Simulation of LAN Interconnection via ATM
by

Kurt Damm

A Thesis Submitted to the
Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Department: Electrical Engineering and Computer Engineering
Major: Computer Engineering

Signatures have been redacted for privacy

Iowa State University
Ames, Jowa
1994

1

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION
1.1 The BISDN Services

.....................

...........................

CHAPTER 2. THE BISDN PROTOCOL REFERENCE MODEL

2.1 Physical Layer

...............................

2.2 ATM Layer

................................

2.2.1 ATM Cell Header Functionality

.................

2.2.2 Virtual Paths and Virtual Connections

.............

2.3 ATM Adaptation Layer

..........................

2.3.1 AAL type 3/4

...........................

2.3.2 AAL type 5

............................

CHAPTER 3. THE DEVELOPED OPNET MODEL

.........

3.1 The OPNET Simulation Tool

......................

3.1.1 General Description of OPNET

.................

3.1.2 The Network Domain

.......................

3.1.3 The Node Domain

........................

3.1.4 The Process Domain

.......................

3.1.5 Statistics

..............................

3.2 Model Scope and Limitations

......................

3.3

3.4

3.5

3.6

iii

The Model Simulation Attributes 34
3.3.1 The Model Attributes of the ATM Nodes 34
3.3.2 The Model Attributes of the ATM Switches 35
3.3.3 The Model Attributes of the FDDI VBR Stations 36
3.3.4 The Model Attributes of the FDDI CBR Stations 38
3.3.5 The Model Attributes of the FDDI-ATM Bridges 38
The ATM Nodes B 39
3.4.1 The Process Model of the ATM Nodes 40
The ATM Switches 42
3.5.1 The Process Model of the ATM Switches 43
The FDDI Subnetworks 46
3.6.1 The FDDIStations 46
3.6.2 The FDDI-ATM Bridge 51

CHAPTER 4. CONDUCTED SIMULATIONS AND RESULTS . . 61

4.1
4.2
4.3
4.4
4.5
4.6

CHAPTER 5. CONCLUSIONS

Overview. o e e e e e e e 61
Comparison of AAL type 3/4 and AALtype5 63
Simulation of Bursty Traffic 66

Combination of VBR Traffic and CBR Traffic at the ATM switch .. 69
Combination of VBR Traffic and CBR Traffic in the FDDI Subnetworks 73
Variation of the Transmission Capacity of the FDDI Subnetwork to

ATM Switch Communication Links 75

BIBLIOGRAPHY o 79

iv

APPENDIX A. ABBREVIATIONS 82

APPENDIX B. OPNET PROCESS MODEL REPORTS 84

APPENDIX C. DESCRIPTION OF THE OPNET FDDI EXAM-
PLEMODEL. i e 122

APPENDIX D. DESCRIPTION OF THE SIMULATION PARAM-

Table 1.1:
Table 1.2:
Table 1.3:
Table 1.4:

Table 1.5:

LIST OF TABLES

Conversational Broadband Services
Retrieval Broadband Services
Messaging Broadband Services
Distribution Broadband Services with User-Individual Presen-
tation Control

Distribution Broadband Services without User-Individual Pre-

sentation Control

........................

Figure 2.1:
Figure 2.2:
Figure 2.3:

Figure 2.4:
Figure 2.5:

Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 2.9:

Figure 2.10:
Figure 2.11:

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:

vi

LIST OF FIGURES

The BISDN Protocol Reference Model
The Layer Functions 12
The ATM Cell Header Format at the User-Network Interface 14
The ATM Cell Header Format at the Network-Network Interface 14

The Relationship of Virtual Connections, Virtual Paths and

the Physical Medium 16
The Original AAL Type Distinction 18
The AAL Type 3/4 CPCS_PDU Frame Format 19
The AAL Type 3/4 SAR_PDU Packet Format 20
Schematic AAL Type 3/4 Segmentation 21
The AAL Type 5 CPCS_PDU Packet Format 23
Schematic AAL Type 5 Segmentation 24
The Network Model 31
The FDDI Subnetwork 32
The Virtual Paths of the Model 33
The Extended Model Attributes of the ATM Switch 35
The ATM Node Model 40

Figure 3.7:
Figure 3.8:
Figure 3.9:

Figure 3.10:
Figure 3.11:
Figure 3.12:
Figure 3.13:

Figure 4.1:
Figure 4.2:

Figure 4.3:

Figure 4.4:

Figure 4.5:

Figure 4.6:

vii

The ATM Switch Node Model 43
The ATM Switch Process Model 44
The Statistical Interrupts for the Queue Length Statistic . . 45
The Node Model of the FDDI Stations 47
The Process Model of the VBR Traffic Generator 49
The Node Model of the ATM-FDDI Bridge 51
The Process Model of the FDDI-ATM Bridge 53
An Example C-Shell Script 62
Maximﬁm Queue Length at the ATM Switch as a Function
of the VBR Throughput for CBR = 422Mb/s and VBR Peak
Rate = 22-51Mb/s using AAL Type 3/4. 64
Maximum Queue Length at the ATM Switch as a Function
of the VBR Throughput for CBR = 422Mb/s and VBR Peak
Rate = 22-51Mb/s using AAL Type 5 65
Maximum Queue Length at the ATM Switch as a Function of
the VBR Throughput for CBR = 422Mb/s, VBR Peak Rate
= 22-51Mb/s, and Burstiness=10. 68
Maximum Queue Length at the ATM Switch as a Function of
the VBR Throughput for CBR = 422Mb/s, VBR Peak Rate
= 44-102Mb/s, and Burstiness =10 69
Maximum Queue Length at the ATM Switch as a Function of
the Mean Burst Length for CBR = 422Mb/s and VBR Peak
Rate=60Mb/s 70

Figure 4.7:

Figure 4.8:

Figure 4.9:

viii

Maximum Queue Length at the ATM Switch as a Function

of the VBR Throughput for CBR = 426Mb/s and VBR Peak
Rate =22-51Mb/s.
Maximum Queue Length at the ATM Switch as a Function of
the CBR Throughput between the FDDI Networks for CBR
(FDDI) = 5-50Mb/s, CBR(ATM) = 422Mb/s, and VBR Peak

Rate = 51Mb/s

.........................

Simulation with varying Transmission Capacity of the FDDI

Subnetwork to ATM Switch Communication Links

CHAPTER 1. INTRODUCTION

Today most networks are dedicated to a special service, e.g., telephony or data
transmission [1, 2]. ISDN standards were developed to support different services on
the same network. ISDNs are now in an early stage of implementation. Despite the
enthusiasm during the development of ISDN, it faces considerable difficulties on be-
coming established in the marketplace. Reasons for this may include the lack of new
attractive services and the limited bandwidth {1, 2]. The International Telecommu-
nications Union-Telecommunication Standardization Sector (ITU-TSS)—the former
CCITT—is now in the process of standardization of a broadband ISDN (BISDN).
This BISDN concept is intended to overcome the above mentioned shortcomings of
the ISDN. The progress made in VLSI and optical transmission technology made new
network concepts feasible. One of these new concepts is the asynchronous transfer
mode (ATM). ITU-TSS has chosen ATM to become the transmission technique for
the BISDN. ATM relies on the low bit error rate of the optical transmission medium.
Therefore, all flow and error control has been shifted to the network boundaries. Fur-
thermore, to make the processing at intermediate nodes easier, ATM is based on fixed
sized packets called cells. An ATM cell consists of a 48 bytes data field and a five
bytes header. In ATM, the cells of one channel are not restricted to a certain slot as

in the synchronous transfer mode (STM). An ATM cell can always take the next free

slot. If there is no data to transmit unassigned cells which contain no information
are inserted at the switch output and are discarded at the input of the next switch.

One of the conceptual problems to deal with in the BISDN is-the combination
of constant-bit-rate (CBR) traffic and varying-bit-rate (VBR) traffic. The challenge
is to achieve high transmission link utilizations while maintaining a high quality of
service. In this thesis, a model was developed using a simulation tool called OPNET.
The model was intended to simulate the combination of VBR and CBR traffic in
an ATM based network. Several simulations were made to investigate some of the
problems which arise due to the combination of the distinct traffic types. The results
were used to discuss network management concepts described in the literature to deal
with this problems. Furthermore, common parameters used to describe bursty traffic
were investigated and the ATM adaptation layer type 3/4 and the ATM adaptation
type 5 were compared.

The solution to the above mentioned problems might be crucial for the BISDN to
be a.ble"i to compete against specialized network concepts [3]. Furthermore, a better
understanding of the CBR-VBR traffic interactions is needed to be able to deal
with the traffic exchange with hosts and future LANs in the Giga bits per second
range. Another important impact of this improved understanding might be a better
utilization of advanced video coding techniques based on the transmission of only non-
redundant information. These techniques may lower the bandwidth requirements of
video transmissions considerably but cause more traffic variance over time.

The remainder of this chapter gives an overview over future BISDN services and

its classification according to ITU-TSS.

1.1 The BISDN Services

The BISDN services are intended to be used by private customers as well as by
businesses. It is crucial for the success of the BISDN that it is able to offer new
services in a cost effective manner and that it can easily adapt to new, future services
whose characteristics are not yet defined or even totally unknown. Those services may
include data transmission, audio and video transmission (still and moving pictures)
or arbitrary mixtures of the above mentioned components. A service consisting of
different service components is called a multimedia service. One example of a mul-
timedia service is a multiparty desktop conference system. The technical issues of
such a system (MERMAID) are discussed in [4]. Multimedia services are very likely
t§ play an important role in the telecommunication market in the near future.

ITU-TSS defines in its Recommendation 1.211 two different service types. The
two types are interactive services and distribution services. The interactive services
are further subdivided in conversational, messaging and retrieval services. In the
distribution services a distinction is made on whether or not there is a user-individual
presentation control.

The Tables 1.1-1.5 show examples of future BISDN services as defined by ITU-
TSS [5, 1].

The conversational services are two way real-time communication services. Ex-
amples are shown in Table 1.1. The interconnection of LANSs falls within this service
class. Video-telephony and video conferencing are other examples which are expected
to become very popular.

Retrieval Services allow a customer to get information stored in public libraries

on demand. This information might be multimedia and ranges from travel informa-

tion to remote medical image communication. For further examples refer to Table 1.2.

Table 1.3 shows examples of messaging services. Messaging services are services
without real-time constraints that are used for the exchange of (multimedia) mes-
sages. Possible services in this category are enhancements to existing electronic mail
services.

The key word in distribution services with a user-individual presentation con-
trol is cabletext. Cabletext is an enhancement to the existing videotext and may
incorporate multimedia information to such systems (see Table 1.4).

Distribution services without a user-individual presentation control are also called
broadcast services. Important members of this service class are HDTV and electronic

newspapers. Table 1.5 shows a more exhaustive list of examples.

Table 1.1: Conversational Broadband Services
Type of in-| Examples of broad- | Applications
formation band services
Moving pic- | Broadband Communication for the transfer of voice
tures (video) | video-telephony (sound), moving pictures, and video
and sound scanned still images and documents be-
tween two locations
e Tele-education
e Tele-shopping
o Tele-advertising
Broadband Multipoint communication for the trans-
Multipoint- fer of voice (sound), moving pictures, and
Videoconference video scanned still images and documents
between more than two locations
o Tele-education
e Business conference
e Tele-advertising
Video-surveillance
¢ Building security
o Traffic monitoring
Video/audio infor-
rnat{on transmission e TV signal transfer
service
e Video/audio dialogue
¢ Contribution of information
Sound Multiple sound-

program signals

Multi-lingual commentary channels

Multiple program transfers

Table 1.1 (Continued)

Data High speed unre-
stricted digital infor-
mation transmission

service — LAN interconnection

High speed data transfer

— MAN interconnection

— Computer-computer intercon-
nection '

Transfer of video information

Transfer of other information types

Still image transfer

Multi-site interactive CAD/CAM

High volume file

transfer service Data file transfer

High speed teleaction

Real-time control

Telemetry

Alarms

Document High speed telefax User-to-user transfer of text, images, draw-
ings, etc.

High resolu-
tion image communi-

. . o Professional images
cation service

e Medical images

e Remote games

Document communi- | User-to-user transfer of multimedia
cation service documents

Table 1.2: Retrieval Broadband Services

Type of in- | Examples of broad- | Applications
formation band services
Text, data, | Broadband videotext
fgiiﬁ;l’cs’ still ¢ Videotex including moving pictures
images, mov- e Remote education and training
ing pictures
o Telesoftware

Tele-shopping
Tele-advertising

News retrieval

Video

service

retrieval

Entertainment purposes

Remote education and training

High resolution im-
age retrieval service

Entertainment purposes
Remote education and training

Remote Professional image commu-
nication '

Remote Medical image communica-
tion

Document retrieval

service

Multi-media retrieval from

information

centers, archives, etc.

Data retrieval service

Telesoftware

Table 1.3: Messaging Broadband Services

Type of in- | Examples of broad- | Applications

formation band services

Moving pic- | Video mail service Electronic mailbox service for the trans-

tures (video) fer of moving pictures and accompanying

and sound sound

Document Document mail | Electronic mailbox for multimedia
service documents

Table 1.4: Distribution Broadband Services with User-Individual Presentation Con-

trol
Type of in- | Examples of broad- | Applications
formation band services
Text, graph- | Full channel broad-
ics, sound, | cast videography

still images

Remote education and training

Tele-advertising

News retrieval

Telesoftware

Table 1.5: Distribution Broadband Services without User-Individual Presentation

Control

Type of in- | Examples of broad- | Applications
formation band services
Data High speed unre-

strlc.ted dlglta,l mf-or- e Distribution of unrestricted data

mation distribution

service
Text, Document distribu-
graphics, still | tion service o Electronic newspaper
images

e Electronic publishing
Moving Video information
ict d | distributi i .y . . .

pictures —an istribution service ¢ Distribution of video/audio signals
sound
Video Existing quality TV | TV program distribution

distribution
service (NTSC, PAL,
SECAM)

Extended quality TV
distribution service

e Enhanced defi-
ni-
tion TV distri-
bution service

e High
TV

quality

TV program distribution

High definition TV
distribution service

TV program distribution

Pay-TV

(pay-per-view, pay-
per-channel) :

TV program distribution

10

CHAPTER 2. THE BISDN PROTOCOL REFERENCE MODEL

Thé BISDN Protocol Reference Model (PRM) as defined by the ITU-TSS is
shown in Figure 2.1. It consists of three planes: the user plane, the control plane,
and the management plane. The user plane is responsible for the transfer of user
data while call control and connection control functions fall into the responsibility of
the control plane. The management plane incorporates two different functionalities.
These are the layer management functions and the plane management functions.
The layer management functions take care of the management of the resources and
parameters at the respective layer. Functions relating to the whole system are part
of the plane management functions. In addition, the plane management functions
provide coordination between all planes.

The functions of the higher layers are not yet defined. On the other hand,
considerable progress has been made by ITU-TSS in the standardization of the ATM
Adaptation Layer (AAL), the ATM layer, and the Physical Layer. Figure 2.2 shows
the functions of these layers and their sublayers.

A short description of the illustrated layers and their respective functions is given

in the following sections.

11

Managerpent 3 B2 [SY— { g
R ! o
Control Plane User Plane .,E P
I 1=
) g ¢]
Higher Layers | Higher Layers .,% 5
i aq M —
o
AAL AAL 5
ATM Layer
Physical Layer

Figure 2.1: The BISDN Protocol Reference Model

2.1 Physical Layer

The Physical Layer consists of two sublayers. The two sublayers are the Physical
Medium (PM) and the Transmission Convergence (TC) sublayer. The functions of
the PM sublayer are divided into two sections, one dealing directly with the physical
medium and the other handling the bit timing. The functions dealing with the
physical medium are those functions concerned with the bit transmission and bit
alignment, the line coding, and the electrical /optical conversion (if needed).

While bits are already recognized by the PM sublayer, the TC sublayer performs

the tasks concerned with transmission frames. Furthermore, the TC sublayer gener-

12

CPCS Common functions

Segmentation and reassambly

ATM

Generic Flow Control
Cell header generation/extraction
Cell VPI/VCI translation

Cell multiplex and demultiplex

PHYSICAL

| TC

Cell rate decoupling
HEC header sequence generation/verification
Cell delineation

Transmission frame adaption

Transmission frame generation/recovery

{ PM

Bit timing

Physical medium

1: CPCS and SSCS are only defined for AAL type 3/4 and AAL type 5.

Figure 2.2: The Layer Functions

13

ates the HEC header sequence for outgoing cells and verifies the HEC sequence for
incoming cells. In addition, the HEC header sequence provides the means for the cell
delineation. Finally, the function known as cell rate decoupling inserts unassigned

cells during transmission and discards received unassigned cells.

2.2 ATM Layer

The ATM layer is independent of the underlying physical medium and performs
four functions as shown in Figure 2.2. The basic functional unit of the ATM layer is

the ATM cell. Its functions are described in the following sections.

2.2.1 ATM Cell Header Functionality

There are two different ATM cell headers defined by ITU-TSS. The cell header
formats are shown in Figure 2.3 and Figure 2.4. One header format is used at the
User-Network-Interface (UNI), the other at the Network-Network-Interface (NNI).

The difference between those two header formats is the four bit Generic Flow
Control (GFC) field. It is only used at the UNI. At the NNI the four bits are used to
enhance the Virtual Path Identifier (VPI) field from eight to twelve bits. The GFC
field is part of congestion control strategies. Congestion control comprises three
parts. First, an ATM network user must specify the traffic he intends to incorporate
into the network. This traffic description is then used to determine whether or not
this data is allowed to enter the network, i.e., whether or not the call is admitted.
Finally, some kind of policing is needed to control the parameters agreed upon at
the call establishment. The role of the GFC is to control terminals attached to user

networks. The mechanisms to reach this goal are not yet defined [1, 2]. However,

14

bit
8 7 6 5 4 3 2 1
GFC VPI 1
VPI VCI 2
VCI 3
VCI PTI RES|CLP| 4
HEC 5

Figure 2.3: The ATM Cell Header Format at the
User-Network Interface

bit
7 6 5 4 3 2 1
VPI 1
VPI VCI 2
VCI 3
VCI PTI RES|CLP{ 4
HEC 5

Figure 2.4: The ATM Cell Header Format at the
Network-Network Interface

o < o

o =< T

15

congestion control has been the subject of intense research (e.g., [6, 7, 8, 9]) and some
controversy about its technical and economical feasibility [10, 11].

The ATM routing field consists of the VPI and the Virtual Channel Identifier
(VCI). Its use is described in the next section. The two bit Payload Type Identifier
(PTI) field is used to distinguish user information and Operation and Maintenance
(OAM) cells. Furthermore, it is used in the AAL type 5 to indicate the last segment
of a segmented CPCS_PDU (see Section 2.3.2). The Reserved (RES) field has not yet
been defined. It is intended to provide the means to further enhance the cell header
functionality. The Cell Lost Priority (CLP) may be used to tag cells exceeding
the guaranteed bandwidth (CLP=1). Those cells should be first discarded in the
case of network congestion. Finally, the Header Error Control (HEC) field, which is
processed by the physical layer, provides the means to detect bit errors in the cell
header. This is particularly important since faulty routing information can lead to
the wrong delivery of cells. A misrouted cell may disturb two connections: the one
it was originally destined for and the one it was accidently delivered to. l.e., the

connections experience cell loss and cell gain, respectively.

2.2.2 Virtual Paths and Virtual Connections

The BISDN is based on virtual connections. A virtual connection (VC) is identi-
fied by a Virtual Connection Identifier (VCI). Several VClIs are put together to form
a virtual path (VP). A VP is identified by a Virtual Path Identifier (VPI). VCI and
VPI constitute the routing field of the ATM cell header. The relationship between
VCs, VPs and the physical medium is shown in Figure 2.5.

As can been seen, a VCI has only to be unique within a VP. The VP in turn

16

VCI1 /\
VCI2

VPI1
VCI3

PHYSICAL
veit L MEDIUM
vCI2 VPI2
N

Figure 2.5: The Relationship of Virtual
Connections, Virtual Paths and
the Physical Medium

has only significance within one physical link. In other words the combination of
VC and VP give the complete routing information within one link. VPIs and or
VCls are changed on a per link basis. In nodes where only VPs are switched (ATM
crossconnects) the VCs within a VP remain unchanged.

The concept of VPs simplifies the resource management of ATM networks [12].
The reserved capacity of a VP need to be updated to keep track of changes in the
flow of traffic, but this has to be done not as frequent as if the capacity would only
be allocated on a VC basis. VCs are usually reserved on a per call basis and released
when they are no longer needed. If there is already a VP with sufficient resources for
the anticipated connection, no call processing has to be done at intermediate nodes
[12].

Another advantage of the use of VCs is that it provides the means to decouple

the components of multimedia services, e.g., video telephony. One could start a call

17

without video and later start and stop the video transmission [2].

2.3 ATM Adaptation Layer

The ATM Adaptation Layer (AAL) consists of two sublayers. These two sublay-
ers are the Convergence Sublayer (CS) and the Segmentation and Reassembly (SAR)
sublayer.

The CS is service dependent and might be empty for some services. It encap-
sulates user data and provides transmission and error detection facilities. These
functions are provided on the basis of user specific logical units such as bytes, bit
streams or variable length packets.

The SAR sublayer converts CS packets to ATM cells (segmentation) at the User-
Network-Interface (UNI) and restores the CS packets upon reception of all segments
from the ATM network (reassembly). The SAR sublayer provides transmission and
error detection on a per cell basis.

At present, there are four different AAL types defined by the ITU-TSS. Orig-
inally, the distinction was made according to the timing relation, the bit rate, and
the connection mode (see Figure 2.6).

One AAL type was defined for each service class. ATM Adaptation Layer type 3
(for Class C data) and AAL type 4 (for Class D data) emerged to one standard,
namely AAL type 3/4. Simultaneously, a new AAL was proposed by the LAN indus-
try. This proposal is now being standardized by ITU-TSS as AAL type 5 [13]. For
the AAL type 3/4 and the AAL type 5 the CS is further subdivided into the Service
Specific Convergence Sublayer (SSCS) and the Common Part Convergence Sublayer

(CPCS). The CPCS provides the necessary means to transport variable sized data

18

CLASS A CLASSB CLASS C CLASSD

Timing relation between))
source and destination Required Not required
Bit rate Constant Variable
Connection mode Connection oriented Connectionless

Figure 2.6: The Original AAL Type Distinction

across a virtual connection. The SSCS may incorporate functions like flow control
and retransmission. It is expected that the SSCS is an empty layer for most services
during the introduction phase of BISDN [13]. Therefore, the SSCS is assumed to be
an empty layer throughout the thesis and is not mentioned in subsequent sections.

Since the AAL type 3/4 and AAL type 5 were of special interest for this thesis,

they are described in more detail in the following sections.

2.3.1 AAL type 3/4

wa frame formats are of particular interest in the AAL. These are the packet
formats of the CPCS_PDU and the SAR_PDU.

The frame format of a CPCS_PDU for AAL type 3/4 is shown in Figure 2.7.
The Common Part Identifier (CPI) is used to indicate if the Buffer Allocation size
(BAsize) field is used. If CPI is set to zero, the BAsize field contains an estimate
of the size of the current CPCS_PDU. It is intended to be used at the receiving
side to preallocate sufficient buffer space for the reception of the CPCS_PDU. The
Beginning tag (Btag) and the Ending tag (Etag) fields are used for the purpose of

error detection. Their value is set to a equal value prior to transmission and must

19

CPCS PDU CPCS PDU
header CPCS PDU payload PAD trailer
CPI | Btag BAsize AL | Etag Length
CPCS PDU header: 4 bytes CPCS PDU trailer: 4 bytes
*CPI (Common Part Identifier): 1 byte *AL (Alignment): 1 byte
*Btag (Beginning tag): 1 byte *Etag (ending tag): 1 byte
*BAsize (Buffer Allocation size): 2 bytes *Length (of payload): 2 bytes

PAD (Padding field): 0-3 bytes
Figure 2.7: The AAL Type 3/4 CPCS_PDU Frame Format

not be the same for two successive frames. The Padding (PAD) field assures that the
CPCS_PDU payload is aligned on a four bytes boundary. The Alignment (AL) field
pads the trailer to four bytes. The Length field reports the length of the CPCS_PDU
payload.

The format of a AAL type 3/4 SAR_PDU is shown in Figure 2.8. The Segment
Type (ST) field indicates the message type of the SAR_PDU. There are four defined
segment types. These are the Single-Segment Message (SSM), the Begin of Message
(BOM), the Continuing of Message (COM), and the End of Message (EOM). The
Sequence Number (SN) field is used to number the segments of one CPCS_PDU and
provides the means to detect lost or wrongly delivered segments. The Multiplexing
Identifier (MID) distinguishes different ATM packet streams which are multiplexed
into one virtual connection. The Length Indicator (LI) field indicates the number of

useful bytes in the SAR_PDU payload. Its value is always 44 for BOM and COM

20

SAR PDU SAR PDU

header SAR PDU payload trailer
\.,.\ -
~~~~ S f..-""/’.
"~ o~
ST SN MID LI CRC
SAR PDU header: 2 bytes SAR PDU trailer: 2 bytes
*ST (Segment Type): 2 bits *LI (Length Indicator): 6bits
*SN (Sequence Number): 4 bits *CRC (Cyclic Redundancy Check): 10 bits
*MID (Multiplexing Identification): 10 bits SAR PDU payload: 44 bytes

Figure 2.8: The AAL Type 3/4 SAR_PDU Packet Format

segments and may vary from 0-44 for SSM and EOM messages. Finally, the Cyclic
Redundancy Check (CRC) provides the means to detect bit errors.

The schematic procedure of the segmentation as defined for AAL type 3/4 is
shown in Figure 2.9. A higher layer PDU is adopted as a AAL_SDU. A four byte
header and a four byte trailer is added to the AAL_SDU to generate a CPCS_PDU.
This CPCS_PDU is then divided into 44 byte segments. These segments are adopted
as SAR_PDU payloads. The last payload might be not entirely filled with useful
information, i.e., with information corresponding to the segmented CPCS_PDU. Each
SAR_PDU payload is encapsulated with a two byte header and a two byte trailer to
form a SAR_PDU. The SAR_PDU is then passed to the ATM layer. In the ATM
layer the SAR_PDU is adopted as the ATM cell payload. An ATM header is added
to form a ATM cell. This cell is passed to the Physical layer and subsequently sent
to the respective destination.

At the receiving side the reverse functions are performed. The Physical layer



21

AAL SDU
A
RE:
P CPCS PDU CPCS PDU CPCS PDU
L c header payload trailer
tis \
y
p
ei S -
AR PDU

3iA ] | SARFDU SAR PDU payload SAR D
/iR
4

A

ATM cell
T header ATM cell payload
M .
v To the Physical Layer

Figure 2.9: Schematic AAL Type 3/4 Segmentation

passes a received cell to the ATM layer. At the ATM layer the header is stripped
off and the data field, i.e., the SAR_PDU is passed to the SAR sublayer. The SAR
sublayer first checks the CRC to find out if the received SAR_PDU is error free. If
an error is detected the SAR_PDU is discarded. AAL type 3/4, however, provides
the means to pass partly reassembled CPCS_PDUs to the CPCS user entity. A
CPCS_PDU which is to be reassembled is identified by the MID. The reception of
a SAR_PDU with the ST field indicating a BOM causes the SAR sublayer to start
the reassembly of a new CPCS_PDU. A CPCS_PDU with the same MID which

has not yet been completely reassembled indicates an error. This is because ATM



22

guarantees the cell sequence integrity.. The cell sequence integrity also insures that
subsequently received COM segments with the same MID have to have consecutive
sequence numbers. Similarly, an EOM segment has to have the SN following the SN
of the last received COM segment. Otherwise, an error has occurred, i.e., a segment
has been lost or gained. If an EOM segment arrives, the CPCS_PDU is reassembled
and passed to the CPCS sublayer. In the CPCS sublayer the Btag and Etag fields
are compared. If they do not have equal values, an error has occurred. Next, the
CPCS sublayer checks if the reported length of the CPCS_PDU matches the length
of the reassembled CPCS_PDU. If no error has been detected, the AAL_SDU is
decapsulated and passed to the CPCS user.

2.3.2 AAL type 5

In the AAL type 5 approach all SAR_PDU payload encapsulation has been
removed. Furthermore, the Btag, Etag and BAsize fields of the CPCS_PDU are
omitted. Through the low error probability of fiber optic technology it is sufficient
to shift responsibility for the multiplexing to higher layers and to simplify the error
detection facilities [13].

The frame format of the CPCS_PDUs for AAL type 5 is shown in Figure 2.10.
The error detection of the CPCS_PDUs is taken care of by means of a four byte
CRC. The LI is set to the length of the CPCS_PDU payload. It provides the means
to detect a segment loss or gain in the rare cases where the CRC is not able to detect
such errors. The use of the CPI field has not been defined. It is set to zero. The
CPCS-User-to-User indication (CPCS-UU) provides the means to exchange one byte

of data between two peer CPCS user entities. The PAD field is responsible to align



23

CPCS PDU
CPCS PDU payload PAD trailer
CPCS
wu | co Length CRC

CPCS PDU trailer: 8 bytes
*CPCS-UU (user-to-user indication): 1 byte
*CPI (Common Part Identifier): 1 byte
*Length (of CPCS PDU payload): 2 bytes
*CRC (Cyclic Redundancy Check): 4 bytes

PAD (Padding): 047 bytes
Figure 2.10: The AAL Type 5 CPCS_PDU Packet Format

the CPCS_PDU on a 48 byte boundary.

The simplified segmentation of an AAL_SDU is shown in Figure 2.11. An AAL-
SDU passed to the CPCS is adopted as the CPCS_PDU payload. An eight bytes
header and the padding field are added to form the CPCS_PDU. The fields in the
header are set as described above. In the SAR sublayer the CPCS_PDU is divided
into 48 bytes segments. These segments are passed to the ATM layer where an ATM
header is added. The ATM cells are then passed to the physical layer and sent to
their respective destination.

There are only two different SAR_PDUs in AAL type 5. They are distinguished
by the value of the ATM-layer-user-to-ATM-layer-user (AUU) parameter in the Pay-
load Type Indication (PTI) field of the ATM cell header. The AUU is set to one
for the last (or the only) segment of the CPCS_PDU. In all other segments, AUU



24

AAL SDU
AiC
AP CPCS PDU payload Padding CPCS PDU
C trailer

t
y
P
e SAR PDU payload
51 R \

A

ATM cell
T header ATM cell payload
M :
To the Physical Layer v

Figure 2.11: Schematic AAL Type 5 Segmentation

is set to zero. At the receiving side, the reception of an ATM cell with AUU set to
one indicates the last segment of a CPCS_PDU has been received. This initiates the
reassembly of the received segments to restore the original CPCS_PDU. In case the
CRC did not detect an error and the length reported in the Length field matches the
length of the reassembled CPCS_PDU payload, the AAL_SDU is decapsulated and
is delivered to the AAL user process. A segment arriving after a segment with AUU

set to one is considered the beginning of a new CPCS_PDU.



25

CHAPTER 3. THE DEVELOPED OPNET MODEL

Before the developed model is described, an overview over the OPNET simula-
tion tool is given. An exhaustive description of OPNET can be found in [14, 15].
The following is a basic description that is intended to make the model description

easier to understand.

3.1 The OPNET Simulation Tool

3.1.1 General Description of OPNET

OPNET provides the means to model the behavior and to evaluate the perfor-
mance of communication networks and distributed systems. This is done by using
discrete event simulation.

The modeling consists of three phases
e Specification
e Data collection and simulation
e Analysis

The relationship between these phases is as follows. First, a specification (=system

model) is developed. This specification is then compiled to an executable program.



26

During the execution of the program, the behavior of the system is simulated and
statistical data is collected. Then, the collected data is analyzed. After analyzing the
data, the above mentioned cycle might be repeated several times to either change the
model or run the simulation program again using different parameters. If the devel-
oped model is reasonably accurate, the collected data should represent the behavior
and/or performance of the actual system.

The specification of an OPNET model is achieved using four tools or editors.

They are called
e Network
e Node
e Process
e Parameter

The network, node and process editors are called the three modeling domains of
OPNET. They are in a hierarchical relationship to each other. The parameter editor
may be used in either of the three modeling domains and is used to provide modeling

parameters and data structures.

3.1.2 The Network Domain

The main purpose of the network domain is to define the topology of the model.
The building blocks needed to define the topology of the model described later in
this chapter, were subnetworks, fixed communication nodes, and duplex point-to-

point communication links. Subnetworks provide the means to introduce several



27

hierarchical levels within the network domain. There is no limit on the number
of subnetworks used, but eventually there has to be a subnet consisting only of
communication nodes and links. Fixed communication nodes are connected to each
other with communication links. The behavior of the fixed communication node is

determined by the chosen node model. The node model is edited in the node domain.

3.1.3 The Node Domain

The node model may represent a variety of computing and communication de-
vices, e.g., bridges or workstations. The node model is build using modules. Generally
speaking, there are two different kinds of modules. There are modules whose behav-
ior is pretty much predefined and can only be influenced changing built in attribute
values. Modules of this class are ideal generators, point-to-point transmitter, and
point-to-point receiver. On the other hand, there are processor and queue modules
whose behavior can be customized by means of process models. The process models
are defined in the process domain.

The node model can be build using any number of modules. There are two
ways in which the modules can be connected to each other. One way is using packet
streams, the other way is using statistical wires. Packet streams are used to transmit
data packets while statistical wires are used to transmit single numerical values or

control information.

3.1.4 The Process Domain

As mentioned above, a process model specifies the behavior of a queue or process

module in the node domain. The process model is defined using a state transition



28

diagram (STD). In the STD, actions are taken after being invoked by an interrupt. An
interrupt may be caused by different events, e.g., the arrival of a packet, a statistical
interrupt or the begin or the end of the simulation and so on. A special interrupt is
the self interrupt. A self interrupt is scheduled by the process model itself. This will
cause the process model being invoked again at a later time.

The STD has some features which go beyond that of traditional finite state

machines:
e The STD maintains state variables to keep state information.

e Upon entry or exit of a state, arbitrary complex actions can be taken using
C-programming and predefined functions, called Kernel Procedures (KPs) [16,
17]. These actions are called entry and exit executives, respectively. Typical
actions of these executives are the change of state information, sending a packet,

updating statistics and so on.

e The transition between states might be based on conditions. In addition, func-

tions may be performed every time the transition is traversed.
e Model attributes provide the means to generalize the model.

A state of the STD can be either forced or unforced (the forced states are drawn
bold in the figures). An unforced state is a stable state, i.e., it takes another interrupt
to leave this state. Forced states are entered and left in one invocation. They have
mainly the purpose to make the STDs easier to read (provide flow chart like modeling
(14]). A special state of the STD is the initial state. The purpose of the initial state

is to set up everything for the actual simulation. This may include the initialization



29

of state variables, registering of global statistics, loading of distribution functions,
storing of model attributes in state variables, and so on. Typically, the initial state is
invoked by a begin of simulation interrupt and is not entered again once the simulation
has started.

Transitions specify a change from one state to another (sometimes the beginning
and the ending state is the same). Usually, the change of states is based on some
condition. A condition is a boolean expression that determines if a state transition
is to be committed. Special forms of transitions are the default transition and the
unconditional transition. The default transition is taken if, after the reception of
an interrupt, no other condition is true. This is sometimes used to prevent run
time errors caused by false interpreted interrupts. An unconditional transition is a
transition that advances the process model to another state without any condition
bound to it. A common use of unconditional transitions is to jump back from a forced

to an unforced state after all actions related to the forced state have been taken.

3.1.5 Statistics

As was described above, the goal of developing a model of a system is to find
something out about the behavior and/or performance of that system. The collection
of statistical data during the execution of a simulation program provides an important
help to reach this goal. There are two different kinds of statistics in OPNET. These
statistics are the output vector statistics and the output scalar statistics, or vector
and scalar statistics for short. A vector statistic typically records a simulation value
(e.g., the delay experienced by a packet) over the simulation time. The data of a

vector statistic are collected during a single execution of the simulation program.



30

In contrast, scalar statistics gain their data from several program executions. The
data of the scalar statistics of one program execution are organized as a group of
independent system values (e.g., mean and peak queue lengths). A scalar statistic
shows the relationship between two system parameters instead of the value of one
system parameter over time. Typically, each point in the scalar statistic correspond
to the data collected during one simulation run.

Statistics can be either global or local. A local statistic collects data from within

only one process module, while global statistics can be influenced by different mod-

ules.

3.2 Model Scope and Limitations

The first goal of this thesis was to develop a model that makes it possible to
simulate the behavior of an ATM based network. The focus of the work was to see
how an ATM based network performs if varying-bit-rate (VBR) and constant-bit-rate
(CBR) traffic is combined. More specific, the case was considered where two FDDI
networks are connected over an ATM network.

The network configuration shown in Figure 3.1 was chosen. It is built symmet-
rically consisting of the ATM nodes ATM_1 and ATM_/4, the ATM switches ATM_2
and ATM_3, and the subnetworks FDDI_1 and FDDI_2. The model for the FDDI
subnetworks is shown in Figure 3.2. A FDDI usually connects several stations (up to
1000 [18]). Since the focus of this work was not on FDDI and to save simulation time,
the FDDI network in the model consists of only three stations. The three stations
divide the functionality of the FDDI among each other: one generates all the bursty

traffic of the network (vbr_station), one all the constant-bit-rate traffic (cbr_station),



31

B 1 _Boir 2

O—QO——O——O

ATHM_1 ATHM_2 ATHM_3 ATM_4
Figure 3.1: The Network Model

and one station bridges the traffic destined to the other FDDI network to the ATM
network (fddi_atm_link).

There are three different methods for the exchange of data between FDDI net-
works via ATM networks [19]. The data exchange can be done using either a router
or a bridge. Therefore, the term bridge should stand for both in the following de-
scription.

In the first approach, each bridge maintains a semi-permanent VC to each bridge
of networks it might want to exchange data with. This method can also be used to
emulate an extended LAN if the LANs are owned by the same corporation.

In the second approach, each bridge keeps a semi-permanent VC to a connec-
tionless server rather than to other bridges. The connectionless server than forwards
the data to the corresponding destination network. This method is more economical
as the number of LANs that want to exchange data increases.

In the third approach, a VC is established every time data is to be exchanged and



32

@/

fddi_atm_link

Figure 3.2: The FDDI Subnetwork

released when no longer needed. This is very appealing since the network resources
are only reserved when needed, but this might put a considerable burden on the
signalling system.

The first approach was chosen for the model. This confirms with the expec-
tation that semi-permanent VPs between bridges are to be used for the LAN-LAN
interconnection in early stage ATM networks [20].

In the scope of this work, it is assumed that the traffic between the ATM nodes
ATM_1 and ATM_J and vise versa is constant, and that no traffic originated in the
ATM nodes is destined for the FDDI networks. Similarly, no data generated at the
FDDI networks is destined for an ATM node. To make the above outlined traffic
assumptions feasible, four VPs were considered as shown in Figure 3.3. These VPs
are set up at the initialization of the OPNET model and are determined by the value
of appropriate model simulation attributes.

As was mentioned above, the interest of the thesis was rather on the combination

of VBR and CBR traffic than on a detailed protocol modeling. This statement is



e L] ’
O—O——O——O

ATM_1 ATM_2 ATM 3 ATHM_4

Figure 3.3: The Virtual Paths of the Model

also the reason that the ATM functions are not explicitly modeled according to their
layered representation.

The two major functions performed by an ATM switch are the VPI/VCI trans-
lation and the routing of cells from the input to the output lines [1]. Furthermore,
the switch inserts cells containing no information at the output whenever there is
no data to transmit. These unassigned cells are discarded at the input of the next
switch. This principle, known as cell rate decoupling, has not been incorporated in
the model. Cell rate decoupling is necessary to provide the means for ATM switching
at this high speed but is not needed to model it. The VPI/VCI translation, i.e.,
the changing of cell headers, has been omitted in the model since it has no influence
on the collected data. The routing of cells is performed in a pure output queueing

approach. The performance of output queueing is optimal in terms of the delay in



34

relation to the throughput. On the other hand, pure output queuéing switches tend
to have severe implementation problems [21]. Since this work is not concerned about
the implementation of switches, the output queueing approach was adopted. The
modeled switch performs better than a real world switch and is not concerned about
drawbacks of a particular switch design.

ATM switching is a very complex task on its own. For a detailed discussion on
ATM switching refer to the literature. A good description of diﬂ’ere.nt switch designs
can be found in [2]. [21] comprises a good discussion of different queueing strategies
and [22] includes a comparison of different switching architectures.

Packet formats used in the model may differ from their specifications. The
differences are mentioned in the model description, where appropriate.

The segmentation and reassembly (SAR) of FDDI MAC frames follows the de-
scription in Section 2.3. The same assumptions were made, i.e., it was assumed that
the SSCS is empty. Therefore, SSCS is not mentioned in the description of the SAR
process.

Before the model is described in more detail, an overview over the available

model] attributes is given.

3.3 The Model Simulation Attributes

3.3.1 The Model Attributes of the ATM Nodes

src.interarrival args: This attribute originates in the ideal generator module of the
ATM node. It is used to determine the number of packets to be generated at

the ATM node. Its value is 1/number of packets to be generated.



35

proc.VPI_SET: This attribute originates in the process model atm_nd.proc. It
determines the value to which the VPI field of the ATM cells originated at this
node is set. This value determines where the cells are routed to as shown in

Figure 3.3.

proc. VECTOR_STAT_ENABLE: This attribute originates in the process model
atm_nd_proc. 1t signals whether or not the vector statistic about the end-to-end

delay experienced by the ATM cells is to be recorded.

(ATH_2) Attributes =
extended attrs. D= i
atm_sw. VPI_ATM_LOCAL : 3 =
. atm_sw. VPI_ATM REMOTE : 4
atm_sw.VPI_FDDI_LOCAL : 1
ATH_2 atn_sw. VPI_FODI_REMOTE : 2 a
atm_sw. STAT_ENABLE : enabled =
xmt_fddi[0].data rate : promoted %
rcv_fddi[0].data rate : promoted V]

Figure 3.4: The Extended Model Attributes of the ATM Switch

3.3.2 The Model Attributes of the ATM Switches

Figure 3.4 shows the extended simulation model attributes of the ATM Switch
ATM_2. They are described in general below.

atm_sw.VPI_ATM_LOCAL, atm_sw.VPI_ATM_REMOTE,



36

atm_sw.VPIL.FDDI_LOCAL, atm_sw.VPI.FDDI_REMOTE: These four val-
ues originate in the process model atm_sw_proc and constitute the routing table
for atm_sw. They are used to transmit the ATM cells according to the virtual
paths shown in Figure 3.3. The suffixes LOCAL and REMOTE stands for
one hop and two hops away, respectively. VPI_LATM_LOCAL for ATM_2 (see
Figure 3.4), for example, corresponds to the model attribute VPILSET of the

ATM node one hop away, i.e., ATM.1, which has the value three.

atm_sw.STAT_ENABLE: This attribute originates in the process model atm_sw-

proc and determines whether or not the scalar statistics of the ATM switch are

to be recorded.

xmt_fddi[0].data rate: This attribute originates in the point-to-point transmitter
module zmf_fddi in the node model atm_sw. It determines the transmission
capacity of the point-to-point transmitter in bits per second, and thus the time

it takes to transmit a packet from the ATM switch to the FDDI subnetwork.

rcv_fddi[0].data rate: This attribute originates in the point-to-point receiver mod-
ule rcv_fddi in the node model atm_sw. It determines the transmission capacity
of the point-to-point receiver in bits per second and thus the time it takes to

receive a packet from the FDDI subnetwork at the ATM switch.

3.3.3 The Model Attributes of the FDDI VBR Stations

This model is based on the OPNET FDDI example model. A copy of the model
description from [23] can be found in Appendix C. In the following the model at-

tributes not contained in the original model are explained. They all originate in the



37

process model fddi_gen_vbr of the processor module lc_sre.

llc_src.dest_ring_id: This attribute indicates to which value the field dest_ring_id
of the Interface Control Information (ICI) fddi_mac_req_II is to be set. The

value determines to which FDDI network the FDDI frame should be delivered.

llc_src.vbr_gen_seed_I, llc_src.vbr_gen_seed II: These two attributes are the
seed numbers to initialize the random number generator used to determine

the random numbers in fddi_gen_vbr.

llc_src.traffic_dist: This attribute determines the function according to which the

frames at this station are to be generated.

llc_src.idle_dist: This attribute contains the function which determines the distri-
bution of the idle periods in the process model fddi_gen_vbr. The outcome of
the distribution idle_dist is used to schedule a self interrupt. This interrupt

than determines the end of a busy period.

llc_src.idle_dist_arg: This attribute is the parameter of the above mentioned func-
tion idle_dist. Its value is the mean outcome of the distribution in seconds.
The function and the parameter together determine the actual outcome of the

distribution.

llc_src.busy_dist: This attribute contains the function which determines the distri-
bution of the busy periods in the process model fddi_gen_vbr. The outcome of
the distribution busy_dist is used to schedule a self interrupt. This interrupt

than determines the end of a idle period.



38

Hc_src.idle_dist_arg: This attribute is the parameter of the above mentioned func-
tion busy_dist. Its value is the mean outcome of the distribution in seconds.

The function and the parameter together determine the actual outcome of the

distribution.

3.3.4 The Model Attributes of the FDDI CBR. Stations

This model is based on the OPNET FDDI example model. A copy of the
model description from [23] can be found in Appendix C. The model attributes
llc_src.dest_ring_id and llc_src.traffic_dist are not contained in the original model.
These two attributes correspond to the attributes llc_src.dest_ring_id and llc_src.traf-

fic_dist of the VBR stations described above.

3.3.5 The Model Attributes of the FDDI-ATM Bridges

bridge_proc. VPI_SET: This attribute originates in the process model bridge-
aal5_proc. It determines the value to which the VPI field of the ATM cells—
produced due to the segmentation of FDDI frames—at this node is set. This

value determines where the cells are routed to as shown in Figure 3.3.

bridge_proc.STAT_ENABLE: This attribute originates in the process model

bridge_aal5_proc and determines whether or not the scalar statistics of the

FDDI-LAN bridge are to be recorded.

xmt_atm[0].data rate: This attribute originates in the point-to-point transmitter
module zmi_atm in the node model bridge_nd. It determines the transmission

capacity of the point-to-point transmitter in bits per second and thus the time



39
it takes to transmit a packet from the FDDI subnetwork to the ATM switch.

rcv_atm[0].data rate: This attribute originates in the point-to-point receiver mod-
ule rcv_atm in the node model bridge_nd. It determines the transmission capac-
ity of the point-to-point receiver in bits per second and thus the time it takes

to receive a packet from the from the ATM switch at the FDDI subnetwork.

mac_sync bandwidth, mac.T_Req, mac.station_address, mac.ring_id: These
four attributes correspond to the attributes of the OPNET FDDI Example
Model. As mentioned before, a copy of the description from [23] can be found

in Appendix C.

3.4 The ATM Nodes

An ATM node in the model has to accomplish several tasks. It has to receive
cells destined for the node, use the information they contain to update statistics, and
destroy the packet to free the memory associated to it. On the other hand, it has to
assign a VPI value to the cells originated at this node and send the cells to the ATM
switch. The OPNET node model for the ATM nodes is shown in Figure 3.5.

The model consists of four modules. The point-to-point receiver rcv gets the
cells destined for the node. The point-to-point transmitter zmt sends the cells which
were produced by the ideal generator src to the ATM switch. The actual processing
of the cells takes place in the ATM node process model atm_nd_proc (see Figure 3.6)

which resides in the process module proc.



40

sIe proc

xmt

Figure 3.5: The ATM Node Model

3.4.1 The Process Model of the ATM Nodes

The ATM node process model atm_nd_proc is shown in Figure 3.6. It is composed

of five states. Each state is described below:

init: The init state registers a global statistics handler for a statistic to record the
end-to-end delay experienced by the received cells. Another task performed is
to retrieve the value of the module attribute VPI.SET. VPI.SET is used to set

the VPI field in the cell header for packets produced at this node.

After the initialization is done, an unconditional transition is made to the idle

state.

idle: In the idle state the process model waits for an event to happen. An event
can be either the arrival of a cell from the ideal generator src, the arrival of a
cell from the point-to-point receiver rcv, or the end of the simulation. Either of

these events causes a transition to another state, xmt, rcv or stats, respectively.

xmt: The zmt state is encountered when a packet from the src module arrives. The

actions taken are, get the packet, set the VPI field in the header, and send the



> (S5RC_ARRIVAL)

N
N

{END_OF_SIN)

~
-

[ Y

Figure 3.6: The ATM Node Process Model

packet to rcv (and thus to the ATM switch). After finishing, an unconditional

transition is made back to the idle state.

rcv: The rev state handles the arrival of a céll at the point-to-point receiver. After
retrieving the packet, the end-to-end delay is calculated and the peak end-to-
end delay is updated, if appropriate. If the flag VEC.STAT.ENABLE is set,
the end-to-end delay is recorded in a global statistic. Note that for longer
simulation runs the end-to-end delay statistic will result in huge vector output
files (16 bytes per received packet). Therefore, one might not always want to

record this statistic. Finally, the received cell is destroyed to free the memory



42

associated with it, and an unconditional transition is made back to the idle

state.

stats: The transition to the stats state is committed when the the simulation is

finished and the end of simulation interrupt had been enabled.

The statistic of interest is the peak end-to-end delay. It records the longest
end-to-end delay experienced by a ATM cell during the simulation run. Note
that only one of the two ATM nodes has to write this statistic since its value

is determined by a global variable accessed by both nodes.

3.5 The ATM Switches

The work of the ATM switch is to route incoming cells to the appropriate output.
No data originates at the switch. The OPNET node model for the ATM switches
(ATM_2 and ATM_3) is shown in Figure 3.7.

The ATM switch node model contains one point-to-point transmitter and one
point-to-point receiver for each (duplex) communication link attached to it. The
communication lines connect the switch to an ATM node, a FDDI subnetwork, and
the other ATM switch (see Figure 3.1). The actual cell switching between these
attached nodes is done by the ATM switch process model atm_sw_proc (see Figure 3.8)
ruling the behavior of the processor module atm_sw.

The statistical wires (doted lines) provide the means to gather statistical infor-
mation about the switch-to-switch connection. In addition, the information about the
queue length of packets awaiting transmission to the other switch might be used in a

model enhancement to decide whether or not a new incoming cell is to be discarded.



rev_fddy

43

b {

xmt_f£fddi

v

ﬁt_a.m_nd

Figure 3.7: The ATM Switch Node Model

3.5.1 The Process Model of the ATM Switches

The process model atm_sw.proc is shown in Figure 3.8. Its three states are

described below:

initial: In the initial state, the value of the variable mazr_queue_length, representing

the maximum queue length at the link between the ATM switches, is set to

zero (no packets, no queue). The second function of this state is to store

routing information contained in the module attributes VPILATM_LOCAL,
VPLATM_REMOTE, VPI.FDDI.LOCAL and VPI.FDDI_REMOTEF in the

state variables vpil-4{. The routing information corresponds to the virtual

paths shown in Figure 3.3. It is used in the route_pk state to deliver the cells

to their correct output line. After initializing, the process model atm_sw_proc

makes an unconditional transition to the idle state.



s l ? om em cmw - -
)

\_I N
: N
! ~
! \ ~
! ~
! ) A N
' "\ .
\ \
A [
. — e ™ S ~ = r
{QUEVE_SIZE_GROWS)/max_q size_sw{) {defaunlt)

Figure 3.8: The ATM Switch Process Model

idle: In the idle state, atm_sw_proc is waiting for the arrival of an ATM packet, a

statistic interrupt, or an end of simulation interrupt.

In the case that a packet arrives on one of the three point-to-point receivers,

atm_sw_proc makes a transition to the state route_pk.

In the model, only one of the many possible interrupts of the statistical wires
[14] is enabled. This interrupt occurs when the length of the waiting queue
for the transmission to the other ATM switch rises (see Figure 3.9). Upon the
arrival of the interrupt, the function maz_g_size_sw is executed. The function
is declared in the Function Block of atm_sw_proc. It reads the current queue

size and compares it to its recorded maximum queue length. In the case of a



45

S D/ xmt_atm_sw [0].pksize -> atm_sw.instat (2) N

a ur"‘f," intrpt method : scheduled %

H:E;.\ delay : 0.0 (sec.) =
i:i:':: rising edge trigger : enabled

:E:i:.".—.::::::: ¥ falling edge trigger : disabled o
Ué;;;;;;;;;@ repeated value trigger : disabled

xnt_atm_sv || Zero crossing trigger : disabled -'g

low threshold trigger : disabled Gl

high threshold trigger : disabled A

Figure 3.9: The Statistical Interrupts for the Queue Length
Statistic

new highest value, the recorded maximum queue length is updated. After the

execution of the function maz_g_size_sw, atm_sw_proc returns to the idle state.

The other possible event is an end of simulation interrupt. This interrupt causes

a transition to the state stats.

route_pk: As indicated by the name, this state is responsible for the routing of the
received packets to their respective output. To accomplish this, the VPI field
of the received packet is compared to the routing information at this node (see
description of the initial state) and then sent to the corresponding point-to-
point transmitter. After the transmission of the cell, atm_sw_proc returns to

the idle state.

stats: In the state stats, a variety of scalar statistics is to be recorded. These statis-
tics are the ATM switch throughput (in packets and Mb/s), the mean packet
delay at the switch, the mean and maximum queue length on the connection

to the other switch, and the utilization of the switch-to-switch link.



46
3.6 The FDDI Subnetworks

The OPNET models of the stations in the FDDI subnetworks are based on
the FDDI example model provided by OPNET. It is described in [23]. A copy of the
description is added to the thesis as Appendix C. In the following, only changes made
to the existing FDDI model are shown. The name of changed models, packet formats
and ICIs were formed keeping the original name and appending a II. The formats of
the MAC frame fddi_mac_fr and the interface control information ici_mac-req were
changed to make the exchange of MAC frames between different FDDI rings feasible.
A field, dest_ring_id, was added to both; a second field, src_ring_id, was introduced
to fddi_mac_fr. Note that these two packet fields are artificial (therefore, the field
length is set to zero). In a real life bridge approach, the bridge finds out about the
destination ring address on its own, i.e., the addressing is transparent to the FDDI
user. Since the focus of this work is not on the FDDI protocol or address resolution

procedures, this simple solution has been adopted.

3.6.1 The FDDI Stations

The OPNET node model for the FDDI stations is that provided by OPNET.
It is shown in Figure 3.10. However, there are changes in the process models of
the FDDI stations. The differences between the process model mac used in the
OPNET example model and the model described here are changes made to the logic
to deal with the additional fields of fddi_mac_fr and fddi_mac.req. Different process
models were used for the llc_src and the llc_sink processor modules in the cbr_station
and the vbr_station. This has been done to be able to produce the different traffic

characteristics and to file separate statistics for both. The different process models



47

phy_tx
L] = [
1lle_src mac  Phy_rx
D -
llc_sink

Figure 3.10: The Node Model of the FDDI Stations

are described in the remainder of this section.

fddi_gen_II: The process model fddi_gen_II is the process model used for llc_src of
the cbr_station. It is based on the model fddi_gen of the OPNET FDDI example
model. The most changes made correspond to the new fields in fddi_mac_fr_II
and fddi_mac_req_II. Furthermore, the model attribute traffic_dist was intro-
duced. Traffic_dist contains the function which determines the packet arrival
distribution. Note that during simulations, this process model was only used
to produce synchronous traffic with a constant arrival rate. This was achieved
by the selection of the model parameters (see Appendix D), i.e., this model is

more general than necessary to be used in this work.

fddi_sink_cbr: The process model fddi_sink_cbr is ruling the behavior of the pro-
cessor module llc_sink in cbr_station. It is essentially the same as the original

process model fddi_sink. It was changed to be able to record separate statistics

for the CBR and VBR traffic.



48

fddi_gen_vbr: Probably one of the most difficult tasks in descriBing the behavior
of VBR traffic sources is to find a suitable model to get accurate results. A
recent paper [24] concludes that the widely used Poisson models are very likely
to underestimate buffer requirements and cell delays. This is particularly true
for the modeling of several independent sources. Independent sources modeled
using the Poisson model result in a less bursty overall traffic characteristic.
According to the findings in [24] the opposite is true, the a;ggregate traffic’s

burstiness is intensified.

As mentioned above, the VBR traffic in this model is produced using only
one source. The principle of the process model fddi_gen_vbr is similar to the
‘Interrupted Poisson Source’ described in the literature (e.g., [25, 26]). The idea
is that the traffic consists of busy and of idle periods. During busy periods,
packets might be generated while no packets are produced during idle periods.
The functions and parameters which determine the transition between the idle
state and the busy state (and vise versa) as well as the generation of FDDI

packets can be chosen using model attributes (see Section 3.3.3).

The OPNET process model fddi_gen_vbr is shown in Figure 3.11. It is used
to produce the traffic characteristics outlined above. In the following its three

states are described in more detail.

init: The init state comprises the same functions as described for the init
state of fddi_gen_II. In addition, Marsaglia’s random number generator
is initialized using the two seed numbers given in the model attributes

vbr_gen_seed_I and vbr_gen_seed_Il. This additional random number gen-



49

{NEXT_BUSY_PERIOD)

{REXT_IDLE_PERIOD)

- - e - . — - -—

T

{GENERATE_PARCKET)

Figure 3.11: The Process Model of the VBR Traffic Generator

erator was used to be able to separate the outcome of the VBR traffic from
all other random events. In OPNET, all processes using random numbers
draw these numbers from the same source. This causes all random num-
ber outcomes to change if one parameter of one random distribution is
changed (either direct or indirect). This was not desirable for some of the
simulations where it was of interest to observe how different network con-
figurations handle exactly the same traffic. Marsaglia’s random number
generator was chosen to reach this goal. It has a long range of random

numbers and was shown to pass stringent tests for randomness [27].

Furthermore, the distributions for the transition from the idle state to
the busy state (busy-dist) and the transition back from the busy state to
the idle state (idle_dist) are set up. After initialization, traffic_gen_vbr
makes an unconditional transition to the idle state. Note that for the
conducted simulations only asynchronous VBR traffic was produced at

this process model. This was achieved using the appropriate parameters



50

(see Appendix D). The described model is not restricted to this type of

traffic.

idle: The idle state is the state representing the periods during which no pack-
ets are generated. No action is taken if the chosen arrival rate was zero.
This means, there are no busy periods for this particular case. Other-
wise, every time the init state is entered, an self interrupt is scheduled
to start a new busy period. This self interrupt is determined by the dis-
tribution busy.dist (accessed by the distribution pointer nzt_busy_ptr). If
the interrupt occurs, a state transition to the busy state is committed
and another self interrupt is scheduled. This interrupt is ruled by the
distribution idle_dist (accessed by the distribution pointer nzt_idle_ptr)
and determines the simulation time at which the busy period ends, i.e.,

fddi_gen_vbr switches back to the idle state.

busy: Upon entering the busy state, an self interrupt is scheduled to determine
the time a packet is to be produced. This is done according to the distri-

bution traffic_dist (accessed by the distribution pointer inter_dist_ptr).

While in the busy state, two events of interest may occur. These two
events are the arrival of a packet or the end of the busy period. In the
case of a packet arrival, the same actions are taken as in fddi_gen_II. If
the event is the end of the busy period, the pending interrupt for the next
packet arrival is canceled and traffic_gen_vbr makes a transition back to

the idle state.



51

________ 1:|
me_atm ¥ phy_tx
bridge_proc mac )
rev_atm ' phy_rx

Figure 3.12: The Node Model of the ATM-FDDI Bridge

fddi_sink_vbr: The only difference between llc_sink_vbr and llc_sink_cbr is the nam-
ing of the statistics. Here the prefix vbr is used instead of cbr. The different

names make it possible to distinguish the statistics for both stations.

3.6.2 The FDDI-ATM Bridge

The node model for fddi_atm_link is bridge_node. The model is shown in Fig-
ure 3.12. It is a combination of the node models of an ATM node and a FDDI
station. The ATM part consists of the modules zmt_atm, rcv_atm, and bridge_proc.
The modules mac, phy_tz, and phy.rr comprise the FDDI part. The ztm_atm and
rcv_atm modules form the interface to the ATM switch. The process model residing
in the processor module bridge_proc performs the functions of the ATM layer and the
AAL.

As mentioned before, the protocol functions are not explicitly modeled according
to their layered representation. Simulations were made using two different AAL
functionalities, namely AAL type 3/4 and AAL type 5. The corresponding process

models are bridge_aal3.{_proc and bridge_aal5_proc. The process models perform



52
three major functions:

e Segment packets submitted by the MAC entity and send the produced ATM
cells to the ATM switch.

e Reassemble arriving ATM packets to reproduce the originally sent MAC frames

and sent them to the processor module mac.

o Gather statistical information about the link between the ATM switch and the

bridge.

The two process models look alike. Figure 3.13, therefore, represents both models.

A more detailed description is provided below.

3.6.2.1 The Process Model bridge_aal3_4_proc. Several functions are
defined in the Function Block of this model. The functions are intended to simplify
the programs in the main body of the process model. Most of the functions are used to
maintain a list to store information about partly received CPCS_PDUs. Details about
the functions are mentioned in the state description, where appropriate. Otherwise,
refer to Appendix B.

In the following each state of bridge_aal3_4_proc is discussed in detail.

init: The first task performed by the init state is to store the process model attribute
VPLSET in a state variable. It is later used to set the VPI field of the ATM
packets sent to the ATM switch. Next, the state variable multiplex_id repre-
senting the multiplexing identifier (MID) of the SAR_PDU is set to zero. The
identifier is used to distinguish different packet streams multiplexed into one

ATM packet stream. Note that only one MID is needed for the chosen model



53

~”
L —

{defanlt)

Figure 3.13: The Process Model of the FDDI-ATM Bridge

assumptions (for the connection between the two FDDI networks). Further-
more, the value of the variables &_tag and e_tag is set to zero. As was described
in section 2.3.1, the only constraint for the begin_tag and end_tag fields of the
CPCS_PDU packet frames is that the value of the fields has to be different
for consecutive frames. The approach taken here is that the field values are
increased by one for each new CPCS_PDU. Another necessary initialization is
to set the start pointer of the list for partially received CPCS_PDUs to NIL.
Since no cell has been sent or received, there is no entry in the list. Finally, the

value of the maximum queue length for packets awaiting transmission to the



54
ATM switch is set to zero for the same reasons.

idle: The idle state is the steady state of the process model. Actions are taken for

interrupts representing one of the following events:

e the arrival of a FDDI MAC frame from maec.
o the arrival of an ATM cell from the ATM switch.

o the grow in the length of the waiting queue at the link to the ATM switch.

e the end of the simulation.

Upon reception of a FDDI MAC frame, bridge_aal3_/_proc makes a transition to
the segment state. Similarly, the reception of an ATM cell causes it to switch
to the reassemble state. The statistic interrupt representing the grow of the
waiting queue is handled the same way as described in atm_sw_proc. Finally,

an end of simulation interrupt causes a state transition to the stats state.

segment: The purpose of the segment state is to encapsulate the received FDDI
MAC frames and transform them into ATM cells according to AAL type 3/4.

The process is shown in Figure 2.9 and was described in general in Section 2.3.1.

After reception of a FDDI MAC frame, the frame is encapsulated in a CPCS-
PDU. The size of the padding field and the total size of the CPCS_PDU are
calculated. Furthermore, a new value for the begin_tag and end.tag fields is
provided. Then, the according fields of the CPCS_PDU are set. The PTI and
BAsize fields of the header and the AL field of the trailer are omitted since they
have no purpose for the simulation (their length is added to the b.tag and e_tag

fields, respectively).



95

The remainder of the segment state is concerned with the division of the
CPCS_PDUs into 44 bytes SAR_PDU payloads and their encapsulation. Logic
is provided to assign the correct values to the SAR_PDU fields. The modeled
fields are the segment type, the sequence number, the length indicator, and the
multiplexing identifier fields. The CRC field is contained in the packet format
sar_pdu, but no action is taken to determine an actual field value. It is set to
some default value. Special care must be taken in simulating the SAR.PDU
payload field. Note that the packet length of a simulated packet is rather a
logical value than a physical value. Therefore, the task of segmenting a packet
is not to divide a storage area into equal sized pieces. The goal to achieve is
to produce the exact number of segments that correspond to the actual num-
ber of segments one would get from a real segmentation. In other words, in
the simulation new packets are produced rather than an existing one divided
into pieces. All the information that is contained in the original packet is sent
with the last segment. This means, if a CPCS_PDU is to be segmented into
N segments, than N packets are produced. The SAR_PDU payload field of the
packets one through N-1 is empty, and the last packet contains a pointer to the

original CPCS_PDU.

After all ATM cells are produced and sent to the ATM switch, segment makes

an unconditional transition back to the idle state.

reassemble: The reassemble state performs the reverse functions of the segment
state, i.e., it rebuilds a segmented CPCS_PDU, strips off the header and trailer,
and sends the recovered FDDI MAC frame to bridge_proc. The reassembly
of the CPCS_PDUs is done by means of a linked list. Each entry in the list



56

corresponds to one CPCS_PDU currently in the process of reassembly. A list
element is identified by the multiplexing identifier (MID). Note that currently
only one MID is needed (for the connection between the two FDDI networks).
The more general case was assumed to be able to easily enhance the simulations,

e.g., to destine traffic from the ATM nodes to the FDDI networks.

As mentioned in the description of the segment state, the simulation of the
segmentation and reassembly process is a logical rather than a physical mat-
ter. Therefore, the reception of segments is only registered, but no actual data
is stored. The registration is done by keeping track of the sequence number.
In ATM, the sequence integrity is guaranteed. Thus, the sequence number of
consecutive received segments of one CPCS_PDU must always be consecutive
numbers. Otherwise, an error has occurred. Segmeﬁts arriving out of order
are discarded. Another error condition that is checked is if there is a BOM
segment with a MID corresponding to a CPCS_PDU that has not been com-
pletely reassembled. In this case, the incompletely reassembled CPCS_PDU is
discarded.

The original CPCS_PDU is restored using the information contained in the last
segment (EOM). After the CPCS_PDU is reassembled, final error checking is
performed. This is done in comparing the length of the reassembled CPCS_PDU
with the length reported in the length indicator field of the CPCS_PDU. Fur-
thermore, the begin and end tags are compared. If an error is detected, the
CPCS_PDU is discarded. Otherwise, the FDDI MAC frame is decapsulated
and sent to the FDDI subnetwork (mac in fddi_atm_link). In any case, after

the reception of an EOM segment, the corresponding entry in the list is deleted.



57

If a received ATM cell is processed and all subsequent actions are taken,

bridge_aal3_4_proc makes an unconditional transition back to the idle state.

stats: The stats state is responsible for the recording of several scalar statistics after

the end of the simulation. These statistics are:

e the throughput in packets and Mb/s from the ATM switch to the FDDI

subnetwork

e the maximum queue length and the mean packet delay experienced by

ATM packets transmitted to the ATM switch

e the utilization of the link from the FDDI subnetwork to the ATM switch

3.6.2.2 The Process Model bridge_aal5_proc. The other process model
for the processor module bridge_proc is bridge_aal5_proc. The process of segmentation
and reassembly according to the specifications of AAL type 5 was described in general
in section 2.3.2. No MID is defined in AAL type 5 SAR_PDUs. Therefore, only one
CPCS_PDU can be reassembled at a time. This means considerable simplifications for
the model. No list has to be maintained for partially received packets. As mentioned
before, the process model looks exactly the same as bridge_aal3_4_proc and is shown

in Figure 3.13. The states as coded for bridge_aal5_proc are described below:

init: the variables address (storing the value of the model attribute VPI.SET) and
maz_quueue_length are initialized as in bridge_aal3_4_proc. In addition, a new
variable num_of_segments is set to zero. This variable contains the number of
segments received from the CPCS_PDU currently in the process of reassembly.

After initialization, an unconditional transition is made to the idle state.



58

idle: The idle state of bridge_aal5_proc is the same as in bridge_aal3_4_proc.

segment: First, a received FDDI MAC frame is encapsulated in a CPCS_PDU. Note
that the CPCS_PDU format for AAL type 5 is different from the format used for
AAL type 3/4 (see Figures 2.7 and 2.10). The CPCS_PDU packet fields needed
for simulation are the Padding and Length fields. Their value is calculated, and
the according packet fields are set. After setting of the fields, the CPCS_PDU is
segmented, i.e., divided into 48 byte pieces. The Padding field assures that the
CPCS_PDU is aligned on a 48 octet boundary. No SAR_PDU encapsulation

has to be performed. Therefore, the segmentation process is simply:
1. get the number of needed segments (N)

2. produce N-1 ATM packets
e set the PTI field in the cell header to zero
e set the SAR_PDU to NIL
e send the packets
3. produce the ATM cell for the last segment
e set the PTI field in the cell header to one

e set the SAR_PDU to point to the original CPCS_PDU

e send the packet

After all cells are sent to the ATM switch, bridge_aal5_proc makes a transition

back to the idle state.

reassemble: In the reassemble state, two different kinds of ATM packets may arrive.

They are distinguished according to the value of the PTI field in the cell header.



59

A value of zero corresponds to a first or intermediate segment (BOM or COM
in AAL type 3/4 terminology, respectively). A PTI value of one signals the

reception of the last or the only segment sent (EOM or SSM, respectively).

All that has to be done is to count the number of received segments for the
CPCS_PDU that is currently reassembled. The number is stored in the state
variable num-of.se_éments. After reception of a cell with PTI set to one, the
CPCS_PDU is reassembled. If the length reported in the length field fits the
length of the reassembled frame (= no segments are gained or lost), the FDDI
MAC frame is decapsulated and sent to mac in bridge.nd. Otherwise, the
wrongly reassembled CPCS_PDU is discarded. Finally, an unconditional tran-

sition back to the idle state is made.

3.6.2.3 The Process Model fddi_mac_bridge. The process model fddi_mac-
bridge is similar to fddi.mac_II. The MAC entities of the FDDI stations (fddi_mac_IT)
fetch only the packets from the ring which are destined for that particular station
whereas fddi_mac_bridge fetches all packets which are destined for the other FDDI
network. To accomplish this, the conditions for sending a received packet back on the
ring (in the state FR_.RECEIVE and for stripping the frame off the ring (transition
macro STRIP) are modified. Furthermore, the received MAC frames are forwarded
to the processor module bridge_proc rather than to a higher layer entity. On the other
hand, packets reassembled at bridge.proc have to be sent on the FDDI ring. All that
fddi_mac_bridge has to do is to queue the newly reassembled packets at the end of
the queue of packets awaiting transmission to the FDDI ring and register its interest

for data transmission, if not already done. This registration is needed for the token



60

acceleration mechanism described in [23] (see Appendix C). These actions are taken
in the state ENQUEUE. This state was introduced to replace the state ENCAPSU-
LATE used in fddi.mac_II. The state ENCAPSULATE was no longer needed since

no new packets are produced at the node fddi_atm_link.



61

CHAPTER 4. CONDUCTED SIMULATIONS AND RESULTS

4.1 Overview

The final version of the developed OPNET model was presented in the previous
chapter. In this chapter, an overview over the conducted simulations using this model
will be given. An OPNET simulation program can be executed within the tool or
from the UNIX shell. In the former case, the model attributes are entered in a
simulation table. In the latter, case there are two options for communicating the
model attributes to the program. These two options are using an environment file
or including the parameters in the command line. The last approach was chosen
for the conducted simulation runs. All necessary UNIX commands were included
in c-shell script files. An example of such a shell script is shown in Figure 4.1.
This offers a convenient way to run the same program with different parameters by
simply changing one (or a few) parameter value(s) while leaving the rest unchanged.
The drawback of this approach is that it is somewhat awkward to get an overview
over the chosen values and their meaning. Therefore, an easier to read list of the
chosen parameters for the simulation runs described later in this chapter is given in
Appendix D.

As was described in the previous chapter, the process model fddi_gen_vbr was

developed to simulate the behavior of a bursty traffic source. During the simula-



62

8 seed _mod=121 8 seed vbr_I=911 & seed_vbr II=B810@ seed_vbr_III=191 @ seed_vbr_IV=333
@ link_cap=110000000 @ vbr_arrival rate=1500 @ cbr_arrival_rate=300
foreach atm_src_arg (1.082E-06 1.0S55E-06 1.029E-06 1.005E-06 9.815E-07 9.593E-07 9.38E-07 9.177E-07)
dt. sim -duration 0.4 -"top.FDDI_1.fddi atm link.>mt atm[0].data rate® $link_cap -"top.FDDI_2.fddi_at
m_link.xmt_atm[0].data rate* $link cap -verbose_sim TRUE -upd_int 0.1 -seed $seed_mod -os_file aalS_
ata_392 462Mb_fddi_ln 40_110Mb_vbr_468Mb_TIRT 0.001_sync_bw 0.5 -"top.ATM_1.src. interarrival args” $a
tm_src_arg -"top.ATM 4. src.interarrival args” 1.082E+06 -"top.ATM 2.xmt_fddi[0].data rate” $link_cap
-"top. AT 2.rcv_fddi[0].data rate" $link_cap -"top.ATM 3.>mt_fddi{0].data rate" $link_cap -"top.ATM
_3d.xcv_fddi[0]. data rate" $link cap -"top.FDDI_1.vbr_station.llc_src.traffic_dist" exponential -"top
.FDDI_1.vbr_station.llc_src.vbr_gen_seed I" $seed wbr_I -"top.FDDI_1.vbr_station.llc_src.vbr_gen_see
d_II" $seed_vbr_II -"top.FDDI_l.vbr_station.llc_src.arrival rate® $vbr_arrival rate -"top.FDDI_1.vbr
_station. llc_src.mean pk length* 32000 -top.FDDI_1.vbr_station.llc_src.idle_dist exponential -top.FD
DI_1.vbr_station.llc_src.idle_dist arq 0.002 -top.¥DDI_1.vbr_station.llc_src.busy dist exponential -
top.FDDI_1.whr_station.llc_src.busy_dist_arg 0.01 -top.PDDI_1.vbr_station.mac.T Req 4.0 -"top.FDDI_1
.cbr_station. llc_src.arrival rate* 0.0 -"top.FDDI_l.cbr_station.llc_src.mean pk length* 32000 -"top.
FDDI_1.cbr_station.mac. sync bandwidth" 0.5 -top.FDDI_1.cbr_station.mac.T_Req 0.001 -"top.¥DDI_1. fddi
_atm_link.mac. sync bandwidth® 0.5 -top.FDDI_1. fddi_atm link.mac.T Req 4.0 -"top.FDDI_1.vbr_station.l
lc_src. traffic_dist" exponential -"top.FDDI_2.vbr_station.llc_src.vbr_gen_seed_I" $seed vbr_III -"to
p-FDDI_2. vbr_station.llc_src.vbr_gen_seed II" $seed_vbr_IV -"top.FDDI_2. vbr_station.llc_src.arrival
rate” 0.0 -"top. FDDI_2.vbr_station. llc_src.mean pk length” 32000 -top.FDDI_2.vbr_station.llc_src.idl
e_dist exponential -top.FDDI_2.vbr_station.llc_src.idle_dist_arqg 0.002 ~top.FDDI_2.vbr_station.llc_s
rc.busy_dist exponential -top.FDDI_2.vbr_station.lle_src.busy_dist_arg 0.01 -"top. FDDI_2.vbr_station
.mac.T _Req” 4.0 -"top.FDDI_2.cbr_station llc_src.arrival rate* 0.0 -"top.FDDI_2.cbr_station. llc_src.
mean pk length® 32000 -“top.FDDI_2.cbr_station.mac.sync bandwidth® 0.5 -top.FDDI_2.cbhr_station.mac.T
_Req 0.001 -"top.FDDI_2 fddi_atm_link.mac. sync bandwidth® 0.5 -top.?DBI_2. fddi_atm_link.mac.T _Req 4.
0 -“top.FDDI_1.fddi_atm_link.rcv_atm([0]. data rate* §link_cap -"top.FDDI_2. fddi_atm_link. rcv_atm[0].d
ata rate” $link cap -station_latency 1E-07 -prop_delay 3.3E-06 -accelerate_token 1 -"spawn station® 1
@ link_cap = ($link_cap - 10000000)
end

Figure 4.1: An Example C-Shell Script

tions conducted in this work, the state transitions and cell generation followed the
ezponential distribution described in [16]. The ratio of the duration of the average
idle period to the duration of the average busy period was used as a measurement
for the burstiness. Increased burstiness was simulated in increasing the idle periods
and increasing the probability of the packet arrival during the busy period by the
same factor, i.e., the average data arrival rate remained the same. If not mentioned
otherwise, the burstiness of the VBR traffic in the described simulations was chosen
to be five.

It turned out that it was only possible to simulate packet arrivals in the order

of 109-107 within reasonable program execution.time. To be able to get useful



63

simulation results for events like cell loss probabilities in ATM, which occur with
probabilities of 10—7—10_9, it is necessary to simulate about 1010-1012 packets.
The obtained results, however, are still useful to show some problems that may arise
in an ATM based network but are not accurate enough to make a statement about
real world resource requirements.

In the following sections, the different sets of conducted simulation runs are

described in more detail and their results are discussed.

4.2 Comparison of AAL type 3/4 and AAL type 5

The principles of AAL type 3/4 and AAL type 5 were described in section 2.3
and the implementation in the model was shown in the previous chapter. This sec-
tion documents simulation results for the two different AALs. The (CBR) traffic at
the ATM node was chosen to be 422Mb/s and FDDI_LINE_CAP was chosen to be
80Mb/s. No CBR traffic was generated at the FDDI subnetworks. The VBR peak
arrival rates were varied from 22Mb/s to 51Mb/s with a burstiness of five. For a
* complete list of the chosen model simulation attributes refer to Appendix D.

The Figures 4.2 and 4.3 show the rﬁaximum queue length at the ATM switch
in relation to the VBR throughput for simulation runs using bridge.aal3-4_proc and
bridge_aal5_proc, respectively. Not surprisingly, using the AAL type 3/4 resulted in
longer maximum queue lengths. The queue lengths were slightly higher for small
amounts of VBR traffic but increased with increasing VBR traffic. The differences
were as high as eleven ATM packets for the above described simulations and might
even be higher if more data is to be transmitted over the ATM network.

Note that exactly the same VBR traffic was generated for both simulations.



64

Naximom Queue Length at the AT Switch
40

15

5

20

15

10

3 4 - $ 7 s 3 10
VBR Throughput (bits/second) (x1¢+06)

Figure 4.2: Maximum Queue Length at the ATM Switch as
a Function of the VBR Throughput for CBR =
422Mb/s and VBR Peak Rate = 22-51Mb/s using
AAL Type 3/4

Therefore, one can compare the outcome for every pair of programs executed with the
same parameters but a different process model for bridge_proc. Such a pair is identified
by exactly the same value for the VBR throughput since this value is determined by
the FDDI throughput rather than the ATM throughput. The ATM throughput is
higher for AAL type 3/4 due to the additional overhead for the SAR_PDU payload
encapsulation. So, in order to transmit one 4000 byte FDDI MAC frame over an
ATM network, it takes 92 cells using AAL type 3/4 compared to 84 cells using AAL
type 5.

The extended encapsulation in AAL type 3/4 provides the means to pass partly

reassembled CPCS_PDUs to higher layer entities (This feature was not modeled in



65

Haximum Queue Length at the ATy switch
3o

25

20

15

10

3 4 H 6 7 8 3 10
¥R Throughput (bits/second) (xlet06)

Figure 4.3: Maximum Queue Length at the ATM Switch as
a Function of the VBR Throughput for CBR =
422Mb/s and VBR Peak Rate = 22-51Mb/s using
AAL Type 5

this model, since a bridge could not use faulty information, anyway). These higher
layer entities may then recover parts of the correctly received data. AAL type 5
doesn’t provide this feature. One faulty segment results in the lost of the whole
CPCS_PDU. In the case the last segment is lost, the following CPCS_PDU is lost,
too. However, it was shown in [13] that the additional overhead of AAL type 3/4
pays off only for cell loss rates of approximately 2.6 * 10~3 and worse, which is far
worse than what is expected from an ATM network.

An interesting feature of AAL type 5 is that it makes Selective Discarding feasi-
ble. Selective Discarding means that if one segment of a CPCS_PDU is to be discarded

(due to congestion) all but the last segment of that CPCS_PDU are also discarded.



66

The last segment need to be kept to indicate the start of the next CPCS_PDU at
the receiving entity. This strategy is very appealing in many ways. First, the re-
maining segments of a corrupted CPCS_PDU would have to be retransmitted even
if they would arrive at their destination without error. Second, the discarding of
these (worthless) segments reduces traffic during a congested period. Otherwise,
they might cause congestion on subsequent switches and might lead to the discarding
of other packets.

The Selective Discarding strategy is easy to implement: If a cell with AUU set
to zero (in the PTI field of the cell header) is to be discarded, all subsequent cells
of this VC are discarded until a cell with AUU set to one arrives. This strategy is
not feasible (with respect to the computational burden) for AAL type 3/4 since the
information about the beginning and the end of a segmented CPCS_PDU is contained
in the data field of the ATM cell and not in the cell header [13].

The AAL type 5 approach outperformed the AAL type 3/4 approach. Fur-
thermore, the AAL type 5 is expected to be used for LAN-LAN interconnections in

BISDNs. Therefore, the AAL type 5 strategy was used for all other simulations.

4.3 Simulation of Bursty Traffic

The parameters to describe the VBR traffic should be accurate, on the one hand
side, but have to be easy and fast to measure, on the other hand. Some parameters

commonly used to describe bursty traffic are:
e the peak rate during the burst

e the average arrival rate



67
e the burst length
e the peak/average ratio
e the frequency of burst arrivals

If one adapts the widely used peak to average arrival rate ratio as a measurement
for the burstiness, there are two ways to simulate increased burstiness. One can either
increase the peak arrival rate (and keep the same average arrival) or one can decrease
the average arrival rate, i.e., increase the duration of the idle periods.

Figure 4.3 shows the maximum queue length at the ATM switch in relation to
the VBR throughput. The peak data arriving rate of the VBR traffic was varied from
22Mb/s to 51Mb/s and the ratio of idle to busy periods was chosen to be five.

Figure 4.4 represents the obtained simulation results for the same parameters
accept that the ratio of idle to busy periods was increased to ten. As can be seen, the
maximum queue lengths at the ATM switch are about the same for both simulations.

In another set of simulation runs, the VBR peak arrival rates were doubled, i.e.,
varied from 44Mb/s to 102Mb/s. The ratio of idle to busy periods was unchanged
(=10). This results in the double peak and in the double average data arrival rate,
i.e., the ratio of the peak arrival rate to average arrival rate remains the same. The
maximum queue length in relation to the VBR throughput for this set up is shown
in Figure 4.5. It is obvious to see that the maximum queue length for this set
of simulation runs is considerably higher than in the two above mentioned sets of
simulation runs. This suggests that the peak data arrival rate has an important
impact on the network resources needed to handle a data burst. The duration of

the idle periods made no difference for this simulations but might be an important



68

Maximom Queuve Length at the ATN Switch
k1

25

20

15

10

1.5 2 2.5 3 3.5 4 4.5 H
¥BR Throughput (bits/second) (x1¢+06)

Figure 4.4: Maximum Queue Length at the ATM Switch as
a Function of the VBR Throughput for CBR =
422Mb/s, VBR Peak Rate = 22-51Mb/s, and Bursti-

ness = 10

parameter to determine the degree of statistical multiplexing that can be applied.
The mean burst length for the three simulations described above was the same.
To find out more about the impact of the burst length on the maximum queue length
at the ATM switch, a set of simulation programs were executed where the mean
burst length was varied from 0.002-0.02 seconds. The peak arrival rate for these
programs was chosen to be 60Mb/s. The maximum queue length at the ATM switch
in relation to the mean burst length is shown in Figure 4.6. As can be seen in
the figure, longer bursts may result in severe increase of the maximum queue lengths.
These maximum queue lengths are even higher than those obtained with substantially

higher VBR peak arrival rates. This confirms to findings of a study mentioned in [12]



69

daximum Queue Length at the At Switoh
80

70

0

50

40

20

10

2 3 4 5 5 ? s [] 10 11
VER Throughput (bits/seoond) (x1e+06)

Figure 4.5: Maximum Queue Length at the ATM Switch as
a Function of the VBR Throughput for CBR =
422Mb/s, VBR Peak Rate = 44-102Mb/s, and
Burstiness = 10

which concludes that long intensive bursts highly increase the probability of queue
overflows. The burst length and data arrival rates in the simulation discussed here
result in a mean of ((0.002-0.02s)*60Mb/s) = 120-1200Mb = 15-150kbytes per burst,

which is not unusual for applications like file transfer.

4.4 Combination of VBR Traffic and CBR Traffic at the ATM switch

In this set of simulation runs, only VBR traffic was generated in the FDDI
subnetworks. In addition, only traffic in one direction was considered (i.e., no traffic
on the VPs two and four—see Figure 3.3). The transmission capacity between the

two ATM switches (SW_LINE_CAP) was chosen to be 500Mb/s. The packet arrival



70

Maximum Quene Length at the AT Switeh
100

20

80

70

S0

40

30

20

0 0.0025 6.005 0.0075 0.01 0.0125 0.015 0.0175 0.02
Burst Length (seconds)

Figure 4.6: Maximum Queue Length at the ATM Switch as a
Function of the Mean Burst Length for CBR =
422Mb/s and VBR Peak Rate = 60Mb/s

rates at ATM_1 and at vbr_station were varied in several simulation runs. The focus
was on the relationship between the CBR traffic and the VBR peak rate on the one
side and SW_LINE_CAP on the other side. Note that the VBR peak rate with respect
to the ATM network is determined by the capacity of the point-to-point link between
the FDDI subnetwork FDDI_I and the ATM switch ATM_2 (FDDI_LINE_CAP). A
higher peak arrival rate at the FDDI station vbr_station only results in a longer burst
at the ATM switch. However, the parameters were chosen so that the peak data rate
at vbr_station was smaller than or equal to the above mentioned line capacity.

First let us consider the case where the CBR traffic and the VBR traffic together

are equal to or less than SW_LINE_.CAP. The maximum queue length at the ATM



71

Waximum Queue Length at the ATM Switch
$0

70

60

S0

40

30

20

10

3 4 s 6 ? L 9 10
VBR Threughput (bits/second) (xle+08)

Figure 4.7: Maximum Queue Length at the ATM Switch as
a Function of the VBR Throughput for CBR =
426Mb/s and VBR Peak Rate = 22-51Mb/s

switch for this particular case was always two packets, i.e., one packet arrived while
a previous one had not yet finished transmission.

Figure 4.3 shows the results of an example were the combined traffic of ATM_1
and vbr_station was slightly higher than SW_LINE_CAP, i.e., CBR traffic = 422Mb/s,
FDDI_LINE_CAP = 80Mb/s, SW_LINE_CAP = 500Mb/s. For a complete list of the
used parameters refer to Appendix D. As can be seen in the Figure, this configuration
results in moderate to high queue lengths at the switch. If the CBR traffic is further
increased, this results in very high queue lengths which can not be tolerated. In the
case shown in Figure 4.7, the CBR was increased to 426Mb/s.

Similar simulations were made for



72

CBR = 452-456Mb/s, FDDI_LINE_CAP = 50Mb/s, SW_LINE_CAP = 500Mb/s

CBR = 442-446Mb/s, FDDI_.LINE_CAP = 60Mb/s, SW_LINE_CAP = 500Mb/s

CBR = 432-436Mb/s, FDDI_.LINE_CAP = 70Mb/s, SW_LINE_CAP = 500Mb/s

CBR = 412-416Mb/s, FDDI_.LINE_CAP = 90Mb/s, SW_LINE_CAP = 500Mb/s

CBR = 402-406Mb/s, FDDI_.LINE_CAP = 100Mb/s, SW_LINE_CAP = 500Mb/s
e CBR = 392-396Mb/s, FDDI_.LINE_CAP = 110Mb/s, SW_LINE_CAP = 500Mb/s

The simulations made using this parameters obtained similar results.

The results shown above strongly encourage a Peak Rate Allocation scheme for
incorporation of VBR traffic into an ATM network. Peak Rate Allocation means that
on any virtual connection (VC) the resources are allocated to be able to transmit data
at the peak rate, i.e., this VC could as well support a CBR cell stream at the peak
rate. Furthermore, the sum of the peak rates of the VCs on one transmission link is
equal t;) or less than the maximum transmission rate of the link. ITU-TSS proposes
Peak Rate Allocation schemes to be used in an early stage of ATM networks [12].
This strategy is easy to implement and easy to understand for the ATM network user
[12, 28]. The link utilization, on the other hand, is poor if there is a considerable VBR
portion of the overall network traffic. Although Peak Rate Allocation could guarantee
that there are no queue overflows in the described model, this could be different in
more complex network topologies [12]. However, this strategy is considered to be
able to offer high performance in terms of cell lost probabilities.

Considerable research has been done to find solutions that achieve statistical

gains in ATM networks compared to Peak Rate Allocation [12, 28, 29].



73

The authors in [29] claim to achieve gains of up to more than ten compared to
Peak Rate Allocation while maintaining a low cell rate loss ratio (<= 10_8). On the
other hand, the proposed strategy results in higher processing overhead and higher
call blocking probabilities.

Another approach, called Fast Buffer Reservation, also claims to result in ‘dra-
matic improvements’ over Peak Rate Allocation [28]. This approach would increase
the hardware costs by approximately 10%. No additional signaling is necessary. The
biggest drawback of this approach is that it requires non-standard ATM cell headers

to put no further restrictions on the network.

4.5 Combination of VBR Traffic and CBR Traffic in the FDDI

Subnetworks

As mentioned before, FDDI provides a priority scheme which gives CBR traffic
a preference over VBR traffic. In the previous section, the CBR traffic in the FDDI
subnetworks was assumed to be zero. In this section, the focus is on the influence
of CBR traffic in the FDDI on the overall traffic to be transferred over the ATM
network. To accomplish this, the simulation parameters were chosen to let the VBR
peak arrival rate unchanged while the CBR data arrival rate was changed from 5-
50Mb/s. The VBR traffic was set up to flow from FDDI_{ to FDDI 2. The CBR
traffic was set up to flow in the opposite direction. Note that the CBR traffic could
as well be traffic which originates and ends on FDDI_1.

Figure 4.8 shows the resulting maximum queue lengths at the ATM switch
ATM_2. 1t is obviously to see that, if there is a significant amount of CBR traffic, the

bursty traffic is “tamed”, and the maximum queue lengths shrink considerably. This



74

Maximum Queue Length at the ATW Switch
30

25

20

15

10

0 1 2 3 4 5 13
CBR Throughput (bits/second) (x1¢+07)

Figure 4.8: Maximum Queue Length at the ATM Switch as
a Function of the CBR Throughput between the
FDDI Networks for CBR (FDDI) = 5-50Mb/s,
CBR(ATM) = 422Mb/s, and VBR Peak Rate =
51Mb/s

is another example that shows the difficulties to make useful statements about the
VBR traffic. Even if one knew exactly the behavior of the VBR sources, no statement
of their impact on the ATM network could be made since this is highly dependent
on the CBR traffic on the FDDI ring. The CBR traffic is independent of the VBR

traffic and may not be known in advance.



03]

CBR Peak End-to-End Delay (seconds) (x0.001)

40 S0 0 70 80 90 100 110
FODI-ATM Link Capacitp(mb)

Figure 4.9: Simulation with varying Transmission Capacity of
the FDDI Subnetwork to ATM Switch Communica-
tion Links

4.6 Variation of the Transmission Capacity of the FDDI Subnetwork to

ATM Switch Communication Links

The maximum transmission rate of an FDDI network is 100Mb/s. To transmit
100Mb/s of FDDI traffic over a BISDN, using AAL type 5 adaptation, a transmission
capacity of 110Mb/s is necessary. So, in order to be able to transmit FDDI traffic
between the two FDDI subnetworks, without introducing a further queueing delay at
the UNI, one has to choose FDDI_LINE_CAP to be 110Mb/s. Usually, the traffic to
be exchanged between FDDIs is far less than this maximum transmission capacity.
The question arises if it is justifiable to afford this high transmission capacity.

Figure 4.9 shows the maximum end-to-end delay experienced by the CBR traffic



76

exchanged between the two FDDI subnetworks in relation to the different values for
FDDILINE_CAP. The VBR and CBR data was chosen to be 9.6Mb/s. The bursti-
ness of the VBR traffic was five, i.e, the VBR peak traffic was approximately 48Mb/s.
For a complete list of the simulation model attributes refer to Appendix D. Note
that the traffic to be exchanged between the two FDDI subnetworks was exactly the
same for all eight simulation runs. It can be seen that FDDI_LLINE_CAP for the given
traffic might be chosen to be less than the maximum transmission.capa.city without
adding significantly to the maximum end-to-end delay. Choosing FDDI_LINE_CAP
to be 80MB/s, for example, adds only slightly more than one millisecond to the
maximum end-to-end delay of the CBR traffic. This suggests that it is worth con-
sidering a value of FDDI_LINE_CAP below the maximum transmission capacity of
110Mb/s if the timing constraints of the envisaged applications is not too stringent.
If Peak Rate Allocation is used, the reduction of FDDI_LINE_CAP results in better

switch-to-switch line utilizations.



7

CHAPTER 5. CONCLUSIONS

The combination of VBR traffic and CBR traffic puts considerable constraints
on the network resources and management strategies that deal with it.

The bursty traffic is highly variable. This makes it very difficult to determine
the parameters to describe the traffic accurately. For the conducted simulations, it
turned out that the performance of the network was highly dependent on the peak
data arrival rate (during a burst) and the burst length. By contrast, the average
arrival rate, the peak to average arrival rate, and the burst interarrival rate did not
significantly influence the simulation results. However, these parameters might be
important to determine the possibility of statistical multiplexing. Other simulation
results showed that the influence of a data burst on the ATM network can be influ-
enced by LAN protocols and priority schemes. This fact makes it even more difficult
to describe data bursts accurately. The obtained results strongly encourage the use
of a Peak Rate Allocation scheme in early stage BISDNs.

The results obtained in a comparison between ATM adaptation layer type 3/4
and ATM adaptation layer type 5 suggest that ATM adaptation layer type 5 is very
likely to become the standard used for LAN-LAN interconnections via ATM. This
confirms to findings in [13] which were based on an analytical comparison.

The simulations concerned with the value of the transmission capacity of the



78

communication link between the LAN and the ATM switch showed that the trans-
mission capacity might be less than the rate needed to transmit at the LAN speed
for the transmission of moderate amounts of data within fair timing limits.

The simulations were limited by the order of packets that could be simulated
within reasonable time. To overcome this shortcoming, it would be worth investi-
gating whether strategies like Importance Sampling can be introduced to OPNET
simulation models. Importance Sampling was shown to cut down execution time
for calculating ATM cell blocking probabilities by orders of magnitude [30]. Since
the same simulation program is executed several times with different simulation pa-
rameters and/or seeds for the random number generator to collect data for scalar
statistics, executing the simulation programs with a programming scheme like PVM
on a cluster of workstations would further enhance the order of packets which can be
simulated.

There are still a lot of open questions concerned with the combination of VBR
traffic and CBR traffic in the same network. One basic problem is to find an accurate
model to describe the behavior of bursty traffic. Therefore, the feedback from early

stage BISDN implementations will play an important role in solving these problems.



79

BIBLIOGRAPHY

[1) Rainer Handel and Manfred N. Huber. Integrated Broadband Networks: An In-
troduction to ATM-Based Networks. Addison-Wesley Publishers Ltd., Reading,
Mass., 1991.

[2] Martin de Pricker. Asynchronous Transfer Mode: Solution for Broadband ISDN.
Ellis Horwood Books in Computing Science. Series in Computer Communica-
tions and Networking. Ellis Horwood, New York, 1991.

[3] A. E. Eckberg. B-ISDN/ATM traffic and congestion control. IEEE Network
6(5):28-37, September 1992.

[4] Shiro Sakata. B-ISDN multimedia workstation architecture. IEEE Communica-
tions Magazine, 31(8):64-67, August 1993.

[5] William Stallings. ISDN: An Introduction, chapter Broadband ISDN, pages 332-
353. Integrated Services Digital Networks. Macmillian, New York, 1989.

(6] Adrian E. Eckberg, Bharat T. Doshi, and Richard Zoccolillo. Controlling conges-
tion in B-ISDN/ATM: Issues and strategies. IEEE Communications Magazine,
29(9):64-70, September 1991.

[7] Tadanobu Okada, Hirokazu Ohnishi, and Naotaka Morita. Traffic control in
asynchronous transfer mode. IEEE Communications Magazine, 29(9):58-62,
September 1991.

[8] Setiadi Yazid and H. T. Mouftah. Congestion control methods for BISDN. IFEFE
Communications Magazine, 30(7):42-47, July 1992.

[9] James W. Roberts. Variable-bit-rate traffic control in B-ISDN. IEEE Commu-
nications Magazine, 29(9):50-56, September 1991.



80

(10] Chin-Tau Lea. What should be the goal for ATM. IEEE Network, 6(5):60-66,
September 1992.

[11} Stephen M. Walters. A new direction for broadband ISDN. IEEE Communica-
tions Magazine, 29(9):39-42, September 1991.

[12] John Burgin and Dennis Dorman. Broadband ISDN resource management: The
role of virtual paths. IEEE Communications Magazine, 29(9):44-48, September
1991. |

[13] Grenville J. Armitage and Keith M. Adams. Packet reassembly during cell loss.
IEEFE Network, 7(5):26-34, September 1993.

[14] MIL 3, Inc., 3400 International Drive NW, Washington, DC 20008. OPNET
Modeling Manuel 2.0, 1993. Release 2.4.

[15] MIL 3, Inc., 3400 International Drive NW, Washington, DC 20008. OPNET
Ezternal Interface Manuel 6.0, 1993. Release 2.4.

[16]) MIL 3, Inc., 3400 International Drive NW, Washington, DC 20008. OPNET
Simulation Kernal Manuel 5.0, 1993. Release 2.4.

[17) MIL 3, Inc., 3400 International Drive NW, Washington, DC 20008. OPNET
Stmulation Kernal Manuel 5.1, 1993. Release 2.4.

[18] Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, Englewood Cliffs,
N. J., second edition, 1988.

[19] Scott L. Sutherland and John Burgin. B-ISDN interworking. IEEE Communi-
cations Magazine, 31(8):60-63, August 1993.

[20] Martin De Prycker. ATM switching on demand. IEEE Network, 6(2):25-28,
March 1992.

[21] Achille Pattavina. Nonblocking architectures for ATM switching. IEEE Com-
muntcations Magazine, 31(2):38-48, February 1993.

[22] Ellen Witte Zegura. Architectures for ATM switching systems. IEEE Commu-
nications Magazine, 31(2):28-37, February 1993.

[23] MIL 3, Inc., 3400 International Drive NW, Washington, DC 20008. OPNET
Ezample Models Manuel 8.0, 1993. Release 2.4.



[24]

[25]

[26]

[27]

[28]

[29]

[30]

81

Will E. Leland, Walter Willinger, Murad S. Taqqu, and Daniel V. Wilson. On
the self-similar nature of ethernet traffic. In SIGCOM ’93: Conference Pro-
ceedings: Communication Architectures, Protocols, and Applications, September
13-17, 1998, San Francisco, California, USA, pages 183-193. Association for
Commputing Machinery, New York, 1993.

Ibrahim W. Habib and Tarek N. Saadawi. Multimedia traffic characteristics in
broadband networks. IEEE Communications Magazine, 30(7):48-54, July 1992.

Daniel B. Schwartz. ATM scheduling with queueing delay predictions. In SIG-
COM ’93: Conference Proceedings: Communication Architectures, Protocols,
and Applications, September 13-17, 1993, San Francisco, California, USA,
pages 205-211. Association for Commputing Machinery, New York, 1993.

George Marsaglia, Arif Zaman, and Wai Wan Tsang. Toward a universal random
number generator. Statistics & Probability Letters, 8(1):35-39, January 1990.

Jonathan S. Turner. Managing bandwith in ATM networks with bursty traffic.
IEEFE Network, 6(5):50-58, September 1992.

Tomonori Aoyama, Ikuo Tokizawa, and Ken-Ichi Sato. ATM VP-based broad-
band networks for multimedia services. IEEE Communications Magazine,
31(4):30-39, April 1993.

Qinglin Wang and Victor S. Frost. Efficient estimation of cell blocking probabil-
ity for ATM systems. IEEE/ACM Transactions on Networking, 1(2):230-235,
April 1993.



82

APPENDIX A. ABBREVIATIONS

AAL
AL
ATM
AUU
BAsize
BISDN
Btag
BOM
CAD
CAM
CBR
CCITT

CLP
CPCS
CPI
CRC
CS
COM
EOM
Etag
FDDI
GFC
HDTV
HEC
ICI
ISDN
ITU-TSS

ATM adaptation layer

Alignment (field)

Asynchronous transfer mode
ATM-layer-user-to-ATM-layer-user indication
Buffer allocation size

Broadband integrated services digital network
Beginning tag

Begin of message

Computer-aided design

Computer-aided manufacturing
Constant-bit-rate

Comité Consuitatif International
Télégraphique et Téléphonique

Cell loss priority

Common part convergence sublayer
Common part identifier

Cyclic redundancy check

Convergence sublayer

Continuing of message

End of message

Ending tag

Fiber-distributed data interface

Generic flow control

High definition television

Header error control

Interface control information

Integrated services digital network
International Telecommunications Union -
Telecommunication Standardization Sector



LAN

LI

LLC

MAC
MERMAID

MID
NNI
OAM
PAD
PDU
PM
PRM
PTI
PVM
RES
SAR
SDU
SN
SRC
SSCS
SSM
ST
STD
STM
TC
TTRT
UNI
Uu
VBR
\&
VCI
VLSI
VP
VPI
XMT

83

Local area network

Length indicator

Logical link control

Medium access control

Multimedia environment for remote
multiple-attendee interactive decision-making
Multiplexing identifier
Network-network interface
Operation and maintenance
Padding (field)

Protocol data unit

Physical medium (sublayer)
Protocol reference model

Payload type identifier

Parallel virtual machine

Reserved

Segmentation and reassembly
Service data unit

Sequence number

Source

Service specific convergence sublayer
Single-segment message

Segment type

State transition diagram
Synchronous transfer mode
Transmission convergence (sublayer)
Target token rotation timer
User-network interface

User-to-user indication
Varying-bit-rate

Virtual connection

Virtual channel identifier
Very-large-scale integration

Virtual path

Virtual path identifier

Transmit



84

APPENDIX B. OPNET PROCESS MODEL REPORTS



85

Process Model Report: atm_nd_proc | Mon Mar 14 21:17:13 1994 | Page 1 of 4

Process Model Attributes

attribute value type default value
VPI_SET promoted integer 2
VECTOR_STAT _ENABLE promoted toggle disabled
Header Block
/* global variable */
double atm_ete_peak_delay = 0.0;
int scalar_stat_flag atm_nd =0;
5 | /* packet stream definitions */
#define RCV_IN_STRM 0
#define SRC_IN_STRM 1
#define XMT_OUT_STRM 0
10 | /* transition macros */
#define SRC_ARRIVAL ( op_lntrpt_type () = OPC_INTRPT_STRM &&\
op_intrpt_strm () == SRC_IN_STRM )
#deflne RCV_ARRIVAL ( op_Intrpt_type () == OPC_INTRPT_STRM &&\
15 op_intrpt_strm () == RCVY_IN_STRM )
#define END_OF_SIM op_intrpt_type() = OPC_INTRPT_ENDSIM
 State Varjable Block
Gshandle \ete_gsh;
int \address;
Objid \module_id;
Boolean \vec_stat_flag;
Temporary Variable Block
Packet  *pkptr;
double ete_delay;
forced state _Init
attribute value type default value
name init string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced togqle unforced

enter execs Init

ete_gsh = op_stat_global_reg ("ete_delay®);

/* Get module ID */

module_id =op_id_self();

1* Get VPI from process attributes */

op_ima_obj_attr_get (module_id, "vpPI_SET", &address);
op_ima_obj_attr_get (module_id, "VECTOR_STAT_ENABLE®, &vec_stat_flag);




86

Process Model Report: atm_nd_proc [ Mon Mar 14 21:17:13 1934 | Page 2 of 4

transition _Init -> idle

attribute value type default value
name tr_8 string tr

condition string

executive string

color RGB333 color RGB333
drawing style spline togqgle spline

orced state  xmt

attribute valug type default value
name xmt string st

enter execs (See below.) textiist {See below.)
exit execs (empty) textlist (empty)
status forced togqgle unforced

enter execs  xmt

/* get produced packet */

pkptr = op_pk_get (SRC_IN_STRM);

r* Set VPI field of packet *!
op_pk_nfd_set (pkptr, "ve1*®, address);
5 | /* Send packet to transmitter */
op_pk_send(pkptr, XMT_OUT_STRM);

transition _ xmt -> ldle

attribute value type default value
name tr_1 string tr

condition string

executive string

color RGB333 color RGB333
drawing style spline toggle spline

unforced state idle

attribute value type default value
name idle string st
enter execs (empty) textlist (empty)
exit execs (empty) textlist (empty)
| status unforced toggle unforced

transition _ldle -> xmt

attribute value type default value
name tr_0 string tr

condition SRC_ARRIVAL string

executive string

color RGB333 color RGB333

drawing style spline togqgle spline




87

Process Model Report: atm_nd_proc

[ Mon Mar 14 21:17:13 1994 | Page 3of 4

transition idle -> Idle

attribute value type default value
name tr_2 string tr
condition default string
exacutive string
color RGB333 color RGB333
drawing style spline toggle spline
transition _idle -> rev
attribute value type default value
name tr 3 string tr
condition RCV_ARRIVAL string
executive string
color RGB333 color RGB333
drawing style spline toggle spline
transition _idle -> stats
attribute value type default value
name tr 9 string tr
condition END_OF_SIM string
executive string
color RGB333 color RGB333
drawing style spline toggle spline
forced state _tCV
attribute value type default value
name rcv string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced
| enter execs TCV
pkptr = op_pk_get (RCV_IN_STRM);
ete_delay = op_sim_time () - op_pk_creation_time_get (pkptr);
7* keep track of peak delay value */
if (ete_delay > atm_ete_peak_delay)
5 am_ete_peak_delay = ete_delay;
1* If the vector statistic is enabled record end-to-end delay */
if (vec_stat_flag == OPC_TRUE)
op_stat_global_write (ete_gsh, cte_delay);
op_pk_destroy (pkpu);
transition _rcv <> idle
| _attribute value type default value
name tr_7 string tr
condition string
executive string
color RGB333 color RGB333
L drawing stvle spline toagle soline




88

Process Model Report: atm_nd_proc

| Mon Mar 14 21:17:14 1994 | Page 4 of 4

.o

unforced state _stats

attribute value type default value
name stats string st

enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status unforced toqgle unforced

enter execs stats

* At end of simulation, scalar statistics are written out */
* Only one node has to do this */
if (Iscalar_stat_flag atm_nd){
1* Set flag to signal that the scalar statistics are written out *!
5 scalar_stat_flag_atm _nd=1;

}

op_stat_scalar_write ("ATM_Peak End-to-End Delay (sec.)”, atm_ete_peak_delay);




89

Process Model Report: atm_sw_proc | Mon Mar 14 21:18:23 1994 | Page 1 0of 4

.os

Process Mode{ Attributes

attribute value type default value

VPI_ATM_LOCAL promoted integer 0

VPI_ATM_REMOTE promoted integer 1

VPI_FDDI_LOCAL promoted integer 2

VPI_FDDI_REMOTE promoted integer 3

STAT_ENABLE promoted toggle disabled
Header Block

* Transition macros */
#define PK_ARRIVAL (op_Intrpt_type () = OPC_INTRPT_STRM)

#define QUEUE_SIZE_GROWS (op_intrpt_type () == OPC_INTRPT_STAT &&\
5 op_intrpt_stat 0 = QUEUE_LENGTH_STAT)

#define END_SIM (op_intrpt_type O == OPC_INTRPT_ENDSIM)

I* Packet Streams */

10 | #define FDDI_OUTPUT_STRM 0
#define ATM_NODE_OUTPUT_STRM 1
#define ATM_SWITCH_OUTPUT_STRM 2

* Statistic inputs */

15 | #define MEAN_DELAY_STAT
#define MEAN_PKSIZE_STAT
#define QUEUE_LENGTH_STAT
#define PK_THRUPUT_STAT
#define UTILIZATION_STAT

20 | #define BIT_THRUPUT_STAT

nh H W =O

[ State Variable Block

Objid  ‘module_id;
int \vpi_pk, \pil, \wpi2, \wpi3, \vpid;
double \max_queue_length;

Temporary Variable Block

Packet *pkptr;
Boolean scalar_write_flag;
void max_q_size_sw ();
void record_stats_sw ();
Function Block

/ !
Tid max q_size_sw() *
! /
7* This function diermines the maximum queue of the ATM *

5 | 7* transmiter channel length during the simulation run *

! !

void max_q_size_sw Q
{
10 double queue_length;




90

Process Model Report: atm_sw_proc

| Mon Mar 14 21:18:23 1994 | Page2of 4

* Read the new queue size */
queue_length = op_stat_local_read (QUEUE_LENGTH_STAT);
1* Check if it is a new maximum %/
15 if (queue_length > max_queue_length)
max_queue_length = queue_length;

unforced state _idle

| attribute value type default value
name idle string st
enter execs (empty) textlist (empty)
exit execs (empty) textlist (empty)
status unforced toggle unforced
transition _Idle -> route_pk
|_attribute value tyoe default value
name tr 0 string tr
condition PK_ARRIVAL string
executive string
color RGB333 color RGB333
drawing style spline toggle spline
transition__idle -> idle
attribute value type default value
name tr_1C string tr
condition default string
executive string
color RGB333 color RGB333
drawing style spline toggle spline
transition _idle -> idle
attribute value type default value
name tr_12 string tr
condition QUEUE_SIZE_GROWS string
executive max_gq_size_sw() string
color RGB333 color RGB333
drawing style spling toggle spline
transition _Iidle -> stats
attribute value type default value
name tr 13 string tr
condition END_SIM string
execttive string
color RGB333 color RGB333
drawing style splina togale spline
_forced state _route_pk
attnbute value type default value
name route_pk string st




91

Process Model Report: atm_sw_proc

[ Mon Mar 14 21:18:24 1994 | Page 3 of 4

.er

e

enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced
enter execs_toute_pk
7% Get arrived packet */
pkptr = op_pk_get (op_intrpt_strm ();
7* Get VPI from packet field VPI */
op_pk_nfd_get (pkptr, "vpI*, &vpi_pk);
5 | 7* Send packet to according output stream */
1* If the packet is from the remote FDDI-node */
7* send it 10 the local FDDI-node */
if (vpi_pk == vpid)
op_pk_send (pkptr, FDDI_OUTPUT_STRM);
10 | /% If the packet is from the remote ATM-node */
1% send it 10 the local ATM-node *!
if (vpi_pk == vpi2)
op_pk_send (pkpr, ATM_NODE_OUTPUT_STRM),
1% [f the packet is from the local FDDI- or ATM-rode */
15 | 7* send it to the other ATM-switch */
if (vpi_pk == vpi3 Il vpi_pk == vpil)
op_pk_send (pkptr, ATM_SWITCH_OUTPUT_STRM);
transition _route_pk -> idle
attribute value type default value
name tr_4 siring tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

_forced state _Initial

attribute value type default value

name initial string st

enter execs (See below.) textlist (See below.)

exit execs (empty) textlist (empty)

status forced toqgle unforced
enter execs _Initial

10

/* Get module ID */

module_id = op_ld_self();

1% Get the VPIs from the process attributes %/
op_ima_obj_attr_get (module_id, “VPI_ATM_LOCAL", &vpil);
op_ima_ob)_sttr_get (module_id, "VPI_ATM_REMOTE®, &vpi2);
op_lma_obj_attr_get (module_id, "VPI_FDDI_LOCAL", &vpi3);
op_ima_obj_attr_get (module_id, *VPI_FDDI_REMOTE™, &vpid);

/* Initialize max queue length */
max_queue_length = 0.0;




92

Process Model Report: atm_sw_proc

| Mon Mar 14 21:18:24 1994 | Page 4of 4

transition__Initial -> idle

attribute value type default value
name tr_6 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline
| unforced state stats
attribute value type default value
name stats string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status unforced togqgle unforced
| enter execs stats

/* Record scalar statistics */

op_ima_obj_attr_get (module_id, *STAT_ENABLE™, &scalar_write_flag);

if (scalar_write_flag == OPC_TRUE){

1* Record final statistics */
5 op_stat_scalar_write("ATM Switch Throughput (Mb/s) ", (op_stat_local_read (BIT_THRUPUT_STAT)/ 1000000));

op_stat_scalar_write(*Mean Packet Delay at ATM Switch®,op_stat_local_read (MEAN_DELAY_STAT);
op_stat_scalar_write(*Mean Queue Length at ATM Switch™, op_stat_local_read (MEAN_PKSIZE_STAT))
op_stat_scalar_write("Maximum Queue Length at ATM switch*, max_queue_length);

op_stat_scalar_write(*Packet Throughput at ATM Switch®,op_stat_local_read (PK_THRUPUT_STAT)):
10 op_stat_scalar_write(*Utilization of Switch to Switch Link®,op_stat_local_read (UTILIZATION_STAT));




93

| Mon Mar 14 21:19:10 1984 | Page 1 of 14

Process Model Report: bridge_aal3_4_proc

Process Model Attributes

attribute value type default value
VPI_SET promoted integer 2
STAT ENABLE promoted toggle disabled
| Header Block
* packet stream definitions */
#define FDDI_IN_STRM 0
#define ATM_IN_STRM 1
#define FDDI_OUT_STRM 0
5 | #define ATM_OUT_STRM 1
/* Statistical inputs definition */
#define MEAN_DELAY_STAT 0
#define MEAN_PKSIZE_STAT 1
10 | #define QUEUE_LENGTH_STAT 2
#define PK_THRUPUT_STAT 3
#define UTILIZATION_STAT 4
#define BIT_THRUPUT_STAT 5
15 | /* Packet size definitions *!
#define ATM_PK_SIZE 424
#define SAR_PK_SIZE 384
#define SAR_PDU_PAYLOAD_SIZE 44
#define HEADER_SIZE 4
20 | #define TRAILER_SIZE 4
1* Sgment type definitions */
#define BOM 10
| #define COM 00
25| #define EOM 01
#define SSM 11
r* transition macros */
#define FDDI_ARRIVAL (op_intrpt_type () = OPC_INTRPT_STRM &&\
30 op_intrpt_strm () == FDDL_IN_STRM)
#define ATM_ARRIVAL (op_intrpt_type () == OPC_INTRPT_STRM &&\
op_intrpt_strm () = ATM_IN_STRM)
35 | #define QUEUE_SIZE_GROWS (op_intrpt_type ) == OPC_INTRPT_STAT &&\
op_lotrpt_stat () == QUEUE_LENGTH_STAT)
#define END_SIM (op_intrpt_type () == OPC_INTRPT_ENDSIM)
40 | typedef struct rcv_fddi_pk{
nt pk_id;
int last_seq_number;
struct rev_fddi_pk *prev_pk;
struct rev_fddi_pk *next_pk;
45 |} pk_lisy




94

Process Model Report: bridge_aal3_4_proc

| Mon Mar 14 21:19:10 1994 | Page 2 of 14

.

| State Variable Block
int \b_tag, \e_tag;
int \address, \multiplex_id;
Objid \module_id;
pk_list* \start_ptr;
5 | double \max_queue_length;
Boolean \stat_flag;

Temporary Variable Block

Packet  *pptr, *cpes_pdu_pkpr, *sar_pkptr;
double ete_delay_seg, ete_delay_fddi;

int rcv_b_tag, rcv_e_tag;

int fddi_pk_size;

5 |t cpes_pdu_payload_size;

int cpes_pdu_total_pk_size;

int num_of_atm_pks;
int last_pk_payload_size;
int n;

10 | int seg_type, length_ind;
int mult_id, seq_number;
int pk_length;
int pad;

Packet  *payload_ptr;
15 | pk_list  *list_ptr;

void amm_pk_send(Packet®);

void set_sar_pk_fds(Packet*, int, int, int, Packet®, int);
void set_sar_pk_fds_ssm(Packet*, Packet®, int);

20 | void add_pk_to_list (int, int);

pk_list  *find_pk (int);

void del_pk_from_list (pk_list*);

void max_q_size_fddi ();

void record_stats_fddi ();

Function Block

> reeEn

fad atm_pk_send()

i

* Function gets a pointer 1o a SAR-PDU

5 | /* - encapsulate the SAR-PDU in a ATM packet
/* - sends the packet

sexe)
*/
asans
*/
*

*/

1

void atm_pk_send (fkt_sar_pkptr)
10 Packet *fkt_sar_pkptr;

{
Packet *amm_pkptr;

atm_pkptr = op_pk_create fmt(*atm_pk ");

15 1* copy SAR packet to ATM packet data field */
op_pk_nfd_set (tm_pkptr, "data”, fkt_sar_pkptr);
1* Set VP! field of packet *!

sean;




95

Process Model Report: bridge_aal3_4_proc

| Mon Mar 14 21:19:11 1994

| Page 30of 14

e

20

30

35

40

45

50

55

65

70

75

op_pk_nfd_set (atm_pkptr, VP 1", address);

1% Set total ATM packet size */

op_pk_total_size_set(atm_pkptr, ATM_PK_SIZE);

1* Send packet to transmitter */

op_pk_send(atm_pkptr, ATM_OUT_STRM);
}
/ /
lad set_sar_pk_fds() *
I b */
* Function gets a pointer to a SAR-PDU and according field */
* values for segmented packets *
* - fills the named fields of the specified SAR-PDU *
* with the submitted values */
l *
void set_sar_pk_fds (sarptz, seg_type, seq_number, mid, payload_ptr, pk_length)

Packet *sarptr, *payload_ptr; '

int seg_type, seq_number, mid, pk_length;

{

1* Set the fields of SAR packet */

op _pk_nfd_set (sarptr, *segment _type™, seg_type);

op_pk_nfd_set (sarptr, "sequence_numrber*, seq_number);

op_pk_nfd_set (sarptr, *multiplexing_id", mid);

1% Only the last segment gets the original data */

if (seg_type == EOM)

op_pk_nfd_set (sarptr, “sar_pdu_payload*", payload_ptr);

op_pk_nfd_set (sarptr, “length_indicator®, pk_length);

op_pk_total_size_set (sarpw, SAR_PK_SIZE);
}
Fad bt dd *EREE L i Lid it
[ad set_sar_pk fds ssm{) */
” saens sense !
* Function gets a pointer to a SAR-PDU and according field *
1* values for single packets */
1* - fills the named fields of the specified SAR-PDU *
*  with the submitted values *
/ b hibd hidhr)
void set_sar_pk_fds_ssm (sarptr, payload_ptr, pk_length)

Packet  *sarptr, *payload_ptr;

int pk_length;
{
1* Set the fields of SAR packet */

op_pk_nfd_set (sarpr, “segment_type”, SSM);
op_pk_nfd_set (sarpu, “sar_pdu_payload”, payload_ptr);
op_pk_nfd_set (sarptr, “length_indicator™”, pk_length);
op_pk_total_size_set (sarptr, SAR_PK_SIZE);

}

! /
lad find_end _of lisi() Y
! I
* Gets a pointer o a list element */

1* - if the list element is the last list element *




96

Process Model Report: bridge_aald_4_proc - [ Mon Mar 14 21:19:11 1994 | Page 4 of 14

85

95

100

105

110

115

120

125

130

135

* it returns the the pointer it got as an argument *
* - otherwise the function calls itself with the *
I* pointer to the next element in the list *
I !

pk_list *find_ead_of_list (list_ptr)
pk_list *list_ptr;

{
pk_list *last_pk;
1* debugging message */
if (op_prg_odb_ltrace_active(*1ist_test*))
printf(*Received order to find the end of the list - struct_ptr= %d\n® list_ptr);
1* Check if it is the last element in the list */
if (list_ptr->next_pk = OPC_NIL){
I* debugging message */
if (op_prg_odb_ltrace active(*1ist_test"))
printf{*Found end of the list returned pointer= %d\n*,list_ptr);
7* Return the pointer to the last list element */
return list_ptr;

else
{
1* debugging message */
if (op_prg_odb_ltrace_actlve("1isc_test™))
printf(*Recursiv call structure_ptr= %d\n*, list_ptr->next_pk);
1* Recursiv call with pointer to the next list element as argument */
last_pk = find_end_of_list (list_ptr->next_pk);
r* debugging message */
if (op_prg_odb_ltrace actlve("list_test™))
printf(*Recursiv call found end of list - returnrd %2\n*, last_pk);
/* Return pointer to the last list element */
return last_pk;
}

1 L 2] !

[ad add_pk_to_list(} */
/ P it b i b add *

/* fills in structure for the new list element *

1* and adds the new list element as the last list element *
i ‘/

void add_pk_to_list (pk_id, seq_number)
int pk_id, seq_number;

pk_list *last_pk, *struct_ptr;

/* debugging message */

if (op_prg_odb_trace_active(*1isc_test*))
printf{*Received order to add packet to list pk_id: %d seq_numper: %d\n*,pk_id, seq_number);

1* Allocate memory for the new list element */

struct_ptr = (pk_list *) malloc (sizeof(pk _list));

I* Fill in variables of the new list element *!

struct_ptr->pk_id = pk_id;

struct_ptr->last_seq_number = seq_number;

1% The new list element is now the last one in the list */

struct_ptr->next_pk = OPC_NIL;

1* debugging message */




97

Process Model Report: bridge_sal3_4,_proc | Mon Mar 14 21:19:12 1994 | Page 5 of 14

2o

e

if (op_prg_odb_ltrace_active(*1ist_test®)){
printf("Filled in values in structure \n");
printf("pk_id ~ %d seq_no = %d\n"struct_ptr->pk_id, struct_ptr->last_seq_number);
printf(*Assigned pointer to structure = %d\n",struct_ptr);
140 }
1* Check if the list is empty */
if (start_ptr == OPC_NIL){
I* debugging message */
if (op_prg_odb_itrace_active(*1ist_test"))
145 printf(*I am the only packet - start_pointer was OPV_NIL\n“);
* The packet is the first one */
I* - set the pointer to the first list element %/
start_ptr = struct_ptr;
I* - set the pointer 10 the next list element to NULL */
150 I* (since there is no other element in the list) */
struct_ptr->prev_pk = OPC_NIL,;

}
else(
7* The list is not empty */
155 7* debugging message */
if (op_prg_odb_ltrace_active(*1ist_test®)){
printf(*There is a packet in the list - called function to find the end of the list\n")
printf(*Parameter start_ptr= $d\n", start_ptr);
}
160 /* Find the end of the list */
last_pk = find_end_of_list (start_ptr);
1* Register our list element as next list element */
last_pk->next_pk = struct_ptr;
/* Register the former end of the list as our precessor */
165 struct_ptr->prev_pk = fast_pk; )
}
}
170| Iy
fad find_pk_in_lisy() *
[ achtid b /
/* Checks if the specified list element *
/* belongs to the specified packed identifier *
175 | /* - YES = return pointer to the list element *
% - NO = recursiv call (check next list element) *

P

i

pk_list *find_pk_in_list (list_ptr, pk_id)
180 pk_list *list_pr;
int pk_id;

{
pk_list *element_ptr;

185 /% debugging message */
if (op_prg_odb_ltrace_sctive(*list_test™))
printf(*Got order to find packet in the list\n pk_id= %d structure_ptr= %d\n*,pk_id, list_ptr);
1* Check if the Pointer is NULL - packet is not in the list */
if (list_ptr = OPC_NIL){
190 1* debugging message */
if (op_prg_odb_ltrace_active(*list_tesc®))
printf(*Could not find packet - reached end of the list \n%*);
return OPC_NIL;




98

Process Model Report: bridge_aal3_4_proc

[ Mon Mar 14 21:19:12 1994 | Page 6 of 14

195

200

205

210

215

220

225

230

235

240

245

250

I* Check if this is the element we are looking for */
if (list_ptr->pk_id == pk_id){
/* debugging message *!
if (op_prg_odb_ltrace_active(*1ist_test®))
prinf(“Found packet ~ returned structure pointer %d\n®,list_ptr);
/* Return the pointer o the list element */
return list_ptr;

else(
1* debugging message */
if (op_prg_odb_ltrace_active(*1ist_test*))
printf(*Recursiv call - struct_ptr = %d pk_id = %d\n",list_ptr->next_pk, pk_id);
1* Check the next list element */
element_ptr = find_pk_in_list (list_ptr->next_pk, pk_id);
/* debugging message */
if (op_prg_odb_ltrace_active("1ist_test™))
printf(*Recursiv call found packet - returned pointer = sd\n*, element_ptr);
return element_ptr;

)

}

/ saene ;
” find_pk() *
/ ** %
* Checks if there is a list entry for the given pk_id *
r* - YES = return the pointer (o the list element *
1% - NO = return NULL pointer . s
/ hid !

pk_list *find_pk (pk_id)
int pk_id;

{
pk_list *list_ptr;

/* debugging message */
if (op_prg_odb_ltrace_active(*1ist_test™))

1% Check if the list is empty */
if (start_ptr = OPC_NIL){

printf(*Got order to find packet pk_id= ¥d\n*,pk_id);

% debugging message ¥/
if (op_prg_odb_ltrace_active(*1ist_test™))
printf(*Could not find packet - list is empty \n");
* Return NULL pointer - no element in the list */
rewrn OPC_NIL;

* debugging message */
if (op_prg_odb_ltrace_active("1ist_tesc™))
printf(*Called function find pk_in_list\n - parameter pk_id= %d structure pointer= %d\n",
* Since the list is not empty - search for our packet */
list_par = find_pk_in_list (start_ptr, pk_id);
* debugging message */
if (op_prg_odb_ltrace_actlve(*1ist_test™))
printf(*Procedure found packet - returned structure_ptr = %d\n*,list_ptr);
return list_ptr;




99

Process Model Report: bridge_aal3_4_proc

[ Mon Mar 14 21:19:12 1994 | Page 7 of 14

ave

255

260

265

270

275

280

285

290

295

300

305

310

}

I %/
~ del_pk_from list() *
l !
7* Deletes a list element from the list 3/
* - update entries in the neighboring list elements */
* - free the allocated memory */
/ */

void del_pk_from_list (list_ptr)
pk_list *list_ptr;
{
1% debugging message */
if (op_prg_odb_ltrace_active(®list_test®))
printf(*Received order to delete packet from list - list_ptr= %d\n", list_ptr);
1* Check if specified packet is the first packet in the list */
if (list_ptr->prev_pk = OPC_NIL){
1* debugging message */
if (op_prg_odb_itrace_active(*1ist_test®))
prinif(*I was the first packet in the list - set start_ptr = %d\n", list_ptr->next_pk);
1* Update start_ptr (pointer to the first list element) */
start_ptr = list_ptr->next_pk;
}
else(
1* debugging message */
if (op_prg_odb_ltrace active("1ist_test™))
printf(*Set the next_pk_ptr of list %d to sd\n*®, list_ptr->prev_pk, list_ptr->next_pk);
* Update our precessor *!
list_ptr->prev_pk->next_pk = list_ptr->next_pk;
}
1* Check if specified packet is rot the last packet in the list */
if (list_ptr->next_pk 1= OPC_NIL){
* debugging message *!
if (op_prg_odb_Itrace_active(*list_test™))
printf(*I was not the last packet in the list\n");
printf(*Therefore I set prev_pk ptr of %d to %d\n",list_ptr->next_pk, list_ptr->prev_pk);
1* Update our successor */
list_ptr->next_pk->prev_pk = list_ptr->prev_pk;

1* deallocate the memory */
free(list_ptr);
}

lhe sesRE R/
~ max_q_size_fddi() »
" /
* This function diermines the maximum queue of the ATM s/
* transmiter channel length during the simulation run *

]
! !

void max_q_size_fddi O

{
double queue_length;

/* Read the new queue size */
queue_length = op_stat_local_read (QUEUE_LENGTH_STAT);
1* Check if it is a new maximim */




100

Process Model Report: bridge_aal3_4_proc | Mon Mar 14 21:19:13 1994 | Page 8 of 14

if (queue_length > max_queue_length)
max_queuve_length = queue_length;
315|})

forced state _init

attnibute value type default value
name init string st

enter execs (See below.) textlist ‘ (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced

enter execs _init

* Get module ID */

module_id = op_ld_self();

* Get VPI from process attributes */

op_ima_obj_attr_get (module_id, “vPI_SET", &address);

5 | /* Get the value of the statistics flag */

op_ima_ob)_attr_get (module_id, "STAT_ENABLE", &stat_flag);
* Initialize the value of the begin and end tag */

b_tag =0;

e_tag=0;

10 | /* Initialize multiplexing identifier */

multiplex_id = 0;

* Initialize pointer to list of partially received fddi packets *!
start_ptr = OPC_NIL;

/* Initialize maximum queue size */

15 | max_queue_length = 0;

transition Init -> ldie

attribute value type default value
name tr_8 string tr

condition string

executive string

color RGB333 color RGB333
drawing style spline toggle spline

_forced state segment

attribute value type default value
name segment string st

enter execs {See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced

ter execs segment

* Get the FDDI MAC frame */

pkptr = op_pk_get (FDDI_IN_STRM);

* Get the size of the packet */

fddi_pk_size = op_pk_total_size_get (pkptr);
S | 7* Change the total size to size in octets */

fddi_pk_size = (fddi_pk_size / 8);




101

Process Model Report: bridge_sal3_4_proc [ Mon Mar 1421:19:13 1994 [ Page 9 of 14

"o

10

15

20

30

35

40

45

50

55

* Create CPCS_PDU packet */

cpes_pdu_pkptr =op_pk_create_fmt ("cpcs_pdu_aal3_a");
* Determine the size of the padding field */

pad = fddi_pk_size % 4;

* We need different values for the begin and end tags */
b_tag++;

e_tag++;

* Set the CPCS_PDU packet fields */

op_pk_nfd_set (cpcs_pdu_pkptr, "begin_tag", b_tag);
op_pk_nfd_set (cpcs_pdu_pkptr, “cpcs_pdu_payload", pkptr);
op_pk_nfd_set (cpcs_pdu_pkptr, “padding, pad);
op_pk_nfd_set (cpcs_pdu_pkptr, “end_tag*, e_tag);
op_pk_nfd_set (cpcs_pdu_pkptr, “length*, fddi_pk_size);

* Calculate the CPCS_PDU packet length */
cpcs_pdu_total_pk_size = (fddi_pk_size + pad + HEADER_SIZE + TRAILER_SIZE);
1* Determine segmeniation parameters */
* - Number of ATM packets */
num_of_atm_pks = ((cpcs_pdu_total_pk_size + SAR_PDU_PAYLOAD_SIZE - 1) / SAR_PDU_PAYLOAD_SIZE);
* - Number of useful octets in the last ATM packet */
last_pk_payload_size = (((cpcs_pdu_total_pk_size - 1) % SAR_PDU_PAYLOAD_SIZE) + 1);
/* handle cases of a single ATM message */
* NOTE that this is not a valid assumption for FDDI */
1* the minimum packet size of FDDI packets is 64 octets */
if (num_of_atm_pks == 1) {
1* Create SAR packet and set fields */
sar_pkptr = op_pk_create fmt ("sar_pdu");
set_sar_pk_fds_ssm (sar_pkptr, cpcs_pdu_pkptr, last_pk_payload_size);
1* form ATM packet and send it */
atm_pk_send (sar_pkptr);
}

* handle cases when more than one packet is to be sent */
if (num_of_atm_pks >= 2){
1* We need a new multiplexing identifier */
multiplex_id++;
* Create first SAR packet */
sar_pkptr = op_pk_create_fmt (*sar_pdu“);
set_sar_pk_fds(sar_pkptr, BOM, 0, multiplex_id, OPC_NIL, SAR_PDU_PAYLOAD_SIZE);
/* create first ATM packet and send it ¥/
atm_pk _send (sar_pkptr);
1* Create message 2 to (n-1) and send them *!
for (n = 1; n <(num_of_atm_pks - 1); n++){
* Create next SAR packet andset fields */
sar_pkptr = op_pk_create fmt ("sar_pdu");
set_sar_pk_fds(sar_pkptr, COM, n, multipiex_id, OPC_NIL, SAR_PDU_PAYLOAD_SIZE);
1* create ATM packet and send it */
amm_pk_send (sar_pkptr);
}
/* Create last SAR packet */
sar_pkptr = op_pk_create_fmt ("sar_pdu");
set_sar_pk_fds(sar_pkptr, EOM, (num_of_atm_pks - 1), multiplex_id, cpcs_pdu_pkptr, last_pk_payload_size);
1* create last ATM packet and send it */
atm_pk_send (sar_pkptr);




102

Process Model Report: btidge_aaia_Lproc

| Mon Mar 14 21:19:14 1994 | Page 10 of 14

transition segment -> idle

attribute value type default value
name tr_15 string tr

condition string

executive string

color RGB333 color RGB333
drawing style spline toggle spline
unforced state idle

attribute value type default value
name idle string st

enter execs (empty) textlist (empty)

exit execs {empty) textlist (empty)
status unforced toggle unforced
transition _idle -> segment

attribute value type default value
name tr_14 string tr

condition FDDI_ARRIVAL string

executive string

color RGB333 color RGB333
drawing style spline toggle spline
transition _Idle -> reasamble

attnibute value type default value
name tr_18 string tr

condition ATM_ARRIVAL string

executive string

color RGB333 color RGB333
drawing style spline toggle spline
transition _idle -> idle

attnbute value type default value
name tr_24 string tr

condition QUEUE_SIZE_GROWS string

executive max_q_size_fddi() string

color RGB333 color RGB333
drawing style spline toggle spline
transition__Idle -> stats

attribute value type default value
name tr_26 string tr

condition END_SIM string

executive string

color RGB333 color RGB333
drawing style spline toqgle spline




103

Process Modsl Report: bridge_aal3_4_proc

[ Mon Mar 14 21:19:14 1994 | Page 11 of 14

transition idle -> idle

attribute value type default value
name fr_28 string tr
condition default string
executive string
color RGB333 color RGB333
drawing style spline togale spline
orced state teasamble
attribute value type default value
name reasambie string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced
Lenter execs reasamble
1* Get received ATM packet */
pkptr = op_pk_get (ATM_IN_STRM);
/* Extract data field */
op_pk_nfd_get (pkptr, “data", &sar_pkptr);
5 | /* destroy the packet */
op_pk_destroy (pkptr);
* Get the message type of the received data *!
op_pk_nfd_get (sar_pkptr, “segment_type", &seg_type);
1* Check if it is a single message *!
10 | if (seg_type = SSM){
/* Restore encapsulated CPCS_PDU packet */
op_pk_nfd_get (sar_pkptr, “sar_pdu_payload®, &cpcs_pdu_pkptr);
op_pk_nfd_get (sar_pkptr, "length_indicator", &length_ind);
1* Destroy SAR-PDU payload to free memory */
15 op_pk_destroy (sar_pkptr);
* Calculate the length of the CPCS_PDU packet */
cpcs_pdu_total_pk_size = (length_ind * 8);
1* Get the value of the padding field to determine the length of the MAC frame */
op_pk_nfd_get (cpcs_pdu_pkptr, “padding”, &pad);
20 /* Restore the MAC frame */
op_pk_nfd_get (cpcs_pdu_pkptr, "cpcs_pdu_payload*, &payload_ptr);
/* Destroy the CPCS_PDU packet */
op_pk_destroy (cpcs_pdu_pkptr);
1* Calculate the length of the MAC frame *!
25 fddi_pk_size = (cpcs_pdu_total_pk_size - HEADER _SIZE - TRAILER_SIZE -pad);
/* Set the packet length of the MAC frame */
op_pk_total_size_set (payload_ptr, fddi_pk_size);
/* Send the restored packet to the FDDI */
op_pk_send (payload_ptr, FDDI_OUT_STRM);
30|}
* Check if it is the begin of a message */
if (seg_type = BOM){
/* Get information of segment */
35 op_pk_nfd_get (sar_pkptr, “multiplexing_id*, &mult_id);
op_pk_nfd_get (sar_pkptr, “sequence_number", &seq_number);
1* Check if there already is an entry in the list */
if((list_ptr=~find_pk(mult_id))}}=OPC_NIL){
1* Delete the old list ensry since there an error has occurred */




104

Process Model Report: bridge_aal3_4_proc

| Mon Mar 14 21:19:15 1994

| Page 120f 14

ave

45

S0

55

65

70

75

80

85

95

del_pk_from_list(list_ptr);
}
/* Make an entry in the list */
add_pk_to_list(mult_id, seq_number);
1* Destroy SAR-PDU payload to free memory */
op_pk_destroy (sar_pkptr);
}

* Check if it is the continuing of a message */
if (seg_type = COM){
op_pk_nfd_get (sar_pkptr, “multiplexing_id", &mult_id);
1* if the packet is not in the list discard segment */
if ((list_ptr = find_pk(mult_id)) == OPC_NIL){
if (op_prg_odb_ltrace_active(*1ist_test"))
printf("Could not find according packet -~ COM");
op_pk_destroy (sar_pkptr);
}
else{
1* The packet is in the list */
op_pk_nfd_get (sar_pkptr, "sequence_number", &seq_number);
* If not all previous segments were received discard segment */
if (list_ptr->last_seq_number != (seq_number - 1)){
if (op_prg_odb_ltrace active("list_test"))
printf(*Previous packet missing (COM) - discarded packet\n");
op_pk_destroy (sar_pkptr);

else({
/* Update the list ensry */
list_ptr->last_seq_number = seq_number;
if (op_prg_odb_ltrace_actlve(*1ist_test"))
printf(*COM set last seq_number = %d\n*, list_ptr->last_seq_number);
{* Destroy SAR-PDU payload (o free memory */
op_pk_destroy (sar_pkptr);

}

1* Check if it is the end of a message */
if (seg_type = EOM){
op_pk_nfd_get (sar_pkptr, “multiplexing_id", &mult_id);
I* if the packet is not in the list discard segment */
if ((list_ptr = find_pk(mult_id)) == OPC_NIL){
if (op_prg_odb_ltrace_active(*1ist_test"))
printf(“Could not find according packet - EOM\n");
op_pk_destroy (sar_pkpu);

else{
1* Packet is in the list */
op_pk_nfd_get (sar_pkptr, *sequence_number", &seq_number);
* If not all previous segments were received discard segment */
if (list_ptr->last_seq_number != (seq_number - 1)){
if (op_prg_odb_Itrace active(*list_test"))
prinf(*Previous packet missing (EOM) - discarded packet\n");
op_pk_destroy (sar_pkptr);

else(
I* Restore encapsulated CPCS_PDU packet */
op_pk_nfd_get (sar_pkptr, *sar_pdu_payload™, &cpcs_pdu_pkptr);
op_pk_nfd_get (sar_pkptr, “length_indicator*, &length_ind);




105

Process Model Report: bridge_aal3_4_proc ] Mon Mar 14 21:19:15 1994 [ Page 130f 14

s

100

105

110

115

120

125

130

135

140

1* Destroy SAR-PDU payload to free memory */

op_pk_destroy (sar_pkptr);

* Calculate the length of the CPCS_PDU packet */

cpes_pdu_total_pk_size = (((seq_number * SAR_PDU_PAYLOAD_SIZE) + length_ind) * 8);

/* Get the value of the padding field to determine the length of the MAC frame */

op_pk_nfd_get (cpcs_pdu_pkptr, “padding®, &pad);
1+ Calculate the length of the MAC frame *1
fddi_pk_size = (cpcs_pdu_total_pk_size - HEADER_SIZE - TRAILER_SIZE - pad);
/* Get the reported length of the CPCS_PDU payload field */
op_pk_nfd_get (sar_pkptr, "length", &cpcs_pdu_payload_size);
1* Check if the reported length matches the length of the reassembled frame */
if(fddi_pk_size != cpcs_pdu_payload_size){
/* Destroy wrongly reassembled CPCS_PDU */
op_pk_destroy (cpes_pdu_pkpir);

else{
1* Get the values of the begin and end tags */
op_pk_nfd_get (cpcs_pdu_pkptr, "begin_tag", &rcv_b_tag);
op_pk_nfd_get (cpcs_pdu_pkptr, *end_tag", &rcv_e_tag);
1* Chek if they are matching *!
if (rcv_b_tag !=rcv_e_tag){
/* Destroy the packet because they are not matching */
| op_pk_destroy (cpcs_pdu_pkpt);
else{
/* Restore the MAC frame */
op_pk_nfd_get (cpcs_pdu_pkptr, "cpes_pdu_payload", &payload_ptr);
1* Destroy the CPCS_PDU packet to free memory */
op_pk_destroy (cpcs_pdu_pkptr);
1* Calculate the length of the MAC frame */
fddi_pk_size = (cpcs_pdu_total_pk_size - HEADER_SIZE - TRAILER_SIZE -pad);
/* Set the packet length of the MAC frame */
op_pk_total_size_set (payload_ptr, fddi_pk_size);
/* Send the restored packet to the FDDI */
op_pk_send (payload_ptr, FDDI_OUT_STRM),

}

}
del_pk_from_list (list_ptr);

transition _reasamble -> idle

attribute value type default value
name tr_19 string tr

condition string

executive string

color RGB333 color RGB333
drawing style spline toggle spline
unforced state _stats

attribute value type default value
name stats string st




106

Process Mode! Report: bridge_aal3_4_proc [ Mon Mar 14 21:19:16 1994 | Page 14 of 14
enter execs {See below.) textlist (See below.)
exit execs {empty) textlist (empty)

status untorced togale unforced

enter execs stats

1* Check if statistic recording is enabled */
if (star_flag == OPC_TRUE){

1* Record final statistics */
op_stat_scalar_write("FODI Throughput {Mb/s} ", (op_stat local_read (BIT_THRUPUT_STAT) / 1000000));
5 op_stat_scalar_write("Mean Packet Delay at FDDI Node®,op_stat_local_read (MEAN_DELAY_STAT))

op_stat_scalar_write("Mean Queue Length at FDDI Node*,op_stat_local_read (MEAN_PKSIZE STAT));
op_stat_scalar_write("Maximum Queue Length at FDDI Node ", max_queue_length);
op_stat_scalar_write("Packet Throughput at FDDI Node®,op_stat_local_read (PK_THRUPUT_STAT));

op_stat_scalar_write("Utilization of FDDI to ATM Switch Line,op_stat_local_read (UTILIZATION_STAT))
10 |}




107

Process Model Report: bridge_aal5_proc [ Mon Mar 14 21:20:38 1994 | Page 1 of 7

ave

ae

Process Model Attributes

attribute value type default value

VPI_SET
STAT _ENABLE

promoted
promoted

integer 2
toggle disabled

Header Block

* packet stream definitions */
#define FDDI_IN_STRM
#deftne ATM_IN_STRM
#define FDDI_OUT_STRM
5 |#define ATM_OUT_STRM

-0 = O

1* Statistical inputs definition */
#define MEAN_DELAY_STAT
#deflne MEAN_PKSIZE_STAT
10 | #deflne QUEUE_LENGTH_STAT
#deflne PK_THRUPUT_STAT
#deflne UTILIZATION_STAT
#define BIT_THRUPUT_STAT

bW = O

15 | 1* Packet size definitions */

#define ATM_PK_SIZE
#define SAR_PDU_PAYLOAD_SIZE
#define CPCS_PDU_TRAILER _SIZE

424
48
8

20

* transition macros */

#define FDDI_ARRIVAL (op_intrpt_type ) = OPC_INTRPT_STRM &&\
op_intrpt_strm () == FDDI_IN_STRM)

#define ATM_ARRIVAL (op_intrpt_type () == OPC_INTRPT_STRM &&\
25° op_intrpt_strm () == ATM_IN_STRM)

#define QUEUE_SIZE_GROWS (op_intrpt_type () == OPC_INTRPT_STAT &&\
op_intrpt_stat () == QUEUE_LENGTH_STAT)

30 | #define END_SIM (op_intrpt_type () == OPC_INTRPT_ENDSIM)

| State Varlable Block
int \num_of_segments;
int \address;
Objid \module_id;
double \max_queue_length;
5 | Boolean \stat_flag;

Temporary Variable Block

Packet  *pkptr, *cpcs_pdu_pkptr, *payload_pkptr;
int fddi_total_pk_size;
int cpes_pdu_total_pk_size;
mnt num_of_atm_pks;
5 |imt n, 4, b;
int pad, pu;

void atm_pk_send(Packet*, int);




108

Process Model Report: bridge_sal5_proc

| Mon Mar 14 21:20:39 1994

| Page20f7

ave

10

void max_q_size_fddi O;
void record_stats_fddi ();

Fun

ction Block

10

15

20

30

35

45

i

lad atm_pk_send()

i
/* Function gets a pointer to a SAR-PDU

1* - encapsulate the SAR-PDU in a ATM packet
1* - sends the packet

!

void atm_pk_send (fkt_sar_pkptr, pti)
Packet  *fkt_sar_pkptr;
int pti;
{
Packet *atm_pkptr;

atm_pkptr = op_pk_create fmt(*atm_pk*);

1* copy SAR packet to ATM packet data field */

/* NOTE that for simulation purposes this is only */

1* neccessary for the last segment */

if (pti = 1){ ~

}

/* Set VPI field of the ATM packet */
op_pk_nfd_set (atm_pkptr, "VPI", address);

1* Set the PTI field of the ATM packet */
op_pk_nfd_set (atm_pkptr, “pt i®, pti);

1* Set total ATM packet size */

op_pk_total size_set(atm_pkptr, ATM_PK_SIZE);
/* Send packet to transmitter */
op_pk_send(atm_pkptr, ATM_OUT_STRM);

op_pk_nfd_set (atm_pkptr, "data®, fkt_sar_pkptr);

=%
!

* max_q_size fddi()

*

f
* This function dtermines the maximum queue of the ATM
/* transmiter channel length during the simulation run

*
*/

!
void max_q_size_fddi ()
double queue_length;

/* Read the new queue size */

queue_leagth = op_stat_local_read (QUEUE_LENGTH_STAT);

1% Check if it is a new maximum */
if (queue_length > max_queue_length)
max_queue_length = queue_length;




109

Process Model Report: bridge_aalS_proc

] Mon Mar 14 21:20:39 1994 | Page 30of 7

forced state init

attribute value type default value
name init string st
enter execs (See below.) textlist (See below.)
exit execs {empty) textlist (empty)
status forced 1ogqle unforced
| enter execs _init
r* Get module ID */
module_id = op_id_self();
1* Get VPI from process attributes */
op_ima_obj_attr_get (module_id, "vp1_sET", &address);
5 | /* Get the value of the statistics flag */
op_ima_obj_attr_get (module_id, "STAT_ENABLE", &stat_flag);
/* Initialize number of segments of partially received fddi packets */
num_of_segments = 0;
/* Initialize maximum queue size */
10 } max_queue_length =0;
transition _init -> idle
attribute value type default value
name tr_8 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline
forced state segment
attribute value type default value
name segment string st
enter execs (See below.) textlist (See below.)
exit execs {empty) textlist (empty)
status forced toggle unforced
gt_err execs segment
1* Get produced packet *!
pkptr = op_pk_get (FDDL_IN_STRM);
* Get the size of the packet */

10

15

fddi_total_pk_size = op_pk_total_size_get (pkptr),
* Change the total size to size in octets ¥/
fddi_total_pk_size = (fddi_total_pk_size / 8);
* Create CPCS_PDU packet ¥/
cpes_pdu_pkptr = op_pk_create_fmt (*cpcs_pdu_aal5");
* Determine the size of the padding field */
a = fddi_total_pk_size % SAR_PDU_PAYLOAD_SIZE;
b=SAR_PDU_PAYLOAD_SIZE - CPCS_PDU_TRAILER_SIZE;
if (a <= b){
pad=b-a;
}
else{
pad = SAR_PDU_PAYLOAD _SIZE - a + b;




110

Process Model Report: bridge_saal5_proc

[ Mon Mar 14 21:20:40 1994 [ Page 4 of 7

e

20

30

35

40

}
* Set the CPCS_PDU packet fields */

op_pk _nfd_set (cpcs_pdu_pkptr, "cpcs_pdu_payload*, pkpir);
op_pk_nfd_set (cpcs_pdu_pkptr, *padding", pad);
op_pk_nfd_set (cpcs_pdu_pkptr, "length*, fddi_total_pk_size);

cpes_pdu_total_pk_size = (fddi_total_pk_size + pad + CPCS_PDU_TRAILER_SIZE);

/* Determine number of ATM packets */
num_of_atm_pks = (cpcs_pdu_total_pk_size / SAR_PDU_PAYLOAD_SIZE);
* handle cases of a single ATM message */
1* NOTE that this is not a valid assumption for FDDI */
I* the minimum packet size of FDDI packets is 64 octets */
if (num_of_atm_pks =1) {
1* form ATM packet and send it */
atm_pk_send (cpcs_pdu_pkptr, 1);
}

/* handle cases when more than one packel is to be sent */
if (num_of_atm_pks >= 2){
1* Create message 1 to (n-1) and send them */
for (n = 1; n <= (num_of_atm_pks - 1); n++){
1* create ATM packet and send it */
am_pk_send (OPC_NIL, 0);
}
1* create last ATM packet and send it */

atm_pk_send (cpcs_pdu_pkptr, 1);

transition _seqgment -> idle

attribute value type default value
name “ tr_15 string tr

condition string

executive string

color RGB333 color RGB333
drawing style spline toggte spline
unforced state _Idle

attribute value type default value
name idle string st

enter execs (empty) textlist (empty)

exit execs (empty) textlist (empty)
status unforced toggle unforced
transition _ldle -> seqment

attrnibute value type default value
name fr_14 string tr

condition FDDI_ARRIVAL string

executive string

color RGB333 color RGB333
drawing style spline toqgle spline




111

Process Model Report: bridge_aal5_proc

I Mon Mar 14 21:20:40 1994 | Page 5 of 7

s

.

transition _idle -> reasamble

attribute value type default valug
name tr_18 string tr

condition ATM_ARRIVAL string

executive string

color RGB333 color RGB333
drawing style spline toggle spline
transition _idle -> idle

attribute value type default value
name tr_24 string tr

condition QUEUE_SIZE_GROWS string

executive max_q_size_fddi() string

color RGB333 color RGB333
drawing style spline toggle spline
transition__idle -> stats

attribute value typo default value
name tr_25 string tr

condition END_SIM string

executive string

color RGB333 color RGB333
drawing style spline toggle spline
transition _ldle -> idle

attribute value type default value
name tr_26 string tr

condition default string

executive string

color RGB333 color RGB333
drawing style spline toqgle spline
forced state _reasamble

attribute value type default value
name reasamble string st

enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toqgle unforced

 enter execs _teasamble
* Get received ATM packet *!

pkptr =op_pk_get (ATM_IN_STRM);
* Get the message type of the received data */
op_pk_nfd_get (pkptr, *pti*, &pti);

* Check if it is the begin or continuing of a message */
if (pi = 0){
1* Record reception and destroy ATM packet ¥/
oum_of_segments++;
10 op_pk_destroy (pkptr);
}




112

Process Model Report: bridge_sal5_proc [ Mon Mar 14 21:20:41 1994 | Page 60l 7

ave

15

20

30

35

else(

I* It is a single message or end of message *I

num_of_segments++;

/* Restore encapsulated CPCS_PDU packet and destroy ATM packet */

op_pk_nfd_get (pkptr, "data*, &cpes_pdu_pkptr);

op_pk_destroy (pkptr);

1* Get the CPCS_PDU parameters */

op_pk_nfd_get (cpcs_pdu_pkptr, “1length®, &fddi_total_pk_size);

op_pk_nfd_get (cpcs_pdu_pkptr, "padding”, &pad);

cpes_pdu_total_pk_size = (fddi_total_pk_size + pad + CPCS_PDU_TRAILER_SIZE);

1* Check if segments are lost or inserted */

if (cpcs_pdu_total_pk_size 1= (num_of_segments * SAR_PDU_PAYLOAD_SIZE)){
op_pk_destroy (cpcs_pdu_pkptr);
num_of_segments = 0;

else{
1* Restore encapsulated FDDI packet and destroy CPCS_PDU packet */
op_pk_nfd_get (cpcs_pdu_pkptr, “cpcs_pdu_payload®, &payload_pkptr);
op_pk_destroy (cpcs_pdu_pkptr);
1* Change length of fddi packet to size in bits */
fddi_total_pk_size = fddi_total_pk_size * §;
op_pk_total_size_set (payload_pkptr, fddi_total_pk_size);
7* Send the restored packet 1o the FDDI */
op_pk_send (payload_pkptr, FDDI_OUT_STRM);
1* Reset number of received segments ¥/
num_of_segments = 0;

transition reasamble -> idle

attribute value type default value
name tr_19 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toqqgle spline

| unforced state _stats
attribute value type default value
name stats string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status unforced togqgle unforced

enter execs Stails

1* Check if statistic recording is enabled */
if (stat_flag == OPC_TRUE){

/* Record final statistics */
op_stat_scalar_write(*FDDI Throughput (Mb/s)*,(op_stat_local_read (BIT_THRUPUT_STAT)/1000000));
op_stat_scalar_write("Mean Packet Delay at FDDI Node",op_stat_local_read (MEAN_DELAY_STAT));
op_stat_scalar_write(*Mean Queue Length at FDDI Node", op_stat_local_read (MEAN_PKSIZE_STAT));
op_stat_scalar_write(*Maximum Queue Length at FDDI Node®,max_queue_length);
op_stat_scalar_write(*Packet Throughput at FDDI Node®,op stat local_read (PK_THRUPUT_STAT))




113

Process Model Report: bridge_aal5_proc | Mon Mar 14 21:20:41 1994 | Page 7 of 7

101)

op_stat_scalar_write("Utilization of FDDI to ATM Switch Line®, op_stat_local_read (UfH.IZATION_STA'l“




114

Process Model Report: fddi_gen_vbr

[ Mon Mar 14 21:21:19 1994 | Page 10f8

Process Model Attributes

attribute value type default value
low dest address promoted integer -1
high dest address promoted integer -1
arrival rate promoted double 1.0 (pk/sec)
mean pk length promoted double 1,024 (bits)
async mix promoted double 0.5
dest_ring_id promoted integer 0
traffic_dist promoted string constant
idle_dist promoted string constant
idle_dist_arg promoted double 1.0
| busy dist promoted string constant
busy_dist_arg promoted double 1.0
vbr_gen_seed_] promoted integer 101
vbr_gen_seed_l! promoted integer 201
Header Block
#define MAC_LAYER_OUT_STREAM 0
1* defire possible service classes for frames */
#define FDDI_SVC_ASYNC 0
5 | #define FDDI_SVC_SYNC 1
* define token classes */
#define FDDI_TK_NONRESTRICTED ]
#define FDDY_TK_RESTRICTED 1
10
* Define transition macros */
#deflne NEXT_IDLE_PERIOD (op_intrpt_code() =2)
#define NEXT_BUSY_PERIOD (op_intrpt code() =1)
#deflne GENERATE_PACKET (op_intrpt_code() =0)
15
| State Variable Block
Distribution* \inter_dist_ptr;
Distribution* \len_dist_ptr;
Distribution* \dest_dist_ptr;
Distribution* \xt_busy_ptr;
5 | Distribution* \nxt_idle_ptr;
Objid \mac_objid;
Objid \my_id;
10 | Evhandle \pk_intrpt;
int \low_dest_addr;
int \high_dest_addr;
int \station_addr;
15 {int \ring_id;
int \dest_ring_id;
char \rraffic_dist[25];
char . \busy_dist[25];
20 | char \idle_dist[25);




115

Process Model Report: fddi_gen_vbr

| Mon Mar 14 21:21:19 1994 | Page 2 of 8

v

double \arrival_rate;
double \busy_dist_arg;
double \idle_dist_arg;

25 | double \mean_pk_len;
double \async_mix;
Lei* \mac_iciptr;

‘Temporary Variable Block

Packet *pkptr;
int pklen;
int dest_addr;
int i, restricted;

5 |imt seed_]I, seed_II;
void start_random_number(int, int);
double next_random_number();
double uniform_rand_val;

Function Block

10

15

20

30

35

1*

* Title: random_number

* LastMod: FriMar 1808:52:13 1988
* Author: Vincent Broman

* <broman@schroeder.nosc.mil>

*/
#define P 179

#define PM1 (P - 1)

#defineQ (P - 10)

#define STATE_SIZE 97

#define MANTISSA_SIZE 24

#define RANDOM_REALS 16777216.0
#define INIT_C 362436.0

#define INIT_CD 7654321.0

#define INIT_CM 16777213.0

static unsigned int ni;

static unsigned int nj;

static double u[STATE_SIZE);
static double ¢, cd, cm;

static unsigned int collapse (anyint, size)

int anyint;

unsigned int size;

,‘

* return a value between 0 and size-1 inclusive.

* this value will be anyint itself if possible,

* otherwise another value in the required interval.

*/

{
if (anyint < 0)

anyint = - (anyint / 2);

while (anyint >= size)




116

Process Model Report: fddi_gen_vbr | Mon Mar 14 21:21:15 1994 | Page 30f8

e

anyint /= 2;
return (anyint);

void start_random_number (seed_a, seed_b)

int seed_a;

int seed_b;

1*

45 | * This procedure initialises the state table u for a lagged

* Fibonacci sequence generator, filling it with random bits

* from a small multiplicative congruential sequence.

* The auxilliaries c, ni, and nj are also initialized.

* The seeds are transformed into an initial state in such a way that

50 | *identical results are guaranteed across a wide variety of machines.
*/

{
double s, bit;

unsigned int i, jj, kk, mm;
55 | unsigned int 11;

unsigned int sd;

unsigned int elt, bit_number;

sd = collapse (seed_a, PM1 * PM1);
60 ii=14+sd/PMI;
ji=1+sd % PMI;

sd = collapse (seed_b, PM1 * Q);
Xk =1 +sd/PMI;

ll=5d % Q;

65 Hhi—=1&&jj=1&&kk=1)
it=2;

ni = STATE_SIZE - 1;

nj=STATE_SIZE/3;

70 ¢ =INIT_C;

¢ /=RANDOM_REALS; I* compiler might mung the division itself */
cd = INIT_CD;

cd /= RANDOM_REALS;

cm = INIT_CM;

5 cm /= RANDOM_REALS;

for (elt =0; e < STATE_SIZE; elt +=1) {
s =0.0;
bit = 1.0 / RANDOM_REALS;
80 for (bit_number = 0; bit_number < MANTISSA_SIZE; bit_number +=1) {
mm = (((ii * jj) % P) * kk) % P;
ii = jj;
Ji = kk;
kk =mm;
85 N=(53*1+1)%Q;
if (((1! * mm) % 64) >=32)
s +=bit;
bit += bit;
}
90 ulelt] =s;




117

Process Model Report: fddi_gen_vbr

[ Mon Mar 14 21:21:20 1994 | Page 4 of 8

95

100

105

110

115

120

125

130

double next_random_number()
/t

* Return a uniformly distributed pseudo random number
*inthe range 0.0 .. 1.0-2%*(-24) inclusive.

* There are 2**24 possible return values.

* Side-effects the non-local variables: u, c, ni, nj.

*
double uni;

if (uni} < u[nj})

uni = u{ni] + (1.0 - u[nj]);
else

uni = u{ni] - u[nj};
u(ni} = uni;

if (ni > 0)
ni-=1;
else
ni = STATE_SIZE - 1;

if (nj>0)
nj-=1;
else

nj=STATE_SIZE - 1;

if (c <cd)
c=c+(cm - cd);
else
c=c¢-cd;

if (uni < ¢)

return (uni + (1.0 - ¢));
else

return (uni - ¢);

forced state INIT

attribute value type default vaiue

name INIT string st

enter execs (See below.) textlist (See below.)

exit execs (empty) textlist (empty)

status forced toggle unforced
enter execs INIT

10

1* determine id of own processor lo use in finding attrs */
my_id = op_id_self ();

/* Set up the seed for the random number generator */

op_ima_obj_attr_get (my_id, *vbr_gen_seed_I", &seed_T);
op_ima_obj_attr_get (my_id, "vbr_gen_seed_II", &seed_lI);

/* Initialize Marsaglia's random number generator */
start_random_number(seed_I, seed_IT);

r* determine address range for uniform destination assignment */




118

Process Model Report: fddi_gen_vbr | Mon Mar 14 21:21:20 1994 | Page 5of 8

ave

op_ima_obj_attr_get (my_id, "low dest address", &low_dest_addr);
op_ima_cbj_attr_get (my_id, "high dest address*, &high_dest_addr);

1* determine object id of connected ’mac’ layer process */
15 | mac_objid = op_topo_assoc (my_id, OPC_TOPO_ASSOC_OUT,
OPC_OBJMTYPE_MODULE, MAC_LAYER_OUT_STREAM);

/* determine the station and ring address assigned to it */

* which are also the addresses of this station */

20 | op_ima_obj_attr_get (mac_objid, "station_address*, &station_addr);
op_ima_obj_attr_get (mac_objid, *ring_id*, &ring_id);

1* setup a distribution for generation of addresses */
dest_dist_ptr = op_dist_load (*uniform_int*, low_dest_addr,
25 high_dest_addr);

1% determine the ring identification of the destination */
op_tma_obj_attr_get (my_id, "dest_ring_id", &dest_ring_id);

30 | 7* also determine the arrival rate for packet generation */
op_ima_obj_attr_get (my_id, *arrival rate*, &arrival_rate);

1* also determine the traffic distribution function */
op_ima_obj_attr_get (my_id, “craffic_dist*,traffic_dist);
35
* determine the mix of asynchronous and synchronous *!

/* traffic. This is expressed as the proportion of */

* asynchronous traffic. i.e a value of 1.0 indicates */

1* that all the produced traffic shall be asyachronous. */

40 | op_Ilma_ob)_attr_get (my_id, *async_mix", &async_mix);

1* set up a distribution for arrival generations */
if (arrival_rate = 0.0)
{
45 1* arrivals are distributed, with given mean */
inter_dist_ptr = op_dist_load (traffic_dist, 1.0 / arrival_rate, 0.0);

/* determine the distribution for packet size */
op_ima_objJ_attr_get (my_id, "mean pk length",&mean_pk_len);
50

1* set up corresp _illllgdl.Ju'L ion */
len_dist_ptr = op_dist_load (*constant™, mean_pk_len, 0.0);

1* Get the distribution parameters for the busy period from the process attributes */
55 op_ima_obj_attr_get (my_id, "busy_dist", busy_dist);
op_ima_obj_attr_get (my_id, "busy_dist_arg", &busy_dist_arg);

1* Load the distribution of the busy periods */
nxt_busy_ptr = op_dist_load (busy_dist, busy_dist_arg, 0.0);

60
1* Get the distribution parameters for the idle period from the process attributes */
op_ima_ob)_attr_get (my_id, “idle_dist",idle_dist);
op_ima_obj_attr_get (my_id, "idle_dist_arg", &idle_dist_arg);

65 /* Load the distribution of the idle periods */

nxt_idle_ptr = op_dist_load (idle_dist, idle_dist_arg, 0.0);

1* set up an interface control information (ICI) structure */
1* to communicate parameters (o the mac layer process */




119

Process Model Report: fddi_gen_vbr

| Mon Mar 14 21:21:21 1994 | Page 60f 8

70

1* (itis more efficient to set one up now and keep it */
/* as a state variable than to allocate one on each packet xfer) */
mac_iciptr = op_fcl_create (*fddi_mac_req_II");

transition INIT -> idle

attribute value type default value
name tr_10 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline
| _unforced state _busy
attribute value type default value
name busy string st
enter execs (See below.) textlist (Ses below.)
exit execs (See below.) textlist (See below.)
status unforced toggle unforced
enter execs busy
1* Get a random number (value is in the zero-one interval) */
uniform_rand_val = next_random_number();
1* Schedule interrupt 10 generate packet */
pk_intrpt = op_{ntrpt_schedule_self (op_sim_time() + op_dist_outcome_ext (inter_dist_ptr, uniform_rand_val), 0);
5
| exit execs busy
if (op_intrpt_code() == 0){
/* Get a random number(value is in the zero-one interval) */
uniform_rand_val = next_random_number();
1* determine the length of the packet to be generated */
5 pklen = op_dist_outcome_ext (len_dist_ptr, uniform_rand_val);
1* determine the destination */
1* dont allow this station' s address as a possible outcome */
gen_packet:
10 {* Get a random number(value is in the zero-one interval) */
uniform_rand_val = next_random_number();
dest_addr = op_dist_outcome_ext (dest_dist_ptr, uniform_rand_val);
if ((dest_addr !=-1) && (dest_addr == station_addr) && (dest_ring_id == ring_id))
goto gen_packet;
15
I* create a packet to send to mac */
pkpir =op_pk_create fmt (fddi_llc_fr");
/* assign its overall size. */
20 op_pk_total_size_set (pkptr, pklen),
1* assign the time of creation */
op_pk_nfd_set (pkptr, *cr_time", op_sim_time 0);




120

Process Model Report: fddi_gen_vbr

[ Mon Mar 14 21:21:21 1994 | Page 7 of 8

30

35

40

45

}
50 | else

/¥ place the destination address and the destination ring */

1* identification into the ICI *{

1* (the protocol_type field will default) */

op_ici_attr_set (mac_iciptr, “dest_addr*, dest_addr);
op_ici_attr_set (mac_iciptr, “dest_ring_id*, dest_ring_id);

* assign the priority, and requested token class */

/* also assign the service class */

if (op_dist_uniform (1.0) <= async_mix)
{
op_ici_attr_set (mac_iciptr, *svc_class”, FDDI_SVC_ASYNC);
}

else{
op_ici_attr_set (mac_iciptr, *svc_class*, FDDI_SVC_SYNC);
}

/* Request only nonrestricted tokens after transmission */
op_lci_attr_set (mac_iciptr, *tk_class*, FDDI_TK_NONRESTRICTED);

op_lci_attr_set (mac_iciptr, *pri*, 0);
1* send the packet coupled with the ICI */

op_ici_instalt (mac_iciptr);
op_pk_send (pkpr, MAC_LAYER_OUT_STREAM);

op_ev_cancel(pk_intrpt);

transition _busy -> busy

| attnibute value type default value
name string tr
condition GENERATE_PACKET string
executive string
color RGB333 color RGB333
drawing style spline toggle spline
transition _busy -> Idle
attribute value type default value
name tr_12 string tr
condition NEXT_IDLE_PERIOD string
executive string
color RGB333 color RGB333
drawing style spline toqale spline
|_unforced state idle
attribute value type default value
name idle string st
enter execs (See below.) textlist (See below.)
exit execs (See below.) textlist (See below.)
status unforced toggle unforced




121

| Mon Mar 14 21:21:21 1994 | Page 8 of 8

Process Model Report. fddi_gen_vbr

enter execs ldle

I* Schedule next busy period if packets are to be generated *!

if (arrival_rate != 0.0){
/* Get a random number(value is in the zero-one interval) */
uniform_rand_val = next_random_aumber();

5 /* Schedule next busy period *!

op_intrpt_schedule_self (op_sim_time() + op_dist_outcome_ext (nxt_busy_ptr, uniform_rand_val), 1);

exit execs_Idle
I* Get a random number{value is in the zero-one interval) */
uniform_rand_val = next_random_number();
1* Schedule next idle period */

op_intrpt_schedule self (op_sim_time() + op_dist_outcome_ext (nxt_idle_ptr, uniform_rand_val), 2);

transition _idle -> busy

attribute value type default value
name tr_11 string tr

condition NEXT_BUSY_PERIOD string

executive string

color RGB333 color RGB333
drawing stvle spline toggle spline




122

APPENDIX C. DESCRIPTION OF THE OPNET FDDI EXAMPLE
MODEL



123

OPNET Example Models Manual FDD!I Model Description

FDDIL0 Background / Operational Description

The content of this chapter and the OPNET model that it describes are primarily
based upon the American National Standard for Information Systems Specification
X3.139-1987- Fiber Distributed Daza Interface Token Ring Media Access Conzrol.
This document can be obtained from:

American National Standards Insttute, Inc. )
4
1430 Broadway New York, NY 10018 J

The Fiber Distributed Data Interface (FDDI) provides general purpose network-

ing at 100 Mbits/sec transmission rates for large numbers of communicating stations

. configured in a ring topology. Use of ring bandwidth is controlled through a timed

token rotation protocol, wherein stations must receive a token and meet with a set

of iming and priority criteria before transmitting frames. In order to accommodate

network applications in which response times are critical, FDDI provides for deter-

ministic availability of ring bandwidth by defining a synchronous transmission ser-

vice. Asynchronous frame transmission requests dynamically share the remaining
ring bandwidth.

A key parameter of the FDDI media access protocol is the Target Token Rotation
Time (TTRT). The YTRT is a parameter which is in effect, global to all stations on the
ring since its value is agreed upon by all stations at ring initialization. The TTAT is
the exoiration value for a Token Rotation Timer (TRT), which is maintained by each
stat:_ =. This timer holds the time since the token was last caprured by a station
(modulo TTRT). Expiration of TRT causes a station to increment a state variable
called Late_ct, which indicates if the token’s arrival has exceeded TTRT. Stations
that capture a token and have a non-zero Late_ct may use the token only for syn-
chronous transmissions. Late_Ct is reset to zero when a token is captured. This pro-
tocol limits to TTRT the total amount of asynchronous transmission by all stations
during a full rotation of the token. The total synchronous bandwidth allocated o all
stations in the ring is also required to be less than TTRT. The maximum time for a
full token rotation is therefore twice TTRT and if the ring is operating properly,
Late_ct should not exceed one. Stations requiring a maximum response time
T_max should choose a TTRT of at most T_max/2.

Each starion maintains a Token Holding Timer (THT), which limits asynchronous
transmission while still allowing TRT to progress independently. THT contains the
value of TRT when asynchronous frame transmission begins and is enabled during
the transmission of each asynchronous frame. The difference between the value of
THT and TTRT represents the amount of asynchronous transmission stll available to
the station. When THT expires (i.e., reaches TTRT), the asynchronous transmission in
progress (if any) is allowed to complete. The time for which ransmission occurs be-
yond the expiration of THT is called the residual ransmission time. The residual
transmission time is always less than the maximum frame transmission time.

MiL 3, Inc. FDDI-3 Reisase 2.4



124

OPNET Example Models Manual FDD/ Model Description

FDDI also allows priorities to be associated with frames queued for transmis-
sion. The priorities are defined in terms of threshold values for THT. Frames whose
thresholds are exceeded by THT are withheld from transmission. By assigning lower
threshold values to a frame, its transmission is more likely to be blocked, thus free-
ing bandwidth for stations with higher priority requests.

In order to support bursts of high volume and continuous traffic on the ring,
FDDI supports a restricted mode in which a specially marked token is monopolized
by two stations that reserve all asynchronous bandwidth on the ring until they again
release a non-restricted token. During this time, however, other stations are allowed
to use the restricted token for transmission of synchronous frames.

The diagram below illustrates some of the important elements contained in the
FDDI-MAC entity, as well as the basic context in which it operates.

FDDI MAC Operational Context
e
MAC Timers and Variables |-. T L_’
OHT ] (TP ] [ mac | SMT |
ITRT l IT_OPf ' , —
[Late. ot | [ymc.bancwah | |~ _4 1
PHY

Most of the elements shown within the MAC have already been discussed. T_Opr
simply represents the operative value of the TTRT, which is agreed upon at ring ini-
tialization. All stations must have the same value of T_Opr for the ring to operate
properly. T_Pri represents an armay of THT thresholds used to establish priority class-
¢s as mentioned above. This array maps integer priority levels into thresholds which
are compared with the value of THT before transmitting asynchronous frames. syn-
c_bandwidth represents the synchronous bandwidth allocaton for the statdor, nor-
malized to TTRT.

The diagram also illustrates MAC’s relationship with some of the surrounding
entities. MAC receives frames from LLC, which are intended for wransmission to a
peer LLC entity. These frames are transmitted via PHY in accordance with the rules
outlined above. MAC delivers frames received from PHY, and destined for this sta-
tion, to LLC. The station management entity, SMT, is a supérvisory entity that con-
trols and monitors LLC, MAC, and PHY. Each transfer of data across entity interfaces
is coupled with the specification of control information that is fully described in the

standard.

MIL 3, Inc. FDDI-4 Release 2.4



125

OPNET Exampie Models Manua/ FDDI Modei Description

FDDL1  Model Scope and Limitations

The previous section briefly described the basic mechanisms and operational
context of the FDDI MAC entity. This section discusses the implementation choices
made in constructing an OPNET model of MAC. Because the model is intended for
the purpose of simulation, and particularly for performance estimation, cerain parts
of the protocol have been simplified or omitted. It is important to understand which
mechanisms are modeled in order to gauge whether the model is applicable for a
particular simulation study.

The first restriction is that the ring initialization and recovery processes are not
modeled explicitly. While the model could be extended to address these areas (it is
provided in source code form), its primary usefulness is in obtaining measurements
of steady state performance. The initial alignment of station timers and bidding pro-
cess by which all MAC entities negotiate the TTRT is performed in an essentially stat-
ic manner, as shall be seen in the detailed description of the models below. This also
applies to the distribution of synchronous transmission bandwidth.

A second restriction has to do with the modeling of error conditions and in gen-
eral, the role of the SMT entity. In its current form, the model makes no aempt to
implement the mechanisms related to the detection of damaged frames, or the re-
porting of errors to SMT. The interface between MAC and SMT is, in fact, not presently
incorporated into the implementation of MAC.

The FDDI model incorporates a simulation acceleration feawre for modeling
the passing of the token from station to station. When the ring experiences an idle
period with no transmissions, the token may be passed many times in a very short
period, thus generating many simulation events and consuming large amounts of
real ime while producing data that is of little interest. In order to jump over these
periods, a procedure is employed whereby MAC modules register their interest in us-
ing the token and also yield the token through a centrally managed set of variables.
When an idle period is encountered, token passing is blocked. It is later re-injected
into the ring as soon as a station again has a need for it.

The model does incorporate the interfaces between MAC and LLC, as well as
those between PHY and MAC. These are described in the next section entided Model
Interfaces. In addition, the primary data transfer features of FDDI are modeled ex-
plicity, including synchronous and asynchronous transmission, definable priority
levels for asynchronous frames, and restricted tokens. The effects of station latency
and propagation delay are also incorporated into the model. The parameters that
may be easily controlled by the user, without having to modify the internals of any
of the provided models include:

» the number of stations attached to the ring
e synchronous bandwidth allocation at each station

* requested value of the TIRT by each station (T_Req)

MiL 3, Inc. FDDI-5 Release 2.4



126

OPNET Example Modeis Manual FDD! Mode! Description

e the address of the station that launches the token as the simulation
begins

¢ the delay incurred by frames and tokens as they traverse a station’s ring
interface '

* the propagation delay separating stations on the ring

* the rate of exponendally distributed frame generation at each station
and the size of generated frames

* the mix of asynchronous and synchronous traffic generated at each
station

¢ the range of destunation addresses for the frames generated at each
station

Implicit in the parameters listed above is one other simplification made by the
model: the station latency and inter-station propagation delay are assumed to be
uniformn across the ring. This is primarily done to conveniently support the simuia-
ton acceleration option described later.

FDDI2 Model Interfaces

There are simple requirements for the connection of MAC to PHY and LLC. These
have to do with the physical port numbers, which in OPNET are called stream in-
dices, to which the packet streams attach. The £aai_mac process model expects ©
attach to the PHY entity via input and output stream 0, and expects to attach to the
LLC entity via input and output stream 1. This is illustrated in the following diagram:

MiIL 3, Inc. FDDI-6 Release 2.4



127

OPNET Exampie Models Manual . FDDI Model Description
MAC Physical Interfaces
input and output streams 1 : o
j - phy_tx
[ =l
llc_sxce mac phy_=x
D - . input and output streams 0
llc_sink :

MAC is not concerned with the format of frames transferred to it by LLC, since it
simply encapsulates these packets into MAC frames before sending them into the
ring. Similarly, it decapsulates these frames from the MAC frames that it receives
from PHY before forwarding them to the LLC. For the purposes of the example mod-
el described later in section FDDI .4, a packet format called “fadi_1lc_ gz« is used
for the frames generated by LLC. However, frames of any other format could be sent
to the MAC. It is important to note that the processor module mac does not enforce
the frame size limitations specified in the standard, and that it is the responsibility
of the higher level models to generate requests that will result in conformant MAC

frame sizes.

FDDL3 Model Internal Structure

This section describes the internal structure of the MAC entity, represented by the
processor module mac as shown above. The interface is essentially dictated by the
process model £ad4_mac, which resides in the processor module mac and forms the
core element of the FDDJ example model. faai_mac will be described in this sec-
tion, beginning with the indication primitives and interrupt definitions, and then the
State Transition Diagram (STD) and each of the states will be discussed.

FDDL3.0 Indication Primitives and Interrupt Definitions

The transfer of frames to and from the MAC entity are the only primitives defined
in this model. The following indication primitives described in the specification
need not be explicitly modeled since other mechanisms provided by OPNET oper-
ate in an equivalent manner, or they are not part of the scope of the example model:

MIL 3, Inc: FODI-7 Release 2.4



128

OPNET Exampie Models Manual FDD! Model Description

MA_UNITDATA.indication X
This primitive corresponds to the notification to LLC

of a frame arrival, which has been determined by MAC
to be addressed for this station. In OPNET, this mech-
anism is replaced by a stream interrupt, Which is deliv-
ered to the LLC when MAC forwards a packet on the
packet stream that connects them.

MA_UNITDATA_STATUS.indication
This primitive is used by MAC to report the status of a
frame transmission request to the LLC. In this exam-
ple model, there is no implementation of mechanisms
related to failure on the part of any component to per-
form its specified service, so the LLC can assume that
its service requests are satisfied by MAC.

PH_UNITDATA_STATUS.indication,
PH_UNITDATA.indication
' These primitives correspond to the notification to MAC

by PHY of the decoding symbol arriving from the
physical media, and by MAC to PHY of the transfer of a
symbol. In this model, all transactions between MAC
and PHY are treated with a frame by frame granularity.
To do otherwise would be prohibitive in terms of sim-
ulation performance.

The primitives that are modeled are:

MA_UNITDATA.request
This primitive corresponds to submission by LLC w©
MAC of data to be transmitted to a peer LLC entity.
While several Service Data Units (SOU’s) may be
grouped into a single invocation of this primitive, in
this example model, 2 stream interrupt will be associat-
ed with the transfer of each frame between the LLC
and the MAC. Conwrol information associated with
each transfer of an SOU is also provided by this prim-
iive. In this example model, the control fields are
packaged into an OPNET interface Control information
(tei) structure whose format is £a41_mac_req. The at-
tributes present in this format are =svc_class®,
*dest_addr®, "pri®, and "tk_class~. The integer
anribute "sve_class® represents the class of service
requested for the frame transmission and a value of 0
corresponds to asynchronous transmission while a

MIL 3, Inc. FDDI-8 Releas2 2.4



129

OPNET Exampie Modeis Manua/ FDD! Model Descriptron

value of 1 corresponds to synchronous transmission.
The integer auribute =dest_addr=~ specifies the des-
tnation address for the recipient(s) of the frame. The
=pri~ auribute is the priority class of the frame and is
only meaningful for asynchronous transmission re-
quests. It is used as the key into the T_Pr4 array to ob-
tain THT thresholds that may cause the transmission of
the frame to be deferred. Finally, the integer antribute
*tk_class® can be used to indicate that a restricted
token should be issued by MAC afier processing of the
request. A value of 0 indicates a non-restricted token,
while a value of 1 indicates a restricted token should
be issued. This attribute is meaningful only for asyn-
chronous transmissions.

MA_UNITDATA.indication

This primitive corresponds to transfer of data from
MAC to LLC. It occurs when MAC has captured a frame
that is addressed for the local station. In the model,
this event is implemented via a stream interrupt that oc-
curs when MAC sends a packet to LLC over the packet
stream that connects them. In addition to the delivery
of the actal data in the form of an OPNET packet,
there are control fields associated with this event. As
in the case of the transfer from the LLC to the MAC,
these fields are grouped into an ki strucmre. This i
structure abides by the format £441i_mac_ind. The at-
ributes contained in this format are two integers
named *src_addr® and "dest_addr®, which repre-
sent the addresses of the originating and receiving sta-
tons, respectively.

FDDI.3.1 Process STD and State Definitions

The process model £a41i_mac is specified by a State Transition Diagram (STD)
that manages the timers and state variables associated with a single MAC entity. The
responsibilities of the £441_mac process include forming MAC frames that encapsu-
late data received from LLC, repeating frames destined for other stations, decapsu-
lating data from frames destined for this station and passing this data to LLC,
stripping frames originated by this station, maintaining THT and TRT timers, deter-
mining token usability, and transmitting MAC frames into the ring according to the
rules defined in the FDDI MAC specification.

The £ad44_mac process must execute within a queue module and be connected

to lower and higher layer entities as described in the fadi_station example node
model later in this chapter. £444_mac uses a single subqueue of the queue module

MIL 3, Inc. .

FDDI-9 Release 2.4



130

OPNET Example Modeis Manual FDD! Mode! Description

in which it is located to hold frames that are waiting to become eligible for trans-
mission. The actions and resources defined in £adi_mac are fully specified in the
process model code, which can be viewed from the opnet Process Editor. The code
found in these listings is lined with extensive comments so that in most cases, it
should be self-explanatory. The STD is shown below, followed by 2 discussion of
each state.

fddi_mac Process Model State Diagram

CLAIM state

This is the initial state of the process model and is entered upon receipt of a begin
simulation interrupt which is delivered by the Simulation Kemel when the simulation
starts, Its primary purpose is to emulate the negotiation that takes place in an FDDI
ring with regard to the value of TTRT. All £841_mac processes in the ring can com-
pare their requested value of TTRT, T_Req, by means of a global variable raai_r_o-
pz, which holds the lowest value yet requested. After the last station exits the cra™
state, Padi_7_opr has become the operative value of TTRY, which is then used to
regulate the use of bandwidth in the ring. A semaphore represented by the variable
Padi_Claim_start is used so that the first station to enter the cLaDs state will au-
tomatically place its T_Req in Padi_T_opr without performing a comparison, since
at this early stage ¥dai_t_opr has no defined value. Each process also requests that
it again be interrupted after the claim phase has completed so that further initializa-
tions, which may be dependent upon the final selected value of TTRT, can be per-
formed. After exiting the CLAIM state, the £44i mac process always transfers
control to the INTT state upon receiving its next interrupt.

MIL 3, Inc. FDDI-10 Release 2.4



131

OPNET Exampile Modeis Manua/ FDDI Mode! Description

INIT state

This state is entered by every £adi_mac process after the compledan of the
claim phase. These is no delay in simulated time since the last acton in the cLam
state is to request a seHf intesrupt for the process with zero time delay. However, this
mechanism guarantees that all processes have executed their CLATM state before any
process enters its INIT state. All actions of the INIT state are held within its enter
executives. INIT is not reenwant because its actions are all related to initalization
and need not be performed more than once. Most of the actions performed in rnzT
have to do with assignment of values to state and global simulation variables. These
include the station latency rddi_st_ratescy, the inter-station propagation delay
rdai_prop_Delay, the combined inter-station delay Padi_Tx_Eop_Delay, and
the priority table padi_r_pri.

The process model also defines a timer object in the header block and a series
of procedures for manipulating and querying timers. In INI? two such timers are
created for THT and TRT. The TRT timer is initialized to expire one TTRT period later,
and a self interrupt is set to occur at that time. Throughout the process model, when-
ever TRT is set, a corresponding se!f interrupt is requested, so that at the time of ex-
piration, the Late_ct variable can be incremented. Also note that when the seif
Interrupt is requested, an event handle is obtained and placed in the state variable
TRT_handle, SO that, if an early token is captured, the request can be repealed. and
a new one issued. The Late_ct variable is reset and the state variable restricted
is set to 0, since the station is not at this point in a restricted mode.

In INIT, £44i_mac also acquires knowledge of its own station’s address and
places this value in the state variable my_adaress. An lei is created which abides
by the format “faai_mac_to_llc" defined via the Parameter Editor. This ki is
stored in the state variable to_lle_ici_ptr, and is used to specify control infor-
mation fields when delivering service data units to the LLC. The taai_mac registers
itself in a global table that maps station addresses to process object ID’s. This table
is used by an acceleration mechanism that bypasses idle periods to avoiding letting
the token freely circulate and generate a large number of events. Also associated
with this mechanism is the tk_registered variable which indicates if this station
has registered its desire to make use of the token should it become available. This
acceleration mechanism is only used if the global simulation variable acceler-
ate_tokan is set to 1; this is normally done in an external environment file supplied
to the simulation upon execution. The assignment of this atmribute is placed in the
global variable radi_Tx_accelerate. The sync_bandwidth state variable, which
represents the synchronous bandwidth usable on each token capture (normalized to
TTRT), is initalized. Note that there is no logic in place to verify that the sum of
these assignments for all stations does not exceed one.

The final statements of IXT? have to do with the initial generation of a token
for the ring. A single station in the ring is designated as the spawning station, which
has the responsibility of crearing an OPNET packet representing the token and re-
leasing it into the ring. The address of this station is specified in the global simula-
tion atribute *spawn statien~. The value of this amribute is loaded into the
variable spawn_station so that it can be compared t0 my_sddress. If 2 march oc-

MIL 3, Inc. FDDI-11 Reloase 2.4



132

OPNET Example Models Manual FDD! Mode! Description

curs, a token is created with the format fadi_mac_tx. and its fields are initalized.
Also, in case of a maich, the variable spawn_token is set to 1. This will cause a tran-
sition to the 13SUB_TX state after completing the actions of INIT where the token
will be sentinto the ring. For other stations, where a match does not occur, the next
transition will be to the pLE state instead. The last action of INIT resets the value
of the accum_bandwidth variable, which keeps track of the total amount of band-
width scheduled for ransmission since a token was captured. This value is used to
schedule packet transmissions so that they will occur with the proper delays. In the
case of the initial ransmission of the token, there is no delay due to other transmis-
sions.

ISSUE_TK state

This state is entered whenever £441_mac needs to issue a token. Its primary ac-
tion is therefore to forward the OPNET packet that represents the token (held in the
variable tx_pkptr) with the proper delay, which reflects the accumulated band-
width consumed by previous frame transmissions, and the propagation delay which
the token will experience as it travels to the next down-stream neighbor. In addition,
13sux_7XK checks for the special condition whereby the station is releasing the token
without having performed any frame transmissions, and the station has no data to
transmit. If this condition is met, the procedure &/di_tk_indicate_no_dsta() is called.
This procedure is defined in the function block, and checks for the condition where
all statons on the ring have no data to transmit. If any station has data to transmit,
the token will be forwarded normally, otherwise the token will be blocked until a
station registers its intent to use it. This mechanism provides significant improve-
ments in simulation efficiency, particularly in simulations where the network traffic
is well below network capacity. After executing the stalements in the 1SSUE_TK
state, £adi_mac always transitions to the IDLE state.

IDLE state

This state is the branching point for event processing in the steady state opera-
tion of £44i_mac. The interrupts to which the process will respond while in the
IDLE stale are stream interrupts signaling the arrival of service data units from LLC,
stream interrupts  signaling the arrival of frames or tokens from PHY, self interrupts
representing the expiration of THT, and remote interrupts requesting that a token be
generated and inserted into the ring. Upon receiving any of these interrupts,
taai_mac executes the code present in the exit executves of the IDLE state. This
code prepares variables used on the transition conditions, and handles the case of a
remote interrupt. All other interrupt types are processed by leaving rpre and going
to the appropriate destination state. In the case of a stream interrupt, zpLE distinguish-
es between arrivals from PHY and amrivals from LLC, and sets the variable ph-
y_arrival accordingly. In addition, in the case of stream interrupts from PHY, IDLE
sets the variable £rame_control to indicate if a token or a frame has arrived. If a
remote interrupt is trapped, the event corresponds to a re-inroduction of the token

MIL 3, Inc.' FDDI-12 Release 2.4



133

OPNET Exampie Modeis Manual FDD! Mode! Description

into the ring after an idle period where no stations had data to transmit. During such
periods, if the token acceleration mechanism is enabled, the token transfers between
stations are not modeled explicitly in order to economize simulation events. Once a
station registers interest in using the token again (i.., it produces data for transmis-
sion), the token acceleration mechanism computes the station at which the token
would be present, based on the token hop delay, and the duration of the idle interval.
This station is notified via a remote interrupt that it should generate a new token and
send it into the ring.

TRT_EXP state

This state is entered when £44i_mac receives a self interrupt indicating that the
TRT timer has expired. At this point, the timer is reset to expire one TTRT into the
furure and a corresponding setf interrupt is requested. Also, the Late_ct variable is
incremented to indicate the lateness of the token. After completing the enter exec-
utives of this state, £ad44_mac retums 1o the IDLE state where it waits for the next

interrupt.

ENCAP state

This state is entered when £ad4_mac receives a Service Data Unit (SDU) from
LLc. This event is delivered in the form of a stream interrupt on the port arriving from
LLC, as described in the Model Interfaces section of this chapter. The primary ac-
tons of this state are to acquire the arriving data and associated control information
and to use these to create a MAC frame suitable for transmission to a peer MAC entity
via PHY. The resulting MAC frame is enqueued until a later time when it becomes
eligible for ransmission in the TX_DATA state.

The first actions implemented in this state serve to obtain the OPNET packet
and ici that represent the service data unit, and the control fields that comprise the
frame transmission request. These are placed in the variables pdu_ptr, and
iei_ptr, respectively. The following statements extract the contol information
fields that specify service class (asynchronous or synchronous), destination address,
and for asynchronous frames, priority class and the class of the token that will be
issued after transmission (restricted or non-restricted). These values are placed in
the variables sve_class, dest_addr, req pri, and req tk_class, respective-
ly.

The passed SDU and the control information are used to form 2 MAC frame that
is held in the variable mac_frame_ptr. The ficlds of the frame, as defined in the
packet format “£441_mac_gr* are assigned. The SDU that is to be communicated to
an LLC in a remote station is encapsulated in the =info" field of the new frame. For
asynchronous requests, the requested token class and priority fields are also as-
signed. The frame contol field »£e* is set so that other stations will recognize the
arriving packet as a frame rather than a token, and finally the frame is inserted into
the fifo which queues transmission requests.

MIL 3, Inc. . FDDI-13 RAelease 2.4



134

OPNET Example Models Manua/ FDD! Mode! Description

The remaining actions of the ENCAP state are related to the token acceleration
mechanism mentioned earlier. In this mechanism, stations that wish (o use the token
register their need by calling the procedure fddi_tk_register(), which is defined in
the function block. A station must call this procedure as it transitions from having
no data to send to having data to send. There is no need however for a station to reg-
ister if it is currently regisiered. The state variable tk_registered is used to pre-
vent unnecessary registratons. If the token is currently blocked when
fddi_tk_register() is called, it will be reinserted into the ring at the appropriate loca-
ton so that transmission requests may be serviced.

RCV_TK state

This state is entered by £441_mac upon receipt of a token from PHY. This event
corresponds to a stream interrupt from PHY, and subsequent acquisition of a packet
with the proper frame control field. These conditions are represented by the Tx_re-
CEIVED transition conditional that departs from the xpLE state.

The first actions taken in this state obtain the class of the token (restricted or
non-restricted), and in the case of a restricted token, the address of the station for
which the token is usable is also extracted. A variable, tx_usable, which indicates
at the end of the Rev_TK state executives, whether the token may be used by this
station, is initially set to 0.

A series of conditions are tested in order to determine if the token can be con-
sidered usable. The first condition is that there must be at least one frame enqueued
for transmission. If the first frame enqueued (the one at the head of the queue) is
synchronous, then the token is necessarily usable and no further criteria need be
met If instead the frame is asynchronous, then in order for the token to be usable,
Late_ct must be zero, the token class must be non-restricted or the station must be
involved in the restricted exchange, and finally the frame’s priority class must be
high enough that the corresponding THT threshold (given by the T_pr4 array) is not
exceeded by the current value of TRT.

When the token is captured by a station, regardless of whether it is usable or not,
timer adjustments must be made. In the case of a usable and early token, the con-
tents of TAT are transferred to THT and the THT timer is disabled. TRT is reset to time
the new rotation of the token. Also, the seif interrupt previously associated with the
expiration of TRT is canceled and a new one is requested to correspond (o the new
setting of the timer. If, on the other hand, the token is late but usable for a synchro-
nous transmission request, then THT is set to its expired value and disabled (this will
prevent asynchronous transmissions from occurring when the TX_DATA state is en-
tered), and Late_ct is cleared. In the case where the token is not usable but is early,
the TRT timer is reset and a new seit interrupt is requested to replace the previously
scheduled one. If instead the token is late, then the only action taken is to set
Late_ct to0 zero. In either case, if the token is not usable, the variable acewm_pand-
width, which keeps track of bandwidth consumption since the arrival of the token,
is set 1o the station latency so that the token will be appropriately delayed when for-

MIL 3, Inc. FDODI-14 Release 2.4



OPNET Example Models Manual FDDI Mode! Description

warded to the next station.

TX_DATA state

This state is entered by £444_mac when the token is captured and a determina-
tion is made that it is usable. This determination is made in the RCV_TOKEN state ac-
cording to the logic presented above. The role of the TX_DATA state is to dequeue
and send frames into the ring until the token is no longer usable by this station, at
which time it is forwarded down-stream.

As specified in the FDDI standard, frames are dequeued in a first-in-first out or-
der and may not be ransmitted out of order, regardless of class of service. In order
to simplify the implementation, advantage is taken of the ability to schedule the
ransfer of packets at arbitrary future times. Thus, once entered, the TX_DATA state
dequeues as many frames as can be sent according 1o the prescribed transmission
rules, and forwards these with appropriate delays. Simulation time does notadvance
during this processing, and so the progress of the THT timer is emulated by using an
accurnulator variable, the_value. From the point of view of entities receiving the
packets, all events are perceived as though the packets were individually sent at dis-
tinct dmes since the Simulation Kernel delivers each packet at separate instants.
This method avoids complexity in the STD, and significantly reduces the number of
simulation events, which in turn, shortens run times.

In order to keep track of the amount of time spent transmirting to date, so that
new transmissions can be properly scheduled, the variable accum_bandwidth is in-
creased at each frame transmission by the frame transmission time. This variable is
initialized to zero at the top of TX_DATA. A separate accumulator, accum_sync,
keeps track of only synchronous bandwidth, since a fixed limit is imposed on this
type of transmission.

The central element of TX_DATA is a transmission loop whose main condition for
continuation is that there still are frames in the input queue. Other exit conditions
for the loop are tested within its body. At the top of the loop, the first frame in the
queue is removed and its service class is extracted. Depending on whether the frame
is synchronous or asynchronous, it is processed differently. Synchronous frames are
allowed to be wransmitted provided that their transmission does not cause the sta-
ton's synchronous bandwidth allocation to be exceeded. This test is therefore per-
formed before transmitting the frame. The test involves computing the frame’s
fransmission time based on its length and the transmission data rate. This transmis-
sion time is stored in the variable £x_time which is added to the variable accum_-
sync. The sum cannot exceed the state variable sync_bandwidth, set at
initalization, if the frame is to be sent. If the frame cannot be transmitted, it is re-
placed at the head of the queue and because no further transmission requests can be
honored (the frames must be served in a FIFO order), the transmission loop is exit-
ed. If instead, there is sufficient remaining synchronous bandwidth for the frame to
be transmitted, it is scheduled for transmission with a delay comprising the already
consumed bandwidth and the inter-station propagation delay (transmission delay of

MIL 3, Inc: FDDI-15 Release 2.4



136

OPNET Example Models Manual FDD! Mode! Description

each frame is accounted for at the time where a frame is received by its destination).
Also, the accumulators accum_bandwidtn and accum_sync are increased 1o re-
flect the new transmission.

For asynchronous frames, transmission is allowed if the value of THT represent-
ed by the tht_wvalue variable has not exceeded Fadi_r_opr and the priority level
of the frame has a corresponding threshold which is not exceeded by the_value.
Unlike synchronous frames, asynchronous frames that meet these criteria are al-
lowed to0 be sent even if the criteria are violated during the frame transmission. Thus
it is possible for an asynchronous frame to complete transmission and have th-
t_value exceeding radi_T_opr. However, this will be the last asynchronous

frame transmission.

Asynchronous frames that carry a requested token class of restricred may cause
£4di_mac 10 enter a restricted transmission mode. Similarly, frames that specify a
non-restricted token, will cause the process to exit restricted transmission mode.
This is currently the only method to affect the restricted transmission status of
£44i_mac. In restricted mode, the token that is issued after transmission is usable
only by a specifically designated peer station on the ring.

As with synchronous frames, the asynchronous frame, if transmictable, is for-
warded with a delay that reflects already consumed bandwidth and propagation de-
lay. Also, the accum_bandwidth variable and the_value are increased to reflect
the new transmission.

Finally, if after exiting the transmission loop, the station has no more frames to
transmit (the queue is empty), the station must deregister its interest in the token so
that if all stations in the network are data-less, the token can be blocked as part of
the token acceleration mechanism mentioned earlier.

FR_RCYV state

In this state a frame has been received from PHY. This determination is made in
the IpLE state which responds to a stream interrupt arriving from PHY and analyzes
the frame control field, =£e*, of the amriving packet. The only action performed in
PR_RCV is to extract the source address of the packet so that a determination can be
made with regard to stripping the frame from the ring. This decision corresponds to
the two transitions that depart from Pr_Rcv, which lead either to PR_STRIP or FR_-

REPEAT.

FR_REPEAT state

In this state, a frame has been received that was originated by a station other
than this one. The FDDI specification calls for the frame to be repeated until it
reaches its originating station. However, in simulation, there is no need for the
frame 1o proceed beyond its destination unless group addresses are being used.

MIL 3, Inc. . FDDI-16 Release 2.4



137

OPNET Example Models Manual FDDI Mode! Description

Therefore, if the frame’s destination matches this station's address, the frame is ef-
fectively stripped from the ring. Also, the LLC data encapsulated within the =info*
field of the frame is decapsulated. This dara is forwarded to LLC with a delay equal
to its transmission time, since this is not accounted for upon transmission. An ki is
composed which supplies the source and destination address values to LLC.

In the case where the frame’s destination is not this station, the frame is repeated
onto the ring, and propagation delay and station latency are accounted for.

FR_STRIP state

In this state a frame has been received that was originated by this staton. The
FDDI specification calls for the frame to be stripped from the ring. The frame is
therefore discarded rather than repeated and £ddi_mac returns to the IDLE state to
await the next interrupt.

FDDL4 Example Usage

This section describes an example model that encompasses the FDDI MAC mod-
el. First, each file that is part of the FDDI example models is explained. Then, the
£a4i_station node is described where a MAC entity is placed within a traffic
source, a traffic sink, and a PHY endty. Then, this node is used to define 32 stations
in an FDDI ring described in the FDDI.4.2 Network Descriprion section.

FDDI1.4.0 Files

This section gives a brief overview of the files found in the <opdir>/stamod/-
£aai directory. The models should be easily understandable by the user who wishes
10 analyze their internals. It is also possible to treat these abstractly and simply work
with their parameters.

The files are listed in alphabetical order:

£44di.ef An environment file specifying the values of simula-
tion auributes for the £ad4_net_z simulations.

fddi.os An output scalar file that contains measurements of
throughput and mean end-to-end delay for a range of
TTRT values between 0.5 miliiseconds and 60 millisec-
onds. This file can be used in the analysis tool to pro-
duce plots of throughput or delay versus TTRT. This
file was produced by running the £4d41_seript shell
script.

MiL 3, Inc. FDDI-17 Release 2.4



138

OPNET Example Models Manual FDD! Mode! Description

£4di.pb.m A probe file containing specifications of data collec-
tion. This probe file can be optionally specified with
the *probe= environment auribute when executing
£44i_net_xz.sim simulations. .

£dadi_build.em.c An Ema based application that can be used to generate
rings constructed with the £44i_station node mod-
el. This application can be compiled with the m3_mxe-
ma program described in the OPNET External
Interfaces Manual / 6.0. When executed, it accepts a
single argument which is the number of stations in the

ring.

£fadi_gen.pr.m A process model that provides a simple example of
higher-layer interfacing with the £adi_mac process.
This process acts as a poisson frame source and has
several anributes that can be modified to control its
rate of frame generation, the size of generated frames,
and the destination addresses for these frames. When
compiled, this process generates the additional files
24di_gen.pr.c and £44i_gen.pr.o.

£fadi_llc_fr.pf.m A packet format specification for frames generated by
the £44i_gen process model and passed to zaa1_mac.
These frames are encapsulated in the "ingo~ field of
frames that travel on the FDDI ring.

£ddi_mac.pr.m A process model that represents the MAC entity of an
fddi station. This process model must operate within
a queue module and interfaces with the lower layer
PHY entity and the higher layer LLC entity via packet
streams and kei structures. When compiled, this pro-
cess generates the additional files fddi_mac.pr.c
and £a4i_mac.pr.o.

£34i_mac_fr.pf.m A packet format specification for frames formed by
the f4ai mac process. These frames are the ones
passed between MAC entities on the FDDI ring.

£aai_mac_req.ic.m An ki format that specifies the control information
that may be passed by the LLC to the MAC when trans-
mission requests are generated.

£a4i_mac_tkx.pf.m A packet format specification used to represent a to-
ken that circulates on the FDDI ring.

MIL 3, Inc. FDDI-18 Release 2.4



139

OPNET Example Models Manual FDDI Model Description

£4di_mac_ind.ic.m An ki format that specifies the control information
that may be passed by MAC to LLC when data is re-
ceived by MAC and provided to the local LLC entity.

£dai_net_32.at.m A network model containing 32 £4d4_station nodes
arranged in a ring. This model is produced by execut-
ing the Ema prograrn £d4i_build.em.x.

£ddi_script A C Shell script that executes the £d4ai_net_32 mod-
el 18 times for a range of TTRT values between 0.5 mik

lissconds and 60.0 milliseconds.

£4di_sink.pr.m A simple process that acts as a place holder for user-
defined higher level processes that would receive data
from MAC. This process simply discards packets while
maintaining and reporting a few statistics related to
ring throughput and delay. When compiled, this pro-
cess generates the files £441_sink.pr.c and fdai_-
sink.pr.o.

£4di_station.nd.m  An example node model centered around the
£44i_mac process. [t comprises a ransmitter and a re-
ceiver representing the PHY entity, a queue represent-
ing the MAC entity, and two processors that together
represent the LLC entity. This model is the basic build-
ing block for the £ddi_net_a network models.

propdel_zero.ps.c A pipeline model constructed to force point-to-point
links used in the FDDI ring model to use a propaga-
tion delay of zero within the transcejver pipeline, thus
allowing propagation delay to be modeled at a higher
level. When compiled, this process model produces
the file propdel_zero.ps.o.

txdel_zero.ps.c A pipeline model constructed to force point-to-point
links used in the FDDI ring model to use a transmis-
sion delay of zero within the transceiver pipeline, thus
allowing transmission delay to be modeled at a higher
level. When compiled, this process model produces
the file txdel_zero.ps.o.

MIL 3, Inc. FDDI-19 Release 2.4



140

OPNET Example Models Manual FDD! Model Description

FDDL4.1 Node Description: fddi_station
This section describes the basic component of the FDDI network model, which
is a model of an FDDI station, including a traffic source, a traffic sink, a2 MAC entity,
and a PHY entity. These entities are modeled in terms of the modules that are pro-

vided by OPNET’s Node Editor to form a basic example of an FDDI-based com-
munication node called £adi_station. The correspondence between the entities is

shown in the following diagram.

Mapping of FDDI station entities to OPNET Modules

| Traffic Sink | O

‘ 1le_sank
l Traffic Source L @
Llc_sre
| MACentity
mac

|_PHY entity —  m=

The modules are connected via OPNET packet streams over which tokens or
frames can be forwarded. Both tokens and data frames are represented with OPNET
packets defined by the frame formats £ddi_1lc_fr, £44i_mac_fr, and faai_-
mac_tk, described previously in this chapter. The mac processor receives inputs
from the processor 1lc_src and the receiver module pby_rx. The processor
llc_sink and the transmitter phy_tx receive inputs from mac. The layout of the

node is shown below.

MIL 3, Inc. FDDI-20 Release 2.4



141

OPNET Example Models Manual FDDI Model Description

fddi_station Node Model

"

phy_tx
O] ~ [ =-
lle_sre mac DPhyp_=x
D -
lle_sink

The phy_tx and pby_rx modules serve as the physical interface to the ring
transmission medium. Frames and tokens are received by mac from phy_zx, which
is connected to the point-to-point link emanating from the next up-stream neighbor.
Similarly, frames and tokens are forwarded by mac to phy_tx, which is connected
to the link leading to the next down-stream neighbor. In most OPNET models, the
primary attributes of the point-to-point transmitter and receiver would be the data
rate assignments for their channel objects. However, in this FDDI model, as men-
toned earlier, the computation of transmission delay returns a fixed value of zero,
thereby making the "data rate* atribute irrelevant,

As shown in the mapping above, the queue module mac occupies the place of
the MAC entity in the station and has the responsibility of token and timer manage-
ment, frame capture and repetition, and queueing of transmission requests. The be-
havior of this queue is prescribed by the £44i_mac process model described in a
later section of this chapter.

The processor 11e_sre is so named because of its physical relationship with
mac to which it provides frames for transmission. It does not have the functionality
of an actual LLc beyond correctly interfacing with the MAC entity. While it is prima-
rily intended to serve as an example of how to interface with mac, it may also be
used as a convenient but simple message source for FDDI models. Its behavior is
prescribed by the £844_gen process model

Finally, the processor £d41_sink provides a simple destination for frames cap-
tured by and addressed for the station, and forwarded by the mac processor. It serves
as a place holder for higher level processes that may be developed as part of larger
modeling efforts. Its actions, which consist primarily of packet disposal and statistic

collection, are specified by the process mode] £adi_sink.
FDDI.4.2 Network Description: fddi_net_32

The ring topology and number of stations are the primary specifications com-
prised in the network level model, since the inter-station propagation delay has been

MIL 3, Inc. FDDI-21 Release 2.4



142

OPNET Example Models Manual FDDI! Mode! Description

made a global simulation atribute, common to all inter-station connections. A sam-
ple network model, £444_net_32 containing 32 stations within a subnerwork is pro-
vided to illustrate the usage of the lower level models.

Because FDDI rings may often contain large numbers of stations, it is conve-
nient to generate the associated network models in an autornated fashion. specifying
only the number of stations. An application called £4ai_build.em.x, based on the
External Model Access (Ema) package, is provided for this purpose. This applica-
ton is almost entirely derived from the ring_build program described in Chaprer
Ema of the OPNET External Interfaces Manual /6.0, and consequently is only min-
imally documented here. £444_build.em.x accepts a single required argument
which is the number of stadons on the network. It arranges stations of the type
£ddi_station in a circular ring and creates links between adjacent stations. This
program was used to generate the example network faai_net_32 which is shown
in the following diagram.

fddi_net_32 Network Model

The source code for the network building program is supplied in the file faa-
i_build.em.c so that the form of the models may be conveniently modified. Some
parameters that can easily be changed are the icon used to represent stations, the

MIL 3, Inc. FDDI-22 Release 2.4



143

OPNET Exampie Models Manual FDDI Mode! Description

strings used to name the stations, and the physical dimensions and shape of the net-
work.

An important specification that occurs at the network leve! (and therefore in the
Ema program which generates the network model) is the assignment of procedures
that model the operation of the links. There is currently no dedicated physical layer
object in OPNET for modeling ring architectures. Consequently, point-to-point
links are used and their internal operation and transmission timing mechanisms are
modified to reflect the behavior of FDDI interfaces. The procedures that implement
the point-to-point link models are called Transceiver Pipeline procedures and these
are discussed in detail in the Chaprer Comec chapter of the OPNET Modeling Man-
ual /2.0.

Two mechanisms in the point-to-point link, used for modeling transmission de-
lay and propagation delay, have been modified to iraplement the FDDI ring physi-
cal layer. The default point-to-point link pipeline uses a procedure called dpt_txdel()
to compute transmission delay on the basis of a packet’s length, and the ~data
rate" atribute of the channel of interest The transmission delay computed by
dpt_txdel() is used by the Simulation Kernel to schedule the delivery of the wans-
mitted packet at the output of the receiver in the link’s destination node. In other
waords, no entity in the destination node is aware of the arrival of the packet undil its
last bit has arrived. This is clearly inappropriate for FDDL, where frames and tokens
must be repeated after only a small number of symbols have been received by a sta-
tion. The approach used here is to create a new procedure called txde/_zero(), which
always returns a transmission delay of zero, and to leave the modeling of station la-
tency to the MAC process model, since all frames and tokens must be made known
to this endty. The source code for the txdal_zero pipeline procedure is provided
in the file <opdir>/stdmod/£ad1i/txdel_zero.ps.c.

Because the assumption has been made that inter-station propagation delays are
uniform across the network, the pipeline mechanism used to inject propagation de-
lay is also disabled. This is done by inserting the pipeline procedure propdel_zero()
in place of the default propagation delay model dpt_propdey). Propagation delay
modeling is instead done as packets are forwarded by the MAC entity. As with
txdel_zero, source code is provided in the <opdir>/stamoastaai directory.

Once constructed, the Network Editor allows a number of attributes to be set for
each station via menus. It is also possible (this is the default and often most conve-
nient method) to set these attributes via an environment file which is interpreted at
the time of simulation. The atributes that are promoted from lower level models
and are available on a per station basis are illustrated below. Each attribute is dis-

cussed following the illustration,

MIL 3, Ing:. FDDI-23 Release 2.4



144

OPNET Example Models Manual FDD! Mode! Description

Some FDDI Station Attributes viewed in Network Editor

£4

(F5) Attributes

|llc_3rc.lo'v dest address : promoted
llc_src.high dest address : promoted
llc_src.arrival rate : promoted
llc_src.mean pk length : promoted
llc_src. async_mix : promoted
nac. sync bandwidth : promoted
nac. T Req : promoted

I nac. station_address : promoted

£5

CEe))

———

[Eac ] —

llc.src.low dest address
This atribute is promoted from the faai_station
node model and originates in the £a4i_gen process
model. It can be used to control the lower bound for
destination assignment when the 1lc_src module
within the station generate new frames for transmis-
sion. It affects the addressing of both synchronous
and asynchronous frames.

llc.src.high dest address
This atribute is promoted from the £dd4i_statien

node model and originates in the £a41_gen process
model. It can be used to control the upper bound for
destination assignment when the 1lc_sze module
within the station generates new frames for transmis-
sion. It affects the addressing of both synchronous
and asynchronous frames. -

llec.src.arrival rate
This atribute is promoted from the f£d4i_staticn

node model and originates in the £441_gen process
model It can be used to control the rate at which the
11c_src module within the stadon generates frames

MIL 3, Inc.

FDDI-24 Release 2.4



145

OPNET Example Models Manua/ FODI Mode! Description

for transmission. The value of this attribute specifies
the aggregate rate comprising both synchronous and
asynchronous traffic, and is specified in frames per
second.

llc.src.mean pk length
This auribute is promoted from the £4di_station

node model and originates in the £adi_gen process
model. It can be used to contol the length of both
asynchronous and synchronous frames generated for
ransmission by the 11c_src module.

llc.src.asyne_mix This auribute is promoted from the fddi_station
node model and originates in the £dai_gen process
model. Its value varies between zero and one and
specifies the proportion of asynchronous frames gen-
erated by the 11c_src module within the station. A
value of zero specifies that 11c_sxe shall queue only
synchronous frames for ransmission while a value of
one specifies instead that it shall generate only asyn-
chronous frames.

mac.sync bandwiath  This auribute is promoted from the £4di_station
node model and originates in the £44i_mac process
model Its value varies between zero and one and
specifies the proportion of synchronous bandwidth al-
located to this station relative to the total synchronous
allocation for the entire ring. The sum of this artribute
for all the stations in the ring should not exceed one
(note, that at present the model does not enforce this).

mac.T_Req This attribute is promoted from the £a4i_station
node model and originates in the £44i_mac process
model. It represents the requested value of TTRT on the
part of the station. The £d4ai_mac process mode] will
select the minimum value of this attribute among all
stations to install in the variable raai_r_opr, which
holds the operative value of TTRT.

wac.station_address This attribute is the unique identification of each sta-
ton, and is used for addressing and stripping transmit-
ted frames in the ring.

MIL 3, inc. FDDI-25 Release 2.4



146

APPENDIX D. DESCRIPTION OF THE SIMULATION
PARAMETERS

This appendix comprises a complete list of the chosen simulation model at-
tributes for the simulations described in the main text. The parameters are identified
by the Figure numbers which show the results of this particular set of simulations.
The chosen parameter are described in more detail for the first set. In subsequent
sets only the differences to the first set are shown.

Simulation Parameters Figure 4.2 and Figure 4.3

e duration = 0.4 (seconds)

e seed = 121, 234, 310, 444

e top.ATM_l.src.interarrival args = 1.00474E-06 (1/packet arrival rate, =422Mb/s)
e top.ATM_l.proc.VPLSET = 3

e top.ATM_1.proc. VECTOR.STAT_ENABLE = disabled

e top.ATM_l.src.interarrival pdf = constant

e top.ATM_l.rcv(0].data rate = 500E+06 (bits/second)

e top.ATM_1.xmt[0].data rate = 500E+06 (bits/second)

e top.ATM_4.src.interarrival args = 1.00474E+06 (=no packets)
o top.ATM_4.proc.VPI.SET = 4

e top.ATM_4.proc. VECTOR_STAT_ENABLE = disabled

o top.ATM _4.src.interarrival pdf = constant



147

top.ATM_4.rcv([0].data rate = 500E+06 (bits/second)
top.ATM_4.xmt[0].data rate = 500E+06 (bits/second)
top.ATM_2.atm_sw.VPI_ATM_LOCAL =3

. top.ATM_2.atm sw.VPI_.ATM_REMOTE = 4
top.ATM_2.atm_sw.VPI.LFDDI.LOCAL = 1
top.ATM_2.atm_sw.VPI.LFDDI. REMOTE = 2
top.ATM_2.atm_sw.STAT_ENABLE = enabled
top.ATM_2.xmt fddi[0].data rate = 80E4-06 (bits/second)
top.ATM_2.rcv_{ddi[0).data rate = 80E+06 (bits/second)
top.ATM_2.xmt_atm_nd[0].data rate = 500E+06 (bits/second)
top.ATM_2.rcv_atm.nd[0].data rate = 500E+06 (bits/second)
top.ATM_2.xmt_atm_sw{0].data rate = 500E+06 (bits/second)
top.ATM_2.rcv_atm.sw(0].data rate = 500E+06 (bits/second)
top.ATM_ 3.atm sw.VPI_ATM_LOCAL =4
top.ATM_3.atm_sw.VPI_ATM_REMOTE =3

top.ATM_ 3.atm_sw.VPI.LFDDI.LOCAL =2

top.ATM_3.atm sw.VPLLFDDI.LREMOTE =1
top.ATM_3.atm_sw.STAT_ENABLE = disabled
top.ATM_3.xmt fddi[0].data rate = 80E+-06 (bits/second)
top.ATM_3.rev_fddi[0].data rate = 80E+06 (bits/second)
top.ATM_3.xmt_atm_nd[0].data rate = 500E+06 (bits/second)
top.ATM_3.rcv_atm.nd[0].data rate = 500E-+06 (bits/second)
top.ATM_3.xmt_atm sw{0].data rate = 500E+06 (bits/second)
top.ATM_3.rcv_atm sw(0].data rate = 500E406 (bits/second)



148

top.FDDI_1.fddi_atm_link.xtm_atm[0].data rate = 80E+06 (bits/second)
top.FDDI_1.fddi_atm link.rcv_atm[0].data rate = 80E+06 (bits/second)
top.FDDI_1.fddi_atm link.bridge_proc. VPI.SET = 1
top.FDDI_1.fddi-atm link.bridge_proc. STAT_.ENABLE = enabled
top.FDDI_1.fddi_atm link.mac.station_address = 0
top.FDDI_1.fddi_atm link.mac.ringid = 1

top.FDDI_1.fddi_atm link.mac.sync bandwidth = 0.5 (*100%)
top.FDDI_1.fddi_atm link.mac.T Req = 4.0 (seconds)
top.FDDI_1.vbr_station.llc_src.traffic_dist = exponential
top.FDDI_1.vbr_station.llc_src.vbr_gen_seed I = 911, 284, 595, 412
top.FDDI_1.vbr_station.llc_src.vbr_gen_seed_II = 810, 212, 611, 693

top.FDDI_1.vbr_station.llc_src.arrival rate = 700-1600 (packets/second, step =
100)

top. FDDI_1.vbr_station.llc_src.mean pk length = 32000 (bits)
top.FDDI_1.vbr_station.llc_src.idle_dist = exponential
top.FDDI_1.vbr_station.llc_src.idle_dist_arg = 0.002 (seconds)
top.FDDI_1.vbr_station.llc_src.busy_dist = exponential
top.FDDI_1.vbr_station.llc_src.busy_dist_arg = 0.01 (seconds)
top.FDDI_1.vbr_station.llc_src.low dest address = 1
top.FDDI_1.vbr_station.llc_src.high dest address = 1
top.FDDI_1.vbr_station.llc_src.async_mix = 1.0 (only asynchronous data)
top.FDDI_1.vbr_station.llcsrc.dest_ring_id = 2
top.FDDI_1.vbr_station.mac.T_-Req = 4.0 (seconds)

top.FDDI_1.vbr_station.mac.station_address = 1



149

top.FDDI_1.vbr_station.mac.ringid = 1
top.FDDI_1.vbr_station.mac.sync bandwidth = 0.0 (x100%)
top.FDDI_1.cbr_station.llc_src.arrival rate 0.0 (packets/second)
top.FDDI_1.cbr_station.llcsrc.mean pk length = 32000 (bits)
top.FDDI_1.cbr_station.mac.sync bandwidth = 0.5 (*100%)
top.FDDI_1.cbr_station.mac.T _Req = 0.001 (seconds)
top.FDDI_1.cbr_station.llc_src.low dest address = 2
top.FDDI_1.cbr_station.llc_src.high dest address = 2
top.FDDI_1.cbr_station.llc_src.traffic_dist = constant
top.FDDI_l.cbr.stafion.llc_src.async_rnix = 0.0 (only synchronous data)
top.FDDI_1.cbr_station.llc_src.dest _ring_id = 2
top.FDDI_1.cbr_station.mac.station_address = 2
top.FDDI_1.cbr_station.mac.ringid = 1
top.FDDI_2.vbr_station.llc_src.traffic_dist = exponential
top.FDDI.2.vbr_station.llc.src.vbr_gen_seed_I = 191, 186, 343, 543
top.FDDI_2.vbr_station.llc_src.vbr_gen_seed_1I = 333, 432, 999, 842
top.FDDI_2.vbr_station.llc_src.arrival rate = 0.0 (packets/second)
top.FDDI_2.vbr_station.llc_src.mean pk length = 32000 (bits)
top.FDDI_2.vbr_station.llc_src.idle_dist = exponential
top.FDDI_2.vbr_station.llcsrc.idle_dist_arg = 0.002 (seconds)
top.FDDI_2.vbr_station.llc_src.busy_dist = exponential
top.FDDI_2.vbr_station.llc_src.busy_dist_arg = 0.01 (seconds)
top.FDDI_2.vbr_station.llc_src.low dest address = 1

top.FDDI_2.vbr_station.llc_src.high dest address = 1



150

top.FDDI 2.vbr_station.llc_src.async_mix = 1.0 (only asynchronous data)
top.FDDI 2.vbr_station.llc_src.dest_ring_id = 1
top.FDDI_2.vbr_station.mac.T Req = 4.0 (seconds)
top.FDDI_2.vbr_station.mac.station_address = 1
top.FDDI_2.vbr_station.mac.ring id = 2
top.FDDI_2.vbr_station.mac.sync bandwidth = 0.0 (x100%)
top.FDDI_2.cbr_station.llc_src.arrival rate = 0.0 (packets/second)
top.FDDI 2.cbr_station.llc_src.mean pk length = 32000 (bits)
top.FDDI_2.cbr_station.mac.sync bandwidth = 0.5 (x100%)
top.FDDI_2.cbr_station.mac.T_Req = 0.001 (seconds)
top.FDDI_2.cbr_station.llc_src.low dest address = 2
top.FDDI_2.cbr_station.llc.src.high dest address = 2
top.FDDI_2.cbr_station.llc_src.traffic_dist = constant
top.FDDI_2.cbr_station.llcsrc.async.mix = 0.0 (only synchronous data)
top.FDDI.2.cbr_station.llcsrc.dest_ring_id = 1
top.FDDI_2.cbr_station.mac.station_address = 2
top.FDDI_2.cbr_station.mac.ring.id = 2

top.FDDI_2.fddi_atm link.mac.station_address = 0
top.FDDI_2.fddi-atm link.mac.ring id = 2

top.FDDI_2.fddi_atm Jink.mac.sync bandwidth = 0.5 (*100%)
top.FDDI_2.fddi_atm_ link.mac.T_Req = 4.0 (seconds)
top.FDDI_2.fddi.atm_link.bridge_proc. VPI.SET = 2
top.FDDI._2.fddi_atm link.bridge_proc.STAT_ENABLE = enabled
top.FDDI_2.fddi-atm link.xtm_atm[0].data rate = 80E+06 (bits/second)



151

o top.FDDI 2.fddi_atm link.rcv_atm[0].data rate = 80E+06 (bits/second)
e station_latency = 1E-07 (seconds)

e prop-delay = 3.3E-06 (seconds)

e accelerate_token = 1 (Enables the token acceleration mechanism)

e spawn station = 1 (station with station_id = 1 issues the token at the beginning
of the simulation)

Simulation Parameters Figure 4.4

o top.FDDI_1.vbr_station.llc_src.busy_dist_arg = 0.02 (seconds)

Simulation Parameters Figure 4.5
e top.FDDI_l.vbr_station.llc_src.busy_dist_arg = 0.02 (seconds)

¢ top.FDDI_1.vbr_station.llc_src.arrival rate = 1400-3200 (packets/second, step
= 200)

Simulation Parameters Figure 4.6
e duration = 0.8. (seconds)
o seed = 444
o top.FDDI_1.vbr_station.llc_src.vbr_gen_seed_1 = 412
e top.FDDI_l.vbr_station.llc_src.vbr_gen_seed_II = 693
o top.FDDI_1.vbr_station.llc_src.arrival rate = 1875
o top.FDDI_1.vbr_station.llc_src.idle_dist_arg = 0.002-0.02 (seconds)

o top.FDDI_1.vbr_station.llc_src.busy_dist_arg = 0.01-0.1 (seconds, to keep bursti-
ness = 5)



152

Simulation Parameters Figure 4.7

top.ATM_1.src.interarrival args = 9.953E-07 (1/packet arrival rate)

Simulation Parameters Figure 4.8

top.FDDI_1.vbr_station.llc_src.arrival rate = 1600 (packets/second)

top.FDDI_2.cbr_station.llc_src.arrival rate 160-1600 (packets/second, step =
160)

Simulation Parameters Figure 4.9
top.FDDI_1.cbr_station.llc_src.arrival rate 300 (packets/second)
top.FDDI_1.vbr_station.llc_src.arrival rate = 1500 (packets/second)

top.ATM_1.src.interarrival args = 1.082E-06, 1.055E-06, 1.029E-06, 1.005E-
06, 9.815E-07, 9.593E-07, 9.38E-07, 9.177E-07 (1/packet arrival rate, =392-
462Mb/s)

top.ATM_2.xmt fddi[0].data rate = 40E+06~110E+06 (bits/second, step = 10E+06)
t‘bp.ATM-?.rcv_fddi[O].data rate = 40E+06-110E+06 (bits/second, step = 10E+06)
top.ATM_3.xmt_fddi[0].data rate = 40E+06~-110E+06 (bits/second, step = 10E406)
top.ATM_3.rcv_fddi[0].data rate = 40E+06-110E+06 (bits/second, step = 10E+06)

top.FDDI_2.fddi_atm link.xtm_atm[0].data rate = 40E+06-110E+06 (bits/sec-
ond, step = 10E+06)

top.FDDI_2.fddi_atm_link.rcv_atm0].data rate = 40E+06-110E+06 (bits/sec-
ond, step = 10E+06)



