M lut e/emeltt
/. - NO = recursiv call (check /lUI list eumelll)
~ ... ,
pit_list *fmd_pk_in_list (list..,ptr, pIt_id)

180 pk_list ·list-ptr;
int pk_id;

185 f· debuggillg message *'
if (op ...PI'&_ odb _Itrace_actlve("1 ist _test"»

printf("Got order to find packet in the list \n pk_id- 'd structureytr= 'd\n", pk_id,list_ptr);
,. Check if 1M Poilller is NUU - packet is ItOI ill 1M list */

if Oist-ptr = OPC_Nll.){
190 ,. debuggillg ~sage·'

if (op ...PI'&_ odb Jtrace_ actlve("l1st _test"»
printf("Could not find packet - reached end of the list \n");

return OPC_Nll.;

98

Process Model Report: bridQe_aal3 4J)1'oc I Mon Mar 14 21 :19:121994 T Page 6 of 14

195 else{
,. CMck if lhis is 1M ~/emelll W~ ar~ looki1lg for *'
if (list_ptr->pldd = pk_id){

'* debugging messag~ *'
if (op Jlrg_ odb _Itrace _ acUve("list _test H))

200 printf("Found packet - returned structure pointer 'd\n",list_ptr);

205

210

215

'* R~1unI 1M poinkr 10 1M lisl ~/emelll *'
return list_ptr;

)
else {

'* debugging messag~ *'
if (op Jlrg_ odb _Itrace _ acUve(" 1 i.t _ te.t H))

printf("Recursiv call - .truct_ptr a 'd pk_id - 'd\n",list-ptr->next_pk,pk_id);

'* CMck 1M IIaIlisl ~IDf'WlI *'
element-ptr = rmd-pk_in_list (list_ptr->next-Pk, pk_id);

'* debugging messag~ *'
if (op JlrlL odb _Itrace _ acUve(" list _ te.t H))

printf("Recursiv call found packet - returned pointer - 'd\n", element-ptr);
return element_ptr;

/**** •• /

220 '* /iNi.ykl.) *' , •...••...........•.•......•••..•.....••.•............•.•.... ,
'* CMcks if ther~ is a lisl ~11)1 for 1M give1l pic _ id *'
1* - YES = retur1l 1M poi1lkr 10 1M lisl eLLmelll *' '* -NO ~ relu.P 1l NUlL poilllU *'

225 ~ ••• ,

pk_list *rmd_pk (pUd)
int pk_id;
{

230 plUist *list-ptr;

'* debugging message *'
if (op jlrjUxlb_ltrace_actlVe("list_te.t"»

printf("Got order to find packet pk_id= 'd\n", pk_id);

235 '* CMck if lhe lisl is empty *'
if (start_ptr = OPC~NIL){

,. debuggi1lg rMSsage *'
if (oPJlrg_odbJtrace_actlve("l1.t_te.t"»

printf("Could not find packet - list is empty \n");
240 1* Relunl NUU poinkr - 110 eLLmelll i1llhe lisl *'

return OPC_NIL;
)
else{

,. debuggi1lg rMSsag~ *'
245 if(oPJlrg_odb_ltrace_actlve("l1.t_test"»

print~.Called function find_pk_in_li.t\n - parameter pk_ida 'd .tructure pointer- 'd\n",
1* Si1lC~ 1M lisl is 1101 ~mpty - search/or our pacUI*'
list-pu = find-pUn_list (sta"Cptr, pk_id);
,. debuggi1lg rMSsag~ *'

250 if(oPJlrg_odb_ltrac:e_ac:tlve("l1.t_te.t"»
printf("procedure found packet - returned .t ruct ure _pt r - \d\n" ,Iist-pu);

return Iist-ptr;

99

Process Model Report: bridge. aaI3_4J)(oc I Moo Mar1421:19:121994 I Page7of14

255

~•..•.•.•..........•............................. /
1* */
~ ••••••••••••••••••••••••••••••••••••••• * ••••••••••••••••••• ,

260 1* Dtldes a list eumelll from the list */

*/
*/

1* - update elllTies ill the neighboring list eumellls
1* -free the aUOCJJtbi munory
~ ••......•......•..........•................................ ,

265 void del-pkjran_list (iist-plr)
pk_list *list-plr;
{
/* debugging message */

if (op JlrE_ odb _!trace _actlve("list _ te st"»
270 printf("Received order to delete packet from list - li.tytr= \d\n",list-Pll);

/* Check if specified pacht is thef"st pac/w in the list */

if (iist-pIr->prev -pk = OPC_Nll.){
/* debuggillg message */
if (op -PrE_ odb Jtrace _ acUve("1 i.t _ te.t"»

275 prinlf("r was the first packet in the list - set start_ptr - \d\n", list-Pll->oext-pk);

}
else{

/* Updateslart...ptr(poillter to theftrst list eumelll) */

start-p1r = Iist-pIr->next_pk;

280 /* debuggillg message */

285

if (op JlrE_ odb Jtrace_acUve("1 ist _ tes t"»
priotf("Set the next_pk_ptr of list \d to \d\n",list-Pll->prev-Pk,list-pIr->next-pk);

!* Updale OUT precessor *.'
list-Pll->prev -Pk->next_pk = list-pIr->next_pk;

/* Check if specifibi pacut is /lOt the la.st pacut ill the list */

if (iist-pIr->next-pk != OPC_Nll.){
/. debugging message ./
if (op-PrE_odb_ltrace_acUve("llst_test"»

290 printf("r was not the last packet in the list\n");
printf("Therefore r set prev_pk_ptr of \d to \d\n",list_plr->next-pk,list-pIr->prev-pk);

/* Update OUT successor ./
list..Jllr->next-pk->prev_pk = Iist-pIr->prev-pk;

295 /. deallOCJJte the memory */

free(list-pIr);

/ .. ,
300 1* ./

305

~ ... ,
/. This fwrctioll dtumilles the nuWm.um queue of the ATM
1* trtVISmiter enaMel ullgth durillg the simulatioll TUII

./

./
~ ••..•.•.••••...••.••...••.••...•.....•.........•....•...... ,
void maJUI_size3ddi 0

{
double

310 /. R«Jd the lIew queue size ./
queue_length = op _ SlatJocal]ud (QUEUE_LENGnCSTA 1');
/. Check if it is a MW maximum */

Process Model Report: bridge_aat3 4.jX'oc

315 }

forcedstoU
attribute
name

if (queue_length> max_queue_length)
max_queue_length ; queue_length;

inlt
value
init

100

enter execs (See below.)
exit execs (empty)
status forced

enter execs Inlt
,. Gel module ID *'
module_id ; op _Id _ Rlro;
,. Gt!I VP/ from process allribulu *'
op _1m. _ obL .Ur _get (module_id, ·VPI_ SET", &address);

5 ,. Gt!I/he llaUu of /he slalislics flag *'
op _1m. _ obL .Ur _get (module_id, • STAT_ENABLE", &sw_flag);
,./Ililialize /he llaUu of lhi! begill aM eM tag *'
b_tag ;0;
e_tag ;0;

10 ,./Ililialize wuJlipiuiltg idt!ltIifiu *'
multiplex_id ; 0; '* /Ililialize poiltleT 10 lisl of parliaJly Tt!Ct!illed fddi packt!lS *'
start..ptr ; OPe_NIl..;

"/Ililializt! maximum ~e sizt! *'
15 max_queue_length = 0;

transition Inlt -> Idle
attribute
name
condition
executive
color
drawino stvle

forced sltlte seament
attribute
name
enter execs
exit execs
status

e t
,. Gt!I/he FDD/ MAC frame *'
pkptr = 0P jlk.;t (FDDUN_S1RM);
,. Gt!l/he size of lhi! pacJul *'

value
tr_B

RGB333
spline

value
segment
(See below.)
(empty)
forced

fddi_plt_size = op jlk _ total_size Jet (pkpIr);
S ,. Chaltgt! /he IOIal sizt! 10 sizt! ill ocUli *'

fddi_plt_size = (fddi-Pt_size /8);

I Moo Mar1421:19:131994 I Page8of14

type default value
string st
text list (See below.)
textlist (empty)
tOQQle unforced

tVDe default value
string tr
string
string
color RGB333
tOOQle spline

type default value
string st
textlist (See below.)
textlist (empty)
tOQQle unforced

101

Process Model Report: bridge_aaI3_4.J)rOC

1* CreDle CPCS _PDU podet *1
cpcs_pdu-pkptr =op.JIk_c:reate_fmt ("cpcs_pdu_aa13_ 4");
1* Detennille the size of the paddillgfield *1

10 pad = fddi_p1uize % 4;
1* We need different val~sfor the begin IJIId end tags *1
b_tag++;
e_tag++;
1* Set the CPCS]DU pacJcetfields *1

15 op.JIk_ ofd_set (cpcs-fldu_pkptr, "begin_tag", b_tag);

20

op yk _ ofd _set (cpcs-fldu_plcptr, "cpcs _pdu _payload", pIcptr);
op .JIk_ ofd_set (cpcs-fldu_pkptr, ·padding", pad);
op.JIk_ ofd_set (cpcs-fldu_pkptr, "end_tag", e_tag);
op .JIk_ ofd _set (cpcs-fldu_pkptr, "length", fddi_pk_size);

1* Calculate the CPCS]DU pacJcet length *1

I MonMar1421:19:131994 I Page90f14

cpcs_pdu_total_pk_size = (fddUl1Uize + pad + HEADER_SIZE + TRAILElCSIZE);
1* Detennille segmentation parameters *1
1* - Number of ATM pacJcets *1

25 OUID_OCaIm_pks = «cpcs_pdu_total-pluize + SAR..PDU]A YLOAD_SIZE - 1) I SAR_PDU_PA YLOAD_SIZE);
1* - Number of useful octets ill the /ast ATM packet *1
last_pk.,..payload_size = «(cpcs_pdu_total-pluize - 1) % SAR_PDU_PA YLOAD_SIZE) + 1);
1* haNiJe cases of a single ATM message *1
1* NOTE that this is not a valid assumpuon for FDDI *1

30 1* the minimum pacJcet size if FDDI pacJcels is 64 octets *1
if (num_oCaIm-pks = 1) (

1* Create SAR packet and set r~1ds *1
sar_pkptr = Op.JIk_cRate_fmt ("sar_pdu ,,);
set_sat-pk_fds_ssm (sacpkptr, cpcs-fldu_pkptr, last-pk_payload_size);

35 1* form ATM pacJcet and send it *1
atm_pk_send (sat_p!cptr);

1* handle cases when more than OM packet is to be sent *1
40 if (num_oCaIm_pks >= 2)(

1* We Med a new multiplexing identifier *1
multiplelC_id++;
1* Create first SAR pacJcet *1
sar_pkptr = Op.JIk_cRateJmt ("sar_pdu");

45 set_sat-pk_fds(sat_pkptr, BOM, 0, multiplelC_id, Ope_NIL, SAR_PDU_PA YLOAD_SIZE);
1* create first ATM packet and send it *1
atm_pk_send (sar_p!cptr);
1* Create message 2/0 (n-I) IJIId send them *1
for (0 = 1; n < (nUID_oCaIm-pks - 1); n++){

50 1* Create flUt SAR pacJcet andset r~1ds *1
sat-pkptr = op.JIk_c:reateJmt ("sar_pdu ,,);

55

seCsat_p!cjds(sat-pkptr, COM, n, multiplelC_id, OPe_NIL, SAR_PDU_PA YLOAD_SIZE);
1* creDle ATM packet IJIId send it *1
aIm-pk_send (5ar-pkptr);

1* Create last SAR packet *1
5ar_pkptr = op .JIk_cnateJmt ("sar_pdu");
seC5ar-pk_fds(sat_pkplr, EOM, (num_oCaIm-Pks - I), multiplex_id, cpcs-fldu-Pkptr,last_pk_(l8ylo8,Csize);
1* create /ast ATM pacJcet and send it *1

60 aIm_pk_send (sat_pkptr);

102

I Man Mar 14 21 :19:141994 I Page 10 of 14

transition s~ment -> Idle
attribute value tVD9 default value
name tr_15 string tr
condition string
executive string
color RGB333 color RGB333
drawinQ style spline tOQQle s~ine

unMrced state Idle
attribute value tvoe default value
name idle string st
enter execs (empty) textlist (empty)
exit execs (empty) textlist (empty)
status unforced too ale unforced

transition Idle -> seament
attribute va(ue tvoe defauft value
name tr_14 string tr
condition FDDLARRIVAL string
executive string
color RGB333 color RGB333
drawinQ style spline tOQQle spline

transition Idle -> reasamble
attribute value tvoe default value
name tr_18 string tr
condition ATM_ARRIVAL string
executive string
color RGB333 color RGB333
drawinQ style spline tOQgie sj)line

transition idle -> Idle
attribute value tvoe default value
name tr_24 string tr
condition QUEUE_SiZE_GROWS string
executive max_q_size_fddiO string
color RGB333 color RGB333
drawinQ style spline tOQ.qle spline

transition Idle -> stats
attribute value rVDe defauft value
name tr_26 string tr
condition END_SIM string
executive string
color RGB333 color RGB333
drawino stvle spline tOQQle spline

103

I MonMar1421:19:141994 I Pagellof14

trtzllSiIion Idle -> Idle
attribute
name
condition
executive
color
drawina stvle

forced state reasamble
attribute
name
enter execs
exit execs
status

enter execs reasamble
1* Gel uceived ArM pacJcel *1
pkpb' = op "'pk Jet (A TM_IN_STRM);
1* Extracl datafuld *1

value
tr_28
default

RGB333
seline

value
reasamble
(See below.)
(empty)
forced

op "'pk_nrdJet (picptr, "data", &sar-pkptr);
5 1* des/ray the packel *1

op jJk _destroy (pkptr);
1* Gel/M message type of the received data *1
op"'pk_nrdJet (sar_pkptr, "segment_type", &se&,.type);
1* CMck if il is a sillgle message "I

10 if (se&,.type = SSM>!
1* Reslore ellcapsulated CPCS _PDU packel "I
op "'pk_ nfd _get (sar-picpb', "sar_pdu yay load", &cpcs_pdu_pkpb');
op "'pk_nfd_get (sar-pkpb', "length_indicator", &Ieogth_ind);
I" Destroy SAR-PDU payload 10 free memory *1

15 op "'pk_ destroy (sar_pkpb');
1* Calculate 1M lellgth of 1M CPCS PDU packet *1
cpcs_pdu_total-pk_size = (Ieogth_~d " 8);

tvoe
string
string
string
color
tooole

tVDe
string
text list
textlist
tooole

I" Gel 1M value of the paddillg field 10 determine the lellgth of 1M MAC frame *1
0p"'pk_nfd_get (cpcs--JXIu_pkptr, "padding", &pad);

20 I' Restore theMACframe'l
op "'pk_ nfd _get (cpcs--JXIu_pkptr, "cpcs _pdu_pay load", &payload_ptr);
I' Destroy tM CPCS]DU packel *1
op "'pk_ destroy (cpcs--JX!u-Piql!r);
I' Calculale 1M lellgth of 1M MAC frame *'

25 fddi-pk_size = (cpcs_pdu_totaI-pk_size - HEADER_SIZE - TRAILER_SIZE -pad);
I" Set 1M packelleftgth of 1M MAC frame "I

30

op "'pk_ total_size _set (payload-pb', fddi_pk_size);
I" Settd the reslored packellO 1M FDDI",
0p"'pk_send (payload_ptr, fDDCOlJf_STRM);

'" CMck if it is the begitt of a message "'
if (se&,.type = BOM)(

'" Gel in/ormarioft of segmeftl "'
35 0p"'pk_nfd_get (sar-pkpb', "multiplexinLid", &muIUd);

op "'pk_nfd _get (sar-pkpb', "sequence _number", &se'l-,ownber);
1* ClucJc if tMre already is all eftlry ill the list"'
if(list_pIr=fmd-pk(muIUd»!=OPC_NIL)(

,. Delete the old lisl elllry siftCt! IMre aft error has occurred "'

default value
tr

RGB333
seline

default value
st
(See below.)
(empty)
unforced

'* Malee an entry ill the list *'
add_pk_to_list(muIUd, seq...number);
'" Destr(1)l SAR-PDU paylood to free memory ",

104

J Mon Mar1421:19:151994 I Page 1201 14

45 op Jlk _destroy (sacpkptr);

1* Check if it is the cOlltillUillg of a musage ",
if (seg_type = COM)!

SO oPJlk_nfd_gel(sar-pkptr, "mult iplelling_id", &muIUd};
'" if the pac/cet is IIOt ill the list disCllrd segmelll *'
if «list-ptr = fmd-pk(muIUd» = OPC_NIL)!

if (op JI'l_odb _ltrace_ acUve(" list _test ,,»
printf("Could not find according packet - COM"};

55 op Jlk _destroy (sar-pkpIr);

else!
,,, The packet is ill the list '"
opJlk_ofdJel (sar...Pkper, "sequence_number", &seq_Dumber);

60 1* If IIOt all prl!Yious segmellls were receivw. discard segmetl.t '"
if (list_per->Iast_seq_number != (seq_number - I»!

if (op JI'l_odb_ltrace_actlve(" 1 ist _test ,,»
printf("Previous packet missing (COM) - discarded packet \n");

op Jlk _ d~stroy (sar_pIqlu);
65 }

else!
'" Update the list elllry '"
list_per->last_seq_Dumber = seq..number;
if (op JI'l_odb-'trace_actlve("1 ist _test ,,»

70 printf("COM set last seq_number = %d\n",list_ptr->last_seq_Dumber};

75

/" Destroy SAR-PDU payload to free memory ,,/
op Jlk_destroy (sar_pIqlu);

'* Check ifit is the end of a message *'
if (seg_type = EOM){

op Jlk_ofd_get (sar-pkptr, "mult iplexing_id", &mult_id);
80 '" if the pac/cet is 1I0t ill the list disCllrd segmelll *'

if ((list-ptr = fmd-pk(muIUd» = OPC_NIL){

8S
else!

90

95

if (op JI'l_ odb _Itrace _ acUve('~ list_test "»
printf("Could not find according packet - EOM\n");

op Jlk_ destroy (sar-pkpIr);

'* PacJut is ill the list ",
op Jlk_ofdJH (sar...Jlkplr, "sequence_number", &seq_Dumber);
i* If IIOt all prl!Yious segmellls were rec~."w. discard segmetl.t '"
if(list_per->1ast_seq_Dumber 1= (seq_Dumber - I»{

}
else!

if (oPJI'l_odb-'trace_actlve(Ml ist _test ,,»
printf(oPrevious packet missing (EOM) - discarded packet\n"};

opJlk_destroy (sar_pkper);

'" Restore e1lC4{lsuJalWo CPCS]DU pacJut '"
opJlk_ofdJd (sacpkptr, "sarydu_payload", &cpcs-Pdu_pkptr);
opJlk_ordJd (sar_pkptr, "length_indicator", &Iength_ind);

100

105

110

115

120

125

130

135

140

}

105

I MonMar1421:19:151994 I Page 130f14

1* D~struy SAR·PDU payload to fre~ memory *1
op Jlk _destroy (sar_pkptr);
1* Calculate th~ Ietlgth of the CPCS _PDU packet *1
Cpc5_pdu_tOlAl-pluize = «(se<l-number • SAR_PDU_PA YLOAD_SIZE) + Imgth_ind) • 8);

1* Get the value of the padding fi~1d to determine the length of the MAC frame *1
0p Jlk _ nfd Jet (cpcs-Pdu..pkptr, "paddinq", &pad);
1* Calculate the Ietlgth of the MAC frame *1
fddi_pk_size = (cpcs_pdu_tOIAI_pk_size • HEADER_SIZE· TRAILER....SIZE· pad);
1* G~t the reported I~ngth of the CPCS _PDU payloadfield *1
opJlk_nfdJet (sscpkptr, "lenqth", &cpcs_pdu-psylo~Csize);
1* ChecJc if the r~ported length matches the length of the rUJ3s~mbledframe *1
if(fddi_pk_size != cpcs_pduJlsyload_size){

else{

1* Destroy wrongly reassembled CPCS PDU *1
op Jlk _destroy (cpcs-Jldu_pkplr); -

1* Get the val~s of the begin IlIId etIli tags *1
OpJlk_Dfd_get (cpcs-Pdu_pkptr, "beq in_tag", &rcv_h_tag);
opJlk_nfd_get (cpcs-Pdu_pkptr, "end_taq", &rcv_e_tag);
1* CheJc if they are matching *1
if (n::v_h_tag != n::v_e_tag)(

}
else{

1* Destruy th~ paclcet because ~ are 1IOt matching *1
op Jlk _destroy (cpcs_pdu-pkptr);

1* R~store the MAC frame *1
op yk_ ofd Jet (cpcs_pdu-pkptr, "cpcs ydu _pay load", &payload-ptr);
1* Deslruy the CPCS]DU pack.ello free ml!m.ory *1
op Jlk_ destroy (cpcs_pdu_pkptr);
1* Calculate th~ length of the MAC frame *1
fddi_pk_size = (cpcs-Pdu_total_pk_size . HEADER_SIZE· TRAILER_SIZE .pad);
1* Set the paclcet Ietlglh of the MAC fram~ *1
opyk_total_slze_set (payload_plr, fddi_pIUize);
1* Sefid the r~slored pack.et 10 the FDDI *1
opJlk_5eod (payload_ptr, FDDI_Our5rRM);

det.pk_from_list (listJllr);

transition reasamble -> Idle
attribute value tvoe default value
name tr_19 string tr
condition string
executive string
color RGB333 color RGB333
drawinQ style spline toaale spline

un10rced state stats
attribute value tvoe default value
name stats string st

enter execs
exit execs
status

106

(See below.)
(empty)
unforced

I Mon Mar1421:19:161994 I Page 1401 14

textlist
textlist
to Ie

(See below.)
(empty)
unforced

enter execs stats
'* Check if statistic recordiJlg is eNJb/ed *'
if (stat_flag = OPC_ TRUE) {

'* Record fiNlI statistics *'
op_stat_scalar_ wrlte(ooFOOI Throughput (!'.b/.) 00, (op_statJocalJud (BfCTIIRUPlIT_STAT) /1000000));

5 op_stat_scalar_wrlte("Mean Packet Delay at FOOl Node", op_stat_localJead (MEAN_DELA Y_STAT»;
Op_stat_sc:alar_Wrlte(ooMean Queue Length at FOOl Node", op_statJocalJead (MEAN_PKSIZE_STAT»;
op_stat_scalar_wrlte(ooMaximum Queue Length at FOOl Node", max_queue_length);
op_stat_sc:alar_ wrlte(ooPacket Throughput at FOOl Node", op_statJocalJead (PICTIIRUPtJr_STAT»;
op_stat_scalar_wrlte(ooUtilization of FOOl to ATM Switch Line OO

, op_stat_localJead (UTILIZATION_STAT»;
10)

107

Process Model Report: bridge, aaiS-Pf'C)C I Mon Mar 1421:20:38 1994 I Page 1 of 7

Process Model Attributes
attribute value
VPI_SET promoted
STAT ENABLE oromoted

Header Block
,. packet slTemn deFl1IitioIU *'
#dellne FDDUN_STRM 0
#dellne ATM_IN_STR..\i 1
#dellne FDDCOUCSTRM 0

5 #dellneATM_OUT_STRM 1

'* Statistical inputs dej"wtiofl *'
#dellne MEAN_DELA Y _STAT 0
#dellne MEAN_PKSIZE_STAT 1

10 #dellne QUEUE_LENGTICSTAT 2
#dellnePK3HRUPUT_STAT 3
#dellneUTIUZATION_STAT 4
#dellne BIT_THRUPUT_STAT 5

15 '* PacJc~t siz~ definitions *'
#dellneATM_PK_SIZE 424
#dellne SAR_PDV_PA YLOAD_SIZE 48
#dellne CPCS_PDV_TRAlLER_SIZE 8

20 ,* Iransilion macros *'
#dellne FDDCARRNAL (op_lnlrpt_type 0 = OPC_1NTRPT_STRM && \

op_lntrpt_strm 0 = FDDUN_STRM)

#dellne ATM_ARRiVAL (op_lntrpt_type 0 = OPC_INTRPT_STRM && \
25 • op _Intrpt _ strm 0 == ATM_IN_STRM)

tvoe
integer
toaale

#dellne QUEUE_SIZE_GROWS (op Inlrpt type 0 == OPC_INTRPT _STAT && \
op _lntcPt_ statO = QUEUE_LENGTH_STA n

LState Variable Block
inl \num_oCsegmenLS;
inl \address;
Objid \module_id;
double \max_queue_Iength;

5 Boolean \stat_llag;

Temoorarv Variable BlOCk
Packet *pkptr, ·cpcs-Pdu_pkptr, ·payload_pkptr;
inl fddUolaCpluize;
inl cpcs-Pdu_lOlAI_pk_size;
inl nwn_oCaIID_pks;

5 inl n, a, b;
int pad, pti;

default value
2
disabled

Process Model Report: bridge_aal5J)1'oc

I void
10 void

max_q_size_fddi 0;
record_sws_fddi 0;

Function BlOCk

108

I Mon Mar 14 21 :20:39 1994 I Page 2 of 7

~ •••• * •••••••••••••••••••••••••• * ••••• * ••••• * ••••••• * ••••••• /

~ ••••••••••••••••••••••••• ** ••• * ••••••••• * ••• ** ••• * ••••••••• /
,. FUllCtiOIl gelS a poillter to a SAR-PDU

5 '* -ellCllpsulale the SAR-PDU ill a ATM pawt
,. - seltd.r the pawt
~ •••••••••••••••••••••••• * ••••• ** •••••••••••••••• * •• * ••••••• /

void atm_pluend (tkUar-pkpIr, pti)
10 Packet * tkt_sar_pkptr,

int pti;
[
Packet *atm-pkptr;

IS atm_pkpIr = 0PJlk_createJmt("atm_pk");
'* copy SAR pac/cel to ATM packet diJta field *' '* NOTE thatfor SimulatiOIl purposes this is Ollly *' '* 1Ieccessary for the last segmellt *'
if(pti = i)[

20 op""pk_nfd_5et (atm_pkptt, "data", tkCsat-pkptr);
} '* Set VPI field of the ATM pac/cel *'
opJlk_nfd_sel (atm-pkpIr, "VPI", address); '* Set the PTI field of the ArM packet*'

25 opJlk_Ofd_sel (atm-pkpIr, "pt i ", pti);

30 }

'* Settolal ATM packet sae *'
0PJlk_total_slze_5et(atm-PkpIr, ATM_PK_SI1E);

'* Send packet to transmiller *'
op Jlk _ 5eod(atm_pkptr, A TM_ our _STRM);

/ •• ** ••••••• ······*1
"' 35 , ••••••••••••••••••••••••••• ** ••••••••••••••••••••••••••••••• /

,. This fUIICtioll dlermines the maximum queue of the ATM
,. transmiler challllellellgth durillg the simulatioll rWIl "' "' ~ •.•...................•.......•............•...........•..• ,

40 void maJU1_size3ddi 0
{

double

'* R«Jd the /leW queue size *'
4S queue_length = op _ staUocal Jead (QUEUE_LENGTH_STA T);

'* Check if it is a /leW mazimum *'
if (queue_length> max_queue_length)

max_queuc_length = queue_length;

109

Process Model Report: bridge_aaI5-proc

forced stale In It
attribute value
name init
enter execs (See below.)
exit execs (empty)
status forced

enter execs Inlt
1* Get module ID *'
module_id = op _ld _ self 0;
'* Get VPI from process attributes *'
op_lma_obLaUr_get (module_id, "VPI_SET", &address);

5 '* Get 1M value of 1M statistics flag .,
op_lma_obLaUr_get (module_id, "STAT_ENABLE", &stat_flag);
,. I nitiolize number of segmellls of partially received fddi pacJcets *'
num_oCsegments = 0;
,. I nitiolize maximum queue size .,

10 max_queue_lengtb = 0;

transition Inlt -> Idle
attribute
name
condition
executive
color
drawinQ style

Jgrced stale seament
attribute
name
enter execs
exit execs
status

enter execs seament
J* Get produced packet .J

pkptr = op jJk...Jet (FDDUN_S1RM);
1* Get 1M size of the pacJcet .,

value
tr_8

RGB333
soline

value
segment
(See below.)
(empty)
forced

fddUOlaCpluize = op.JIk _total_size _get (pkptr);
5 1* Change 1M total size to size in octets .,

fddUolaCpluize = (fddUotatpk_size I 8);

'* Create CPCS PDU paclrA *'
cpcs_pdu"'pkptr ~ op.JIk_create_fmt ("cpcsydu_aa15");

1* Determine the size of the padding r~1d *'
10 a = fddUotal"'pk_size % SAR_PDU_PA YLOAD_SIZE;

b = SAR_PDU_PA YLOAD_SIZE - CPCS_PDU_TRAILER_SIZE;
if (a <= b){

pad=b-a;

15 else!
pad = SAR_PDU_PA YLOAD_SIZE - a + b;

I Mon Mar 14 21 :20:39 1994 I Page 3 of 7

tvpe default value
string st
textlist (See below.)
textlist (empty)
tooole unforced

type default value
string tr
string
string
color RGB333
tOQQle spline

tVPe default value
string st
textlist (See below.)
textlist (empty)
tooale unforced

110

Process Model Report: bridge_aaI5-Foc I Mon Mar 14 21 :20:40 1994 I Page 4 of 7

}
1* Set 1M CPCS]DU paclutfields·/
op""pk .JIfd _set (cpcs-Pdu_pkpIr, "cpcs _pdu _payload", pkpIr);

20 opjlk_ ofd_set (cpcs-Pdu_pkpIr, "padding", pad);
opjlk_ ord_set (cpcs-Pdu_pkptr, "length ", fddUotal_pk_size);
cpcs_pdu_t<Xal_pk_size = (fddUotal_pk_size + pad + CPCS_PDU_ TRAILER_SIZE);
/* Determine IIlUI'IbeT of AIM pacluts ./
num_oCBIm_pks = (cpcs-Pdu_t<Xal-pk_size I SAR_PDU_PA YLOAD_SIZE);

25 1* halldJe ClJSes 0/ a single ArM tMssage */
/. NOTE that this is ItOt a valid assumption/oT FDDI*/
1* tM miIIimum paclut size of FDDI pacluts is 64 octets */
if (num_of_Blm-Pks = 1) {

/. /oTm ArM packet and und it */

30 atm_pk_5eod (cpcs_pdu-pkp!r, 1);

1* halldJe cases wMn moTe thall OM packet is to be UN */

if (oum_oCaIm-pks >= 2)(
35 /. CTeate message 1 to (n-l) and send them */

for (n = 1; 0 <= (num_oCBIm_pks - 1); n++){
/. cTeate ATM pac/W and send it ./
aIm-pk_send (OPC_Nil.., 0);

40 /. CTW/e last ATM packet and send it ./
atm_pk_5end (cpcs_pdu-pkp!r, 1);

transition seament -> Idle
attribute value
name -. tU5
condition
executive
color RGB333
drawinQ style soline

unforced stale Idle
attribute value
name idle
enter execs (empty)
exit execs (empty)
status unforced

transition Idle -> seament
attribute value
name tU4
condition FDDLARRIVAL
executive
color RGB333
drawina stvle spline

type
string
string
string
color
toggle

tvoe
string
textlist
textlist
togQle

tvoe
string
string
string
color
tOQQle

default value
tr

RGB333
spline

default value
st
(empty)
(empty)
unforced

default value
tr

RGB333
spline

111

Process Model Report: bridge_aaJ5,JX'oc I Moo Mar 14 21 :20:40 1994 L Page 5 of 7

trtJIISiIio n Idle -> reasamble
attribute value type default value
name tr_18 string Ir
cond~ion ATM_ARRIVAL string
executive string
color RGB333 color RGB333
drawinQ style spline toaale ~ine

trtJIISiIion Idle -> Idle
attribute value type default value
name tc24 string tr
condition QUEUE_SIZE_GROWS string
executive max_q_size_fddiO
color RGB333
drawina stvle sQline

trollSiIion Id Ie -> stats
attribute value
name tr_25
cond~ion END_SIM
executive
color RGB333
drawina style spline

I trallSiIion Idle -> Idle
attribute value
name Ir_26
cond~ion default
executive
color RGB333
drawino sMe spline

forced sIDle reasamble
attribute value
name reasamble
enter execs (See below.)
exit execs (empty)
status forced

,. Gel received ATM paWl·'
pkplr = op "pk...Jel (A ThUN_STRM);
,. Gellhe fMssage type of /he receivul. data */

op "pk_Dfd...Jet (pkplr, ·pt i ", &pti);
5

,. Check. if it is /he begill or colllilluillg of a message *'
if(pti =o){

/. Record recepliofl tlIId destroy ATM paclr.el·/
nUDI_oCsegments++;

10 0p"pk _destroy (pkplr);

string
color RGB333
tooote spline

type default value
string tr
string
string
color RGB333
tooale spline

Wile default value
string tr
string
string
color RGB333
toggle ~ine

tvoe default value
string st
textlist (See below.)
textlist (empty)
toggle unforced

112

Process Model Report: bridge. aal5-Pfoc I Moo Mar1421:20:411994 I Page6of7

else{
/"It is a single fMssage or end of fMssage ,,/
num_oCsegments++;

15 /" Restore t!IICQpsuJated CPCS _PDU paclcet and destroy ATM paclcet ./
op...Jlk_ofd_get (pkpu, "data", &cpcs_pdu-pkptr);
Op ...Jlk_ destroy (pkptr);
/. Get the CPCS _PDU parameters */

op ...Jlk_ofd _get (cpcs-Pdu_pkpIt, "length", &fddUotaCpk_size);
20 op...Jlk_ord_get (cpcs-Jldu_pkpIt, "padding", &pad);

cpcs-Jldu_total"'pk_size = (fddUotaI"'pk_size + pad + CPCS_PDU_ TRAll.ER_SIZE);
/* Check. if segfMttts are lost or i!tSerted */

if (cpcs-Pdu_total...Pk_size != (num_oCsegments • SAR_PDU_PA YLOAD_SIZE»(
op...Jlk _destroy (cpcs-Jldu_pkptr);

25 num_oCsegments = 0;
}
else(

/. Restore encapsulated FDDI pack.et and destroy CPCS PDU pawt *1
op...Jlk _ nfd Jet (cpcs_pdu...pkptr, "cpcs _pd u _pay load"", &payload-pkptr);

30 op...Jlk _destroy (cpcs-Jldu_pkptr);
,. Chattge lettgth offddi paclcet to size in bits *1
fddi_total...Pk_size = fddUotaI-pk_size • 8;
op jlk _total_size _set (payload_pkpIl", fddUotal"'pk_size);
/* Send the restored pawt to /he FDDl*/

35 0pjlk_seod (payload-pkpIt, FDDCOtrr_STRM);
I· Reset n.umber of received segfMltts ./
num_oCsegments = 0;

transition reasamble -> Idle
attribute value
name tug
condition
executive
color RGB333
drawinQ style soline

unforced stote stats
attribute value
name stats
enter execs (See below.)
exit execs (empty)
status unforced

enter execs stats
I· Check. if stIJtistic recordittg is t!Itab/ed *1
if (staUlag = OPC_TRUE) (

1* Recordfittal sttJtistics *'

tVDe
string
string
string
color
toaale

tVDe
string
textlist
textlist
toaale

default value
tr

RGB333
soline

default value
st
(See below.)
(empty)
unforced

op_stat_scaJar_wrlte(HFDOl Throughput (Mb/s)", (op_stat_IocalJud (BIT_THRUPlIT_STAn 11000000));
5 op_stat_scalar_wrlte(HMean Packet Delay at FOOl Node", op_stal_local_read (MEAN_DELA Y_STAn);

op_stat_scaJar _wrlte("Mean Queue Length at FOOl Node", op_statJocalJud (MEAN_PKSIZE_STAn);
op_stat_scaJar_wrlte("Maximurn Queue Length at FOOl Node",maJ,-queue_1ength);
op_stat_scaJar_wrlte("Packet Throughput at FOOl Node", Op_stalJocalJud (PK_TIIRVPlIT_STAn);

113

Process Model Report: bridge_uI5-Pfoc 1 Mon Mar 14 21 :20:41 1994 I Page 7 of 7

114

Process Model Report: fddLgen_vbr I MonMar1421:21:191994 I Page1of8

Process Model Attributes
attribute value type default value
low dest address promoted integer -1
high dest address promoted integer -1
arrival rate promoted double 1.0 (pk/sec)
mean pk length promoted double 1,024 (bits)
async mix promoted double 0.5
desUing_id promoted integer 0
traffic_dist promoted string constant
idle_dist promoted string constant
idle_dist_arg promoted double 1.0
busy dist cromoted strina constant
busy_dist_arg promoted double 1.0
vbr -gen_seed_1 promoted integer 101
vbr aen seed II cromoted inteQer 201

I Header Block
#define MAC_LA YER_our _SlREAM 0

'* define possible seT1lice closses for fraIMS .,
#define FDDI_SVC_ASYNC 0

5 #define FDDCSVC_SYNC 1

'* define loU,. classes *'
#define FDDCTICNONRESTRICfED 0
#define fDDCrK_RESTRlCTED 1

10 '* D efille IraflSilioll macros .,
#define NEX"CIDLE]ERlOD (op_lntrpt_code() = 2)
#define NEXCBUSY_PERIOD (op_lntrpt_code() = 1)
#define GENERATE_PACKET (op _Intrpt _code() = 0)

15

state Variable BlOCk
Distributioo* \inter_dist-ptr;
Distributioo* \Ien_ discptr;
Distributioo* \dest_dist_ptr;
Distributioo* \nxt_busy -PIf;

5 Distributioo* \nxt_idJe-Plf;

Objid 'mac_objid;
Objid 'my_id;

10 EvhandJe "Pk_intrpt;

int \low _dest_addr;
int \high_dest_addr;
int \statioo_addr;

15 int \ring..id;
int \desUing..id;

char \lraffic_dist[25);
char . \busy _dist[25);

20 char \id1e_distl25];

Process Model Report: fddi -98fl_vbr

double \arrival]ate:
double \busy _diSl_ug:
double \idle_dist_ug:

25 double \mean_pk_len:
double \async_mix:

Ici" \mac_iciptr;

TemDOrarv Variable Block
Packet "pkptr;
int plden:
int dest_addr;
int i, restricted:

5 int seed_I, seed_II:

void start_random_nmnber(inl, int):
double nexcrandom_nmnberO:
double uniform_rand_val:

Function BloCk
,"
" Title: raNiom 1IUIIIber
• Last Mod: Fri-Mar 18 08:52:131988
" Author: Villcl!lll Broman

5· <broman@schroeder.llOsc.mii>

*'
#denneP 179
#denne PMl (p - 1)

10 #denne Q (P - 10)
#denne ST A IE_SIZE 97
#denne MA.'ITISSA_SIZE 24
#denneRANDOM_REALS 16777216.0
#denne INfCC 362436.0

15 #denne IN IT_CD 7654321.0
#denne INIT_CM 16m213.0

static unsigned int ni:
static unsigned int nj:

20 static double u[STA IE_SIZE):
static double c, cd, em:

static unsigned int coUapse (anyinl, size)
25 int anyint:

unsigned int size:
J*

" rl!lurll a value IHtwtm 0 aNi sizl!-1 inc/usiu.
* this vallu willlH anyilll ilsl!/f if possible,

30 * o1Mrwisl! anothl!r vatul! in 1M rl!qUirw. inurvai.

*'
if (anyint < 0)

anyint = - (anyint /2):
35 while (anyint >= size)

115

I Mon Mar1421:21:191994 I Page2of8

116

Process Model Report: fddLgen. vbi'

40

anyint/= 2;
retwn (anyint);

}

void start_random_Dumber (seed_a, seed_b)
int seed_a;
int seed_b;
1*

45 "This procetiurl! illilialisu thi! stall! tablt! "fora lagged
" Fibonacci seqUOlCe gUIl!rator,ftUiflg it with raNiom bits
" from a small multiplicative cOflgruefllial sl!qUOlCI!.
" Thi! auxilliaril!s c, iii, aIId fli are also illitialized.
.. Thi! Sl!eds aFt! transformed i1Ito afl illitial stale ifl such a way that

I Moo Mar 14 21 :21 :19 1994 I Page 3 of 8

50 " idefltical rl!sults are guaranteed across a witU varil!ty of machiMs.

'"
{
double S, bit;
unsigned int ii, jj, kk, mm;

55 unsigned int U;
unsigned int sd;
unsigned int ell, bit_Dumber;

sd = coUapse (seed_a. PMI • PMI);
60 ii = 1 + sd/PMI;

jj = 1 + sd % PMI;
sd = collapse (seed_b, PMI • Q);
kIt=1 +sd/PMl;
lI=sd%Q;

65 if(ii = I && jj = 1 && kk = I)
ii=2;

70

75

ni = STATE_SIZE -1;
Dj =STATE_SIZE/3;
c =lNfCC;
e 1= RANDOM_REALS;
cd=INfCCD;
cd 1= RANDOM_REALS;
em = INIT_CM;
em 1= RA..'IDOM_REALS;

,. compilt!r might muflg thl! divisiofl itself *'

for (elt = 0; ell < STATE_SIZE; ell += 1) (
s=O.O;
bit = 1.01 RANDOM_REALS;

80 for (bit_Dumber = 0; biCDlDDber < MANTISSA_SIZE; bicnlDDber += I) {
mm = «(ii .. jj) % p) .. kk) % P;
ii = jj;
jj = kk;
kk=mm;

85 11 = (53 .. U + I) % Q;
if «(11 .. mm) % 64) >= 32)

5 +=bit;
bit+=bit;

90 u[eltJ = 5;

Process Model Report: fddi ,.gen_ vbr

95 double nexcranc:Iom_number()
/*

117

* R~tur" a uNformly distribuJed pseudo rtmdom "umbO'
* i" the ra"ge 0.0 .. 1.0-2**(-24) i1Iclusiv~.
* There ar~ 2**24 possible u/ur" values.

100 * Side-if/eelS the lIO,,-localvariables: U, c, fIi, "j. *,
(
double uni;

lOS if (u[ni) < u[nj])

110

115

120

125

130

uni = u[ni) + (1.0· u[niD;
else

uni = u[niJ • u[nj);
u[niJ =uni;

if(ni > 0)
ni-= 1;

else
ni=STATE_SIZE-l;

if(nj >0)
nj·= 1;

else
nj = STATE_SIZE - 1;

if(c <cd)
c =c+ (em· cd);

else
c=c-cd;

if (uni < c)
return (uni + (1.0 - c»;

else
return (uni· c);

forced state INIT
attribute
name
enter execs
exit execs
status

ent rexecs INIT

value
INIT
(See below_)
(empty)
forced

'* tUtermi1l~ id of 0W1I proc~ssor to use i" fi1ldi1lg alITS *'
my_id = op_ld_selfO;

'* Set up the sud/or the rlJ1llioftlllumb~r gmoator *'
5 op_lma_obLattr_lld (my_id, "vbr_qen_.eed_I", &seed_l);

op_lmB_obLaUr_lld (my_id, ·vbr_qen_.eed_I I", &seed_lI);
!* I flitia]ize Marsaglia's rlJllliom 1IumbO' gmuator */
start_random_number(seed_I, seed_m;

10 !* determi1le a.ddr~ss rallge/or U1Iiform destillatioll assigNrlOtt *'

I Moo Mar 14 21 :21:20 1994 I Page 4 of 8

tvoe default value
string st
tex1list (See below.)
textlist (empty)
tOQQle unforced

118

Process Model Report: fdcfi..Qen_ vbr I Mon Mar 14 21:21:20 1994 I Page 5 of 8

op _Ima _ obL aUr _get (my_id, "low de.t addre s s", &low _dest_addr);
op_lma_obLaUrJet (my_id, "high de.1: address", &high_dest_addr);

1* determill~ object id of cOllMcted 'mac' ~r proc~ss '"
15 msc_objid = op _topo _ assoc (my_id, OPC_ TOPO_ASSOC_OUf,

OPC_OBIMfYFE_MODULE, MAC_LA YER.....OUf_STREAM);

'" determill~ the stalioll alld rillg address assigned to it '"
1* which QT~ also the addressu of this statioll '"

20 op _Ima _ obL aUr _eet (mac_objid, "stat ion_address", &station_addr);
op _Ima _ obL aUr _eet (mac_objid, "r ing_idH, &ring.jd);

'" setup a distribuJioll for generatioll of addresses '"
dest_dist_pIr = op_dlst_load ("uniform_int" ,low_dest_addr,

25 high_dest_addr);

1* delermill~ lhe rillg idmtificatioll of lhe deStilliItiOIl '"
op_lma_obLaUr_get (my_id, "dest_ring_id", &dest_rin8-id);

30 '" also determille lhe arrival rate for packet generatioll '"
op_lma_obLaUr_get (my_id, "arrival rate", &arrivaCrate);

35

'" also determille lhe traffIC distributiollfUIICtioll ",
op _lma_obLaUr _eet (my_id, "traft ie_dist", traffic_dist);

'" delermill~ lhe mix of aryllcMollous alld ryllCMOIlOlLJ '"
,,, Iraffic. This is expressed as lhe propor/ioll of ",
1* aryllcMollous Iraffic. i.e a value of 1.0 indicates '" '* lhal alilhe produced traffIC shall be GryIlCMOIlOUS. *'

40 op-'ma_obLlltr_get (my_id, Hasync_"'.h", &async_milt);

'* sel up a distributiOllfor arrival gelleratiolls·'
if (mivaiJate != 0.0)

{
45 ,. arrivals are distributed, with givell mea/I *'

inter_dist-JlU = op_dlst_load (traffic_dist, 1.0 I arrival_fate, 0.0);

'* delermine thedistribuJiollfor pacJcet size·'
op _Ima _ obLattr Jet (my_id, "mean pk lengt h", &mean-pk_len);

50
'* set up correspolldillg distributioll *'
len_dist-ptr = op_dlstJoad ("constant ", mean_Ilk_len, 0.0);

,. Get the dislributioll parat1leters for the bury p~riod from lhe process allribuJes *'
55 opJma_obLaltrJet (my)d, "busy-dist", busy_dist);

op_lma_obLattr Jet (my_id, "busy _dist_arg", &busy_dist_asg);

60

'* Load the disrribuJioll of lhe busy periods '"
Dxt_busy_ptr = op_dlstJoad (busy_dist, busy_dist_asg, 0.0);

'* Get lhe dislributioll parat1lelus for the idle p~riod from the procus attributes *'
op-,ma_obLaur Jet (my)d, "idle_dist", idle_dist);
op _Ima _ obL aur Jet (my_id, "idle _ di st _ arg", &idle_dist_asg);

65 '* Load lhe disrribuJioll of the idle p~riods *'
DltUdle_ptr = op _ dlst _load (idle_dist, idle_dist_asg, 0.0);

'" set up all interface cOlltrol illformatioll (ICI) SITUCtur~ '" '* to cotrllfllUlicate parameters to lhe mac ~r process *'

119

Process Model Report: fddi ..geJl_ vbr I Moo Mar 14 21 :21 :21 1994 I Page 6 of 8

70 '* (it is more e/ficieffJ to set olle up flOW aIId keep it *' '* as a state variable tlrall to aUocate one 011 each packet xfer) *'
mac_iciptr = op _lcI_ c~ate (" fddi _mac _ re~ II ,,);

transition INIT -> Idle
attribute value
name tr_10
condition
executive
color RGB333
drawinq style spline

unforced sfQte busy
attribute value
name busy
enter execs (See below.)
exit execs (See below.)
status unforced

enter execs j]_USY

'* Get a rlJlldom number (valU4 is ill the urO-OM iffJuval) *'
uniformJ8I1d_val = nextJandcm_oumber(); '* Sch~e iffJerrupt to gellerate packet "'

tvoe default value
string tr
string
string
color RGB333
toaale spline

tvoe default value
string st
textlist (See below.)
textlist (See below.)
to~qle unforced

plCinupt = 0p _Intrpt_schedule _self (op _slm _time() + op _ dlst _outcome_ext (inlecdist-ptr, unifonn_rand_ val), 0);
5

exit execs bUSY

if(op Intrpt code() = 0)[
;* Get a ;alldom llUntber(valU4 is ill the zuo-olle iffJerval) *'
uniform_rand_val = next_randcm_number();
'" determi"" the lellgth of the packet to be gellerated *'

5 pklm = 0P _ dlst _outcome_ext (Ien_dist_ptr, unifonn_rand_val);

'* determine the destinatioll *' '* doffJ allow this statiOll'S address as a possible outcome *'
gen-packet:

10 '* Gel a ralldom IlUntber(ValU4 is iIIlhe zuo-orte iffJuval) *'
uniform_rand_ val = next_randcm_number();

15

dest_addr = op _ dlst _outcome_ext (dest_dist_plr, uniform_rand_vaI);
if «dest_addr != -1) && (dest_addr = statiOll_addr) && (dcstJin&-id = rin&-id»

golo gen-PBCkct;

'* create a packet to sertd to mac *'
pkptr = op.Jlk_ueate_fmt ("fddi_llc_fr");

'* assigrt its overall size. *'
20 op Jlk _total_size _set (pkptr, pklen);

'* assigrt the time of creatioll *'
opJIk_Drd_set(pkptr, Ncr_time", op_slm_tlme 0);

120

Process Model Report: fddi jIefl_ vbr I MonMar1421:21:211994 I Page7of8

25 '* plaa the tkStiMtiOll address and the tkstiMtioll ring *' '* itkllliflCtJlioll into the ICI*'

30

'* (the protocol_type [leld wiU tkfault) */
op_ld_attr_set (mac_iciptr, "dest_addr", dest_addr);
op -'d_attr _set (mac_iciptr, "dest _rinq_ id", dest_ring.)d);

'* assigll the priority, and reqrusted tokell class *' '* also assigll the service cws *'
if (op _dirt_uniform (1.0) <= async_mix)

{
35 op_lcl_attr_set (mac_iciplr, "svc_class", FDDCSVC_ASYNC);

40

}
else{

op _lcI_ attr _ set (mac_iciplr, "svc _ c las s .. , FDDI_SVC_SYNC);
}

'* Request only lIOfII'es/ricted tokeM aftu trtl1lSmissioll *'
op _Id_attr _set (mac_iciptr, "t k_ class", FDDCTICNONRESTRICfED);

op -'d _ attr _set (mac_iciptr, "p r 1" • 0);
45

'* send the packet coupled with the lei *'
op _Id _Install (mac_iciplr);
op "pk_send (pkptr, MAC_LA YER_OUCSTREAM);

50 else
op _ ev _ ClIncel(pk_intrpt);

transition busy -> busy
attribute value
name
condition GENERATE_PACKET
executive
color RGB333
drawinQ style spline

transition busy-> Idle
attribute value
name tr_12
condition NEXT _IDLE_PERIOD
executive
color RGB333
drawinQ style spline

ulllorud stIJte Idle
attribute value
name idle
enter execs (See below.)
exit execs (See below.)
status unforced

type
string
string
string
color
tOQQle

tVDe
string
string
string
color
toggle

tVDe
string
textlist
textlist
tOQQle

default value
tr

RGB333
spline

default value
tr

RGB333
spline

default value
st
(See below.)
(See below.)
unforced

121

Process Model Report: fddi JIeft_vbr I Mon Mar 1421 :21 :21 1994 I Page 8 of 8

elller execs Idle
1* ScMdule IIQI busy period if pacJuts ar~ to ~ geMrated *1
if (arrivaUale != O.O){ '* G~t a random llUmber(lIa1ue is in the ZUO-ofl~ iflterval) '"

uniform_rind_val = Dext_random_DIUDber();
5 '* Schedule 1IUt busy p~riod '"

op _lntrpt_sclJedule _self (op _slm_tlmeO + op _ dlsl_ outcome_ext (Dxt_busy_ptr, unifornuand_vall, 1);
}

exit execs Idle
1* Get a rtJlldom lIUI1Ibu(lIabu is ifl th~ z~rO-OM interval) *1
unifonn_rand_val = next_random_number();
'" ScMdule flat idle period·,
op JDtrpt _scbedule _ selr (op _slm _time() + op _dlst _outcome_ext (nxUdle-pIr, uniform_rand_val), 2);

5

transition Idle -> busy
attribute value tYl!e default value
name tU1 string tr
condition NEXT _BUSY_PERIOD string
executive string
color RGB333 color RGB333
drawinq stvle spline tOlLqie spline

122

APPENDIX C. DESCRIPTION OF THE OPNET FDDI EXAMPLE

MODEL

123

OPNET Example Models Manual FDOI ModeJ Description

FDDI.O Background I Operational Description

MIL 3,lne.,

The content of this chapter and the OPNET model that it describes are primarily
based upon the American National Starl.liard for Information Sysums Specification
X3.139-1987- Fiber Distributed Data Interface Token Ring Media Access Control.
nus document can be obtained from:

American National Standards Institute. Inc.

1430 Broadway New York. NY 10018

The Fiber Distributed Data Interface (FOOl) provides general purpose network­
ing at 100 MbItslMC transmission rates for large numbers of communicating stations
configured in a ring topology. Use of ring bandwidth is controlled through a timed
token rotation protocol, wherein stations must receive a token and meet with a set
of timing and priority criteria before ttansmitting frames. In order to accommodate
netwoIk applications in which response times are critical. FODI provides for deter­
ministic availability of ring bandwidth by defIDing a synchronous transmission ser­
vice. Asynchronous frame transmission requests dynamically share the remaining
ring bandwidth.

A key parameter of the IDDI media access protocol is the Target Token Rotation

TIme (TTRT). The TTRT is a parameter which is in effect. global to all stations on the
ring since its value is agreed upon by all stations at ring initialization. The TTRT is
the e:o:oiration value for a Toan RotMion Tuner (TRT), which is maintained by each
stat.;, _ :. This timer holds the time since the token was last captured by a station
(modulo TTRT). Expiration of TRT causes a station to increment a state variable
called Late_Ct. which indicates if the token's arrival has exceeded TTRT. Stations
that capture a token and have a non-zero LaU_Ct may use the token only for syn­
chronous transmissions. LaU_Ct is reset to zero when a token is captured. This pro­
tocollimits to TTRT the total amount of asynchronous transmission by all stations
during a full rotation of the token.. The total synchronous bandwidth allocated to all
stations in the ring is also required to be less than TTRT. The maximum time for a
full token rotation is therefore twice TTRT and if the ring is operating properly,
LaU_Ct should not exceed one. Stations requiring a maximum response time
T_rna should choose a TTRT of at most T_maI2.

Each station maintains a Toan Holding TImer (lHT), which limits asynchronous
transmission while still allowing mr to progress independently. lHT contains the
value of TRT when asynchronous frame tranSmission begins and is enabled during
the transmission of each asynchronous frame. The difference between the value of
lHT and TTRT represents the amount of asynchronous transmission still available to
the station. When THT expires (Le .• reaches TTRT), the asynchronous transmission in
progress (if any) is allowed to complete. The time for which transmission occurs be­
yond the expiration of nrr is called the residual transmission time. The residual
transmission time is always less than the maximum frame transmission time.

FDDI-3 ReJease2.4

124

OPNET Example Models Manual FDOI Model Description

MIL 3, Inc.

FOOl also allows priorities to be associated with frames queued for transmis­
sion. The priorities are defined in tenns of threshold values for THT. Frames whose
thresholds are exceeded byTHT are withheld from transmission. By assigning lower
threshold values to a frame. its transmission is more likely to be blocked. thus free­
ing bandwidth for stations with higher priority requests.

In order to suppon bursts of high volume and continuous traffic on the ring.
FOOl supports a restricted mode in which a specially marlced token is monopolized
by two stations that reserve all asynchronous bandwidth on the ring until they again
release a non.-restricted token. During this time. however. other stations are allowed
to use the restricted token for transmission of synchronous frames.

The diagram below illustrateS some of the imponant elements contained in the
FOOl-MAC entity, as well as the basic context in which it operates.

FDDI MAC Operational Context

MAC Timers and Variables "

I THT I IT_Pri
~ IT_Opr I
I Late_Ct I I sync_bandwidth

SMT

Most of the elements shown within the MAC have already been discussed. T_Opr
simply represents the operative value of the TTRT, which is agreed upon at ring ini­
tialization. All stations must have the same value of T_Opr for the ring to operate
properly. T_Prl represents an array oflKT thresholds used to establish priority class­
es as mentioned above. This array maps integer priority levels into thresholds which
are compared with the value of THT before transmitting asynchronous frames. ayn­
c_bIIndwidth represents the synchronous bandwidth allocation for the station, nor­
malized toTTRT.

The diagram also illustrates MAC'S relationship with some of the surrounding
entities. MAC receives frames from U.C, which are intended for transmission to a
peer U.C entity. These frames are transmitted via PHY in accordance with the rules
outlined above. MAC delivers frames received from PHY, and destined for this sta­
tion, to U.C. The station management entity. SlotT. is a supervisory entity that con­
trols and monitors U.C, MAC, and PHY. Each transfer of data across entity interfaces
is coupled with the specification of control information that is fully described in the
standard.

FDOI..- Re/f/lllSe 2.4

125

OPNCT Example Models Manual FDDI Model Description

FDDI.1 Model Scope and UmitatiODS

The previous section briefly described the basic mechanisms and operational
context of the FOOl MAC entity. This section discusses the implementation choices
made in constructing an OPNET model of MAC. Because ,the model is intended for
the purpose of simulation. and particularly for performance estimation. certain pans
of the protocol have been simplified or omitted. It is important to understand which
mechanisms are modeled in order to gauge whether the model is applicable for a
particular simulation srudy.

MIL 3, Inc.

The first restriction is that the ring initialization and recovery processes are not
modeled explicitly. While the model could be extended to address these areas (it is
provided in source code form), its primary usefulness is in obtaining measurements
of steady state performance. The initial alignment of station timers and bidding pro­
cess by which all MAC entities negotiate the TTRT is performed in an essentially stat­
ic manner, as shall be seen in the detailed description of the models below. This $0
applies to the distribution of synchronous transmission bandwidth.

A second restriction has to do with the modeling of error conditions and in gen­
eral the role" of the SlIT entity. In its current form, the model makes no attempt to
implement the mechanisms related to the detection of damaged frames, or the re­
porting of errors to SlIT. The interface between MAC and SlIT is, in fact, not presently
incorporaled into the implementation of MAC.

The FOOl model incorporates a simulation acceleration fearure for modeling
the passing of the token from station to station. When the ring experiences an idle
period with no transmissions, the token may be passed many times in a very shon
period. thus generating many simulation events and consuming large amounts of
real time while producing data that is of little interest. In order to jump over these
periods. a procedure is employed whereby MAC modules register their interest in us­
ing the token and also yield the token through a centrally managed set of variables.
When an idle period is encountered, token passing is blocked. It is later re-injected
into the ring as soon as a station again has a need for it.

The model does incorporate the interfaces between MAC and U.C. as well as
those between PHY and MAC. These are described in the next section entitled Model
Interfaces. In addition. the primary data transfer fearures ofFDDI are modeled ex­
plicitly, including synchronous and asynchronous transmission. definable priority
levels for asynchronous frames. and restricted tokens. The effects of station latency
and propagation delay are also incorporated into the model. The parameters that
may be easily controlled by the user. without having to modify the internals of any
of the provided models include:

• the number of stations attached to the ring

• synchronous bandwidth allocation at each station

• xequested value of the TTRT by each station (T_Req)

FDDI-5 Release 2.4

126

OPNET Example Models Manual FOOl Model Description

•

•

•

•

•

•

the address of the station that launches the token as the simulation
begins

the delay incurred by frames and tokens as they traverse a station's ring
interface

the propagation delay separating stations on the ring

the rate of exponentially distributed frame generation at each station
and the size of generated frames

the mix of asynchronous and synchronous traffic generated at each
station

the range of destination addresses for the frames generated at each
station

Implicit in the parameters listed above is one other simplification made by the
model: the station latency and inter-station propagation delay are assumed to be
uniform across the ring. This is primarily done to conveniently support the simula­
tion acceleration option described later.

FDDI.2 Model Interfaces

MIL 3, Inc.

There are simple requirements for the connection of MAC to PHY and U.C. These
have w do with the physical pon numbers. which in OPNET are called stream in­
dices. to which the packet streams attach. The t4di __ c: process model expects to
attach to the PHY entity via input and output stream D. and expects to attach to the
U.C entity via input and output stream 1. This is illustrated in the following diagram:

FDD/~ Release 2.4

127

OPNCT Example Models Manual • FDDI Model DeSCription

MAC Physical Interfaces

input and output streams 1

input and output streams 0

MAC is not concerned with the format of frames transferred to it by LLC. since it
simply encapsulates these packets into MAC frames before sending them into the
ring. Similarly. it decapsulates these frames from the MAC frames that it receives
from PHY before forwarding them to the U.C. For the purposes of the example mod­
el described la!er in section FDD/A. a packet fonnat called -t44i_llc_tr- is used
for the frames generated by U.C. However. frames of any other fonnat could be sent
to the MAC. It is important to note that the processor module mac does not enforce
the frame size limitations specifIed in the standard. and that it is the responsibility
of the higher level models to generate requests that will result in confonnant MAC
frame sizes.

FDDL3 Model Internal Structure

This section describes the internal structure of the MAC entity. represented by the
processor module mac as shown above. The interface is essentially dictated by the
process model t44iJll&C, which resides in the processor module mac and fonns the
core element of the FOOl example modeL fddi_mac will be described in this .sec­
tion, beginning with the indication primitives and interrupt definitions. and then the
State Transition Diagram (STD) and each of the States will be discussed.

FDDL3.0 Indication Primitives and Interrupt Definitions

MIL 3. Inc:

The tranSfer of frames to and from the MAC entity are the only primitives defmed
in this model. The following indication primitives described in the specification
need not be explicitly modeled since other mechanisms provided by OPNET oper­
ate in an equivalent manner, or they are not part of the scope of the example model:

FODI-J Release 2.4

128

OPNET Example Models Manual FDDI Model Description

MIL 3, Inc.

~_ORITDATA.1D4ication

This primitive corresponds to the notification to u.c
of a frame arrival. which has been detennined by MAC

to be addressed for this station. In OPNET. this mech­
anism is replaced by a .tram interrupt. which is deliv­
ered to the u.c when MAC forwards a packet on the
packet stream that connects them.

MA_UNXTDATA_STATDs.indicat1on
This primitive is used by MAC to repon the status of a
frame uansmission request to the U.C. ,In this exam­
ple model. there is no implementation of mechanisms
related to failure on the pan of any component to per­
fonn its specified service. so the u.c can assume that
its service requests are satisfied by MAC.

PB_ORITDATA_STATDS.1D4icat1on.
PB_ORITDATA.1D41cat1on

. These primitives correspond to the notification to MAC

by PHY of the decoding symbol arriving from the
physical media. and by MAC to PHY of the transfer of a
symbol In this model. all tranSactions between MAC

and PHY are treated with a frame by frame granularity.
To do otherwise would be prohibitive in tenns of sim­
ulation perfonnance.

The primitives that are modeled are:

This primitive corresponds to submission by U.C to
MAC of data to be transmitted to a peer U.C entity.
While several Service Data Units (sou's) may be
grouped into a single invocation of this primitive. in
this example model. a .trNm interrupt will be associat­
ed with the transfer of each frame between the u.c
and the MAC. Control information associated with
each transfer of an sou is also provided by this prim­
itive. In this example model. the control fields are
packaged into an OPNET Inten.ce Contral lnfonMtion

(lei) structure whose fonnat is £d41.J11&c_req. The at­
aibutes present in this format are -.'f'C_cla .. -,
-d •• t_addr-. -pri -, and -tk_cla •• -. The integer
anribute - .'f'C_cla .. • represents the class of service
requested for the frame transmission and a value of 0
corresponds to asynchronous transmission while a

FDDI-B ReJeass2.4

129

OPNET &le Models Manual FDDI ModeJ DescriQllOn

value of 1 corresponds to synchronous transmission.
The integer aaribute -cS •• t_ad4r- specifies the des­
tination address for the recipient(s) of the frame. The
-pr1- attribute is the priority class of the frame and is
only meaningful for asynchronous transmission re­
quests. It is used as the key into the '1'_Pr1 array to ob­
tain 1HT thresholds that may cause the transmission of
the frame to be deferred. Fmally, the integer attribute
-tk_cla .. - can be used to indicate that a restricted
token should be issued by MAC after processing of the
request. A value of 0 indicates a non-restricted token.
while a value of 1 indicates a restricted token should
be issued. This attribute is meaningful only for asyn­
chronous transmissions.

KA_OXI'l'DA'1'A.iDc!icatioD
This primitive corresponds to transfer of data from
MAC to U.C. It occurs when MAC has captured a frame
that is addressed for the local station. In the model,
this event is implemented via a m.m irarrupt that oc­
curs when MAC sends a packet to u.c over the packet
sueam that connects them. In addition to the delivery
of the actual data in the form of an OPNET packet,
there are control fields associated with this event As
in the case of the transfer from the U.C to the MAC,
these fields are grouped into an lei structure. This lei
SIIUCtllre abides by the format tc!c!i __ c_iDd. The at­
tributes contained in this format are two integers
named - arc_ad4r- and -4eat_ad4r-, which repre­
sent the addresses of the originating and receiving sta­
tions. respectively.

FDDI.3.1 Process SID and State Definitiom

MIL 3, Inc. .

The process model fc!c!i.JKc is specified by a State Transition Diagram (STD)

that manages the timers and state variables associated with a single MAC entity. The
responsibilities of the fc!c!i __ c process include forming MAC frames that encapsu­
late data received from U.C, repeating frames destined for other stations, decapsu­
lating data from frames destined for this station and passing this data to U.C.
stripping frames originated by this station. maintaining.1HT and 1RT timers. deter­
mining token usability. and transmitting MAC frames into the ring according to the
rules defined in the FODI MAC specification.

The fc!c!i_ .. c process must execute within a queue module and be connected
to lower and higher layer entities as described in the fc!c!i_atatioD example node
model later in this chapter. fc!c!i.JKC uses a single subqueue of the queue module

FDDI-9 ReJease2.4

130

OPNET &le Models Manual FDDI Model Description

MIL 3, Inc.

in which it is located to hold frames that are waiting to become eligible for trans­
mission. The actions and resources defined in fdd:L_c: are fully specified in the
process model code. which can be viewed from the opnet Process Editor. The code
found in these listings is lined with extensive comments so that in most cases. it
should be self-explanatory. The STD is shown below. followed by a discussion of
each state.

fddCmac Process Model State Diagram

_

CLAlMstaU

This is the initial state of the process model and is entered upon receipt of a begin
aimu'-tion interrupt which is delivered by the Simulation Kernel when the simulation
starts. Its primary purpose is to emulate the negotiation that takes place in an FDDI
ring with regard to the value ofTTRT. All fdd1_mac: processes in the ring can com­
pare their requested value ofTTRT. 'l'_hq, by means of a global variable Pc!41_'l'_O­

pr, which holds the lowest value yet requested. After the last station exits the CLADI

state. pdd1_'l'_Opr has become the operative value of TTRT, which is then used to
regulate the use of bandwidth in the ring. A semaphore represented by the variable
Pc!41_Cl&1lILStaxt is used so that the first station to enter the CLAlX Stale will au­
toIIWically place its 'l'_bq in Pdd1_'l'_Opr without performing a comparison, since
at this early stage N4L'l'_Opr has no defined value. Each process also requests that
it again be interrupted after the claim phase has completed so that further initializa­
tions, which may be dependent upon the final selected value ofTTRT. can be per­
formed. After exiting the CLADI state, the fc!41J11&C: process always transfers
control to the DI'%'l' state upon receiving its next interrupt.

ReJease2.4

131

OPNCT &/! Models M.nuaJ FDOI Model Oescnption

MIL 3. Inc.

lNITstaU

This swe is entered by every tdd1.J11&C process Wr the completiQll of the
claim phase. These is no delay in simulated time since the last action in the CI.ADI

Slate is to request a MH Interrupt for the process with zero time delay. However. this
mechanism guarantees that all processes have executed their CI.A.DI state before any
process enters its :on'r state. All actions of the ImT state are held within itS enter
executives. :on'r is not reentrant because its actions are all related to initialization
and need not be performed more than once. Most of the actions performed in DlIT

have to do with assignment of values to state and global simulation variables. These
include the station latency Fdd1_St_I.&tency, the inter-station propagation delay
FcSd1_Prop_Delay, the combined inter-station delay F44i_'1'lt_lIop_Delay. and
the priority table Fd4i_'r_Pri.

The process model also defines a timer object in the header block and a series
of procedures for manipulating and querying timers. In nrn two such timers are
created for TKT and TRT. The TRT timer is initiali.zed to expire one TTRT period later.
and a MIt InterrUpt is set to occur at that time. Throughout the process model. when­
ever TRT is set. a corresponding MIt IntIWnIpt is requested. so that at the time of ex­
piration. the "I.&ta_Ct variable can be incremented. Also note that when the .."
mt.rrvpt is requested. an event handle is obtained and placed in the swe variable
ft'l'_haDdl .. so that. if an early token is capwred. the request can be repealed. and
a new one issued. The I.&ta_Ct variable is reset and the Stale variable natr1cta4

is set to 0, since the station is not at this point in a restricted mode.

In nrn. tdd1 __ c also acquires knowledge of its own station's address and
places this value in the state variable 1IIIY_a44n ••• An lei is created which abides
by the format -tdd1.J11&c_to_llc- defined via the ParameICr Editor. This lei is
stored in the Stale variable to_llc_ic1Jtr, and is used to specify control infor­
mation fields when delivering service data units to the u.c. The t441J1&c registers
itself in a global table that maps station addresses to process object ID's. This table
is used by an acceleration mechanism that bypasses idle periods to avoiding letting
the token freely circulate and generate a large number of events. Also associated
with this mechanism is the tlt_ngiaura4 variable which indicates if this station
has registered its desire to make use of the token should it become available. This
acceleration mechanism is only used if the global simulation variable accelar­
au_tokaD is set to 1; this is normally done in an external environment file supplied
to the simulation upon execution. The assignment of this aaribute is placed in the
global variable N41_ft_Accalarata. The .yuc_baD4wi4th swe variable. which
represents the synchronous bandwidth usable on each token capture (normalized to
TTRT). is initialized. Note that there is no logic in place to verify that the sum of
these assignments for all stations does not exceed one.

_.
The final Stalements of mr: have to do with the initial generation of a token

for the ring. A single station in the ring is designated as the spawning station. which
bas the responsibility of creating an OPNET packet representing the token and re­
leasing it into the ring. The address of this station is specifIed in the global simula­
tion amitnne -.pawn .tatiOD-.!be value of this amibute is loaded into the
variable .pawn_atat1OD so that it can be compared to -.v_a44naa. H a matCh oc-

FDDI-11 Re/tJase. 2.4

132

OPNCT Example Models Manual FDDI Model Description

MIL 3, Inc.'

curs. a token is created with the fonnat fdcU_mac_tlt. and its fields are initi3llzed.
Also. in case of a match. the variable apawn_to!taD is set to 1. This will cause a tran­
sition to the XSSOB_'n: state after completing the actions of DnT where the token
will be sent into the ring. For other stations. where a match does not occur. the next
transition will be to the IDLE state instead. The last action of DnT resets the value
of the aC:C:1DIU)aDdwidth variable. which keeps track of the total amount of band­
width scheduled for transmission since a token was captured. This value is used to
schedule packet transmissions so that they will occur with the proper delays. In the
case of the initial transmission of the token. there is no delay due to other transmis­
sions.

ISSUE_TK stall

This state is entered whenever fd41_mac: needs to issue a token. Its primary ac­
tion is therefore to forward the OPNET packet that represents the token (held in the
variable tlt"pkptr) with the proper delay. which reflects the accumulated band­
width consumed by previous frame transmissions. and the propagation delay which
the token will experience as it navels to the next down-stream neighbor. In addition.
ISBtm_'f1t checks for the special condition whereby the station is releasing the token
without having performed any frame transmissions, and the station has no data to
transmit. If this condition is met. the procedure fddUIOndat._IJO_dMII() is called.
This procedure is defined in the function block. and checks for the condition where
all stations on the ring have no data to transmiL If any station has data to transmit.
the token will be forwarded normally, otherwise the token will be blocked until a
station registers its intent to use it This mechanism provides significant improve­
ments in simulation efficiency, particularly in simulations where the network traffic
is well below llCtwork capacity. After executing the statements in the ISSOZ_'1'lt

state, fd41_mac always transitions to the IDLE state.

IDLEstaU

This state is the branching point for event processing in the steady state opera­
tion of fd41..J11&c. The interrupts to which the process will respond while in the
ItILB state are strMm Int8rrupla signaling the anival of service data units from u.c.
m.m Inwrupta signaling the arrival of frames or tokens from PHY. ..H Interrupta
representing the expiration of TAT, and r.mote interrupta requesting that a token be
generated and inserted into the ring. Upon receiving any of these interrupts.
fc!4i..Jll&C executes the code present in the exit executives of the IDLE state. This
code prepares variables used on the transition conditions;-and handles the case of a
NmDte Interrupt. All other inteITUpt typeS are processed by leaving IIILB and going
to the appropriate destination state. In the case of a atreem interrupt, IDLE distinguish­
es between arrivals from PHY and anivals from LLC, and sets the variable pb­

v_urival accordingly. In addition. in the case of atNam intem.lpta from PHY, ItILE

sets the variable f~_CODtrol to indicate if a token or a frame has arrived. If a
NmDte interrupt is napped. the event corresponds to a re-in:roduction of the token

FDDI-12 ReJesse2.4

133

OPNET Examp/6 MO<hIs Manual FDDI Model Description

MIL 3,lnc.

into the ring after an idle period where no stations had data to transmit During-such
periods. if the token acceleration mechanism is enabled. the token transfers between
stations are not modeled explicitly in order to economize simulation events. Once a
station registers interest in using the token again (i.e .• it produces data for transmis­
sion). the token acceleration mechanism computes the station at which the token
would be present. based on the token hop delay. and the duration of the idle interval.
This station is notified via a remote interrupt that it should generate a new token and
send it into the ring.

This state is entered when fdlll_IIIIIC receives a .. If interTUpt indicating that the
TRT timer has expired. At this point. the timer is reset to expire one TTRT into the
future and a corresponding MIt interrupt is requested. Also. the Late_Ct variable is
incremented to indicate the lateness of the token. After completing the enter exec­
utives of this state. f44iJll&c returns to the IDt.B state where it waits for the next
interrupt

ENCAPstaU

This state is entered when fdlll_IIIIIC receives a Service Data Unit (SOU) from
UC. This event is delivered in the form of a atreem interTUpt on the port arriving from
UC. as described in the Motkllnterfaces section of this chapter. The primary ac­
tions of this state are to acquire the arriving data and associated control information
and to use these to create a MAC frame suitable for transmission to a peer MAC entity
via PHY. The resulting MAC frame is enqueued until a later time when it becomes
eligible for transmission in the 'n::_IlAn state.

The flISt actions implemented in this state serve to obtain the OPNET packet
and lei that represent the service data unit. and the control fields that comprise the
frame tranSmission request These are placed in the variables pdu...Ptr. and
ici"'ptr. respectively. lbe following statements extract the control information
fields that specify service class (asynchronous or synchronous). destination address,
and for asynchronous frames. priority class and the class of the token that will be
issued after transmission (restricted or non-restricted). These values are placed in
the variables .'Y'C_cl •••• cSeat_a44r. relL.Pri. and nq,..tJt_cl •••• respective­
ly.

The passed SOU and the control information are used to form a MAC frame that
is held in the variable IIIIIc_fr_...Ptr. The fields of the frame, as defined in the
packet format -fdlll __ c_fr- are assigned. The Sou that is to be communicated to
an UC in a remote station is encapsulated in the -iDfo- field of the new frame. For
asynchronous requests. the requested token class and priority fields are also as­
signed. The frame conuol field -fc· is set so that other stations will recognize the
arriving packet as a frame rather than a token. and finally the frame is inserted into
the fuo which queues transmission requests.

FDDI-13 Release 2.4

134

OPNCT &smple Models ManusJ FODf Model Description

MfL3.lnc.'

The remaining actions of the POP state are related to the token acceleration
mechanism mentioned earlier. In this mechanism. stations that wish to use the token
register their need by calling the procedure fddCtlt-r.gistet(). which is dermed in
the function block. A station must call this procedure as it transitions from having
no data to send to having data to send. There is no need however for a station to reg­
ister if it is currently registered. 1be state variable tk_regiatered is used to pre­
vent unnecessary registrations. If the token is currently blocked when
fddUJvegistet() is called. it will be reinserted into the ring at the appropriate loca­
tion so that transmission requests may be serviced.

RCV_TKstaU

This swe is entered by f441 __ c upon receipt of a token from PHY. This event
corresponds to a atrMm interrupt from PHY. and SUbsequent acquisition of a packet
with the proper frame control field. 'These conditions are represented by the 'l'X_Rl!:­

CUVZD transition conditional that departs from the IDLE state.

The first actions taken in this state obtain the class of the token (resaicted or
non-restricted), and in the case of a restricted token. the address of the station for
which the token is usable is also extracted. A variable, tk_"a&bl •• which indicates
at the end of the ltCV_'l'X state executives. whether the token may be used by this
station. is initially set to o.

A series of conditions are tested in order to determine if the token can be con­
sidered usable. The first condition is that there must be at least one frame enqueued
for transmission. If the first frame enqueued (the one at the head of the queue) is
synchronous, then the token is necessarily usable and no further criteria need be
mel If instead the frame is asynchronous. then in order for the token to be usable.
I.ate_ct must be ZCl'O. the token class must be non-restricted or the station must be
involved in the resaicted exchange. and finally the frame's priority class must be
high enough that the corresponding THT threshold (given by the 'l'_Pri array) is not
exceeded by the current value of TAT.

When the token is captured by a station. regardless of whether it is usable or not,
timer adjustments must be made. In the case of a usable and early token. the con­
tents ofTRT are transferred to 1HT and the 1HT timer is disabled. TRT is reset to time
the new rotation of the token. Also. the .." Int.mIpt previously associated with the
expiration of TRT is canceled and a new ODe is requested to correspond to the new
setting of the timer. If. on the other hand. the token is late but usable for a synchro­
nous tranSmjssion request, then 1HT is set to its expired value and disabled (this will
prevent asynchronous transmissions from occurring wheI! the TlUIA'l'A stale is en­
tered), and I.ate_ct is cleared. In the case where the token is not usable but is early.
the lRT timer is reset and a new eeIf Interrupt is requested to replace the previously
scheduled ODe. If instead the token is late. then the only action taken is to set
I.ate_ct to ZCl'O. In either case, if the token is not usable. the variable accUIIU)&D4-

Width. which keeps track of bandwidth consumption since the arrival of the token.
is set to the station latency so that the token will be appropriately delayed when for-

FDDI-14 Release 2.4

135

OPNET example Models Manual FDDI Model Description

MIL 3, Inc:

warded to the next station.

TX_DATA state

1bis Slate is entered by fddiJll&c when the token is captured and a detennina­
tion is made that it is usable. This determination is made in the RCV_'1'ODN state ac­
cording to the logic presented above. The role of the 'l'%_J)A'rA state is to dequeue
and send frames into the ring until the token is no longer usable by this station. at
which time it is forwarded down-stream.

As specified in the FOD! standard. frames are dequeued in a fU'St-in-first OUt or­
der and may not be transmitted out of order. regardless of class of service. In order
to simplify the implementation. advantage is taken of the ability to schedule the
ttansfer of packets at arbitrary future times. Thus. once entered, the 'l'%_J)A'rA state
dequeues as many frames as can be sent according to the prescribed transmission
rules. and forwards these with appropriate delays. Simulation time does not advance
during this processing. and so the progress of the THT timer is emulated by using an
accumulator variable. tht_ nlu •. From the point of view of entities receiving the
packets. all events are perceived as though the packets were individually sent at dis­
tinct times since the Simulation Kernel delivers each packet at separate instants.
This method avoids complexity in the STD. and significantly reduces the number of
simulation events. which in tum. shortens run times.

In order to keep traCk of the amount of time spent tranSmitting to date. SO that
new transmissions can be properly scheduled, the variable aCCUZII_baDd"idth is in­
creased at each frame transmission by the frame transmission time. This variable is
initialized to zero at the top of 'l'%_J)A'l'A. A separate accumulator. aCCUZII_8ync.

keeps track of only synchronous bandwidth. since a fixed limit is imposed on this
type of transmission.

'The central element of'l'%_J)A'rA is a transmission loop whose main condition for
continuation is that there still are frames in the input queue. Other exit conditions
for the loop are tested within its body. At the top of the loop, the fU'St frame in the
queue is removed and its service class is extracted. Depending on whether the frame
is synchronous or asynchronous, it is processed differently. Synchronous frames are
allowed to be tranSmitted provided that their transmission does not cause the Sla­
tion's synchronous bandwidth allocation to be exceeded. This test is therefore per­
formed before uansmitting the frame. The test involves computing the frame's
transmission time based on its length and the transmission data rate. This transmis­
sion time is stored in the variable tz_t:iJM which is added to the variable acclmI_-

8YUC. 1be sum cannot exceed the state variable a)'Dc_baDdrldtb. set at
initialization. if the frame is to be sent. If the frame cannot be transmitted. it is re­
placed at the head of the queue and because no further transmission requests can be
honored (the frames must be served in a FIFO order). the transmission loop is exit­
ed. If instead. there is sufficient remaining synchronous bandwidth for the frame to
be transmitted. it is scheduled for transmission with a delay comprising the already
consumed bandwidth and the inter-station propagation delay (transmission delay of

FDDI-IS Release 2.4

136

OPNET Example Models MsnusJ FOOl Model Description

MIL3,lnc ..

each frame is accounted for at the time where a frame is received by its destination).
Also. the accumulators ac:c:uZlU)&lld"idth and aC:C:'Im_aync: are increased to re­
flect the new transmission.

For asynchronous frames. transmission is allowed if the value of nrr represent­
ed by the tht_Talua variable has not exceeded Pddi_1'_Opr and the priority level
of the frame has a corresponding threshold which is not exceeded by tht_value.

Unlike synchronous frames. asynchronous frames that meet these criteria are al­
lowed to be sent even if the criteria are violated during the frame transmission. Thus
it is possible for an asynchronous frame to complete tranSmission and have th­

t_value exceeding Pddi_T_Opr. However. this will be the last asynchronous
frame transmission.

Asynchronous frames that carry a requested token class of restricted ma y cause
~4di __ c: to enter a restricted transmission mode. Similarly, frames that specify a
non-restricted token. will cause the process to exit restricted transmission mode.
This is currently the only method to affect the restricted transmission status of
~4di_III&C:. In restricted mode, the token that is issued after transmission is usable
only by a specifically designated peer station on the ring.

As with synchronous frames. the asynchronous frame, if transmittable. is for­
warded with a delay that reflects already consumed bandwidth and propagation de­
lay. Also. the acclDII_baD4'If1dth variable and tht_Talua are increased to reflect
the new transmission.

Fmally, if after exiting the transmission loop, the station has no more frames to
transmit (the queue is empty), the station must deregister its interest in the token so
that if all stations in the network are data-less, the token can be blocked as part of
the token acceleration mechanism mentioned earlier.

FR_RCVstaU

In this state a frame has been received from PHY. This determination is made in
the :IDLB state which responds to a atrMm interrupt arriving from PHY and analyzes
the frame comrol field, .~c:., of the arriving packet. The only action performed in
PIt_RCV is to extta.ct the source address of the packet so that a determination can be
made with regard to stripping the frame from the ring. This decision corresponds to
the two transitions that depart from PR_JtCV, which lead either to PR_S'l'R.IP or l'R_­

UPBAT.

FR_REPEAT staU

In this State, a frame has been received that was originated by a station other
than this ODe. The FDDI specification calls for the frame to be repeated until it
reaches its originating station. However, in simulation, there is no need for the
frame to proceed beyond its destination unless group addresses are being used.

FDDI-1S Relea.w2.4

137

OPNCT Example Models Manual FDDI Model Description

Therefore. if the frame's destination matches this station's address. the frame is ef­
fectively stripped from the ring. Also. the u.c data encapsulated within the -1:!.fo­
field of the frame is decapsulated. This data is forwarded to u.c with a delay equal
to its tranSmission time. since this is not accounted for upon tranSmission. An lei is
composed which supplies the source and destination address values to u.c.

In the case where the frame's destination is not this station, the frame is repeated
onto the ring, and propagation delay and station latency are accounted for.

FR_STRIP sl4U

In this state a frame has been received that was originated by this station. The
FDOI specification calls for the frame to be stripped from the ring. The frame is
therefore discarded rather than repeated and fddi_lII&c returnS to the IllLB state to
await the next interrupt.

FDDL4 Example Usage

This section describes an example model that encompasses the FODI MAC mod­
el. First, each file that is part of the FODI example models is explained. Then, the
fddi_atatioD node is described where a MAC entity is placed within a traffic
source, a traffic sink. and a PHY entity. Then. this node is used to derme 32 stations
in an FOOl ring described in the FDDI.4.2 Ntrwork Dtscription section.

FDDI.4.0 Files

MIL 3, Inc.

This section gives a brief overview of the flles found in the <opdir>/at=od/­
fddi directory. The models should be easily understandable by the user who wishes
to analyze their internals. It is also possible to treat these abstractly and simply work
with their parameters.

The flles are listed in alphabetical order:

fddi.oa

An environment flle specifying the values of simula­
tion attributes for the fddi_Det_D simulations.

An output scalar me that contains measurements of
throughput and mean end-to-end delay for a range of
TTRT values between 0.5 milliaec:ondl and 60 mllliaec­

onda. This flle can be used in the analysis tool to pro­
duce plots of throughput or delay versus nAT. This
file was produced by running the fddi_acript shell
script.

FDDI-17 Re/ea$e2.4

OPNCT &le Models Manual

fd4i.pb.1D

fddiJaz1.pr .ID

MIL 3, Inc.

138

FDDI Model Description

A probe file containing specifications of data collec­
tion. This probe file can be optionally specified with
the ·probe· environment attribute when executing
fd4i_DatJl. aim simulations.

An Ema based application that can be used to generate
rings constructed with the fd4i_atatioD node mod­
el. This application can be compiled with the 2113_lIIka­

ID& program described in the OPNET £:aeTna/
Interfaces Manual /6.0. When executed. it accepts a
single argument which is the number of stations in the
ring.

A process model that provides a simple example of
higher-layer interfacing with the fddi_lD&c process.
This process acts as a poisson frame source and has
several attributes that can be modifJ.ed to control its
rate of frame generation. the size of generated frames.
and the destination addresses for these frames. When
compiled. this process generates the additional files
fddiJCl.pr.c and fdd1JCl.pr.o.

A packet format specification for frames generated by
the fddiJCl process model and passed to fdd1_lD&c.

These frames are encapsulated in the ·info· field of
frames that travel on the FOOl ring.

A process model that represents the MAC entity of an
fddi station. This process model must operate within
a queue module and interfaces with the lower layer
PHY entity and the higher layer LLC entity via packet
streams and lei strUctures. When compiled. this pro­
cess generates the additional files fd41_lD&c. pr • C

and fddi_lD&c. pr • o.

A packet format specification for frames formed by
the fddi_lD&c process. These frames are the ones
passed between MAC entities on the FOOl ring.

An lei format that specifJ.es the; control information
that may be passed by the LLC to the MAC when tranS­

mission requests are generated.

A packet format specification used to represent a to­
ken that circulates on the FODI ring.

FDDI-1S ReJease2.4

139

OPNET example Modttls MB/lual FODI Model Description

MIL 3. Inc.

fd4i __ c_iDd. ic.m An lei format that specifies the conuel information
that may be passed by MAC to LLC when data is re­
ceived by MAC and provided to the local LLC entity.

td4i_net_32 .Dt.m A network model containing 32' tdcU_atatioD nodes
arranged in a ring. This model is produced by execut­
ing the Erne program fd4i_build._.z.

fd4i_acript A C Shell script that executes the fd4i_Dat_32 mod­
el11 times for a range of TTRT values ~tween o.s mil­
liMconda and 60.0 miDiaeconda.

fddi_aiDk.pr.m A simple process that acts as a place holder for user­
defined higher level processes that would receive data
from MAC. This process simply discards packets while
maintaining and reporting a few statistics related to
ring throughput and delay. When compiled. this pro­
cess generates the files fdcU_aiDlt.pr.c and fd4i_­

a1Dk.pr.o.

fddi_atatioD.Dd.m An example node model centered around the
fddiJll&c process. It comprises a aansmitter and a re­
ceiver representing the PHY entity, a queue represent­
ing the MAC entity. and two processors that together
represent the LLC entity. This model is the basic build­
ing block: for the fd4i_Det_Zl network models.

propdel_zero.pa.c A pipeline model constructed to force point-to-point
links used in the FDDI ring model to use a propaga­
tion delay of zero within the transceiver pipeline. thus
allowing propagation delay to be modeled at a higher
level. When compiled. this process model produces
the file propdel_zaro • pa • o.

txdel_zero.pa.c A pipeline model constructed to force point-to-point
links used in the FDDI ring model to use a transmis­
sion delay of zero within the transceiver pipeline. thus
allowing transmission delay to be modeled at a higher
level. When compiled. this process model produces
the file Udal_zero. pa • o.

FODI·19 Re/eastt 2.4

140

OPNCT Example Models Manual FDOI ModelOescnption

FDDI.4.1 Node Description: fddUtation

This section describes the basic component of the FOOl network model, which
is a model of an FOOl station, including a traffic source, a traffic sink, a MAC entiey,
and a PHY entity. These entities are modeled in terms of the modules that are pro­
vided by OPNET's Node Editor to form a basic example of an FOOl-based com­
munication node called fdd1_ataticn. The correspondence between the entities is
shown in the following diagram.

MIL 3,lnc.

Mapping of FOOl station entitles to OPNET Modules

~T~ra=ff~iC~S~f~·n~k~~------------·I[]1
llc_s.lDt

Traffic Source f-! -------------. /[]I
llc_sn

LMM~AC~e~n~t~~Y----------·/~1

r------~-/831
--..:.p...:.H..:..Y.:....;::e.:...:nt::.::~:.L----.,;~trg_tz

~
phlI_CI:

The modules are connected via OPNET packet streams over which tokens or
frames can be forwarded. Both tokens and data frames are represented with OPNET
packets defined by the frame fonnats fddi_llc_fr, fc!41_lIIac_fr, and fddi_­

iliaC_tit, described previowly in this chapter. The iliaC processor receives inputs
from the processor llc_uc and the receiver module phy_rx. The processor
llc_aiDlt and the ttansmitter phy_a receive inputs from IlIAC. The layout of the
node is shown below.

FDDI-2D Release 2.4

141

OPNET Example Models Manual FDDI Model Description

fddCstation Node Model

llc_src

The pby_tz and phY_:r% modules serve as the physical interface to the ring
transmission medium. Frames and tokens are received by iliaC from pl:1y_r%. which
is connected to the point-to-point link emanating from the next up-stream neighbor.
Similarly, frames and tokens are forwarded by iliaC to phy_t.x. which is connected
to the link leading to the next down-stream neighbor. In most OPNET models. the
primary amibutes of the point-to-point transmitter and receiver would be the data
rate assignments for their channel objects. However, in this FODI model. as men­
tioned earlier, the computation of transmission delay returns a fIxed value of zero,
thereby making the -c1&u rate- attribute irrelevant.

As shown in the mapping above. the queue module iliaC occupies the place of
the MAC entity in the station and has the responsibility of token and timer manage­
ment, frame capture and repetition. and queueing of transmission requests. The be­
havior of this queue is prescribed by the !c!di_lllaC process model described in a
later section of this chapter.

The processor llc_uc is so named because of its physical relationship with
iliaC to which it provides frames for transmission. It does not have the functionality
of an actual LLC beyond correctly interfacing with the AlAC entity. While it is prima­
rily intended to serve as an example of how to interface with iliaC. it may also be
used as a convenient but simple message source for FODI models. Its behavior is
prescribed by the flS4iJeD process model

Fmally. the processor !c!41_8ink provides a simple destination for frames cap­
tured by and addressed for the station. and forwarded by the iliaC processor. It serves
as a place holder for higher level processes that may be ~veloped as part of larger
modeling effortS. Its actions. which consist primarily of packet disposal and statistic
collection. are specified by the process model !c!4i_a1nk.

FDDI.4.2 Network Desc:ription: rddCnet_32

MIL 3. Inc . .

The ring topology and number of stations are the primary specifIcations com­
prised in the network level model. since the inter-station propagation delay has been

FDDI-21 ReJesse2.4

142

OPNET Example Models Manual FOOl Model Description

MIL 3. Inc.

made a global simulation attribute. common to all inter-station connections. A sam­
ple network model. tddi_nat_12 containing 32 stations within a subnetwork is pro­
vided to illustt"ate the usage of the lower level models.

Because FDDI rings may often contain large numbers of stations. it is conve­
nient w generate the associated network models in an automated fashion. specifying
only the number of stations. An application called tdd:Cbuild.AIIl.X, based on the
External Model Access (En.) package. is provided for this purpose. This applica­
tion is almost entirely derived from the ring_build program described in Chapfer
£rna of the OPNET Exte17'lll11nterfaces Manual /6.0, and consequently is only min­
imally documented here. f44i_build._.x accepts a single required argument
which is the number of stations on the network. It arranges stations of the type
fddi_atatioD in a circular ring and creates links between adjacent stations. This
program was used w generate the example network tddi_Dat_32 which is shown
in the following diagram.

fddCneC32 Network Model

.11

...

The source code for the netWork building program is supplied in the file fdd­

i_build._.c: so that the form of the models may be conveniently modified. Some
parameters that can easily be changed are the icon used w represent stations. the

FODI·22 Release 2.4

143

OPNET &le Models Manual FDDI Model DeSCription

MIL 3. Inc.

strings used to name the stations. and the physical dimensions and shape of the net­
worle.

An imponant specification that occurs at the network level (and therefore in the
Ema program which generates the network model) is the assignment of procedures
that model the operation of the links. There is currently DO dedicated physical layer
object in OPNET for modeling ring architectures. Consequently. point-to-point
links are used and their internal operation and transmission timing mechanisms are
modified to reflect the behavior of FOD! interfaces. The procedures that implement
the point-to-point link models are called Transceiver Pipeline procedures and these
are discussed in detail in the Chapter Comec chapter of the OPNET Modeling Man­
ual/2.0.

Two mechanisms in the point-ta-point link. used for modeling transmission de­
lay and propagation delay. have been modified to implement the FOD! ring physi­
cal layer. The default point-ta-point link pipeline uses a procedure called dpUxdelO
to compute transmission delay on the basis of a packet's length, and the -data

rata- attribute of the channel of interest. The transmission delay computed by
dpUJaJel() is used by the Simulation Kernel to schedule the delivery of the trans­
mined packet at the output of the receiver in the link's destination node. In other
words. no entity in the destination node is aware of the arrival of the packet until its
last bit has arrived. This is clearly inappropriate for FOOL where frames and tokens
must be repeated after only a small number of symbols have been received by a sta­
tion. The approach used here is to create a new procedure called txW'-DfD(). which
always returns a transmission delay of zero. and to leave the modeling of station la­
tency to the MAC process model. since all frames and tokens must be made known
to this entity. The source code for the tx4al_uro pipeline procedure is provided
in the file <opdir> latc!lllo4/fd4i/tx4al_za:r:o. pa. c.

Because the assumption has been made that inter-station propagation delays are
uniform across the network. the pipeline mechanism used to inject propagation de­
lay is also disabled. This is done by inserting the pipeline procedure propdeezero(j
in place of the default propagation delay model dpt..pt'Opc»l(). Propagation delay
modeling is instead done as packets are forwarded by the MAC entity. As with
txdal_zaro. source code is provided in the <opdir>/at4=odItdd1 directory.

Once constructed. the Network Editor allows a number of attributes to be set for
each station via menus. It is also possible (this is the default and often most conve­
nient method) to set these attributes via an environment file which is interpreted at
the time of simulation. The attributes that are promoted from lower level models
and are available on a per station basis are illustrated below. Each attribute is dis­
cussed following the illustration.

FDDI-23 Release 2.4

144

OPNCT Example Models Manual FDDI Model Descriotion

MIL 3. Inc.

Some FDDI Station Attributes viewed in Network Editor

.

~
f4

"V' (tS) Attn.bute~

m fS
llc_~re.lav de~t addre~~ : proJLOted
llc_~rc.high de~t addre~s : proJLOted
llc_~rc.arrival rate : prOlloted

~ llc_src. Hen pk length : prOJLOted
llc src. async_1ll.x : prOJLOted
aac.sync bendwidth : prOJLOted

~ aac .. T_Req : prOJLOted
aac.statian_address : prOJLOted

llc.arc.low d.ae addr.aa
This attribute is promoted from the fc24i_aeaeion
node model and originates in the f&UJeJ1 process
model It can be used to control the lower bound for
destination assignment when the llc_arc module
within the station generate new frames for transmis­
sion. It affects the addressing of both synchronous
and asynchronous frames.

llc.arc.higb d.at addr.aa

llc_arc.arrival raea

This attribute is promoted from the fdcU_aeaeion

node model and originates in the tddiJeJ1 process
model It can be used to cona-ol the upper bound for
destination assignment when the llc_arc module
within the station generateS new frames for transmis­
sion. It affects the addressing of both synchronous
and asynchronous frames.

This attribute is promoted from the fd4i_aueion

node model and originates in the tc24iJeJ1 process
model It can be used to control the rate at which the
llc_arc module within the station generates frames

FDDI-24 Reiease2.4

145

OPNET Example Models Manual FDDI Model Description

MIL 3, Inc.

for tranSmission. The value of this attribute specifies
the aggregate rate comprising both synchronous and
asynchronous traffic. and is specified in frames per
second.

llc •• rc .mean pk langth
This attribute is promoted from the fddi_8tation
node model and originates in the fddiJan process
model. It can be used to control the length of both
asynchronous and synchronous frames generated for
transmission by the llc_uc module.

llc • .rc .&8ync_mU This attribute is promoted from the f4di_atat1ou

node model and originates in the tc!diJeD process
model. Its value varies between zero and one and
specifies the proportion of asynchronous frames gen­
erated by the llc_.rc module within the station. A
value of zero specifies that llc_uc shall queue only
synchronous frames for tranSmission while a value of
one specifies instead that it shall generate only asyn­
chronous frames.

c •• ync banc!w1dth This attribute is promoted from the tc!di.tation
node model and originates in the fc!di __ c process
model Its value varies between zero and one and
specifies the proportion of synchronous bandwidth al­
located to this station relative to the total synchronous
allocation for the entire ring. The sum of this attribute
for all the stations in the ring should not exceed one
(note, that at present the model does not enforce this).

_c. 'l'_Jleq This attribute is promoted from the fc!di_8tation
node model and originates in the tc!di __ c process
model It represents the requested value ofTTRT on the
part of the station. The tdd1 __ c process model will
select the minimum value of this attribute among all
stations to install in the variable I'ddi_T_Opr, which
holds the operative value of TTRT.

_c •• tat1ou_ac!4r... This attribute is the unique identification of each sta­
tion, and is used for addressing and stripping uansmit­
ted frames in the ring.

FDDI-25 Release 2.4

146

APPENDIX D. DESCRIPTION OF THE SIMULATION

PARAMETERS

This appendix comprises a complete list of the chosen simulation model at­
tributes for the simulations described in the main text. The parameters are identified
by the Figure numbers which show the results of this particular set of simulations.
The chosen parameter are described in more detail for the first set. In subsequent
sets only the differences to the first set are shown.

Simulation Parameters Figure 4.2 and Figure 4.3

• duration = 0.4 (seconds)

• seed = 121, 234, 310, 444

• top.ATNLl.src.interarrival args = 1.00474E-06 (l/packet arrival rate, =422Mb/s)

• top.ATNL1.proc.VPLSET = 3

• top.ATNLl.proc.VECTOR_STAT_ENABLE = disabled

• top.ATNL1.src.interarrival pdf = constant

• top.ATNL1.rcv[O].data rate = 500E+06 (bits/second)

• top.ATM_l.xmt[O].data rate = 500E+06 (bits/second)

• top.ATMA.src.interarrival args = 1.0047 4E+06 (=no packets)

• top.ATMA.proc.VPLSET = 4

• top.ATMA.proc.VECTOR..5TAT_ENABLE = disabled

• top.ATMA.src.interarrival pdf = constant

147

• top.ATMA.rcv[O].data rate = 500E+06 (bits/second)

• top.ATMA.xmt[O].data rate = 500E+06 (bits/second)

• top.ATM-2.atm-sw.VPLATrvLLOCAL = 3

• top.ATM-2.atm-sw.VPLATrvLREMOTE = 4

• top.ATM_2.atm-sw.VPLFDDLLOCAL = 1

• top.ATM_2.atm-sw.VPLFDDLREMOTE = 2

• top.ATM-2.atm-sw.STAT_ENABLE = enabled

• top.ATM_2.xmtlddi[O).data rate = 80E+06 (bits/second)

• top.ATM_2.rcv.lddi[O).data rate = 80E+06 (bits/second)

• top.ATM_2.xmt..atm.Jld[O].data rate = 500E+06 (bits/second)

• top.ATM_2.rcv_atm.lld[OJ.data rate = 500E+06 (bits/second)

• top.ATM_2.xmt..atm.-Sw[O).data rate = 500E+06 (bits/second)

• top.ATM_2.rcv_atm-sw[O).data rate = 500E+06 (bits/second)

• top.ATM_3.atm-sw.VPLATM_LOCAL = 4

• top.ATM_3.atm-sw.VPLAT~LREMOTE = 3

• top.ATM_3.atm-sw.VPLFDDLLOCAL = 2

• top.AT~L3.atm-sw.VPLFDDLREMOTE = 1

• top.ATlVL3.atm-sw.STAT_ENABLE = disabled

• top.ATlVL3.xmtlddi[O].data rate = 80E+06 (bits/second)

• top.ATM_3.rcv.lddi[O].data rate = 80E+06 (bits/second)

• top.ATM_3.xmt..atm.lld[O].data rate = 500E+06 (bits/second)

• top.ATlVL3.rcv_atm.lld[O].data rate = 500E+06 (bits/second)

• top.ATM_3.xmt..atm.-Sw[O].data rate = 500E+06 (bits/second)

• top.ATM_3.rcv_atm-sw[O].data rate = 500E+06 (bits/second)

148

• top.FDDL1.fddLatmJink.xtm...atm(Oj.data rate = 80E+06 (bits/second)

• top.FDDL1.fddLatmJink.rcv...atm(Oj.data rate = 80E+06 (bits/second)

• top.FDDL1.fddi_atmJink.bridge_proc.VPLSET = 1

• top.FDDL1.fddi_atmJink.bridge_proc.STAT_ENABLE = enabled

• top.FDDL1.fddi_atmJink.mac.station...address = 0

• top.FDDL1.fddi_atmJink.mac.ringjd = 1

• top.FDDLl.fddLatmJink.mac.sync bandwidth = 0.5 (*100%)

• top.FDDL1.fddi_atmJink.mac.T..Req = 4.0 (seconds)

• top.FDDLl. vbr_station.l1c...src. trafficdist = exponential

• top.FDDLl.vbr_station.llc...src.vbLgen_seed_I = 911, 284, 595, 412

• top.FDDLl.vbr_station.l1c...src.vbLgen_seed_II = 810, 212, 611, 693

• top.FDDLl.vbr_station.llc...src.arrival rate = 700-1600 (packets/second, step =
100)

• top.FDDLl.vbLstation.l1c...src.mean pk length = 32000 (bits)

• top.FDDL1. vbr_station.llc...src.idle_dist = exponential

• top.FDDLl. vbr_station.l1c...src.idle_disLarg = 0.002 (seconds)

• top.FD D L1. vbr _station.llc...src. busy _dist = exponential

• top.FDDLl.vbr_station.llc...src.busy_disLarg = 0.01 (seconds)

• top.FDDL1. vbr_station.llc...src.low dest address = 1

• top.FDDL1.vbr_station.llc...src.high dest address = 1

• top.FDDL1.vbr_station.llc...src.asyncmix = 1.0 (only asynchronous data)

• top.FDDL1.vbr-Btation.llc...src.dest..ringjd = 2

• top.FDDL1.vbr_station.mac.T-Req = 4.0 (seconds)

• top.FDDLl.vbr-Btation.mac.stationAddress = 1

149

• top.FDDLl.vbr..station.mac.ringid = 1

• top.FDDLl.vbr_station.mac.sync bandwidth = 0.0 (*100%)

• top.FDDLl.cbLstation.llc-src.arrival rate 0.0 (packets/second)

• top.FDDLl.cbLstation.llc-src.mean pk length = 32000 (bits)

• top.FDDLl.cbLstation.mac.sync bandwidth = 0.5 (*100%)

• top.FDDLl.cbLstation.mac.T.Req = 0.001 (seconds)

• top.FDDLl.cbLstation.llc-src.low dest address = 2

• top.FDDLl.cbLstation.llc-src.high dest address = 2

• top.FDDLl.cbLstation.llc-src.trafficdist = constant

• top.FDDL1.cbr..station.llc-src.asyncmix = 0.0 (only synchronous data)

• top.FDDLl.cbLstation.llc-src.desLringjd = 2

• top.FDDLl.cbLstation.mac.stationAddress = 2

• top.FDDLl.cbLstation.mac.ringid = 1

• top. FD D L2. vbLstation.llc-src. trafficdist = exponential

• top.FDDL2.vbLstation.llc-src.vbLgen_seed_I = 191, 186, 343, 543

• top.FDDL2.vbLstation.llc-src.vbLgen_seed_II = 333, 432, 999, 842

• top.FDDL2.vbLstation.llc-src.arrival rate = 0.0 (packets/second)

• top.FDDL2.vbLstation.llc-src.mean pk length = 32000 (bits)

• top.FDDL.2. vbLstation.llc-src.idle_dist = exponential

• top.FDDL2.vbLstation.l1c-src.idle_disLarg = 0.002 (seconds)

• top.FDDL2.vbLstation.llc-src.busy_dist = exponential

• top.FDDL2.vbLstation.l1c-src.busy_disLarg = 0.01 (seconds)

• top.FDDL2.vbr..station.l1c-src.low dest address = 1

• top.FDDL2.vbr..station.llc-src.high dest address = 1

150

• top.FDDL2.vbr.-Station.llc..src.async..mix = 1.0 (only asynchronous data)

• top.FDDL2.vbr.-Station.llc..src.dest..ringjd = 1

• top.FDDL2.vbLstation.rnac.T-Req = 4.0 (seconds)

• top.FDDL2.vbLstation.rnac.stationAddress = 1

• top.FDDL2.vbLstation.rnac.ringjd = 2

• top.FDDL2.vbLstation.rnac.sync bandwidth = 0.0 (*100%)

• top.FDDL2.cbLstation.llc..src.arrival rate = 0.0 (packets/second)

• top.FDDL2.cbLstation.llc..src.mean pk length = 32000 (bits)

• top.FDDL2.cbLstation.mac.sync bandwidth = 0.5 (*100%)

• top.FDDL2.cbLstation.rnac.T -Req = 0.001 (seconds)

• top.FDDL2.cbr.-Station.llc..src.low dest address = 2

• top.FDDL2.cbLstation.llc..src.high dest address = 2

• top.FDDL2.cbLstation.llc..src.trafficdist = constant

• top.FDDL2.cbLstation.llc..src.asyncrnix = 0.0 (only synchronous data)

• top.FDDL2.cbLstation.llc..src.dest..ringjd = 1

• top.FDDL2.cbr_station.mac.stationAddress = 2

• top.FDDL2.cbLstation.rnac.ringjd = 2

• top.FDDL2.fddi_atmlink.mac.stationAddress = 0

• top.FDDL2.fddi_atrnlink.mac.ringjd = 2

• top.FDDL2.fddi_atrnlink.mac.sync bandwidth = 0.5 (*100%)

• top.FDDL2.fddi_atrnlink.rnac.TJteq = 4.0 (seconds)

• top.FDDL2.fddi_atmlink.bridge_proc.VPLSET = 2

• top.FDDL2.fddi_atmlink.bridge_proc.STAT_ENABLE = enabled

• top.FDDI..2.fddi_atrnlink.xtmAtm[O].data rate = 80E+06 (bits/second)

151

• top.FDDL2.fddLatmJink.rcv...atm[0].data rate = SOE+06 (bits/second)

• stationJatency = 1E-07 (seconds)

• prop_delay = 3.3E-06 (seconds)

• accelerate_token = 1 (Enables the token acceleration mechanism)

• spawn station = 1 (station with stationjd = 1 issues the token at the beginning
of the simulation)

Simulation Parameters Figure 4.4

• top. FD D L1. v br _station.llc...src. busy _disLarg = 0.02 (seconds)

Simulation Parameters Figure 4.5

• top.FDDL1.vbLstation.llc...src.busy_disLarg = 0.02 (seconds)

• top.FDDLl.vbLstation.lk.src.arrival rate = 1400-3200 (packets/second, step
= 200)

Simulation Parameters Figure 4.6

• duration = o.s (seconds)

• seed = 444

• top.FDDL1.vbLstation.llc...src.vbLgen_seed_I = 412

• top.FDDLl. vbLstation.llc....src. vbLgen_seed_I1 = 693

• top.FDDL1.vbLstation.llc....src.arrival rate = 1S75

• top.FDD L1. vbLstation.llc....src.idle_disLarg = 0.002-0.02 (seconds)

• top.FDDLl.vbLstation.llc...src.busy_disLarg = 0.01-0.1 (seconds, to keep bursti­
ness = 5)

152

Simulation Parameters Figure 4.7

• top.ATM_l.src.interarrival args = 9.953E-07 (l/packet arrival rate)

Simulation Parameters Figure 4.8

• top.FDDL1. vbr_station.l1c..src.arrival rate = 1600 (packets/second)

• top.FDDL2.cbLstation.llc..src.arrival rate 160-1600 (packets/second, step -
160)

Simulation Parameters Figure 4.9

• top.FDDL1.cbr_station.l1c..src.arrival rate 300 (packets/second)

• top.FDDL1.vbLstation.llc..src.arrival rate = 1500 (packets/second)

• top.ATIvL1.src.interarrival args = 1.082E-06, 1.055E-06, 1.029E-06, 1.005E-
06, 9.815E-07, 9.593E-07, 9.38E-07, 9.177E-07 (l/packet arrival rate, =392-
462Mb/s)

• top. ATIvL2.xmt.lddi[Oj.data ratt:' = 40E+06-11OE+06 (bits/second, step = 10E+06)

• top.ATIvL2.rcv.lddi[O}.data rate = 40E+06-110E+06 (bits/second, step = lOE+06)

• top.ATM_3.xmt.lddi[O}.data rate = 40E+06-110E+06 (bits/second, step = 10E+06)

• top.AT1\L3.rcv.lddi[Oj.datarate = 40E+06-110E+06 (bits/second, step = lOE+06)

• top.FDDL2.fddi_atmJink.xtm.A.tm[0}.data rate = 40E+06-110E+06 (bits/sec­
ond, step = 10E+06)

• top.FDDL2.fddi_atmJink.rcvAtm[OJ.data rate = 40E+06-110E+06 (bits/sec­
ond, step = lOE+06)

