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1. INTRODUCTION 

The c hoice of a peripheral ne rve re pa ir method depends on the type of nerve injury, 

severity of damage, and clinical considerations. End-to-end a nastomosis, epineurial or 

perineuri aJ (fascicular) suture repair is u ed to direct coaptation of the nerve stump exhibi ting 

small tissue los or defects of the orde r of l cm or less. However, nerve grafting is usually 

con idered if the gap i appreciable (~ 1.5 c m). The problem is that even though the e repair 

techniques have been improved, they still do not provide completely satisfacto1y re ult . 

nde irable car tissue or trauma caused by fasc icular or epine urial urgical 

manipulations or by postoperative stretching which results in tens ion along the suture line 

frequently interferes with the growth from the proximal stump to the distal tump in end-to-end 

anastamosis re pair. To date, biological materi als have served as autografts, allog ra fts, or 

heterografts to pan suc h gaps between proximal and di stal stumps of a severed nerve, but the 

primary require ments and the possibility of immunological unacceptance associated wi th a 

donor graft are difficult to predict. Therefore , the development of artificiaJ biocompatible 

conduit to a id in reuniting the proximal and distal Lumps of a evered ne rve has been 

sugge ted as an aJternative. 

Unt il now, nerve conduits have been investigated with on ly ingle lume n cuff sy terns 

rather than multip le- lume n cuff systems, and te ted with nondegradable po lyme r uch as 

silicone rubber, Teflon®, cellulose acetate, Goretex®, and polyethyle ne terephthalate and 

e rodible biomaterials suc h as polyglactin me h, polyglycolic acid , polyester, and glycolide 

trimethylene carbonate. A wide variety o f ingle lume n system has bee n modified and 

improved by e liminating the roughness of the internaJ cuff urface, adjusting the permeability 

of the cuff material (with a 50,000 dalto n cutoff) , or by chang ing the regeneration 

e nvironment through the use of additives or stimulatives for cell growth (for example, . aline 
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o lution, laminin gel, collagen gel, o r cultured Schwann cells). In addition , omc ing le lumen 

nerve cuff tudies showed tha t regenerating nerve cables become tapered toward the center of 

the gap reg ion into which the materi al g rows o r exhibit branching du ring g rowth across a gap 

toward the di tal tump o f a severed nerve. 

The firs t multiple- lumen nerve cuff syste m made of silicone rubber was developed by 

Danie l (1991 ). It was m ade of silicone rubber and wa de igned to bridge a 0 .5 cm gap. Its 

purpo e was to improve the alignment of regenerated nerve material across the gap and into the 

di tal tump, to provide mechanica l upport , to e liminate o r minimize car ti ue a t the 

proximal s tump, and to improve nerve axon o rganization as it regenerates across the gap to the 

d i tal tum p. Light micro copy, e lectrophy io logical evaluations and videotape ob ervation 

were conducted to determine advantages in using such a cuff confi guration. Like other silicone 

rubber nerve cuff , the multiple-lumen nerve cuff yste m also provide. an isolated regeneration 

environment to inhibit proliferation o f fibroblasts and scar tissue that otherwise might come in 

from urrounding tissues . Also, it provides a way to maintain g rowth factor in ide the cuff 

that can be released from the dista l stump . 

A an extension of Daniel ' . tudy, the current work includes microstructural tudie at 

a re lati vely highe r le ve l of magnification. This technique e mploys an electron back catte ring 

ignal from an e lectron beam inte rac tion with the sample w he n us ing a canning electron 

micro cope y te rn. T he neurofi lament prote ins o f axons have a high pecific a ffi nity for ilver 

and can be s tained us ing Bodian's method . Because the increase in back ca tte red e lectron 

igna l produc ti on direc tl y correla tes with an increasing atomic number, high ato mic number 

(high contrast) silver sta ined axons can be easil y seen with in a re lati vely low atomic number 

ti ue matri x. 

Following canning elec tron microscope (SEM) observations, the chm·acteri tics o f the 

regenerated axon , s uch as pa tte rn , hapes, ize , o rganizati on, and o rie ntat io n, are 

de termined for different implanta tio n peri ods (8, 12, 16 and 24 week. ). Al o , they are 
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compared with those measurements obtained for healthy control nerve fibers (as een for 

samples obtained at the end of identical periods as those used for the experimental implants). 

The locations of penetration of the axons from the proximal stump which cross the gap and 

enter the distal stump me also characterized. Finally, fiber diameter frequency di tributions are 

provided to show the regenerated axon diameter distributions in re lation to the sampling 

location (proximal, middle, or distal). The midd le samples represent all new regenerated 

material. 
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2. LITERATURE REVIEW 

2.1. Background 

2.1.1. Organization of a peripheral nerve 

The primary func tional and structural unit of the nervou ·yste m i the neuron. The 

periphe ral neuron i a pecialized cell that serve two major fu nc tions : e n ation a nd 

conduction. In the peripheral nervous system, a typical neuron i comprised of a cell body 

( oma or perikayon), an axon and a variable number of dendrites. 

In the pe ripheral nervous system, nerve cells are classified as be ing e ither myelinated or 

unmyelinated ba ed on the structural re lati onship between an axon and it sate llite Schwann 

cells which are capable of forming myelin sheaths. In unmyelinated nerves, usuall y more than 

one nerve fiber may be enfolded by a Schwann cell and one layer of its pla ma membrane. On 

the other hand, in myelinated nerves, a Schwann cell encompasses a single fiber by means of 

it lamellar wrapping heath , or myel in (Figure 2. 1). Along the le ngth of myel inated axon . 

nodes of Ranvier appear as exposed j unctions, where there is no myel in between con ecutive 

Schwann cell. . 

Nerve fibers exhi bit a range o f poss ible diameters. There is a c lo e proportio nal 

corre lation between the thicknes of a nerve fiber and the speed of e lectrical conducti on. The 

absolute values vary accordi ng to the species and the site studied. T he nerve fibers in human 

are arranged in three groups (Dan ie l and Terzis, 1977): 

A -- diameter 2.5 µm - 16 µm, conduction velocities 15 m - 100 m per econd; 

B -- diameter about 3 µm, conduction velocities 3 m - 15 m per econd; 

C -- diameter 0 .2 µm - l.5 µm, conduction velocitie 0.3 m - l.6 m per econd. 
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Figure 2.1. Schematic representation of the structure of a typical mammalian peripheral nerve 
(Junqueira e t al., 1983; Fig. 9-28) 

A s lender connective tissue sheath, the endoneurium, encompasses each peripheral 

nerve fiber and associated Schwann cell (Figure. 2.1). The components of the endoneurium 

include fibroblasts, an occasional macrophage, and collagenous and reticular fibers. Nerve 

fibers collect into fascicles, enclosed entirely by a perineurium which is composed of compact 

cellular layers arranged concentrically. The inner layers are flattened epithelioid cells and the 

outer layers are connective tissue layers. The outer perimeter, the epineurium, possesses a thick 

areolar connective tissue sheath and is comprised of collagen fibers. The epineurium surrounds 

the entire nerve and blends with the connective tissue of the nearby parts (Gartner and Hiatt, 

1987). The source of blood supply of a peripheral nerve is from regional arteries which enter 
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the epineurium, where the arterie can branch. After branching, the passage of the precapillary 

ves els through the perineurium becomes difficult to fo llow. The smaller endoneurial vascular 

plexu it e lf forms the endoneuri aJ circulation in terms of a capillary network (Low, 1976). 

2.1.2. Nerve degeneration 

When a peripheral nerve has been damaged or evered, degenerative proces e spread 

into both nerve stumps along the axon from the zone of trau ma. Then, the e tu mps retract 

from one another and tart to well. After per i ting for about one week, thi welling lowly 

subsides. Because the proximal segment of an injured nerve still maintains continuity with the 

trophic cente r of the neuron, the proximal change (called traumatic degeneration or a cending 

degeneration) extend no further than the second or thi rd node of Ranvier from the point of 

everance (Figure 2.2B). 

In contrast to proximal changes over a hort di tance, Wallerian degeneration occur 

through the entire distal egment that i completely separated from the nerve cell body. Thi 

takes place with the involvement of Schwann cells and the loss of myel in and axons (Figure 

2.2B). The evered axon located at the proximal end of the di tal stump tend to detach and 

become i olated from the rest of the di taJ stump. Then the remaining portion of the di. ta! 

axons break down more rapidly and become beaded. Accompanied by axonal re trogres ion, 

the myelin sheath retracts from the axon at the nodes of Ranvier, creating increased nodal gap , 

and the re is a lo s of the laminated or layered organization. The sheath area becomes 

homogencou . Later, it further breaks apart into ovoids and ellipsoids surrou nding the axonal 

fragment . Neurofilament and neurotubule , collectively termed as neurofibr il (in the 

axopla m), disintegrate and disappear. 

Fragments of the axon and the myelin heath are absorbed by local phagocyte derived 

from va cular pericyte . However, the basal lamina of the Schwann cell till remain intact as a 
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Figure 2.2. Diagrams of the degeneration and regeneration of a single myelinated 
peripheral nerve fiber. A: Normal nerve fiber, B : Changes during two weeks 
after transection. C: Three weeks after the transection. D: ln this example, the 
nerve regeneration was successful. E: When the axon branches do not penetrate 
the connective tissue surrounding, its growth is not organized. (Junqueira et al. , 
1983; Fig. 9-1 8) 

continuous tube all the way to the nerve terminal. In add ition, Schwann cells are also involved 

in phagocytizing axonal and myelin debris and in protecting and remye linating regenerating 

axons. While these regress ive change take place, Schwann cells proliferate w ithin the 

remaining connective tissue s leeves leading to o lid cellular columns. These row of Schwann 

cell e rve as guides to the sprouting axons formed during the repair phase. 
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2.1 .3. Nerve regeneration 

Regeneration i the re ponse of a peripheral nerve fiber to injury and it accompanying 

nerve degeneration. Regeneration initiates from the undegenerated proximal part of the neuron 

that is stil l connected to the trophic center ce ll body. Survival of ne urons is inver ely 

proportiona l to the distance from the cell body. Several factors influence the growth and 

development of the repairing ne rve: location of the lesion ; age of the individual; le ngth of the 

impaired nerve; width of the de ·troyed nerve which leaves a gap; alignment of the cut surface 

of the nerve tump ; extent of the injury and amount of the hemorrhage in urrounding ti ue 

(Swaim, l 987). 

To complete a repair, the sequence of nerve regeneration require the cell body to 

expend con iderable e nergy. This process takes place s imilarly for both sen ory and motor 

nerves. During chromatoly is and e nlargement o f the cell body, RNA and DNA synthesis 

activitie increase with in the cell. Simu ltaneously, this increases e nzymatic activity and 

incorporation of a mino acids within the cell body caus ing an increase in metabolic activity 

which lead to axonal regeneration. Jn add ition, ome peripheral nervou ti ue relea es 

ub tance , called nerve growth factor. , to timulate neuron growth. However, the cell body 

may die if the injury or severance gets too c lose to it, or if the metabolic capacity of the cell 

body does not sati fy the need of the amount of axon that must be regrown. 

To meet the increased nutrie nt require ment and metabolic activ ity and to rebuild a 

fibrilar tructure o f regene rating axons, a complicated axonal transport syste m o f five rate-

component moves from the cell body down the regrowth axon. Each rate-component not only 

deliver. a unique group of proteins synthe ized in the ce ll body or polymeri zed from the parent 

axon tump but al o carries axonal cytoplasm or organelle synthes ized in the cell body. While 

traveling down the axon unde rgoing repair, a small portion o f the slowly transported proteins 

migrate within the nerve membrane by rnicroperi talsis and replace enzyme. catabolized in 
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the membrane. There i till a signifi cant fraction that continues onto the terminal segments of 

the e lo ngating axons (Swaim, 1987). Furthermore, when axon regenerate in respon e to 

severance of a nerve, the outgrowth rates of the axons are apparently limited by the supply of 

cytoskeleton associated with the delivery rate-components. Growth cone function (sprouting) 

i determined by microfilaments (polymers of actin). The asyrrunetry of the elongating axon is 

tabilized by microtubules (polymers of tubulin). The radial growth of an axon (maturation) is 

maintained by neurofiJaments (polymers of triplet) (McQuarrie, 1983). 

Nerve regeneration is influenced by the changes within the extracellular e nvironment 

and the nerve stump . Fibroblasts and c ircumferential cells infiltrate the injury ite and migrate 

toward each other to establish a tissue bridge and capillary network between the proximal and 

distal stumps. Then axons initiate prouting from the proximal stump. This is associated with 

the increa ed metabolic activity of the cell body. The axons elongate toward the di tal stump 

along thi newly built tissue pathway. Depending on the degree of the injury, axonal budding 

starts 1 to 3 cm proximal to the damage site (i n cases of diffuse traumatic severance) or begins 

a few millimeters retrograde to the last node of Ranvier (in the case of a sharpl y localized 

injury). 

A shown by light and e lectron microscopic studies, the proliferation of Schwann cells 

play a key role in re-e tabli hme nt of continuity between two tump during axonal 

regeneratio n. Schwann tubes that were maintained by the baseme nt me mbrane during 

degeneration begin to surround proliferating Schwann ce ll s to form "bands of Bunger". 

Because regenerating axonal sprouts or branches have a natural affi nity with Schwann cells 

(Figure 2.2C), ca lled homotropism, regrowth of axons takes place a longside the band of 

Bunger between the basement membrane and the Schwann cell s. The Schwann cell s of the 

proximal rump slightly precede axonal growth cone ; therefore, these longi tudinally 

continuous bands provide a pathway to guide regenerating axon through the injury ite and 

through the empty endoneurial tubes to their de. tinations (Allt, 1976; Lundborg et al., l 982a; 
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Williams et a l. , 1983; Williams and Varon, 1985). Subsequently, the Schwann cell s e nclose 

the regenerated axons by multiple concentric wrappings, that is, they remyelinate the 

regenerating axons. 

Unmyelinated fibers regenerate more rapidly than myelinated axon , (Allt, 1976; 

Williams et al. , 1983; William and Varon, 1985). Axon branches pu ·h the Schwann ce lls of 

the tubule to the ide while migrating into pre-existing endoneurial tubules in the distal stump. 

H owever, if the axon branche do not e nter the endoneurial tubu le or are unable to 

penetrate the connecti ve ti ue surrounding , the ir regeneration is blocked (Figure 2.2E). Even 

thoug h everal axons may migrate into a tubu le and develop, onl y one branch will become 

mye linated and ful ly mature once successful in contacting wi th a peripheral motor end plate or 

en or receptor (Figure 2.2D). 

2.2. Review of previous work in repair techniques 

2.2.1. Pre ent nerve repair techniques 

Becau e mammalian peripheral nerve axon have a capability to regenerate following a 

tran ection, curre nt repair techniques e mpha ize ways to re-e tabli h the continuity of the 

impaired nervou ti ue. Ba ed on the extent of the injury and the length of the gap, uture and 

sutureles techniques have been applied to reunite whole nerves (epineu ri al repair) and 

components of nerve (perineuriaI, group perineurial, and in terfascicular repair). If two tumps 

of a evered nerve with a gap of le . . than L cm can be placed in clo c approximation, uture 

repair (end-to-end ana tarno is) i the mo t common cl inical choice. Epineurial suture repair i 

utilized to bridge the outmo t e pine urial layer o f the ne rve shea th . To obtain a prec i e 

alig nment, fascic les or small groups of fasc icles are joined by fa. c icular (perine uri al) o r 

grouped fascicu lar suture repair techniques. 



11 

Scar ti sue or trauma in the perineurium, intrafa cicu lar tissue or perineurium can be 

cau ed by fascicula.r or perineuria1 surgical manipulations. Thi s scar tissue frequently interferes 

wilh the growth of axon from the proximal tump into the di taJ nerve stump and after repair, 

some fascicles till can override, gap, buckle, or straddle the aligned components. In addi tion, 

if the injury i. extensive or if the gap between the nerve stumps is longer than 1.5 cm, these 

nerve tumps cannot be brought together . atisfactorily. A nerve grafl or a nerve tube 

(sutureless repair technique) provide an alternati ve to bridge this condi tion. To eparate a 

fibrou healing from axonaJ regeneration until Lhe perineurium re-e tabli he continuity, a 

cellular approach u ing a fa cicuJar Lube or a nerve coupler as an artificial perineurium was 

introduced by Ro en et aJ. ( 1979, 1983) and by Mar haJl et al. ( 1989). To deal with problem 

of central tapering and gapping, Daniel ( 1991 ) developed the first multiple- lumen cuff y tern. 

It wa made of ilicone rubber. These preliminary studie were performed to bridge 0.5 cm 

gaps in the sciatic nerves of rats. They demon trated the feasibility of using a multiple lumen 

cuff for upport, guidance and orientation of axon growth from proximal to di ta1 rump . 

2.2.2. Summary of past research 

Various natural materials and synthetic material s were investigated because of their 

sui tabi lity for utureless repair. Biological materia ls uc h as autografts, al lograft , or 

heterografts have served as nerve grafts to guide pe riphera l nerve regeneration across gaps. 

Autografts (e.g., autogenous veins) can undergo revascula.rization. This he lps to preserve 

Schwann cell s which aid in the regeneration proce s (Chiu et al. , 1982, 1988; Suematsu ct aJ. , 

1988). Sometime , allografts and heterografts are u ed as al ternatives. However, Kline ( 1988) 

pointed out Lhat, with time , uch vein graft collapse and fibrosis resull con tricting the 

regenerating neuron fiber that regeneralc aero the ite of the injury. Al o, in order to obtain 

the vein for u e, a new vein lesion may need to be introduced. However, there might be a 
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problem of finding a vein with the appropriate dimen ·ion . Even though an a llograft or a 

heterograft ha a pote ntial to serve a · a nerve bridge, immune rejection might introduce 

problem . 

Biocompatible materials have provided an alternative to serve as a nerve cuff when an 

autograft i unavailable. M any types of materia ls have been employed . Nonpermcable, or 

lightl y pe rmeable, and nonbiogradeable materia ls have been investigated suc h as ilicone 

rubber (D aniel, 199 1; Fields and Elli sman, I 986a, I 986b; Gib on and Daniloff, 1989; Je nq 

and Cogge ha ll , 1985; Le Beau et al. , l 988b; Lundborg e t al. , I 982a; MUiier et a l. , 1987; 

Politi et a l. , 1982; Satou et al. , 1986; William et al. , 1983, 1984, 1987; William and Varon , 

1985; Yannas et a l. , 1989), Teflon® (Cuadro and Granatir, 1987), cellulo e acetate (Bas e lt 

et al. , 1959), Gore tex® (Young et al. , 1984), and polyethylene terephrhalate (Yo hii et al. , 

1987). Bioresorbable or biodegradable mate rial s have been introduced to reduce the 

confine me nt of newly fo rmed epine uri al . heaths or to e liminate compres io n o f the 

regenerating nerves. Examples inc lude polyglactin mesh (Molander et al. , 1983), polyglycolic 

acid (Mathur e t al. , 1983; Ro en, et al. , 1983, 1989) , polyester (He nry e t a l. , 1985) and 

glycolide trimethylene carbonate (Rosen et al. , 1992). In addition to providing axon guidance, 

certain nerve cuff may influence the regeneration process by modulating solute exchange 

between regenerating and extra-channe l environme nts. The u e of semipermeable material 

uc h as polysulfone with a range of molecular weight cutoffs (Aebischer e t al., I 989a, 1988), 

hemodiaJysi -type acrylic copolymer w ith a 50,000 dalton cutoff (Uzman and Villega , I 983a, 

1983b) and po lyviny lchloride acry lic copolymer with a 50,000 dalton cutoff (Valentin i et al. , 

1987) permits se lected intra- and extra-channel factors to provide nutrition. 

The gap length separating a prox imal and distal rat sciatic nerve stumps mu t be le s 

than I cm for a ucce ful regeneration of nerve in empty ilicone chamber (Lundborg et al. , 

I 982a; M adi on e t a l. , 1985; Seckel et al., 1984; Wi lliams, et al. , 1984). However, if the 

silicone chambe rs are modified by prefilling wi th phosphate-buffered saline, a ucces ful 
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regeneration can be promoted to pan 2 c m interstump gap le ngth (William el al. , 1987). 

Williams and Varon (1985) demon trated thal an inc rease in the chamber volume ( I 1, 25, and 

75 µI ) through an inc rease in the c hamber diameter ( 1.2, 1.8, and 3. 1 mm inner diame ter) 

adver e ly affects the natural matrix formation and results in a s ignificant re tardation of 

regeneration in chambers that were empty when implanted. 

Prefilling elected chambers with dialyzed plasma results in a 3.5 fo ld inc rea e in the 

endoneurial area of regeneration and in axon count (William et al. , 1987). On the other hand, 

Le Beau et al. (1988b) and Fie lds and Elli sman (I 986b) u pected that a constrictive effect was 

pre en t during nerve regeneration in ilicone rubber nerve cuffs. Ducker and Haye (I 968) 

pointed out that the growth of axons regenerating through ilicone tubes ha been hown lo be 

stunted by the constricting and ischemic effect of the tube itself. The problem i accentuated as 

lhe length of the gap increases and vascularization is further re tricted. The authors sugge ted 

that the optimum cross-sectional area of the cuff for maximum fiber growth might be 2.5 lo 3 

times that of the nerve. 

The importance of the distal nerve a a ource of target-derived neurotrophic factors 

nece ary for successful regeneration of the proximal nerve has been recognized by several 

investigator. (Lundborg et al. , 198 1; Lundborg et al. , l 982a, l 982b; Madi on et al.. 1985; 

Politi et aJ. , 1982; Seckel e t al. , 1984; Williams et al., 1984). The di stal stump innuence 

axonal regeneration over a limited di tance of the order of I cm. 

Rap id proli feration and migratio n of Schwann ce lls fo llow a ner ve tran ection 

(Williams et al. , 1983; Williams and Varon, 1985). C ultured Schwann cell · have been 

transplanted into peripheral nerves. The Schwann cell s can ensheath and remyelinate axon 

(Aguayo et al. , 1979 and S hine et a l. , I 985). Fluid conditioned by cells partic ipating in nerve 

regeneration promotes Schwann cell adhes ion, migration and proli ferati on in vitro (Le Beau et 

al. , l 988a). However, there are connicting investi gation reports. If Schwann cells are killed by 

repeated freezing and thawing, but the ir basement members are kept intac t, sprou ting axon 
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still can follow the basal lamina tubes (Kumagai et al., 1990; Tohyama and Kumagai, 1992). 

The dead Schwann cells killed by repeated freezing are phagocytosed by macrophages. The 

basal laminae of the Schwann cells remain as tubular scaffolds and the regenerating axons can 

grow through uch scaffolds from the proximal stump (Ide et al., 1983). 

To improve the environment of regeneration in the chambers, humoral or substrate-

bound chamber components such as laminin gel (Madison et al., 1985, 1987; Yoshii et al., 

1987), collagen (Rosen, et al., 1989; Satou et al., 1986), collagen-glycosaminoglycan 

(Yannas, et al., 1989), collagen and cultured dorsal root ganglia cells (Shine et al., 1985), 

collagen and laminin gels (Madison et al., 1988; Valentini et al., 1987), basic fibroblast growth 

factor (b-FGF) or b-FGF and a 1-glycoprotein (a l-GP) (Aebischer et al., l 989b), dialyzed 

plasma (Williams et al., 1987), or saline (Gibson and Daniloff, 1989; Williams et al., 1987; 

Williams and Y aron, 1985) have been evaluated. The observations suggest that growth or 

trophic factors which are secreted by reactive cells or introduced by prefilling materials diffuse 

into the regenerative environment. They contribute to allow nerve regeneration even in the case 

of a presence of long gap lengths (greater than l cm, and up to 2 cm) or the use of blind-ended 

or empty distal nerve chambers. 

The ultrastructural and morphometric characteristics of regenerated nerves (i.e., axon 

diameter, fiber diameter, myelin thickness, myelinated and unmyelinated axon counts, and 

organization) correlate with nerve physiological function recovery. Even after long implantation 

times, regenerated nerves are smaller than comparable normal adult nerves of a rat. Fiber 

diameter histograms display a bimodal diameter distribution with a much broader diameter 

range in control rats compared with similar aged animals used in nerve regeneration studies. 

For normal Sprague-Dawley rat sciatic nerves (Fields and Ellisman, l 986b), myelinated axons 

show a bimodal diameter distribution with peaks at 3.5 and 5 micrometers. In addition, there 

are larger axons of up to 9 µm diameter. By comparison, even after a 302 day implantation 
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period, the regenerated axon diamete r range only exte nds to about 6 µm and the diameter 

distribution i kewed below the peak 3.5 µm diameter (Rosen et al. , 1983, 1992). 

This decrease in average diamete rs seen fo r regenerated axo ns also agrees with the 

ob ervations of Espejo and Alvarez ( 1986), Henry et al. ( 1985), Le Beau ct al. ( l 988b), and 

Rosen et al. ( 1989). Le Beau e t al. (l 988b) found the rat sc iatic mean fiber diameter at 435 

days implan tation to be 2.39 ± 0. 10 µm. This is ignificantly smaller than that of normal rat, 

5.1 3 ± 0. 13 µm. In addition, the myelin sheath thickness is also . ign ificant ly reduced in the 

regene rated myel inated fibers compared to tho e of the normal control animal . Sheath 

thickne becomes thicker with the increa e in recovery time after the urgery (E pejo and 

Alvarez, 1986; Le Beau et al., l 988b). 

Regre ive change in axon morphology are also apparent in older regenerated fiber . 

The two-zone reorganization een by Danie l ( 199 1) fo r both single and multiple lumen cuff 

sy te rns is al o seen in the single- lumen nerve cuff syste m (Jenq and Coggesha ll , 1986; 

Lundborg et al. , 1982a; M adison et al. , 1988; Seckel et al. , 1984; Wi ll iams and Varon, 1985; 

Williams et al. , 1983, L 984 ). The peri pheral zone contains dispersed blood capillaries and 

collagenous connecti ve tissues (epineuri al, perineuri al and perineuri al- li ke cel l ). The 

collagenous connective tissue matri x in a regenerated nerve is sign ificantly wider than that een 

in a normal control a nimal. In addition, there i some fluid- fill ed space between the e two 

zones. The central zone i filled w ith mye linated and unmyelinated axons, an endoneurial 

connecti ve tissue matrix, and an invading perineurium. Compared to highly packed axons in a 

normal nerve, regenerated axons are surrounded by relative ly wider areas o f invad ing 

peri neuri um . Some regenerated axons are grouped and separated further by invad ing 

perineurium. The re are referred to a mi ni -fascic le or small regenerated uni t . Numerou 

prominent blood ve e ls appear in this zone (Jenq and Coggeshall, 1986; Seckel et a l. , 1984). 
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2.3. Multiple-lumen nerve cuff 

2.3.1. Organization of a multiple-lumen cuff 

The first multiple-lumen ne rve cuff system was developed by Daniel ( 199 1). The 

mulliple-lume n tubular component lhat fi lls a 0.5 c m gap between proximal and dislal nerve 

. rumps i pos itio ned coaxially within a s ingle- lumen Silasti c® medical-grade tube ( ·ingle 

lume n: catalog number 602-265, Dow Corning Corp., Midland, Michigan) which is 11 mm in 

length. There i a 3 mm opening on each e nd of single lumen tube for in erting and anchoring 

lhe stump . The outer diam eter of thi ingle lumen tube is 2.4 1 mm (0.095 inc h). The inner 

diam eter of thi ingle lumen tube i 1.57 mm (0.062 inch). The rat ciatic ne rve u ed in the 

tudy were approximately J .2 mm in diameler. The 7-lumen cuff consi t of one central lume n 

(0.38 mm in diam eter). Six lumens (each 0.38 mm in diameter) are paced 0.3 mm from the 

central lumen (wal l-to-waJJ distance) in a circular patlem. 

2.3.2. Silicone rubber in a nerve cuff 

Silicone rubber is predo minantl y buill up utili zing Lhe dime thyl-siloxane unit. The 

medium and hard grades are made from polydimethyl iloxane copolymerized with very small 

amounts of methylvinyl s iJoxane whose methylvin yl portion makes for a more e fficie nt 

vulcanization. On the other hand , a small fraction of phenyl methyl siloxane contributes lo the 

softne s for the soft medical grade silicone rubber variety . 

To tum the polymers into the three dimensional network truc ture , a medica l-grade o f 

ilicone rubber is proces ed by heat-vulcanizing or room-te mperature-vulcanizing (RTV). The 

heat vulcanization process i initi ated by a cataly t, dichlorobenzoyl perox ide. Furthermore, the 

RTV ilicone rubber is ubclassified into Lhe two component RTV and the one component RTV 

(B raley, 1970). Fo r o ne-compone nt si licone rubber , the cross- linking agent--me thy l 
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triaceLoxy il ane--i activated by absorption o f waler from the air. For the two-compo nent 

sy tern, stannous octoate is added a a cataly t. 

Very pure, fine ly di vided parti cles of about 30µm in di ameter serve a fill ers in two 

compone nt RTV s ilicone rubber to enhance its mechanical propertie . In general , the more 

fillers u ed, the higher the density of the rubber (Park, 1984). Othe r vari eties of ilicone rubber 

utilized ilica partic les of the order of 120 .A. in diameter (heat vulcanizing varieties). 

Silastic® elastomer Q7-4750 wa u ed for the central 7-lumen component of the cuff. 

Th i two-part e nhanced tear re i tant heat e tt ing e lastome r con i ts of dimethyl and 

methylvinyl iloxane copolymer and rein forcing silica particles. It i graded a being medium 

hard. The e la tomer i c ured w ith a platinum cata ly t for 10 minutes at 240°F. It i then po t-

cured for I -hour at 350°F. 

2.4. Silver stain 

2.4.1 . The principle of s ilver stain 

Bodian' il ver tain has a specific affinity fo r neurofi laments of nerve fiber (Katz and 

Wat on, 1985; Phillip et al., 1983). ft i ugge ted that the neurofi lament contain an amino 

acid sequence or ome econdary modification which binds d irectly with the silver. 

The cy toskele ton of a ne uron ha three major compo ne nts: neurofil ament , 

microtubules, and actin fil aments. Ac tin fil aments fo rm a cortical ne twork j u t under the 

membrane urface. Neurofil ame nts and microtubule are concentrated in axon and dendrites. 

They are oriented longitudinally and are connected by cross links. They are le abundant in the 

actin-rich cortex. In large mammalian axon , the number of neurofilament i corre lated with 

the ize o f axon c ros ectionaJ areas. Axons e tablish their diameters in re lation to the radial 

exte nt o f the ne twork of cross linked neurofil ament that they contain (Vale et al. , 1992). The 
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s ilver impregnatio n method stains the areas of axonal fibe rs according to the content and 

dens ity of neurofil ame nts and , thu , highlights individual axons. 

SchJaepfer and Micko ( J 978a) howed the elective di appearance of 69,000, J 50,000, 

and 200,000 dalton ne urofilament proteins in transected peripheral ne rves. The same protein 

have been identifi ed in isolates of intact neurofilaments from a rat peripheral nerve and pinal 

cord (Schlaepfer and Freeman, 1978b). This suggests that the organization of neurofilament 

protein i broke n down during Walle ri an axonal di integratio n. S ubseque ntly, axo na l 

regeneration, particularly during the maturation phase (which emphasize the radial growth of 

the axon), involves the laying down of ne urofilame nts (McQuarrie, 1983). Newly-formed 

(immature axon ), contain relatively few neurofilaments and fine cell processes. The tandard 

Bodian me thod doe no t sta in the m (Katz and Wat on, 1985). In add ition, if an amino ac id 

equence which has bee n proposed to bind directl y with the silver greatly decreases in the 

regenerated axon, the cross section of th is regenerated axon wo uld di play a non-uni form 

stain. Therefore, the inte ns ificatio n procedure needs to be fo llowed in order to enhance and 

define more clearly the fine cyto 'keletal structures normally tai ned by the Bodian silver tain. 

2.4.2. The chemistry of a silver stain 

A silver stain technique has three common features (Kiernan , L 98 1 ): 

J. impregnating fi xed tis ue in a solution containing sil ver ions 
(I o-5 M to 1.0 M concentration). 

2. ub equently treating the pecimen with a reducing agent to initiate 

the reaction: Ag+ + e- = Ag. 

3. depositing opaque dark material consi ·ting ma.inly or entire ly of 

metallic silver in the argyrophilic axon . 
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Silver is taken up in two ways in the first step of the staining procedure. During 

impregnation, mo t of the silver is bound chemically by proteins throughout the tissue. This 

chemically bound silver is not specifically related to any axons. A much smaller fraction of the 

silver i reduced at sites in the argyrophilic axons and is precipitated as small silver nuclei 

(about 2-6 atoms). Then the tissue sections a.re transferred to a solution similar to an alkaline 

photographic developer containing sodium sulphite and hydroquinone. First, the sulphite 

initially removes the chemically bound silver from the proteins and simultaneously stabilizes 

the spontaneous reduction of Ag+ by introducing [Ag(S03)2J3- ions into the solution. Second, 

the hydroquinone then reduces this complex ion to metallic s ilver on the surfaces of the 

previously formed nuclei a sociated with the argyrophilic axons. The metallic s ilver nuclei 

present in the axons thus enlarge and coalesce. The axons will appear black or brown 111 

reflected light. 

To overcome an inadequate light microscopy contrast for axons impregnated with 

silver, the contrast can be enhanced by toning the ilver-stained tissue sections in gold chloride. 

After gold toning, provided that this st ill doe not produce adequate improvement in contrast, it 

is necessary to add a further reduction stage to the procedure by using oxalic acid. Substantial 

depos its of gold precipitate a.round each original particle of silver. Finally, the specimens are 

immersed in aqueou sodium thiosulphate to remove residual si lver salts and to stop the silver 

impregnation (Kiernan , 1981). 

2.5. Backscattered electron imaging for the silver stained axons 

When the primary electrons of a beam from a scanning e lectron microscope interact 

with the specimen, several scattering events occur. These interactions can be generally divided 

into two groups. One interaction group comprises elastic events which occur whenever a 

primary beam e lectron comes into proximity with a specimen atom nucleus or outer shell 
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elec tron and the electron rebounds with negligible energy lo s. This leads to the production of 

backscattered electrons . The other interaction group comprises inelastic colli sions which 

happen whenever a primary beam collides with an electron of the specimen atom. The beam 

provides substantial energy lo that atom, resulting in the generation of secondary electrons, 

Auger electrons, characteristic X-rays and continuum (Bremsstrahlung) X-rays, long 

wavelength electron magnetic radiation, electron- hole pairs, lattice vibrations (photons), and 

electron o cillation (plasmons). 

Backscattered electrons can escape from a relatively large depth with in the sample 

(approximately 1 to 2 µm for a low atomic number matrix containing a high atomjc number 

feature). Back cattered electron production how a strong correlation with increasing atomic 

number. As the atomic number of a region of the specimen increases, a backscattered electron 

image results in increased image contrast for a feature. For thi s rea on, based on the mean 

atomic number di fferences between features of a sample, several phases may be distinguished 

in the backscattered electron image. Thus, stained neuron fibers can be recogruzed ea ily due to 

higher contrast provided by electrons backscattering fro m the s il ver (atomic number Z=47) 

precipitated in the fibers compared to the low atomi.c number of the myelin and connective 

tissue components surrounding the nerve fiber ( primaril y, nitrogen (Z=7), oxygen ( Z=8) and 

carbon (Z=6)). 
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3. MATERIALS AND METHODS 

3.1. Sample preparation 

As an extension of the evaluation of the multiple-lumen cuff (Daniel, 199 1), the present 

study utilizes several of the thin sections from that study (Table 3.1). The nerve thin section 

specimens were stained with Bodian's silver stain for light microscopy studies. They were also 

suitable for an electron backscattered imaging study of axons. Three sections , about 2-3 mm 

long, had been removed from the proximal ection ( 4.5 mm proximal to the center of the cuff), 

the middle section (the center of the nerve cuff) and the distal section (4.5 mm distal to the 

center of the cuff) of experimental animals that had rece ived a multiple-lumen cuff (8, 12, 16, 

or 24 week implantation periods) . A 5 mm section of the sciatic nerve corresponding to the 

repair area of experimental animals was removed at the end of each implantation period for 

control animals. The male Sprague-Dawley rats used in this study were adults. 

For the light microscope microstructural study, the specimens were processed with 

10% neutral buffered formalin and then dehydrated in ascending concentrations of ethanol 

(from 70%, 80%, 90%, up to l 00% ). The samples were embedded (JB-4® embedding kit, 

Polysc ience Inc., Warrington, PA) and then the 2-3 mm nerve blocks were ectioned ( 1.5 µm 

to 2.5 µm thickness sections). After the plastic matrix was removed by e tching in a 10% 

so lution of odium hydroxide in 100% ethanol, and following a wash using a few drops of 

l 00% ethanol, the tissue sections were mounted on glass slides and the thin sections were 

stained by using the Bodian's silver stain method and by using gold toning to enhance contrast. 

All of these processes were performed in the histo-pathology laboratory in the Department of 

Veterinary Pathology, Iowa State University. 



Table 3. 1. Sample list 

Group 
Time 

Animal 
number 

Specimen 
numberb 

Control a 
16 week 

19 

91 R729 

8 week 
implantation 

24 

91R637A 
9 1R637C 
91R637B 

22 

Experiment 
12 week 16 week 

implantation implantation 
14 34 

91R724A 
9 LR724C 
9 LR724B 

91R626A 
91R626C 
91R626B 

24 week 
implantation 

1, 2, & 3 

9 LR712A 
9L R712C 
91 R7 12B 
91R713A 
91R713C 
91R713B 
91R714A 
91R714C 
91R714B 

a Control animal (no surgery during the 16 week period) was sacrificed for comparison of 
normal nerve with that of nerve samples from the multiple lumen experiments. 

b Specimen number A, C, or B represents a proximal, middle or distal section, respectively 
(A= proximal, B =distal , and C =middle). The control animal has only one site and can 
be compared with section from the proximal, middle, and distal locations from retrieved 
multiple lumen experimental cases. 

To generate the e lectron back cattered image of the surface of the thi n sections directly, 

the glass cover slip had to be removed from the light microscope slides. The slides were 

immersed in xylene until the cover lip detached from the sample s lide (within 4 to 5 days) . 

The mounting medium that had been used to adhere the cover slip onto the thin section of the 

slide was acrytol (a mixture composed of methyl methacrylate, residual monomers, toluene, 

dibutyl phthalate , and 2,6-di-tert-butyl-p-cresol). 

The dry specimen surfaces were then coated with a I OOA thin film of gold applied 

using a sputter coating device (SEM Coating Unit E5100, Polaron Instruments Inc.) operated 

at 2.2 kV ion potential with an ion current of 20 mA for one minute. The sample was then 

ready for mounting on the scanni.ng e lectron microscope specimen stage for electron 

backscatter imaging. 



23 

3.2. Scanning electron microscope examination 

An adhesive (a mixture of colloidal graph ite and isopropanol; Energy Beam Sciences, 

MA) is applied to the base of the slide and the top of the sample holder to hold the slide mount 

to the SEM stage. To reduce sample charging in the SEM, the four edges of the glass slide are 

also covered by the conductive adhesive (Von Langsdorff et al., 1990). The specimens are 

examined in a JEOL JSM-840 scanni.ng electron microscope equipped with a backscattered 

electron detector. Secondary emission imaging (SE) is done using an accelerating voltage of 15 

kV, probe current of 0 .05 to 0 .5 nA, aperture size of 70 µm or 110 µm, and a working 

di tance of 37 to 39 mm. The backscattered electron image (BSE) is then obtained using the 

san1e accelerating voltage, probe current, aperture size, but a shorter working distance of 6 mm 

to 15 mm in order to collect sufficient backscattered electron signals for optimal contra t. The 

image is collected using a digital imaging sy tern that averages multiple cans in order to 

decrea e noise in an image. Final photographic recording uti lizes Polaroid Type 55 film. 

The same specimen is also examined at l 60x or 400x magnification (l 6x or 40x by lOx 

Optivar) using a light microscope (Dialux 20, Leitz) . Photographic images are recorded using 

the accessory camera (2.5x Optivar) with Kodak technical pan film (TP 135-36). 

3.3. Quantitative evaluations 

Morphometric parameters for the repaired peripheral nerve include axon core diameters, 

axon counts, total regenerated axon area, axon cross sectional area of the regenerated strand or 

fascicle-like unit, and axon counts per unit area. These are evaluated for the proximal, middle, 

and distal cross ections. Light microscope (LM) and scanning electron microscope (SEM) 

techniques are u ed . These analyses are performed on backscattered electron images ( l OOOX 
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micrographs) and enlarged light mic roscope photographs (400X or lOOOX). The results are 

then compared . 

Measurements were performed using the method of Vej sada et al. (1985) in which the 

axon core diameter is obtained by measuring the longest dimension of the axon (major 

axis) and the longest axon dimension perpendicular to thi s (minor axis), and averaging the two 

measurements. The measurements are scaled by a machinist ruler with the smallest cale being 

markings 1/64 inch apart. Measurements of the current study are reported to ±0.2 µm on the 

lOOOX basis [1 /1 28 inch x 25.4 mm;i nch x 103 µm;mm + t03 (magni ficatio n)]. After these 

measurements, every axon feature is first classified according to its stain ing unifo rmity 

characteristics, and then grouped into diameter classes for frequency-s ize di stribution plots. 

Axon features smaller than 0 .75 µm are exc luded from measurement (less than 0 .1 % of the 

features measured). 

The di ameter ratio of major axis to minor axis is calculated to investigate the shape of 

regenerated axons. Fo r comparison between Daniel's measurement method (an equivalent 

circle diameter method) done by automated image analysi and that of the current study (an 

equalized ellipse method, Vejsada et al. , 1985), the differences in axon diameters are calculated 

and the differences are reported as percent. 

The cross sectional area containing the regenerated axons measured is defined as the 

area examined . The area is examined with a micrometer disc (Bauch & Lomb) covering the 

specimen. The related position between the border of the area with the smalle t square grid of 

the micrometer disc (0 .2 mm one side) is drawn on grid paper . The smallest square grid on the 

micrometer disc is further di vided by 25 small grids. One s ide of the small grid on the grid 

paper corresponds to 0 .04 mm. The axon cross sectional area of the proximal section, that of 

the strand examined in the middle section, and that of the fascicle-li ke units examined in the 

distal section is termed a total area. These mea urements are estimated to 116 o f area of the 

small grid on the grid paper [ 1/6 x (0 .04 mm)2 x I 06 µm2/mm2 =266 µm2] but are reported to 
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±500 µm2 to include unce rtainty from drawi ng. The area examined r elative to tota l area 

is obtained by multiplying J 00 times the ratio of the area examined divided by total area. 

The a xon counts are obtained from the area examined. T he extrapolated a xon 

counts for the total a rea are calculated by di viding the axon counts in the area examined by 

the percentage of the area examined to the total area. However, there are several nerve strands 

in the middle section and fascicle-like units in the distal section. To investigate variances for 

axon counts among differe nt strands which bridge the gap, the number of strands in the 

middle section , the axon counts per s tra nd, and the numbe r of fascicle-like uni ts 

in the dis ta l section , and axon counts per fascicle-like unit are evaluated. T he a xon 

counts per unit area (axons/µm 2) represent Lhe axon counts divided by the area examined 

in which axons were counted and measured. For comparisons of the two observation methods, 

the identical strand or the fascicle- like unit is examined by both LM and SEM and is identified 

by the same series number in both measurement cases. 

3.4. Diam ete r frequency dis tribution 

When nerve regenerates through the repair site, axon cones may branch into e mpty 

endoneurial tubes distal to the repair site. With an increasing demand on the proximal axons 

during this branching process, the average size of the distal axon fibers diminishes. For this 

reason, there is an uncertainty in knowing the percentage of connected axons for comparisons 

of the counts of axons proximal and distal to the repair nerve site. To e liminate this factor of 

uncertainty , axon fiber diameter frequency distributions (FDH) are introduced Lo measure the 

numbers and the sizes of the regenerated axons in proportion to their maturation and 

conduction velocity. Also, the reduction of axonal fiber size due to branching is reflected in an 

FDH. 
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The diameter hi togram i obtained from the um of the axon count ranked in each 

diameter range ba ed on the ame taining uniformity feature characteristic. Each diameter rank 

contains a diameter range of 0.5 µm (within plus 0.24 µm and minus 0.25 µm). For example, 

the 1-µm diameter rank includes diameter between 0.75 µm and 1.24 µm. The diameter 

his togram is plotted as percent versus the diameter ranks. The percent in a size range is 

calculated by 100 time the ratio of um of the axon found in the diameter rank divided by the 

total number of axons examined. Diameter frequency distributions for the proximal, middle and 

di tal ection of each animal are the n compared. To further examine the grouping 

characteristic, the sum of the percent in a s ize range o f 2 µm (with plus and minu 1 µm of 

diameter rank in which the mean axon diameter i located) i also characterized. 

3.5. Statistical methods 

The Tukey method of multiple compari ons is applied. If all factor level ample izes 

are the ame, the Tukey method is exact. On the other hand, a modified Tukey-Kran1er method 

uitable for unequal ample ize . . Thi wa u ed in thi tudy. Variable name are et for 

compari on. The e include evaluation methods (SEM and LM), animal group (experimental 

and the normal control), implant periods (8, 12, 16 and 24 weeks), animal number, locations 

of the ections (proximal , middle and di tal ections) and stain uniformity characteri tics 

(category I, uniformly stained, and category If, nonuniformly stained). These tests are based 

on the a umption that there is no s ignificant difference between the means obtained from pairs 

of factor levels such as SEM versus LM. The analys is is generated at the 0.05 level of 

ign ificance (a =0.05) . Pair of mean difference between ection level of experime ntal 

animals and the s ingle control animal are tested under each evaluation method factor level. 

Further analy i tables of variance are determined byte ting the relati ve repaired location level 

for each animal of each evaluation method, by comparing the location level based on the ame 
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stain uniformity characteri tic and by calculating the mean diameters among different stain 

uniformity characteristics for each section. All stati stical tests are run with Statistical Analysis 

System (SAS), (Release 6.06, SAS Institute, Cary, NC). 
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4. RESULTS 

4.1. Microstructure 

4.1.1. Scanning electron microscope studies 

The BSE image emphasizes the composition contrast. Because Bodian 's silver stain is 

specific to axons and s il ver has a relatively high atomic number atom, contra t for si lver is 

relatively high in BSE imaging of regenerated axons compared wi th that for the low atomic 

number atoms of the surrounding tissue matri x. According to their appearance, regenerated 

axon features can be divided into two categories. Category I axons display unifo1m staining for 

axon features. Category II axons appear nonuni form in their staining for axon feature . 

An example of normal adult rat axons is shown in Figure 4.1. These axons have a 

clearly defined cross section surrounded by a myelin sheath. Blood capillaries are present in the 

perineurium connective tissue matrix. Only a few blood capillaries are inside the fascicles. The 

shape of every fascicle appears as a flattened oval. After the nerve is transected and is then 

repaired utilizing a multiple lumen cuff, these general normal nerve structural characteristic. are 

absent. Examples from multiple lumen experiments of sections from the proximal, middle, and 

distal ections are shown in Figures 4 .2A, B, and C for animal 3. 

4.1.1.1. Proximal section 

The structure of the proximal section fo r all fou r implant periods appears to be the mo t 

organized among those of the three section locations. The collagenous endoneurial connective 

tissue matrix among axons in this section is much more extensive than that seen in normal axon 

sections. Category I and II axonal features are present in this section (Figure 4.2A). Blood 
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capi llarie appear in ide the endoneuria l connective ti sue matrix and among the outer 

perineurium connective ti ue matrix. With time, more perineurium invade the endoneurial 

connective tissue matrix to form fasc icle of nerve; however, the mean diameter of axon tiJI 

smaller than that of normal axons of the control. 

4.1.1.2. Middle section 

Becau e of the seven lumen multiple lumen nerve cuff design, one to even trand of 

nerve bundles are een for a repafr. The round hape of a strand is different from the flattened 

oval hape of the normal fa cicles. If nerve cuff are implanted and filled with aline . elution at 

the time of implantation, the regenerated nerve strand number appear to be higher compared 

with multiple lumen cuffs used with empty lumen at the time of implantation. There are 5, 6, 

or 7 regenerated strands in nerve cuffs implanted and prefi lled with saline solution (at 16 weeks 

post-implantation) compared to 2, 5, or 6 regenerated trands of multiple lumen cuffs 

implanted empty (at 24 weeks post-implantation). 

A regenerated strand has two pro minent zone (shown in Figure 4.2B). The central 

zone is mainly filled by category I axons, category II axon , blood capillarie , endoneurial 

connective ti ue matrix , and invad ing perineurial ce lls. The ·e neural e lements form a 

fa c icular regeneration unit. The peripheral zone primarily contains numerou di pe rsed blood 

capillaries and co llagenous connective tis ue (epineurial, perineurial , or perineurial-like cells). 

It is organized into concentric layers. Squamous cell layers line the periphery, occupyi ng a 

large fraction of the total strand cross section. This zone contain. more collagen matrix between 

each !ayer than the control. 

There are numerous blood ve e l which are larger in middle section o f the multiple 

lumen cuff implanted with saline in the lumens compared with those cuffs implanted with 

empty lumens. Also, the cuffs implanted with a saline prefill appear to exhibit better 



Figure 4.1 Backscattered electron image of a cross section of the normal control right 
sciatic nerve (mid-thigh level). The normal axon are highly organized. Each 
neuron axon (A) has a clearly defined fiber area containjng a myelin sheath (M), 
struned gray, and the bright whjte axon. Normal control animal #19. 
Mean diameter= 4.2 ± 1.9 µm, Bodian strun. Scale bar = 10 µm 
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Figure 4.2 Backscattered electron images of a cross ection of a regenerated nerve from the 
proximal, middle and distal sections of animal #3. 24 weeks po t-implantation. 
(2A) Proximal, (2B) mjddle, and (2C) di tal ections. Bodian tain. 
Scale bar = l 0 µm 

A) Category I, uniformly stained axon feature (U), and category II, 
non-uniformly stained axon feature (P). Mean diameter= 3.4 ± 1.9 µm 

B) The central zone of the regenerated nerve strand. Category I and II 
axon feature , blood capillaries, endoneural connective ti ue matrix, and 
invading perineurial cells are confined by layers of perineurium (arrow head ) 
among the peripheral zone. 
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Figure 4.2: continued 

C) The distal section still maintained the two-zone pattern seen in the middle 
section: a central zone and a peripheral zone. Neural elements grouped into 
units (arrow heads) in the distal section. 
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Figure 4.3: Backscattered electron image of one nerve strand of the middle section of 
animal #2 and of one nerve strand of the middle section of animal #14. 
There is more collagen and endoneurial matrix surrounding regenerated neural 
elements in animal #2 (no saline prefill) compared with that for the section from 
animal# 14 (saline prefill). The cuffs implanted with a saline prefill (animal #14) 
appear to exhibit better organization of the axons features of the middle region than 
the cuffs implanted with empty cuff lumen. (3A) Animal #2, 24 weeks post-
implantation, Bodian Stain. (3B) Animal #14, 16 weeks post-implantation, Bodian 
Stain. Scale bar= 10 µm 
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Figure 4.4: Backscattered electron image of one fascicle-like unit of the distal section of 
animal #2 and of the distal section of animal #14. (4A) Animal #2, distal section, 
24 weeks post-implantation, no saline prefill, Bodian Stain. (4B) Animal #14, 
distal section, 16 weeks post-implantation, with saline prefill. Bodian 
Stain. Scale bar = 10 µm 
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organization (Figure 4.3B) of the axon features of the middle region than the cuffs implanted 

with empty cuff lumens (Figure 4.3A). 

4.1.1.3. Distal section 

Like the morphology seen for regenerated nerve strands in the middle section, every 

nerve bundle that crosses the gap and enters the distal stump maintains two zones: a central 

zone which includes neural elements and a peripheral zone which contains a connective tissue 

matrix (Figure 4.2C). The cuff specimens retrieved from saline prefill experiments show a 

clearly defined perineurial border between each regenerated fascicle or fascicle-like unit (16 

week case) compared to a relatively poorly defined connective tissue perineurial border in 

specimens for which no saline prefill was used (24 weeks post-implantation period case). 

There are larger blood vessels and fascicular units in specimens implanted with saline in the 

lumens compared with those implanted with empty lumens (Figure 4.4A and B). 

4.1.2. Light microscope studies 

The patterns observed in light microscopy (LM) are similar to those results obtained 

from the backscattered electron image (BSE). In addition, it is as easy to identify axons in LM 

as it is in BSE images due to the Bodian's silver stain being specific to axons. However, BSE 

images have a supe1ior contrast range compared to the light microscope pattern. 

4.2. Fiber diameter frequency distribution 

These fiber diameter histograms are plotted as percentage of axons compared to 

diameter range (scaled to 0.5 µm intervals; refer to Appendix). The diameter distribution for 
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certain proximal, middle and distal sections is plotted as a single diameter frequency 

distribution for either LM or SEM. In the SEM study, category I and category II plots represent 

uniformly stained axon features and non-uniformly stained axon features, respectively. 

For the normal control animal, there is a broad, flat distribution covering the size range 

of 1.0 µm to 11.0 µm (LM result). In BSE cases, category I di stributions indicate a broad 

diameter range from l µm to 8.5 µm, and category II distributions are somewhat broader (from 

1.5 µm to 9.5 µm). The frequency distribution of the combinations of axons from the two 

categories also occurs with a broad diameter range (between 1.0 and 9.5 µm). 

4.2.1. 8 weeks post-implantation (animal #34) 

In LM, the mode of the middle section peaks at 3.5 µm but that of the distal section 

peaks at 4.0 µm. SEM studies indicate that category I axons have axon distribution peak ranges 

of 3.0 to 5.5 µm (proximal), 2.5 to 4.0 µm (middle), and 3.0 to 4 .5 µm (distal). Category II 

axons of the middle and distal sections peak within a 1.5 to 3.0 µm size range. About 90% of 

axon diameters of the proximal section are grouped within a size range of 1.5 to 3.5 µm 

including a sharp peak at 2.0 µm. Combined data for category I and II axons shifts the 

distribution toward somewhat larger diameter sizes. 

4.2.2. 12 weeks post-implantation (animal # 24) 

LM results show a sharp peak at 2.0 µm in the proximal section. About 80% of the 

axon diameters of the middle section are found between 1.0 and 3.0 µm. These are skewed to 

smaller sizes. In the distal section, the peak shifts toward larger sizes between 2.5 and 4.5 µm. 

SEM observations for category I axons indicate that over 80% of the proximal axons 

are grouped within a size range of 1.5 to 3.0 µm; for the middle section axons, the diameter is 
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from 1.0 to 3.5 µm and contains over 80% of the axons examined for this section; and the 

distal distribution has a larger diameter range (2.0 to 6,0 µm), with about 90% of the axons 

occurring within in this range. For category II axons, over of 90% of the proximal distribution 

are grouped into a small diameter range from 1.0 to 3.0 µm with over 85% of the middle 

section axons appearing within the same diameter range as for category I middle section axons. 

There is no category II axon count available for the distal section for this animal. This 

combination of category I and category II axons shows that 90% of the axons either in the 

proximal or in the middle section are sized between 1.0 and 3.0 µm. The distal spectrum of 

total axons (SEM) is the same as that of the category I axons. 

4.2.3. 16 weeks post-implantation (animal # 14) 

LM results show that the proximal distribution peaks between 1.5 and 3.5 µm and 

about 90% of the middle distribution are grouped between l.O and 3.5 µm. For category I 

axons, the proximal distribution peaks between 1.5 and 4.0 µm, with a mode at 3.0 µm. In the 

middle section, about 90% of the axons are found to be between 1.0 and 4.0 µm. The distal 

distribution is broad and ranges from 1.0 to 4.5 µm. For the category II axons, the proximal 

axons usually have a size between 1.0 and 2.5 µm. In the middle section, the principle 

distribution occurs between 1.0 and 2.0 µm. Approximately 90% of the axons of the distal 

section group between the 1.0 and 2.5 µm size range. 

4.2.4. 24 weeks post-implantation (animals #1, #2 and #3) 

In the LM case for animal 1, over 85% of the axons exhibit a diameter between 1.0 µm 

and 3.5 µm (proximal section) , between 1.5 µm and 2. 0 µm (middle section), and between 

1.0 µm to 4.0 µm (distal section). For category I axons, about 80% of the proximal axon 
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diameters are grouped within the l .5µm to 4.0 µm range. The middle section axons have their 

mode at 3.0 µm. The distal axons are primarily between 2.0 and 4.0 µm. For category II 

axons, the data are more skewed with modes at 2.5 µm (proximal), 1.5 µm (middle) and 1.0 

µm (distal). Eighty percent of the diameters of the combination of category I and II axons are 

located between 1.0 and 3.0 µm with a 2.0 µm mode (proximal), between 1.5 and 4.0 µm 

with a 2.0 µm mode (middle), and between 2.0 and 4.0 µm with a peak at 3.0 µm (distal). 

LM data for animal 2 are imilar to those seen for animal 1. The most frequent 

(approximately 80%) sizes are within the 1.0 and 3.0 µm range (proximal), 1.0 and 4.0 µm 

range (middle), and 1.0 and 3.5 µm range (distal). Category I axons exhibit their principle 

frequencies for the proximal, middle and distal sections between 1.5 and 3.5 µm, between 1.0 

to 4.0 µm, and between 1.0 and 3.5 µm, respectively . For category JI axons, peaks occur at 

2.0 (proximal), 2.0 (middle) and 1.5 (di cal ) µm. For the total axon diameter di stribution 

(combination of category I and II axons), the spectra are similar to those of category II. 

LM data fo r animal 3 show a sharp peak (40%; proxi mal) located at 2.0 µm. The 

mjddle and distal di tributions are grouped between 1.5 µm and 3.5 µm and between 1.0 and 

2.5 µm, respectively. In the frequency spectrum for category I axons, distributions have 

modes at 3.0 (proximal), 2.0 (middle), and 1.5 µm (distal). Compared to category II axons, 

more frequencies group among the smaller diameter range, between 1.0 and 3.0 µm, for all 

section . For the total axonal diameter di tribution, the proximal ect ion has a mode at 3.0 µm, 

the middle section has a platykurtic peak curve between 1.5 and 2.5 µm, and the distal ection 

has a 1.5 µm mode. 

4.3. Quantitative results 

The neu ro n quantitative results are displayed in Tables which follow. In Table 4.1 

through Table 4.12, data listings mainly include the area examined, the total axon area, 
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percentage of area examined to the total related axon area, axon counts for area examined, axon 

counts per unit area (#/µm2), mean axon diameter (with standard deviation) for area examined, 

and extrapolated axon counts based on totaJ area. According to the methods of the studies and 

the uniformity of the staining, the tables are shown in the following order. LM results (Tables 

4.1, 4.2, and 4.3), total axons results from SEM studies (Tables 4.4, 4.5, and 4.6), category I 

axon results from SEM (Tables 4.7, 4.8, and 4.9), and category II axon results from SEM 

(Tables 4.10, 4.11, and 4.12). For each group, the tables present information for proximal, 

middle, and distal locations. Because of the multiple lumen cuff design, the "number of 

strands" that occurred in the middle section and the results for each strand are also included in 

the appropriate table. One to seven fascicle-like units occured in the distal section. Tills was 

determined in association with the one to seven strands that crossed the gap and entered the 

distal section. The individual fascicle-like unit series number does not correlate directly with 

position from the middle section data for these tabulations. On the other hand, the series 

number shown on the LM result tables is the same as that listed on the SEM result tables of the 

same section for comparison. 

All axon mean diameters determined for the experimental animals (except the category I 

axon mean diameter of the proximal section of animal 34, 8 weeks implantation) are always 

smaller than that of the normal control animal. Axon counts per unit area obtained from 

examined area for an experimental animal usually indicate a larger density than that for the 

normal control animal. Axon counts per unit area of category I axons are usually higher than 

those of category II axons in the same area examined. Although strand-to-strand or fascicle-like 

unit to unit variations are indicated by comparisons, they are not significant. Extrapolated axon 

counts (based on total axon area) of each (available) section point out that the number in the 

proximal section is much higher than that of the middle section or the distal section. There a.re 

one to seven regenerated nerve strands in the middle section (repair site). 
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Table 4.13, Table 4.14, Table 4. I 5 and Table 4. I 6 li st the percentage of the 

distribution of axons within ± 1 µm of the mean diameter for axons of the LM, category I, 

category II and total axons counted in a BSE image. Over 60% of the axon frequency pectra 

group within ± 1 µm of the mean diameter range seen for axons of these experimental animals. 

By contrast, the axon distribution percentage for the normal control animal is lower (45%). 

Based on the equalized ellipse method, Table 4.17, Table 4.1 8, Table 4.19 and Table 

4.20 show the major-to-minor axis ratios with standard deviations which are calculated for 

ratios of the major axis to the minor axis. The major axis is usually at least 1.4 times larger than 

the minor axis. Note that, the diameter ratio obtained from the normal animal is much higher 

than regenerated axons. In addition, there are differences between the equivalent circle diameter 

method and the equalized ellipse method. Based on the ame samples, the diameter differences 

are 2% to 10% larger when calculated by the equalized ellipse method. 

The comparisons are tested at significance level (a ) 0.05. If the probability (P) of 

accepting the hypothesi (there is no difference between a pair of axon diameter means) is less 

than the a chosen, the null hypothesis would be rejected. This is indicated by *** and the 

specific probability in the analysis appears in the table. Otherwise, a * is indicated for accepting 

the hypothesis. Results are displayed in Tables 4.21 to 4.28. Table 4.21 shows the mean 

diameter comparisons obtained from LM and BSE images. In Table 4.22, the mean axon 

diameter for each area examined is significantly smaller than that of the normal control animal 

(LM). Then, Table 4.23 provides a way to compare mean axon diameters between different 

locations for the same animal (LM). Table 4.24 also indicates a significantly larger mean axonal 

diameter for the normal control animal than for the experimental animals (SEM). Similar results 

to that of Table 4.24 appear in Table 4.25 where mean diameter comparisons of the same 

category of axon can be made between repaired nerve and the normal control animal (SEM). 

Except for the normal control animal, Table 4.26 indicate that if mean axon diameter 

comparisons are made between the two categories in the same area examined, the mean 
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diameter of category I axons is always larger than that of category II axons. In Table 4.27, 

result are provided for mean diameter compatisons of the same category of axons but between 

different examined locations of the same animal (SEM). Data listings in Table 4.28 indicate that 

mean diameters in the proximal section show significantly larger diameters than those in 

strands in the middle sections of the same animal (SEM). [n addi tion, there is al so no 

significant difference in axon counts per unit area between salined prefi ll cases (16 weeks) and 

the non-saline prefill ca es (24 weeks) for the ame section. However, there are larger mean 

strand cross section areas shown at middle sections for aline prefill cases ( 16 weeks) 

compared to non-prefill cases (24 weeks). 



Table 4.1 : Area examined, tota l a rea, percentage of a rea examined to total area, axon counts fo r 
area examined, axon counts per unit area, mean axon diameter , and extrapola ted counts 
based on total area in the proximal section observed by LM 

Area Axon Axon Mean Axon Extrapolated 
Implant Animal Area Total Examined Count Counts Diameter for Arca Axon Counts 
Period & Number Examined Arcaa Relative to for Area Per Unit Examined & Based on 
Group ( µm2 ) (µm2) Total Area Examined Areab Standard Deviation Total Arca 

( % ) ( #) (#I µm2) ( µm) ( #) 

24 Weeks 
Multi ple Lumen 286000 7 13000 40% 7296 0.026 2.5 ± 1.3 18240 
24 Weeks 
Multiple Lumen 2 294000 1204000 24% 4800 0.016 2.4 ± I. I 20000 

24 Weeks 
Multiple Lumen 3 295500 687000 43% 4020 0.014 3.4 ± 1.9 9349 
16 Weeks 

~ 
-..) 

Multiple Lumen 14 276500 975000 28% 6020 0.022 3. 1 ± 1.5 2 1500 
12 Weeks 
Multiple Lumen 24 186500 200000 93% 5230 0.028 2. 1 ±0.8 5624 
8 Weeks 
Multiple Lumen 34 1146500 

16 Weeksc 
Normal Control 19 150000 165500 91 % 1836 0.0 12 4.4 ± 2.1 20 18 

a Total area is obtained from the total axon area of the proximal section. 
b The axon counts per unit area are obtained from axon counts for area examined divided by the area examined. 
c There is no surgery performed in lhe normal control animal but it was sacrificed for comparison with animals of the 

experiments; therefore, the proximal portion of nerve is considered the ame a the middle portion of nerve and lhe 
data are taken from one fa cicle of the ingle middle ection. 



Table 4.2: Area examined, total area, percentage of area examined to total area, axon counts for 
area examined, axon counts per unit area, mean axon diameter, and extrapolated counts 
based on total area in the middle section observed by LM 

Total Area Axon Axon Mean Axon Extrapolated 
Implant Animal Number St.rand Area Total Examined Counts Counts Diameter for Area Axon Counts 
Period & Number of Strands Series Examined Areac Relative to for Area Per Unit Examined & Based on 

Group Occurred Numbe rb ( µm2 ) ( µm2) Total Arca Examined Aread Standard Deviation Total Area 
in Section ( % ) ( #) (#/ µm2) ( µm ) ( #) 

24 Weeks 
Mul tiple Lumen 2 8500 17000 50% 202 0.024 2.0 ± 0.8 404 --
24 Weeks I 31500 37000 85% 304 0.0 10 3.0 ± 1.4 358 
Multiple Lumen 2 5a 2 30000 30000 100% 407 0.014 407 

3 17500 17500 100% 337 0.019 337 
24 Weeks I 7500 7500 100% 208 0.028 208 

3 ~ 
Multiple Lumen 5 2 17500 19000 92% 588 0 .034 2.4 ± 0.8 639 00 

3 12000 12000 100% 137 0.011 137 
16 Weeks 13500 13500 100% 435 0 .032 435 
Multiple Lumen 14 7 2 23000 23000 100% 27 1 0.012 27 1 

3 18500 18500 100% 432 0.023 432 
4 10500 10500 100% 303 0.029 303 
5 17500 18000 98% 866 0.049 1.9 ± 0.8 892 
6 15000 15000 100% 374 0.025 374 
7 15000 15000 100% 393 0.026 393 

a There are five bridging strands inside and a sixth proximal strand extends half way across cuff. 
b Becau e ome artifacts are on thi s portion of the ample, part of the trand information might not be available. 
c Total area is obtained from the total axon area of a strand examined in the ection. 
d Axon counts per unit area are obtained from axon counts for the area examined divided by the area examined. 



Table 4.2: Continued 

Total Area Axon Axon Mean Axon Extrapolated 
Implant Animal Number Strand Area Total Exan1ined Counts Counts Diameter for Area Axon Counts 
Period & Number of Strands Series ExaTilined Areac Relative to for Area Per Uni t Examined & Based on 
Group Occurred umber!> (µm2) ( µm2) Total Area Examined Aread Standard Deviation Total Area 

in Section ( % ) ( #) (#/ µm2 ) ( µm ) ( #) 

12 Weeks 33500 33500 100% 355 0.0 11 355 
Multiple Lumen 24 7 2 20500 22000 9 1% 484 0.024 2.6 ± 1.3 532 

3 22000 22000 100% 115 0.005 11 5 
4 12000 12000 100% 250 0.02 1 250 
5 13500 13500 100% 63 0.005 63 
6 33500 33500 100% 180 0.005 180 
7 19000 19000 100% 266 0.014 266 

8 Weeks 
Multiple Lumen 34 40000 4 1500 96% 632 0.016 3.6 ± 1.3 658 
16 week .p. 

\0 

Normal Conlrole 19 2r 150000 165500 91 % 1836 0.0 12 4.4 ± 2. 1 20 18 

b Becau e ome artifacts are o n thi portio n of the ample, part of strand in formatio n might not be available. 
c Total area is obtained from the total axon area of a strand examined in the ection. 
d Axon counts per unit area are obta ined from axon count for the area examined divided by the area examined. 
e There i no surgery performed in the normal control animal, but it was acrificed for comparison with animals of the 

experiment . 
f There are two fascicles, but o nly one i tudied . 



Table 4.3: Area examined, total area, percentage of area examined to tota l area, axon counts for 
area examined, axon counts per unit area, mean axon diameter, and extrapolated counts 
based on total area in the distal section observed by LM 

Total Total Fascicle- Area Axon Axon Mean Axon Extrapolated 
Implant Animal Number Number of like Unit Area Total Examined Counts Counts Diameter for Area Axon Counts 
Period & Number of Strands Fa~cicle- Series Examined Areab Relative to for Area Per Unit Examined & Based on 

Group Occurred in like Unit in Numbe~ ( µm2) ( µm2 ) Total Area Examined Areac Standard Deviation Total Arca 
Middle Distal ( % ) ( #) (#I µm2) ( µm ) ( #) 

24 Weeks 
Multiple 2 2 I 9000 9000 100% 137 0.0 15 137 
Lumen 2 15000 19000 79% 24 1 0.0 16 2.5 ± 1.5 305 
24 Weeks I 27000 27000 100% 292 0.0 11 292 
Multiple 2 5 6 2 24000 24000 100% 71 0.003 71 
Lumen 3 43000 43000 85% 728 0.020 2.3 ± I. I 856 

4 35000 35000 100% 179 0.005 179 
Vl 
0 

5 4000 4000 100% 78 0.020 78 
6 24000 24000 100% 137 0.006 137 

24 Weeks I 43000 43000 100% 3 12 0.007 312 
Multiple 3 5 5 2 13000 13000 100% 70 0.005 70 
Lumen 3 22000 22000 100% 5 10 0.023 510 

4 9000 9000 100% 69 0.008 69 
5 29000 29000 100% 704 0.024 2.0 ± 0.9 704 

16 Weeks 
Multiple 14 7 287000 
Lumen 

a The individual fascicle-like unit eries number does not correlate directl y from the middle po ition to the di tal po ition . 
b Total area i obtained from the axon area of a fa cicle-like unit examined in the di tal ection. 
c Axon counts per unit area are obtained from axon count for the area examined divided by the area examined. 



Table 4.3: Continued 

Total Total Fascicle- Area Axon Axon Mean Axon Extrapolated 
Implant Animal Number Number of like Uni t Arca Total Examined Counts Counts Diameter for Area Axon Counts 

Period & Number of Strands Fascicle- Series Examined Areab Relati ve to for Arca Per Unit Examined & Based on 
Group Occurred in like Unit Numbe~ ( µm2) (µm2) Total Arca Examined AreaC Standard Deviation Total Arca 

Middle in Distal ( % ) ( # ) ( #/µm2) ( µm) ( #) 

12 Weeks I 25000 25000 100% 146 0.006 146 
Multiple 24 7 7 2 10000 10000 100% 28 1 0.028 281 
Lumen 3 27000 27000 100% 40 1 0.0 15 401 

4 3 1000 33000 93% 852 0.027 3.7 ± 1.5 9 16 
5 33000 33000 100% 385 0.0 17 385 
6 43000 43000 100% 350 0.008 350 
7 32000 32000 100% 207 0.006 207 

8 Weeks 
Multiple 34 2 I 36500 40000 9 1% 263 0.007 3.9 ± 1.5 289 
Lumen 2 35000 35000 100% 436 0.0 12 436 U\ 

16 Weeks 
Nom1al 19 2 2 150000 165500 91 % 1836 0.0 12 4.4 ± 2. 1 20 18 
Controld 

a The indi vidual fascicle-like unit serie number does not corre late directly from the middle po ition to the di tal position. 
b Total area is obtai ned from the the axon area of a fa cicle-like unit exami ned in the distal section. 
c Axon counts per unit area are obtained from axon counts for the area examined divided by the area examined. 
d There i no surgery perfolllled in the nollllal control an imal but it wa sacri ficed for comparison with animals of the 

experiments; therefore, the di tal portion of ne rve i con idered the same a the middle po rtio n of nerve and the 
data are taken from one fascicle of the s ingle middle ection. 



Table 4.4: Area examined, total area, percentage of area examined to total area, axon counts for 
area examined, axon counts per unit area, mean axon diameter, and extrapolated counts 
based on total area in the proximal section observed by SEM 

Area Axon Axon Mean Axon Extrapolated 
Implant Animal Area TOLal Examined Counts Counts Diameter for Area Axon Counls 
Period & Number Examined Areaa Relative to for Area Per Unit Examined & Based on 
Group (µm2) ( µm2) Total Area Examined Areab Standard Deviation Total Arca 

( % ) ( #) ( #/µm2) ( µm ) ( #) 

24 Weeks 
Multiple Lumen 12500 7 13000 2% 200 0.0 16 3.0 ± 1.3 10000 
24 Weeks 
Multiple Lumen 2 10000 1204000 1% 281 0.028 2.7 ± 1.2 28100 
24 Weeks 
Multiple Lumen 3 9500 687000 1% 263 0.028 3.4 ± 1.9 26300 
16 Weeks Vl 

('.) 

Multiple Lumen 14 10000 975000 1% 271 0.027 2.5 ± I. I 6 160 
12 Weeks 
Multiple Lumen 24 10000 200000 5% 308 0.03 1 2.2 ± 0.9 12900 
8 Weeks 
Mulliplc Lumen 34 10000 11 46500 1% 129 0.0 13 4.0 ± 1.5 
16 Weeksc 
Normal Control 19 150000 165500 6% 124 0.0 12 4.2 ± 1.9 2067 

a Total area is obtained from the totaJ axon area of the proximaJ section. 
b The axon counts per unit area are obtajned from axon counts for the area examined divided by the area exarruned. 
c There i no urgery performed in the normal control animal but it wa acrificed for comparison with animals of the 

experiments; therefore, the proximal portion of nerve i considered the ame a the middle portion of nerve and the 
data are taken from one fa cicle of the ingle middle ection. 



Table 4.5: Area examined, tota l a rea, percentage of area examined to tota l a rea, axon counts for 
a rea examined, axon counts per unit a rea, mean axon diameter , and ex trapola ted counts 
based on tota l a rea in the middle section observed by SEM 

Total Arca 
Examined 
Re lative to 
Tota l Area 

Axon 
Counts 
for Area 

Examined 

Axon 
Counts 
Per Unit 

Aread 
(#/ µm2) 

Mean Axon Extrapolated 
Implant 
Period & 
Group 

Animal Number Strand Area 
Examined 

( µm2) 

Total 
Areac 

( µm2) 

Diameter for Area Axon Counts 
Number of Strands Series Examined & Based on 

Occurred Numberh 
in Section 

Standard Deviation Total Area 
( % ) ( #) ( µm ) ( # ) 

24 Weeks 
Multiple Lumen 
24 Weeks 
Multiple Lumen 
24 Weeks 
Multiple Lumen 
16 Weeks 
Multiple Lumen 
12 Weeks 
Multiple Lumen 
8 Weeks 
Multiple Lumen 

16 Weeks 

Normal Contro le 

2 

3 

14 

24 

34 

19 

2 6500 

9500 

5 2 10000 

7 5 9500 

2 9500 

2 10000 

2 10000 

17000 38% 106 0.0 16 

37000 26% 380 0.040 

19000 53% 290 0.029 

18000 53% 372 0.039 

22500 42% 299 0.03 1 

4 1500 24% 33 1 0.033 

165500 6% 124 0.01 2 

a There are fi ve bridging trand inside and a ixth proximal trand extends half way aero cuff. 

2.3 ± I. I 

2.4 ± 1.0 

2.3 ± 0.9 

2.3 ± I. I 

2. 1 ± 1.5 

2.9 ± 1.0 

4.2 ± 1.9 

b The series number of thi trand examined in SEM work correspond to trand series number in LM work. 
c Total area is obtained from the total axon area of a trand examined in the ection. 
d Axon counts per unit area are obtained from axon counts for the area examined djvided by the area examined. 
e There is no surgery performed in the normal control animal but it was acrificed for compari on with animals of the 

experiments; there are two fascicles but only one is studied. 

279 

1462 

553 

702 

712 

1379 

2067 



Table 4.6: Area examined, total area, percentage of area examined to total area, axon counts for 
area examined, axon counts per unit area, mean axon diameter, and extrapolated 
axons counts based on total area in the distal section observed by SEM 

Implant 
Period & 
Group 

24 Weeks 
ML 
24 Weeks 
ML 
24 Weeks 
ML 
16 Week 
ML 
12 Weeks 
ML 
8 Weeks 
ML 
16 Weeks 

Controld 

Total Total Fascicle-
Ani mal Number Number of like Unit 
Number of Strands Fascicle- Series 

Occurred in li ke Unit in Number 
Middle Dis tal 

2 2 2 

2 5 6 3 

3 5 5 5 

14 7 

24 7 7 4 

34 2 

19 2 2 

ML Multiple-lumen studies. 

Arca 

Examined 

( µm2 ) 

10000 

10000 

10000 

9500 

10000 

10000 

10000 

Total 
Areab 

( µm2 ) 

19000 

43000 

29000 

287000 

33500 

40000 

165500 

Area 
Examined 
Relative to 
Total Area 

( % ) 

53% 

23% 

34% 

3% 

30% 

25% 

6% 

Axon 
Counts 
for Area 

Examined 
( #) 

105 

352 

310 

221 

83 

224 

124 

Axon Mean Axon 
Cou nts Diameter for Area 

Per Uni t Examined & 
Arcac Standard Deviation 

( #I µm2 ) ( µrn ) 

0.01 1 3.0 ± l.l 

0.035 2.2 ± 1.0 

0.031 2.1 ± 1.0 

0.023 2.6 ± 1.8 

0.008 4 .0 ± 1.6 

0.022 3.1 ± I. I 

0.0 12 4 .2 ± l.9 

Extrapolated 
Axon Counts 

Based on 
Total Arca 

( #) 

198 

1530 

912 

7367 

277 

896 

2067 

a The individual fascicle-like unit eries number does not correlate directly from the middle position to the distal position. In 
additi on, the series number of thi fascicle-like unit examined in SEM corre pond to the unit serie number in LM. 

b Total area i obtained from the axon area of a fa cicle-like unit examined in the di tal ection . 
c Axon count per unit area are obtained from axon count for the area examined di vided by the area examjned. 
d There i no surgery performed in the normal control animal but it wa acrificed for compari on with anjmal of the 

experiments; therefore, the di tal portion of nerve i considered the ame a the middle portjon of nerve and the 
data are taken from one fa cicle of the ingle middle ection. 



Table 4.7: Area examined, total area, percentage of area examined to total area, category I axon counts for 
area examined, category I axon counts per unit area, mean category I axon diameter, and 
extrapolated category I axon counts based on total area in the proximal section observed by SEM 

Area Axon Axon Mean Axon Extrapolated 
Implant Ani mal Area Total Examined Counts Counts Diameter for Area Axon Counts 
Period & Number Examined Areaa Relative to for Area Per Unit Examined & Based on 

Group ( µm2) ( ~Lm2) Total Area Examined Areab Standard Deviation Total Arca 
( % ) ( # ) (#/ µm2) ( µm ) ( #) 

24 Weeks 
Multi ple Lumen 12500 713000 2% 150 0.0 12 3. 1 ± 1.3 7500 
24 Weeks 
Multiple Lumen 2 10000 1204000 1% 180 0.018 2.8 ± 1.0 18000 
--
24 Weeks 
Multiple Lumen 3 9500 687000 1% 105 0.011 3.5 ± 1.3 10500 

VI 
16 Weeks VI 

Multi ple Lumen 14 10000 975000 1% 156 0.0 16 2.9 ± l.O 15600 
12 Weeks 
Multiple Lumen 24 10000 200000 5% 143 0.0 14 2.3 ± 0.6 2860 
8 Weeks 
Multiple Lumen 34 10000 1146500 1% 107 0.0 11 4.3± 1.4 10700 

16 Weeksc 
Normal Control 19 150000 165500 6% 86 0.009 3.8 ± 1.7 1433 

a Total area is obtained from the total axon area of the proximal section. 
b The axon counts per unit area are obtained from axon counts for the area examined di vided by the area examined. 
c There i no urgery performed in the normal control animal but it wa acri ficed for compari on with animals of the 

experiments; therefore, the prox imal portion of nerve is considered the ame a the middle portion of nerve and the 
data are taken from one fa cicle of the ingle middle section. 



Table 4.8: Area examined, tota l area, percentage of a rea examined to tota l a rea, ca tegory I axon count fo r 
area examined, category I axon counts per unit a r ea, mean category I axon diameter , and 
extrapolated category I axon counts based on total a rea in the middle section obser ved by SEM 

Impla nt 
Period & 
Group 

24 Weeks 
Multiple Lumen 

24 Weeks 
Multiple Lumen 

24 Weeks 
Multiple Lumen 
16 Weeks 
Multiple Lume n 
12 Weeks 
Multiple Lumen 
8 Weeks 
Multiple Lumen 

16 Weeks 

Normal Controle 

Total 
Animal Number Strand 
Number of Strands Series 

Occurred Numbcrb 
in Section 

2 
-------

2 

3 5 2 

14 7 5 

24 2 

34 2 

19 2 

Area 
Examined 

( µm2) 

6500 

9500 

10000 

9500 

9500 

10000 

10000 

Total 
Areac 

( µm2) 

17000 

37000 

19000 

18000 

22500 

4 1500 

165500 

Area 
Examined 
Relati ve to 
Total Area 

( % ) 

38% 

26% 

53% 

53% 

42% 

24% 

6% 

Axon 
Counts 
for Arca 

Examined 
( #) 

64 

179 

142 

2 19 

120 

152 

86 

Axon 
Counts 
Per Unit 

Aread 
(#/ µm2) 

0.010 

0.0 19 

0.014 

0.023 

0.01 3 

0.015 

0.009 

a There are fi ve bridging strand in ide and a sixth proximal strand extends half way across cuff. 

Mean Axon 
Diameter for Area 

Examined & 
Standard Deviation 

( µm ) 

2.6 ± 1.2 

2.5 ± I. I 

2.5 ± 1.0 

2.6 ± I. I 

2.3 ± I. I 

3.2 ± 1.0 

3.8 ± 1.7 

b The series number of this strand examined in SEM work corresponds to trand series number in LM work. 
c Total area i obtained from the total axon area of a strand examined in the ection. 
d Axon counts per unit area are obtained from axon counts for the area examined divided by the area examined. 
e There i no urgery performed in the normal control animal but it wa acrificed for compari on with animals of the 

experiments; there are two fa cicle but only one i tudied. 

Extrapolated 
Axon Counts 

Based on 
Total Area 

( #) 

168 

688 

268 

4 13 

286 

633 

1433 



Table 4.9: Area examined, total area, percentage of area examined to total area, ca tegory I axon counts for 
area examined, category I axon counts per unit area, mean category I axon diameter, and extrapolated 
category I axons counts based on tota l area in the distal section observed by SEM 

Implant 
Period & 
Group 

24 Weeks 
ML 
24 Weeks 
ML 
24 Weeks 
ML 
16 Weeks 
ML 
12 Weeks 
ML 
8 Weeks 
ML 
16 Weeks 

Total Total Fascicle-
Animal Number Number of like Unit 
Number of Strands Fascicle- Series 

Occurred in like Unit in Number 
Middle Distal in LMa 

2 2 2 

2 5 6 3 

3 5 5 5 

14 7 

24 7 7 4 

34 2 

Area 
Examined 
( µm2) 

10000 

10000 

10000 

9500 

10000 

10000 

Total 
Areab 

( µm2) 

19000 

43000 

29000 

287000 

33500 

40000 

Arca 
Examined 
Relative to 
Total Area 

( % ) 

53% 

23% 

34% 

3% 

30% 

25% 

Axon 
Counts 
for Arca 

Examined 
(#) 

87 

168 

188 

169 

83 

156 

Axon 
Counts 

Per Unit 
Arcac 

(#/ µm2) 

0.009 

0.0 17 

0.0 19 

0.0 18 

0.008 

0.0 16 

Mean Axon 
Diameter for Area 

Examined & 
Standard Deviation 

( µm) 

3. 1 ± l.O 

2.5 ± I. I 

2.3 ± 1.0 

3.0 ± 1.9 

4.0 ± 1.6 

3.4 ± I. I 

Extrapolated 
Axon Counts 

Based on 
Total Area 

( #) 

164 

730 

533 

5633 

277 

624 

Contro ld 19 2 2 10000 165500 6% 86 0.009 3.8 ± 1.7 1433 
ML Multiple-lumen studies. 

a The individual fascicle-like unit eries number does not correlate directly from the middle po ition to the di tal position. In 
addition, the erie number of thi fascicle-like unit examined in SEM correspond to the unit erie number in LM. 

b Total area is obtained from the axon area of a fa cicle-like unit examined in the di tal ection. 
c Axon counts per unit area are obtained from axon counts for the area examined divided by the area examined. 
d There is no surgery performed in the normal control animal but it wa acrificed for comparison with animals of the 

experiments; therefore, the distal portion of nerve is considered the same as the middle portion of nerve and the 
data are taken from one fascicle of the single middle section. 



Table 4.10: Area examined, total area, percentage of area examined to total area, category II axon 
counts for area examined, category II axon counts per unit area, mean category II axon 
diameter, and extrapolated category II axon counts based on total area in the proximal 
section observed by SEM 

Area Axon Axon Mean Axon Extrapolated 
Implant Animal Arca Total Examined Counts Counts Diameter for Area Axon Counts 
Period & umber Examined Arcaa Re lati ve LO for Arca Per Unit Examined & Based on 

Group ( µm2) ( µrn2) Total Area Examined Areab Standard Deviation Total Arca 
( % ) ( #) ( # / µm2) ( µrn ) ( #) 

24 Weeks 
Multiple Lumen 12500 713000 2% 50 0.004 2.8 ± l.2 2500 
24 Weeks 
Multiple Lumen 2 10000 1204000 1% 10 1 0.010 2.5 ± 1.4 10100 
24 Weeks 
Multiple Lumen 3 9500 687000 1% 158 0.0 17 3.3 ± 2.3 15800 

Vl 
00 

16 Weeks 
Multiple Lumen 14 10000 975000 1% 115 0.0 12 2. 1 ± I.I 11 500 
12 Weeks 
Multi ple Lumen 24 10000 200000 5% 165 0.0 17 2.1 ± I. I 3300 
8 Weeks 
Mul tiple Lume n 34 10000 1146500 1% 22 0.002 2.5 ± 0 .9 2200 

16 Weeksc 
Normal Cont rol 19 150000 165500 6% 38 0.004 5.0 ± 2. 1 633 

a Total area is obtained from the total axon area of the proximal section. 
b The axon counts per unjt area are obtained from axon count for the area examined divided by the area examjned. 
c There i no surgery performed in the normal control animal but it was acrificed for compari on with animals of the 

experiments; therefore, the proximal portion of nerve i con idered the ame a the rruddle portion of nerve and the 
data are taken from one fa c icle of the ingle middle ecti on. 



Table 4.11: Area examined, total area, percentage of area examined to total area, category II axon counts for 
area examined, category II axon counts per unit area, mean category II axon diameter, and 
extrapolated category II axon counts based on total area in the middle section observed by SEM 

Implant 
Period & 

Group 

24 Weeks 
Mulliple Lumen 
24 Weeks 
Multiple Lumen 
24 Weeks 
Multiple Lumen 
16 Weeks 
Multiple Lumen 
12 Weeks 
Multiple Lumen 
8 Weeks 
Multiple Lumen 
16 Weeks 

Normal Controle 

Total 
Animal Number Strand 

umber of Strands Series 

2 

3 

14 

24 

34 

19 

Occurred Numberh 
in Seclion 

2 

5 2 

7 5 

2 

2 

2 

Area 
Examined 

( µm2 ) 

6500 

9500 

10000 

500 

9500 

10000 

10000 

Total 
Areac 

( µm2) 

17000 

37000 

19000 

18000 

22500 

4 1500 

165500 

Area 
Examined 
RelaLive to 
Tomi Arca 

( % ) 

38% 

26% 

53% 

53% 

42% 

24% 

6% 

Axon 
Counts 
for Area 

Examined 
( #) 

42 

201 

148 

153 

179 

179 

38 

Axon 
Counts 
Per Unit 

Aread 
(#I ~tm2) 

0.006 

0.021 

0.0 15 

0.016 

0.019 

0.0 18 

0.004 

a There are five bridging strand inside and a sixth proximal strand extend half way aero cuff. 

Mean Axon 
Diameter for Area 

Examined & 
SLandard Deviation 

( µm ) 

1.8 ± 0.7 

2.4 ± 0.9 

2.3 ± 0.9 

1.8 ± 1.0 

1.9 ± 1.7 

2.7 ± 1.0 

5.0 ± 2. 1 

b The series number of this strand examined in SEM work corresponds to strand series number in LM work. 
c Total area i obtained from the total axon area of a trand examined in the ection. 
d Axon counts per unit area are obtained from axon counts for the area examined divided by the area examined. 
e There i no urgery performed in the normal control animal but it was acrificed for compari on with animal of the 

experiment ; there are two fa cicles but only one i tudied. 

Extrapolated 
Axon Count 

Based on 
Tolal Area 

( # ) 

111 

773 

279 

289 

426 

746 

633 



Table 4.12: Area examined, total area, percentage of area examined to total area, category II axon counts for 
area examined, category II axon counts per unit area, mean category II axon diameter, and 
ex trapolated category II axons counts based on total area in the distal section observed by SEM 

Implant 
Period & 

Group 

24 Weeks 
ML 
24 Weeks 
ML 
24 Week 
ML 
16 Weeks 
ML 
12 Weeks 
ML 
8 Weeks 
ML 
16 Weeks 

Total Total Fascicle-
Animal Number Number of like Unit 

umber of Strands Fascicle- Series 
Occurred in like Unit in Number 

Middle Distal in LMa 

2 2 2 

2 5 6 3 

3 5 5 5 

14 7 

24 7 7 4 

34 2 

Area 
Examined 

( µm2) 

10000 

IOOOO 

10000 

9500 

10000 

10000 

Total 
Areab 

( µm2 ) 

19000 

4 3000 

29000 

287000 

33500 

40000 

Area 
Examined 
Relative to 
Total Area 

( % ) 

53% 

23% 

34% 

3% 

30% 

25% 

Axon 
Count 
for Area 

Examined 
( # ) 

18 

184 

122 

52 

0 

68 

Axon Mean Axon 
Counts Diameter for Area 

Per Unit Examined & 
Areac Standard Deviation 

( # I µm2 ) ( µm ) 

0.002 2.3 ± 1.3 

0.01 8 2.0 ± 0.9 

0.0 12 2.1 ± 1.0 

0 .006 1.4 ± 0.5 

0 0 

0.007 2.5 ± 1.0 

Extrapolated 
Axon Counts 

Based on 
Total Area 

( #) 

34 

800 

359 

1733 

0 

272 

Controld 19 2 2 I 0000 165500 6% 633 0.004 5.0 ± 2 . 1 633 
ML Multiple-lumen studies. 

a The individual fascicle-l ike unit erie number doe not correlate directly from the middle position to the distal po ition. In 
addition, the eries number of this fascicle-like unit examined in SEM corresponds to the unit eries number in LM. 

b Total area i obtained from the axon area of a fa c icle-like unit examined in the distal section. 
c Axon count per unit area are obtained from axon counts for the area examined divided by the area examined. 
d There is no urgery performed in the normal control animal but it wa acrificed for compari on with animals of the 

experiment ; therefore, the distal portion of nerve is considered the ame as the middle portion of nerve and the 
data are taken from one fa c icle of the single middle ection. 



Table 4.13: Percentage of axons within ± 1 µm of the mean axon diameter (LM) 

Implant Periods, 
Type of Repair & 
Animal Number 

Nerve Percentage of Axons in the Frequency Distribution Within ± I µm of the Mean Diameter 
Section Scale (µm) 

1.5 2 2.5 3 3.5 4 4.5 5 5 .5 6 
24 Weeks, ML 
# I 

#2 

#3 

16 Weeks, ML 
#34 

12 Weeks, ML 
#24 

8 Weeks, ML 
#34 

16 Weeks, NC 
#19 

Proximal 71 
Midille 94 
Di tal 
Proximal 
Middle 
Distal 
Proximal 
Midille 
Distal 
Prox imal 
Middle 
Distal a 
Proximal 
Middle 
Distal 
Proximal a 
Middle 
Distal 
Middle 

89 

93 

95 

87 
77 

73 

87 

74 

a The data are not avai lable. 
ML The specimen is taken from the multiple-lumen cuff nerve repair. 
NC The specimen is taken from the normal control animal. 

62 

49 

65 

63 

68 
62 

45 



Table 4.14: Percentage of axons within ± 1 µm of the mean axon diameter for category I axons (SEM) 

Implant Period , 
Type of Repair & 
Animal Numbers 
24 Week , ML 
#1 

#2 

#3 

16 Weeks, ML 
#14 

12 Week , ML 
#24 

8 Week, ML 
#34 

16 Weeks, NC 
#19 

Nerve 
Section 

Proximal 
Middle 
Distal 
Proximal 
Mlddle 
Distal 
Proximal 
Middle 
Di tal 
Proximal 
Middle 
Distal 
Proximal 
Middle 
Distal 
Proxi mal 
Middle 
Distal 
Middle 

Percentage of Axons in the Frequency Distribution Within ± I µm of the Mean Diameter 
Scale (µm) 

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 
7 1 

77 
87 
76 

69 
75 

74 
84 
80 

78 
76 

62 
97 
70 

60 
59 

87 
73 

48 

ML The specimen is taken the from multiple-lumen cuff nerve repair. 
NC The pecimen is taken from the normal control animal. 

0\ 
N 



Table 4.15: Percentage of axons within ± 1 µm of the mean diameter fo r category II axons (SEM) 

Implant Periods, 
Type of Repair & 
Anjmal Number 
24 Week, ML 
#I 

#2 

#3 

16 Week , ML 
# 14 

12 Week, ML 
#24 

8 Week, ML 
#34 

16 Weeks, NC 
# 19 

Nerve 
Section 

Proximal 
MiddJe 
DistaJ 
Proximal 
MiddJe 
DistaJ 
Proximal 
Middle 
DistaJ 
Proximal 
MiddJe 
DistaJ 
Proximal 
MiddJe 
DistaJ a 
Proximal 
Middle 
DistaJ 
MiddJe 

Percentage of Axons in the Frequency Distribution Within ± I µm of the Mean Diameter 
Scale (µm) 

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 
78 

95 
50 
82 
88 

93 
57 

91 
93 
90 
95 
100 
93 
98 

96 
79 
84 

42 

a There are no category II axon data avai lable for thi s section. 
ML The pecimen is taken from the multiple-lumen cuff nerve repair. 
NC The pecimen is taken from the normaJ control animal. 

°' u.> 



Table 4.16: Percentage of axons within ± 1 µm of mean diameter for all axons (Category I plus 
Category II; SEM) 

Implant Periods, 
Type of Repair & 
Animal Number 

Nerve Percentage of Axons in the Frequency Distribution Within ± 1 µm of the Mean Diameter 

24 Week, ML 
#1 

#2 

#3 

16 Weeks, ML 
#14 

12 Weeks, ML 
#24 

8 Weeks, ML 
#34 

16 Weeks, NC 
# 19 

Section 

Proximal 
Middle 
Distal 
Proximal 
Middle 
Distal 
Proximal 
Middle 
Di taJ 
Proximal 
Middle 
Distal 
Proximal 
Middle 
Distal 
Proximal 
Middle 
Di taJ 
Middle 

1.5 2 2.5 

76 

80 
79 

85 

85 
85 

79 
75 
65 

95 
90 

ML The specimen is taken from the multiple-lumen cuff nerve repair. 
NC The pecimen i taken from the normal contro l animal. 

Scale (µm) 
3 3.5 4 4.5 5 5 .5 6 

58 

82 

73 

60 
53 

80 
7 1 

49 

°" ~ 
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Table 4.17: Diameter ratios and predicted differences of measurements 
for total axons (LM) 

Implant Diameter Ratio± Diameter Differences 
Periods & Animal Standard Deviation a Between Methods b 
Type of Number (%) 
Repair p M D p M D 
24 Weeks 
Multiple Lumen 2.0 ± 1.0 1.8 ± 0.6 2.1± 1.2 7 (+) 4 (+) 6 (+) 

2 2.0 ± 1.5 2.0 ± 1.3 1.8 ± 1.0 6 (+) 3 (+) 5 (+) 

3 1.8 ± 0.8 1.5 ± 0.5 1.4 ± 0.4 4 (+) 3 (+) 5 (+) 
16 Weeks 
Multiple Lumen 14 1.8 ± 0.9 1.6 ± 0.6 N/Ad 5 (+) 3 (+) N/Ad 
12 Weeks 
Multiple Lumen 24 2.1 ± 1.2 1.8 ± 0.7 2.5 ± 1.3 7 (+) 4 (+) 9 (+) 
8 Weeks 
Multiple Lumen 34 N/Ad 1.7 ± 0.8 2.0 ± 1.7 N/Ad 4 (+) 6 (+) 
16 Weeks c 
Normal Control 19 2.7 ± 1.7 10 (+) 

(+) There is a larger mean axon diameter in the present study compared to Daniel's study. 
a Diameter ratio= Major Axis+ Minor Axis. 
b Diameter difference between equalized ellipse and equivalent circle methods 

= 100% x { l - ( Major Axis x Minor Axis )0.5+ [ 0.5 x (Major Axis + Minor Axis )]} 
Diameter obtained from the equalized ellipse method: 0.5 x ( Major Axis + Minor Axis) 
Diameter obtained from the equivalent circle method: ( Major Axis x Minor Axis )0.5 

c The data base is only for the middle section axons. 
d The data are not available. 
P The data are obtained from the proximal section. 
M The data are obtained from area examined of the observed cable of the middle section. 
D The data are obtained from area examined of the observed fascicle-like unit of the 

distal ection . 
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Table 4.18: Diameter ratios and predicted differences of measurements 
for category I axons (SEM) 

Implant Diameter Ratio ± Diameter Differences 
Periods & Animal Standard Deviation a Between Methods b 
Type of Number (%) 
Repair p M D p M D 
24 Weeks 
Multiple Lumen 1 2.0 ± 0 .9 1.8 ± 0.8 1.9 ± 0.8 6 (+) 5 (+) 5 (+) 

2 2.0 ± 0.9 2.0 ± 1.1 1.6 ± 0.6 6 (+) 6 (+) 3 (+) 

3 1.5 ± 0.6 1.6 ± 0.3 1.6 ± 0.7 2 (+) 3 (+) 4 (+) 
16 Weeks 
Multiple Lumen 14 1.6 ± 0.6 1.6 ± 0.6 1.8 ± 0.8 3 (+) 3 (+) 4 (+) 
12 Weeks 
Multiple Lumen 24 1.5 ± 0.4 1.7 ± 0.6 2.0 ± 0.8 3 (+) 4 (+) 6 (+) 
8 Weeks 
Multiple Lumen 34 1.7 ± 0.7 1.7 ± 0.7 1.7 ± 0.9 4 (+) 4 (+) 4 (+) 
16 Weeks c 
Normal Control 19 2.6 ± 1.7 9 (+) 

( +) There is a larger mean axon diameter in the present study compared to Daniel's study. 
a Diameter ratio = Major Axis + Minor Axis. 
b Diameter difference between equalized ellipse and equivalent circle methods 

= I 00% x { 1 - ( Major Axis x Minor Axis )0·5+ [ 0.5 x ( Major Axis + Minor Axis )] } 
Diameter obtained from the equalized ellipse method: 0.5 x ( Major Axis +Minor Axis ) 
Diameter obtained from the equivalent circle method: ( Major Axis x Minor Axis )0.5 

c The data base is for the middle section axons. 
P The data are obtained from the proximal section. 
M The data are obtained from area examined of the observed cable of the middle section. 
D The data are obtained from area examined of the observed fascicle-like unit of the 

distal section. 
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Table 4.19: Diameter ratios and predicted differences of measurements 
for category II axons (SEM) 

Implant Diameter Ratio± Diameter Differences 
Periods & Animal Standard Deviation a Between Methodsb 
Type of Number (%) 
Repair p M D p M D 
24 Weeks 
Multiple Lumen 1.7 ± 0.7 1.4 ± 0.4 1.9 ± 0.9 4 (+) 2 (+) 5 (+) 

2 1.7 ± 0.7 1.6 ± 1.0 1.5 ± 0 .5 4 (+) 3 (+) 3 (+) 

3 1.5 ± 0.6 1.4 ± 0.3 1.5 ± 0.4 2 (+) 4 (+) 2 (+) 
16 Weeks 
Multiple Lumen 14 1.5 ± 0.4 l.5 ± 0.5 l.7 ± 0.7 2 (+) 3 (+) 3 (+) 
12 Weeks 
Multiple Lumen 24 1.6 ± 0.7 l.9 ± 0.8 2.0 ± 0.8 3 (+) 6 (+) 6 (+) 
8 Weeks 
Multiple Lumen 34 1.5 ± 0.5 1.5 ± 0.5 1.6 ± 0.6 3 (+) 3 (+) 3 (+) 
16 Weeks c 
Normal Control 19 2.4 ± l.5 9 (+) 

(+) There is a larger mean axon diameter in the present study compared to Daniel's study. 
a Diameter ratio = Major Axis + Minor Axis. 
b Diameter clifference between equalized ell ipse and equivalent c ircle methods 

= 100% x { 1 - ( Major Axis x Minor Axis )0.5+ [ 0.5 x ( Major Axi +Minor Axis )] } 
Diameter obtained from the equalized ellipse method: 0.5 x ( Major Axis +Minor Axis) 
Diameter obtained from the equivalent circle method: ( Major Axi x Minor Axi )0.5 

c The data base is for the middle section axons. 
P The data are obtained from the proximal section. 
M The data are obtained from area examined of the observed cable of the middle ection. 
D The data are obtained from area examined of the observed fa cicle-like unit of the 

distal section. 
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Table 4.20: Diameter ratios and predicted differences of measurements 
for total axons (SEM) 

Implant Diameter Ratio ± Diameter Differences 
Periods & Animal Standard Deviation a Between Methodsb 
Type of Number (%) 
Repair p M D p M D 
24 Weeks 
Multiple Lumen 1 2.0 ± 0.9 1.6 ± 0.7 1.9 ± 0.8 6 (+) 4 (+) 5 (+) 

2 1.8 ± 1.0 1.8 ± 1.0 1.5 ± 0.5 5 (+) 4 (+) 3 (+) 

3 1.5 ± 0.6 1.5 ± 0.5 1.6 ± 0.6 2 (+) 2 (+) 3 (+) 
16 Weeks 
Multiple Lumen 14 1.5 ± 0.5 1.6 ± 0.6 1.7 ± 0.7 3 (+) 3 (+) 4 (+) 
12 Weeks 
Multiple Lumen 24 1.6 ± 0.7 1.8 ± 0.7 2.0 ± 0.8 3 (+) 5 (+) 6 (+) 
8 Weeks 
Multiple Lumen 34 1.5 ± 0.6 1.5 ± 0.4 1.7 ± 0.8 3 (+) 3 (+) 4 (+) 
16 Weeks c 
Normal Control 19 2.6 ± 1.7 9 (+) 

(+) There is a larger mean axon diameter in the present study compared to Daniel's study. 
a Diameter ratio= Major Axis + Minor Axis . 
b Diameter difference between equalized ellipse and equivalent circle methods 

= 100% x { 1 - (Major Axis x Minor Axis )0.5+ [ 0.5 x ( Major Axis+ Minor Axis)]} 
Diameter obtained from the equalized ellipse method: 0.5 x (Major Axis+ Minor Axis) 
Diameter obtained from the equivalent circle method: ( Major Axis x Minor Axis )0.5 

c The data base is for the middle section axons. 
P The data are obtained from the proximal section. 
M The data are obtained from area examined of the observed cable of the middle section. 
D The data are obtained from area examined of the observed fascicle-like unit of the 

distal section . 
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Table 4.21: Mean axon diameter comparisons between LM and SEM 
studies in the same nerve section 

Animal Type of Periods Section Significance 
Number Repair Comparisons 

l Mutiple-Lumen 24 Weeks p *** (p<0.000 1) (-) 
Implantation M *** (p<0 .0014) (-) 

D *** (p<0.0021 ) (-) 
2 Mutiple-Lumen 24 Weeks p *** (p<0.0002) (-) 

Implantation M *** (p<0.000 I ) ( +) 
D * 

3 Mutiple-Lumen 24 Weeks p * 
Implantation M * 

D * 
14 Mu ti pie-Lumen 16 Weeks p *** (p<0.0001) ( +) 

Implantation M *** (p<0.0001 ) (-) 
D N/Aa 

24 Mutiple-Lumen 12 Weeks p * 
Implantation M *** (p<0.0001 ) (+) 

D * 
34 Mu ti pie-Lumen 8 Weeks p N/Aa 

Implantation M *** (p<0.0001 ) (+) 
D *** (p<0.0001) ( +) 

19 Normal Control 16 Weeks5 M * 
p The data are obtained from the proximal section. 
M The data are obtained from area examined of the observed cable in the middle section. 
D The data are obtained from area examined of the observed fascicle-like unit in the 

distal section. 

*** Compari on is significant at a value of the 0.05 level. 

* Comparison is not significant at a value of the 0.05 level. 
(+) There is a larger mean axon dian1eter in LM. 
(-) There is a larger mean axon diameter in SEM. 
a The data are not avai lable due to unsatisfactory sample preparation. 
b The normal control animal (no surgery during the 16 week period) was sacri ficed for 

comparison with animals of the experiments. 
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T a ble 4.22: M ean axon diameter comparisons between repaired nerve 
sections and normal control (LM) 

Animal Type of Repair Implantation Section Significance 
Number Periods Comparisons a 

Multiple-Lumen 24 Weeks p *** (p<0.0001 ) (+) 
M *** (p<0.0001 ) ( +) 
D *** (p<0.0001 ) (+) 

2 Multiple-Lumen 24 Weeks p *** (p<0.0001) (+) 
M *** (p<0.0001 ) (+) 
D *** (p<0.0001 ) (+) 

3 Multiple-Lumen 24 Weeks p *** (p<0.0001 ) (+) 
M *** (p<0.0001) (+) 
D *** (p<0.0001) (+) 

14 Multiple-Lumen 16 Weeks p *** (p<0.0001) (+) 
M *** (p<0.0001) ( +) 
D N/Ab 

24 Multiple-Lumen 12 Weeks p *** (p<0.0001) (+) 
M *** (p<0.0001) ( +) 
D *** (p<0.0001) (+) 

34 Multiple-Lumen 8 Weeks p N/Ab 
M *** (p<0.0001 ) (+) 
D *** (p<0.0001) (+) 

P The data are obtained from the proximal section. 
M The data are obtained from area examined of the observed strand in the middle section. 
D The data are obtained from area examined of the observed fascicle-like unit in the 

dista l section. 
*** Comparison is significant at a value of the 0.05 level. 
( +) There is a larger mean axon diameter in normal control. 
a The mean diameter of the section is compared to that of the normal control. 
b The data are not available due to unsatisfactory sample preparation. 
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Table 4.23: Mean axon diameter comparisons between nerve sections 
in the same animal (LM) 

Animal Type of Implant Section Significance 
Number Repair Periods Comparisons 

l Multiple-Lumen 24 Weeks P, M *** (p<0.0001) (+) 
P,D * 
M, D *** (p<0.0001 ) (-) 

2 Multiple-Lumen 24 Weeks P, M *** (p<0.0001) (-) 
P, D * 
M, D *** (p<0.0001 ) ( +) 

3 Multiple-Lumen 24 Weeks P,M *** (p<0.001) (+) 
P, D *** (p<0.001 ) (+) 
M, D *** (p<0.001) (+) 

14 Mui tiple-Lumen 16 Weeks P, M *** (p<0.0001) (+) 
P, D N/Aa 
M,D N/Aa 

24 Multiple-Lumen 12 Weeks P, M *** (p<0.0001) (-) 
P,D *** (p<0.0001) (-) 
M, D *** (p<0.0001) (-) 

34 Multiple-Lumen 8 Weeks P, M N/Aa 
P, D N/Aa 
M, D *** (p<0.0001) (-) 

P The data are obtained from the proximal section. 
M The data are obtained from area examined of the observed strand in the middle section. 
D The data are obtained from area examined of the observed fascicle- like unit in the 

distal section. 
*** Comparison is significant at a value of the 0.05 level. 

* 
(+) 
(-) 
a 

Comparison is not significant at a value of the 0.05 level. 
There is a larger mean axon diameter in the first nerve section. 
There is a larger mean axon diameter in the second nerve section. 
The data are not available due to unsatisfactory sample preparation. 
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Table 4.24: Mean axon diameter comparisons between repaired nerve 
sections and normal control (SEM) 

Animal 
Number 

1 

2 

3 

14 

24 

34 

Type of 
Repair 

Multiple-Lumen 

Multiple-Lumen 

Multiple-Lumen 

Multiple-Lumen 

Multiple-Lumen 

Multiple-Lumen 

Implant 
Periods 

24 Weeks 

24 Weeks 

24 Weeks 

16 Weeks 

12 Weeks 

8 Weeks 

Section 
Comparisons a 

p 
M 
D 
p 
M 
D 
p 
M 
D 
p 
M 
D 
p 
M 
D 
p 
M 
D 

P The data are obtained from the proximal section. 

Significance 

*** (p<0.0001 ) (+) 
*** (p<0.0001 ) (+) 
*** (p<0.0001 ) ( +) 
*** (p<0.0001) (+) 
*** (p<0.0001 ) (+) 
*** (p<0.0001 ) (+) 
*** (p<0.0001 ) (+) 
*** (p<0.0001 ) (+) 
*** (p<0.0001 ) (+) 
*** (p<0.000 l ) ( +) 
*** (p<0.0001 ) (+) 
*** (p<0.0001) (+) 
*** (p<0.0001) ( +) 
*** (p<0.0001 ) (+) 

* 
* 

*** (p<0.0001 ) (+) 
*** (p<0.0001) ( +) 

M The data are obtained from area examined of the ob erved strand in the middle section. 
D The data are obtained from area examined of lhe observed fascicle-like unit in the 

distal section. 

*** Comparison is s ignificant at a value of the 0.05 level. 
* Comparison is not significant at a value of the 0.05 level. 
( +) There is a larger mean axon diameter in normal conu·oJ. 
a The data of the section are compared with thal of the normal control. 
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Table 4.25: Mean diameter comparisons of the same category axons 
between repaired nerve sections and normal control (SEM) 

Animal 
Number 

l 

2 

3 

Type of Implant 
Repair Periods 

Multiple-Lumen 24 Weeks 

Multiple-Lumen 24 Weeks 

Multiple-Lumen 24 Weeks 

Nerve 
Sectionsa 

p 
p 
M 
M 
D 
D 
p 
p 
M 
M 
D 
D 
p 
p 
M 
M 
D 
D 

P The data are obtained from the proximal section. 

Axon Significance 
Comparisons 

c *** (p<0.0002) (+) 
PA *** (p<0.0001) (+) 
c *** (p<0.000 1) (+) 

PA *** (p<0.0001) (+) 
c *** (p<0.0008) (+) 

PA *** (p<0.0001 ) (+) 
c *** (p<0.0001) ( +) 

PA *** (p<0.0001) (+) 
c *** (p<0.0001) (+) 

PA *** (p<0.0001) (+) 
c *** (p<0.0001) ( +) 

PA *** (p<0.000 l ) ( +) 
c * 

PA *** (p<0.0001 ) (+) 
c *** (p<0.0001) (+) 

PA *** (p<0.0001) (+) 
c *** (p<0.000 I ) ( +) 

PA *** (p<0.0001) (+) 

M The data are obtained from area examined of the observed strand in the middle section. 
D The data are obtained from area examined of the observed fascicle-like unit in the 

distal section . 
C The data are obtained from uniformly stained (category !)axons. 
PA The data are obtained from non-uniformly stained (category II) axons. 

*** Comparison is significant at a value of the 0.05 level. 

* Comparison is not significant at a value of the 0.05 level. 
a The mean diameter of the nerve section is compared with that of the normal control. 
( +) There is a larger mean axon diameter in normal control. 
(-) There is a smaller mean axon diameter in normal control. 



Table 4.25: Continued 

Animal 
Number 

14 

24 

34 

Type of 
Repair 

Multiple-Lumen 

Multiple-Lumen 

Multiple-Lumen 

Implant 
Periods 

16 Weeks 

12 Weeks 

8 Weeks 
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Nerve 
Section a 

p 
p 
M 
M 
D 
D 
p 
p 
M 
M 
D 
D 
p 
p 
M 
M 
D 
D 

P The data are obtained from the proximal section. 

Axon Significance 
Compari ons 

c *** (p<0.000 I ) ( +) 
PA *** (p<0.0001 ) (+) 
c *** (p<0.0001 ) (+) 
PA *** (p<0.0001) ( +) 
c *** (p<0.0008) ( +) 
PA *** (p<0.0001 ) (+) 
c *** (p<0.0001 ) (+) 
PA *** (p<0.000 l ) ( +) 
c *** (p<0.000 l ) ( +) 
PA *** (p<0.000 1) (+) 
c * 
PA *** (p<0.0001) (+) 
c *** (p<0.0445) (-) 
PA *** (p<0.000 I) ( +) 
c *** (p<0.0001 ) (+) 
PA *** (p<0.000 l ) ( +) 
c *** (p<0.0147) (+) 
PA *** (p<0.0001) ( +) 

M The data are obtained from area examined of the observed strand in the middle ection. 
D The data are obtained from area examined of the ob erved fascicle-like unit in the 

distal section. 
C The data are obtained from uniformly stained (category l)axons. 
PA The data are obtained from non-uniformly stained (category II) axons. 

Comparison i ignificant at a value of the 0.05 level. 
Comparison is not ignificant at a value of the 0.05 level. 

(+) There is a larger mean axon diameter in normal control. 
(-) There is a smaller mean axon diameter in normal control. 

*** 
* 
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Table 4.26: Diameter comparisons between category I and category II 
stained axons in the same nerve section (SEM) 

Animal Type of Periods Nerve Significance 
Number Repair Section 

1 Mutiple-Lumen 24 Weeks p * 
Implantation M *** (p<0.0001) (-) 

D *** (p<0.0001 ) (-) 
2 Mutiple-Lumen 24 Weeks p * 

Implantation M * 
D *** (p<0.000 1) (-) 

3 Mutiple-Lumen 24 Weeks p * 
Implantation M *** (p<0 .0005) (-) 

D * 
14 Mutiple-Lumen 16 Weeks p *** (p<0.0001) (-) 

Implantation M *** (p<0.0001) (-) 
D *** (p<0.0001) (-) 

24 Mutiple-Lumen 12 Weeks p * 
Implantation M *** (p<0.0474) (-) 

D *** (p<0.0001) (-) 
34 Mutiple-Lumen 8 Weeks p *** (p<0.0001 ) (-) 

Implantation M *** (p<0.0001 ) (-) 
D *** (p<0.0001) (-) 

19 Normal Control 16 Weeksa M *** (p<0.0001 ) (+) 

P The data are obtained from the proxima l section. 
M The data are obtained from area examined of the observed strand in the middle section. 
D The data are obtained from area examined of the observed fascicle-like unjt in the 

*** 
* 
(-) 
(+) 
a 

distal section. 
Comparison is significant at a value of the 0.05 level. 
Comparison is not significant at a value of the 0.05 level. 
There is a larger mean axon diameter in category I (uniformly stained) axons. 
There is a larger mean axon diameter in category JI (non-uniformly stained) axons. 
The normal control animal (no surgery during the 16 week period) was sacrificed for 
comparison with animals of the experiments. 
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Table 4.27: Mean diameter comparisons of the same category of axons 
in different nerve sections (SEM) 

Animal Type of Implant Section Axon Significance 
Number Repair Periods Comparisons Type 

1 Multi pie-Lumen 24 Weeks P, M c *** (p<0.0182) (+) 
P, M PA *** (p<0.0001) ( +) 
P, D c * 
P,D PA * 
M, D c *** (p<0 .0182) (-) 
M,D PA * 

2 Multiple-Lumen 24 Weeks P, M c * 
P, M PA * 
P, D c *** (p<0.0179) (+) 
P, D PA *** (p<0.0001) (+) 
M , D c * 
M , D PA *** (p<0.0001 ) (+) 

3 Multiple-Lumen 24 Weeks P, M c *** (p<0.0001) (+) 
P, M PA *** (p<0.0001 ) (+) 
P , D c *** (p<0 .0001) (+) 
P,D PA *** (p<0.0001) (+) 
M, D c * 
M, D PA * 

P The data are obtained from the proximal section. 
M The data are obtained from area examined of the observed strand in the middle section. 
D 

c 
PA 

*** 

The data are obtained from area examined of the observed fascicle-like unit in the 
distal section. 
The data are obtained from uniformly stained (category I) axons. 
The data are obtained from non-uniformly stained (category IT) axons. 

Comparison is significant at a value of the 0.05 level. 
* Comparison is not significant at a value of the 0.05 level. 
( +) There is a larger mean axon diameters in the first nerve section. 
(-) There is a larger mean axon diameters in the second nerve section. 



Table 4.27: Continued 

Animal 
Number 

14 

24 

34 

Type of 
Repair 

Multiple-Lumen 

Multiple-Lumen 

Multiple-Lumen 

Implant 
Periods 

16 Weeks 

12 Weeks 

8 Weeks 
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Nerve 
Section 
P, M 
P, M 
P, D 
P, D 
M, D 
M, D 
P, M 
P, M 
P, D 
P, D 
M, D 
M, D 
P, M 
P, M 
P, D 
P, D 
M, D 
M, D 

P The data are obtained from the proximal section. 

Axon Significance 
Comparisons 

c * 
PA *** (p<0 .0001 ) (+) 
c * 
PA *** (p<0.0001) (+) 
c *** (p<0.0 173) (-) 
PA *** (p<0.0001) (+) 
c * 
PA * c *** (p<0.0001 ) (-) 
PA *** (p<0 .000 1) (+) 
c *** (p<0.0001) (-) 
PA *** (p<0 .000 l ) ( +) 
c *** (p<0 .0001 ) (+) 
PA * c *** (p<0.000 1) (+) 
PA * c * 
PA * 

M The data are obtained from area examined of the observed strand in the middle section. 
D The data are obtained from area examined of the observed fasc icle-like unit in the 

distal section. 
C The data are obtained from uniformly stained (category I) axons. 
PA The data are obtained from non-uniformly stained (category II) axons. 

*** Comparison is significant at a value of the 0.05 level. 
* Comparison is not significant at a value of the 0.05 level. 
(+) There is a larger mean axon diameters in the fi rst nerve section. 
(-) There is a larger mean axon diameters in the second nerve ection. 
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Table 4.28: Mean diameter comparisons of total stained axons between 
nerve sections in the same animal (SEM) 

Animal Type of Implant Section Significance 
Number Repair Periods Comparisons 

l Multiple-Lumen 24 Weeks P,M *** (p<0.0001) (+) 
P, D * 
M, D *** (p<0.0001) (-) 

2 Multiple-Lumen 24 Weeks P, M *** (p<0.0001) (+) 
P, D *** (p<0.000 l ) ( +) 
M, D *** (p<0.0001 ) (+) 

3 Multiple-Lumen 24 Weeks P, M *** (p<0.0001) (+) 
P, D *** (p<0.0001) (+) 
M,D * 

14 Multiple-Lumen 16 Weeks P, M *** (p<0.0036) (+) 
P, D * 
M, D *** (p<0.0036) (-) 

24 Multiple-Lumen 12 Weeks P, M * 
P, D *** (p<0.0001) (-) 
M, D *** (p<0.0001 ) (-) 

34 Multiple-Lumen 8 Weeks P, M *** (p<0.0001) ( +) 
P, D *** (p<0.0001) ( +) 
M,D * 

P The data are obtained from the proximal section. 
M The data are obtained from area examined of the ob erved strand in the middle section. 
D The data are obtained from area examined of the ob erved fasc icle-like unit in the 

distal section. 

*** Comparison is significant at a value of the 0.05 level. 
* Comparison is not significant at a value of the 0.05 level. 
( +) There is a larger mean axon diameter in the first nerve section. 
(-) There is a larger mean axon diameter in the second nerve section. 
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5. DISCUSSION 

T he goal of the ne rve cuff application is to re-establish physica l continu ity o f the 

impajred nervous ti ssue. The results o f the backscattered electron image and light micrographs 

ind icate that the multiple lumen nerve cuff indeed erves as a conduit for a regenerating nerve 

as ba ed on the pre ence of Bodian' ilver tained axon seen in the proximal, midd le (the 

repair ite), and di tal ections. The pattern of the middle section i determined by the 

arrangement of the opening of the multiple lumen cuff. Thjs pattern carrie over to the di tal 

ection a the axons maintajn circular fa cicle-like pattern in the distal tump . The two-zone 

reorganization een i simi lar to ingle-lumen ca e ob erved by Jenq and Cogge hall ( 1986), 

Lundborg et al. ( 1982a), Madison et al. ( 1988), Seckel et al. (1984), Wi lliams and Varon 

(1985), and Willi ams et al. (1983, 1984). To upply the nutrition req uired by Schwann cel ls 

du ring nerve regeneration, a large number of blood capillaries appear in each of the two zones 

(Jenq and Coggeshall , 1986; Seckel et al., 1984). The middle section axons of each lumen 

merge into one large central axon matrix where perineurial connective tissue confine neuron 

e lements withjn mini-fascicles. Similar phenomena are also reported for sing le lumen case by 

Jenq and Coggeshall ( 1986), Lundborg et al. ( 198 1), and Mathur et al. ( 1983) and for a 

surgical repai r by Orgel and Huser ( 1980). 

BSE images pre ent atomic number contra t which clearly reveals the Bodian tained 

axon feature as some investi gators ugge ted (Taylor et al., 1984; Ush iki and Fujita, 1986; 

Yon Lang dorff et al., 1990). In add ition, Bodian ilver tain ha a high and pecific affinity 

for neurofilament protein . Because of the higher re elution available in the scanning electron 

micro cope compared with the light micro cope. the e tained axons can be further ubdivided 

into two raining categorie . In addition to the apparent non-uniforrnfry of the . ta ining, some 

cro ection provide evidence of artifact caused by the sectioning of the nerve. 
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The fiber di ameter frequency distribution di splayed a much broader axon diameter 

range in the control animal compared to those for the experiments. This is also seen by Fields 

and Ellisman ( 1986b) and Rosen et al. ( 1983, 1992) fo r single lumen examples. Multiple-

lumen cuff experiments exhjbit size frequencies for the axons which are skewed toward the 

larger diameter ranges. Even with increasing time, the fiber di ameter spectra show that over 

60% of the axon diameters are grouped into a narrow diameter range witrun ± 1 µm of mean 

diameter. 

As also reported by Fields and Elli sman (1986b), Henry et al. (1985), Le Beau et al. 

( 1988b) and Rosen et al. ( 1983, 1989) for single lumen cases, it was found that the mean 

diameters of the regenerated axons in multiple lumen cases never reach those of a normal 

control. AJthough the regenerated axons do not pack as ti ghtly as the normal control do, their 

smaller axon diameter without regenerated myelin or with thinner regenerated myelin might 

result in the hjgher axon counts per un it area. In most cases, axon counts per unit area of the 

category I axons are higher than that of those category II axons in the same area probably due 

to better staining uniformity. 

Because the proximal section still maintains its continuity with the trophk center of the 

neuron, the extrapolated number of axon counts in the proximal section are the hjghest among 

the three sections (proximal , middle, and distal). Other sources of influence on relati ve 

numbers of axons include branching, compressive fo rces assoc iated with the tube , and the 

relati ve time of the implantation. Therefore, the comparison results of the extrapolated number 

of axons between the middle section and distal ection might be mixed. Similarly, these fac tors 

are probably present in the axon counts per unit area data . Even though all of the multiple 

lumen tubes of a cuff are in the same implantation condition, strand-to-strand or fa cicle-like 

unit-to-unit variation are seen. 

Williams et al. ( 1984) reported that fou r stages of the regeneration are critical for 

success: ( 1) the chamber must fill with fluid ; (2) a fibrin matrix must form; (3) non-neuronal 
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cells must populate and replace the matrix; and (4) the ceJJs must possess properties supportive 

o f axonal elongation. In addition , Lundborg et al. (1982c) proved that the fluids exudating 

from nerve stumps and collected in in vivo chambers contain trophic factors. Thus, if saline 

olution is present at the beginning of the implantation, this would allow immediate diffusion 

of the stump exudates and therefore provide an environment for a more uniform initial fibrin 

gel formation as part of the formati ve stages leading to the bridging of the gap by a strand. 

However, the amounts of fibrin and re lated trophic substance. contributed to a chamber are 

finite. The initial dilution imposed by saline prefilling of a relati vely large chamber would 

exceed the acceptable limits for an effective progression of the regeneration. Transected nerves 

repaired by using multiple-lumen cuffs wi th re latively small chamber prefilled with sa line 

olution regenerate with better organization, with more nerve strand regenerating through 

repair sites, and with a rich va cularization occurring at a shorter post-implantation period ( 16 

weeks) than those without saline prefilling (24 weeks). The regenerated blood vessels appear 

to be larger than those een in the normal nerve sections (also reported by Jenq and Coggeshall 

( 1986)) for single lumen cases. They are of vital importance for preserving Schwann cells. 

The diameter axis ratios results are larger than 1.0. This indicates that the shape of most 

axons of the cross section studied are not circular. Smaller diameter ratios obtained from 

regenerated axons compared with those obtained from the normal animal also indicate that the 

shape of regenerated axons still does not recover to that shape of the normal control animal 

axons. There is less than a 10% diameter difference obtained between the equivalent c ircle 

diameter method and the equalized e llipse figure based on the same area. This estimation agrees 

with Duncan's work ( 1934). 
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6. CONCLUSION 

The microstructura1 results show that this multiple-lumen silicone rubber cuff has 

potential. The pattern of regenerated nerve strands indicates that the ir orientation and 

organization are determined by the arrangement of the opening of the multiple lumen in the 

middle section. 

Even with increasing time, the mean diameters of regenerated axons in multi ple-lumen 

cases do not recover to that seen for a normal control animal. In addition, the regenerated axon 

diameter spectra are grouped to mailer diameter ranges and are skewed toward a larger 

diameter range. 

BSE images display atomic number contrast which clearly reveals the axon features 

stained with Bodian's s il ver stain. With higher resolution, SEM provides some advantages for 

interpretation of nerve regeneration due to the relatively higher level of magnification compared 

with LM. The difference between those results obtained from LM and those obtained from 

SEM suggests that more axons need to be examined in the same section for compari on . This 

may be a disadvantage because of higher costs of SEM characterization work. 

The intrachamber environment can be modified by saline prefilling. In thi s regard, 

different time periods of study might provide addi tional usefu l information about the 

development of regenerating nerves. With the multiple-lumen design, different neurotrophic 

stimulus agents might be copolymerized with or injected into the ind ividual 1umens of the ML 

cuff to enhance nerve regeneration. Also, thi s study shows strand or fascicle-like unit variance 

within an individual animal. 



83 

BIBLIOGRAPHY 

Aebi c her, P. , Y. Guenard, S. R. Winn, R. F. Valentini , and P. M. Galletti. 1988. Blind-
ended semipermeable guidance channel support peripheral nerve regeneration in the 
absence of a distal nerve stump. Brain Research 454: 179- 187. 

Aebischer, P. , V . Guenard, and S. Brace. l 989a. Peripheral nerve regeneration through blind-
e nded semjpermeable guidance channels: Effect o f the molecula.r weight cutoff. J. of 
Neuroscience 9 (10): 3590-3595. 

Aebischer, P., A. N. Salessiotis, and S. R. Winn. J 989b. Basic fibroblast growth factor 
relea ed from synthetic guidance channe l fac il itates peripheral nerve regeneration 
aero long nerve gaps. J. of Neuroscience Research 23: 282-289. 

Aguayo, A. J., R. P. Bunge, I. D . Duncan, P. M. Wood, and G. M . Bray. 1979. Rat 
Schwann cell , cultured in vitro, can en heath axon regenerating in mou e nerve. 
Neurology 29:589. 

Al lt, G. 1976. Pathology of the peripheral nerve. Pages 666-739. in D. N. Landon, editor. 
The Peripheral Nerve. John Willey & Sons, Inc., New York. 

Ba ett, C. A. L. , J . B. Campbell, and J. Hu by. 1959. Peripheral nerve and spinal cord 
regeneration : Factors leading to uccess of a tubulation technjque employing 
Millipore. Experimental Neurology I : 386-406. 

Braley, S . I 970. The chemistry and propertie of the medical-grade silicone . J. of 
Macromolecular Science-Chemistry A4(3): 529-544. 

Chiu, D. T. W ., I. Janecka, T . J. Krizek, M. Wo lff, and R. E. Lovelace. 1982. Autogenou 
vein graft as a conduit for nerve regenerati on. Surgery 9 1 (2): 226-233. 

C hiu , D . T . W ., R. E. Lovelace, L. T. Yu, M. Wo lff, S. Stengel, L. Middleton, I. P. 
Janecka, and T. J . Krizek. 1988. Comparative electrophysiologic evaluation of nerve 
graft and autogenous vein grafts as nerve conduit. : An experimental study. J. of 
Reconstructive Microsurgery 4(4): 303-309. 

Cuadro , C. L. and C. E. Granatir. 1987. Nerve regeneration through a synthetic microporou 
tube (expanded polytetratluoroethylene): Experimental study in the ciatic nerve of the 
rat. Microsurgery 8: 41-46. 



84 

Danjel, J. M. K. 199 J. Reorganization and orientation of peripheral nerve fi bers regenerat ing 
through a multiple-lumen silicone rubber cuff: An experimental study using the sciatic 
nerve of rats. Doctoral dissertation , Iowa State University, Ames, IA. 152 pages. 

Daniel, R. K. and J. K. Terzis. 1977. Structure and function of the peri pheral nerve. Page 
299. in Reconstructive Microsurgery. Little, Brown and Company, Boston. 

Duncan, D. 1934. A relation between axone dian1eter and myeJination determined by 
measurement of myelinated spinal root fibers. J. of Comparative Neurology 60: 437-
471. 

Ducker, T. B . and G. J. Hayes. 1968. Experimental improvements in the use of silastic cuff 
for peripheral nerve repair. J. Neurosurgery 28: 582-587. 

Espejo, F. and J. Alvarez. l 986. Mkrotubules and calibers in normal and regenerating axons 
of the sural nerve of the rat. J. of Comparative Neurology 250: 65-72. 

Fields, R. D. and M. H. Ellisman. 1986a. Axons regenerated through silicone tube splices I. 
Conduction properties. Experimental Neurology 92: 48-60. 

Fields, R. D. and M. H. Ellisman. 1986b. Axons regenerated through silicone tube spl ices II. 
Functional morphology. Experimental Neurology 92: 6 l -74. 

Gartner, L. P. and J. L. Hiatt. 1987. Nervous tissue. Pages 96- 11 2. in Atlas of Histology. 
Williams & Wilkins, Baltimore. 

Gibson, K. L. and J. K. Daniloff. 1989. Comparison of sciatic nerve regeneration through 
silicone tubes and nerve allografts. Microsurgery 10: 126- 129. 

Henry, E. W., T. H. Chiu, E. Nyilas, T. M. Brushart, P. Dikkes, and R. L. Sidman. l 985. 
Nerve regeneration through biodegradable polyester tube . Experimental Neurology 
90 : 652-676. 

Ide, C., K. Tohyama, R. Yokota, T. Nitatori , and S. Onodera. 1983. Schwann cell ba al 
lamina and nerve regeneration. Brain Research 288: 6 1-75. 

Jenq, C. B. and R. E. Coggeshall. 1985. Numbers of regenerating axons in parent and 
tributary peripheral nerves in the rat. Brain Research 326: 27-40. 



85 

Jenq, C. B. and R. E. Cogge hall. 1986. The effect of an autologous transplant on pattern of 
regeneration in rat sciatic nerve. Brain Research 364: 45-56. 

Junqueira, L. C. and J. Carneiro. 1983. Nerve tis ue. Pages 180 and 189. in Basic 
Histology. Forth edition . Lange Medical Publications, Los Altos, CA. 

Katz, M. J. and L. F. Watson. 1985. Intensifier for Bodi an staining of tissue sections and cell 
cultures. Stain Technology 60(2): 8 J -87. 

Kiernan, J. A. 1981. Neurohistological techniques. Page 256-279. in Histological & 
Histochemical Methods: Theory and practice. First edition. Pergamon Pre , New 
York. 

Kline, 0. G. 1988. Comparative electrophy iologic evaluation of nerve graft and autogenou 
vein g raft a nerve conduits: An experimental tudy. J. of Reconstructive 
Microsurgery 4(4): 311 -312. 

Kumagai, K., T. Ushiki, K. Tohyama, M. Arakawa, and C. Ide. 1990. Regenerating axons 
and their growth cones observed by scanning electron microscopy. J. Electron 
Microscopy 39: 108- 114. 

Le Beau, J . M. , M. LaCorbiere, H. C. Powell , M. H. Elli man, and D. Schubert. J 988a. 
Extracellular fluid conditioned during peripheral nerve regeneration stimulates Schwann 
cell adhesion, migration and proliferation. Brain Research 459: 93- 104. 

Le Beau, J . M., M. H. Ellisman, and H. C. Powell. J 988b. Ultrastructural and morphometric 
analy i of long-term peripheral nerve regeneration through silicone tube . J. of 
Neurocytology 17: 161- 172. 

Low, F. N. 1976. The perineurium and connective tissue of peripheral nerve. Pages 159- 187. 
in D. N. Landon, editor. The Peripheral Nerve. John Wiley and Sons, Inc., New 
York. 

Lundborg, G., L. B. Dahlin, N. Danie lsen, R. H., Gelberman, F. M. Longo, H. C. 
Powell , and S. Varon. 1982a. Nerve regeneration in silicone chambers: Influence of 
gap length and of distal stump components. Experimental Neurology 76: 36 1-375. 

Lundborg, G. , R.H. Gelberman, F. M. Longo, H. C. Powell , and S. Varon. 1982b. ln vivo 
regeneration of cut nerve encased in ilicone tube . Growth across a six-millimeter 
gap. J. of Neuropathology and Experimental Neurology 4 1: 412-422. 



86 

Lundborg, G. , F. M. Longo, and S. Varon. 1982c. Nerve regeneration model and trophic 
factors in vivo. Brain Research 232: 157-16 l. 

Lundborg, G., L.B. Dahlin , N. P. Daniel en, H. A. Hansson, and K. Larsson. 1981. 
Reorganization and orientation of regenerating nerve fibers, perineurium, and 
epineurium in preformed mesothelial tubes- An experimental study on the sciatic nerve 
of rats. J. of Neuroscience Research 6: 265-281. 

Madison, R. , C. Da Silva, P. Dikkes, T. Chiu, and R. L. Sidman. J 985. Increased rate of 
peripheral nerve regeneration using bioresorbable nerve guides and larninin-containing 
gel. Experimental Neurology 88: 767-772. 

Madison, R. D. , C. Da Silva, and P. Dikkes. 1988. Entubulation repair with protein 
additives increa es the maximum nerve gap distance successfully bridged with tubular 
prostheses. Brain Research 447: 325-334. 

Madison, R. D., C. Da Silva, P. Dikkes, R. L. Sidman, and T. H. Chiu. 1987. Peripheral 
nerve regeneration with entubulation repair: Comparison of biodegradable nerve 
guides versus polyethylene tubes and the effects of a lanlinin-containing gel. 
Experimental Neurology 95: 378-390. 

Marshall, D. M. , M. Grosser, M. C. Stephanides, R. D. Keeley, and J .M. Rosen. 1989. 
Sutureless nerve repair at the fascicular level using a nerve coupler. J .of Rehabilitation 
Research and Development 26(3): 63-76. 

Mathur, A., J.C. Merrell , R. C. Russell , and E.G. Zook. 1983. A scanning electron 
microscopy evaluation of peripheral nerve regeneration. Scanning Electron Microscopy 
II: 975-98 l. 

McQuarrie, I. G. 1983. Role of the axonal cytoskeleton in the regenerating nervous system. 
Pages 5 1-88. in F. J. Seil, editor. Nerve, Organ, and Tissue Regeneration: Research 
Perspectives. Academic Press, New York. 

Molander, H. , 0. Engkvist, J . Hagglund, Y. Olsson, and E. Torebjork. 1983. Nerve repair 
using a polyglactin tube and nerve graft: An experimental study in the rabbit. 
Biomaterials 4: 276-280. 

MUiier, H ., L. R. Williams, and S. Varon. 1987. Nerve regeneration chamber: evaluati.on of 
exogenous agents applied by multiple injections. Brain Research 413: 320-326. 



87 

Orgel, M. G. and J. W. Huser. 1980. A comparison of light and scanning electron microscopy 
in nerve regeneration studies. Plastic and Reconstructive Surgery 65(5): 628-634. 

Park, J.B. 1984. Polymeric implant materials. Pages 265-303. in Biomaterials Science and 
Engineering. Plenum Press, New York. 

Phillips, L. L., L. Autilio-Gambetti, and R. J. Lasek. 1983. Bodian's silver method reveals 
molecular variation in the evolution of neurofilament proteins. Brain Research 278: 
219-223 . 

Politis, M. J. , K. Ederle, and P. S. Spencer. 1982. Tropism in nerve regeneration in vivo. 
Attraction of regenerating axons by diffusible factors derived from cells in distal nerve 
stumps of transected peripheral nerves. Brain Research 253: 1- 12. 

Rosen, J.M., E. N. Kaplan, D. L. Jewett, and J. R. Daniels. 1979. Fascicular sutureless and 
suture repair of the peripheral nerves. A comparison study in laboratory animals. 
Orthopaedic Review 8(4): 85-92. 

Rosen, J.M., V. R. Hentz, and E. N. Kaplan. 1983. Fascicular tubulization: A cellular 
approach to peripheral nerve repair. Annals of Plastic Surgery 11(5): 397-411. 

Rosen, J.M., H. N . Pham, G. Abraham, L. Harold, and V. R. Hentz. 1989. Artificial nerve 
graft compared to autograft in a rat model. J. of Rehabilitation Research and 
Development 26 (1): 1-14. 

Rosen, J. M ., J. A. Padilla, K. D. Nguyen, J. Siedman, and H. N. Pham. 1992. Artificial 
nerve graft using glycolide trimethylene carbonate as a nerve conduit filled with 
collagen compared to sutured autograft in a rat model. J. of Rehabilitation Research and 
Development 29(2): 1-12. 

Satou, T. , S. Nishida, S. Hiruma, K. Tanji, M. Takahashi, S. Fujita, Y. Mizuhara, F. Akai, 
and S. Hashimoto. 1986. A morphological study on the effects of collagen gel matrix 
on regeneration of severed rat sciatic nerve in silicone tubes. Acta Pathologica Japonica 
36(2): 199-208. 

Schlaepfer, W . W. and S. Micko. 1978a. Chemical and structural changes of neurofilaments in 
transected rat sciatic nerve. J. of Cell Biology 78: 369-378. 

Schlaepfer, W.W. and L.A. Freeman. 1978b. Neurofilament proteins of rat peripheral nerve 
and spinal cord. J. of Cell Biology 78: 653-662. 



88 

Seckel, B. R. , T. H. Chiu, E. Nyilas, and R. L. Sidman. 1984. Nerve regeneration through 
synthetic biodegradable nerve guides: Regulation by the target organ. Plastic and 
Reconstructive Surgery 74(2): 173-181. 

Shine, H. D., P. G. Harcomt, and R. L. Sidman. 1985. Cultured peripheral nervous system 
cells support peripheral nerve regeneration through tubes in the absence of distal nerve 
stump. J. of Neuroscience Research 14: 393-401. 

Suematsu, N., Y. Atsuta, and T. Hirayama. 1988. Vein graft for repair of peripheral nerve 
gap. J. of Reconstructive Microsurgery 4( 4): 313-318. 

Swaim, S. F. 1987. Peripheral nerve surgery. Pages 493-512. in J.E. Oliver, Jr. , B. F. 
Hoerlein, and I. G. Mayhew, eds. Veterinary Neurology. W. B. Saunders Company, 
Philadelphia. 

Taylor, J. S. H. , J. W . Fawcett, and L. Hirst. 1984. The use of backscattered electrons to 
examine selectively stained nerve fibers in the scanning electron microscope. Stain 
Technology 59(6): 335-341. 

Tohyama, K. and K. Kumagai . 1992. Backscattered electron imaging by scanning electron 
microscopy of regenerating peripheral nerve axons immunostained with 
antineurofilament antibody. J. of Electron Microscopy 41: 397-401. 

Ushiki, T. and T. Fujita. 1986. Backscattered electron imaging. Its application to biological 
specimens stained with heavy metals. Archivum Histologicum Japonicum 49(1): 
139- 154. 

Uzman, B . G. and G. M. Villegas. 1983a. Peripheral nerve regeneration through 
semipermeable tubes. Pages 111- 153. in F. J. Seil, editor. Nerve, Organ, and Tissue 
Regeneration: Research Perspectives. Academic Press, New York. 

Uzman, B. G. and G. M . Villegas. l983b. Mouse sciatic nerve regeneration through 
semipermeable tubes: A quantitative model. J. of Neuroscience Research 9: 325-338. 

Vale, R. D. , G. Banker, and Z. W. Hall. 1992. The neuronal cytoskeleton. Pages 247-280. in 
Z. W. Hall. editor. An Introduction to Molecular Neurobiology. Sinauer Associates, 
Inc., Publishers, Sunderland, MA. 

Valentini, R. F., P. Aebischer, S. R. Winn, and P. M. Galletti. 1987. Collagen- and laminin-
containing gels impede peripheral nerve regeneration through semipermeable nerve 
guidance channels. Experimental Neurology 98: 350-356. 



89 

Vejsada, R. , J. Palecek, P. Hnik, and T. Soukup. 1985. Postnatal development of 
conduction velocity and fibre size in the rat tibial nerve. International J. of 
Developmental Neuroscience 3(5): 583-595. 

Von Langsdorff, D. , S.S. Ali and F. Ntimberger. 1990. An improved silver staining 
technique as an alternative nuclear or combined nuclear nerve-fiber impregnation for 
comparative light-, secondary and backscattered electron scanning microscopy. J. of 
Neuroscience Methods 35: 3-8. 

Williams, L. R. , N. Danielsen, H. Millier, and S. Varon. 1987. Exogenous matrix precursors 
promote functional nerve regeneration across a 15-mm gap within a silicone chamber in 
the rat. J. of Comparative Neurology 264: 284-290. 

Williams, L. R., F. M. Longo, H. C. Powell, G. Lundborg, and S. Varon. 1983. Spatial-
temporal progress of peripheral. nerve regeneration within a silicone chamber: 
Parameters for a bioassay. J. of Comparative Neurology 2 18: 460-470. 

Williams, L. R., H. C. Powe11, G. Lundborg, and S. Varon. 1984. Competence of nerve 
tissue as distal insert promoting nerve regeneration in a silicone chamber. Brain 
Research 293: 201-211. 

Williams, L. R. and S. Varon. 1985. Modification of fibrin matrix formation in situ enhances 
nerve regeneration in silicone chambers. J. of Comparative Neurology 23 1: 209-220. 

Yannas, I. V., A. Chang, H. Loree, S. Perutz, C. Krarup, and T. V. Norregaard. 1989. 
Regeneration of peripheral nerves in controlled polymeric environments. Transactions 
of the Society for Biomaterials ( 15th Annual Meeting), page 119. 

Young, B. L. , P. Begovac, D. G. Stuart, and G. E. Goslow, Jr. 1984. An effec tive sleeving 
technique in nerve repair. J. of Neuroscience Methods l 0: 51 -58. 

Yoshii, S., T. Yamamuro, S. Ito, and M. Hayashi. 1987. In vivo guidance of regenerating 
nerve by larninin-coated filaments. Experimental Neurology 96: 469-473. 



90 

ACKNOWLEDGMENTS 

This thesis is dedicated to my parents, my brother, and my sis ter. Without their 

sustained support and understanding encouragement, I would not have come this far. 

I wish to express my deep appreciation to Dr. Raymond T. Greer, my major professor, 

for rus great patience, encouragement, and guidance through my graduate study. 

I would also like to sincerely thank Dr. Mary Helen Greer and Dr. Frederick 

Hembrough for serving as members of my committee. 

I have a special appreciation for the assistance provided by James M. Fos e and Jerry 

L. Amenson. 

Finally, I would also like to express my appreciation to my friends whose help I 

received during my years at Iowa State University. 



91 

APPENDIX: FIBER DIAMETER HISTOGRAMS 



40 

35 

30 
..-.. 
~ 25 '-' ... c 
~ 20 v 
"'" ~ c.. 

15 

10 

5 

0 

Axon Diameter Distribution 
Animal # 19 (LM) 

16 Weeks, Normal Control 

I~ Middle I 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 IO 10.5 11 11.5 12 12.5 13 

Diameter (µm) 

\0 
N 



40 

35 

30 
..-.. 
~ 25 
....... -c 20 
~ 
(J 

""" ~ Q., 15 

IO 

5 

0 

Axon Diameter Distribution 
Animal #19 (BSE) 

16 Weeks, Normal Control 

• 
~ 

13 

Category I 

Category II 

Total 

I 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 IO 10.5 II 11.5 12 12.5 13 

Diameter (µm) 

\0 
\;.) 



35 

30 

25 

20 

15 

10 
.; 

i! 
·~ :~~ 

~ 
1:. 

~ 
:·: ,, I ;f. 

~r~ ::: :~ 

~: 

~ 
::: 

~ 
~~ 

Axon Diameter Distribution 
Animals #34 (LM) 

8 Weeks, Multiple-Lumen Cuff 

~ Middle 

Iii Distal 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 

Diameter(µm) 



40 

35 

30 -~ 25 --c 
QI 20 
(J 

"" QI 
Q.. 15 

10 

5 

0 

Category I Axon 
Diameter Distribution 

Animal # 34 (BSE) 
8 Weeks, Multiple-Lumen Cuff 

Ill Proximal 

~ Middle 

13 Distal 

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 

Diameter (µm) 

'° Vo 



40 

35 -
30 --~ 25 .._... -- . 

= ~ 20 v -
i.. . 
~ 

~ 15 -
10 -

5 -
0 

~ 

f I 

Category II Axon 
Diameter Distribution 

Animal #34 (BSE) 
8 Weeks, Multiple-Lumen Cuff 

• Proximal 

~ Middle 

ml Distal 

J of1 n 
I I I I I • I I I I • I • I • I I I I • I 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7 .5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 

Diameter (µm) 



40 . 
35 -

30 --~ ,_.. 25 -.... c 
QJ v 
L. 20 -
QJ 

Q., 

15 -

IO -

5 -

0 

i 
: 

h I : 

Total Axon Diameter Distribution 
Animal # 34 (BSE) 

8 Weeks, Multiple-Lumen Cuff 

Bl 

~ 

D 

; 

ll - - -
I I I I I I I I 

Proximal 

Middle 

Distal 

I I I I I I I 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 IO 10.5 11 11.5 12 12.5 13 

Diameter (µm) 



40 

35 

30 -~ 25 '-" -c 
q,> 20 (j 
&... 
q,> 

Q., 
15 

IO 

5 

0 

Axon Diameter Distribution 
Animal # 24 (LM) 

12 Weeks, Multiple-Lumen Cuff 

fl Proximal 

f2I Middle 

Ill Distal 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 

Diameter (µm) 

"° 00 



40 

35 

..-.. 30 
~ .._.. - 25 c 
~ 
c:.J 

""' 20 
~ 

Q., 

15 

10 

5 

0 

Category I Axon 
Diameter Distribution 

Animal # 24 (BSE) 
12 Weeks, Multiple-Lumen Cuff 

II 

~ 

13 

Proximal 

Middle 

Distal 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 

Diameter (µm) 

\D 
\D 



40 

35 

- 30 
~ 
'-' - 25 c 
QJ 
(,J 
'- 20 QJ 
~ 

15 

10 

5 

0 

Category II Axon 
Diameter Distribution 

Animal # 24 (BSE) 
12 Weeks, Multiple-Lumen Cuff 

Iii Proximal 

IZI Middle 

I 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 
Diameter (µm) 

0 
0 



40 

35 -
30 --~ 25 --.... c 20 ~ 

(j 
s.. 

-
~ 

c:i.. I5 -

IO -
. 

5 -

0 

: 

I : I 

Total Axon Diameter Distribution 
Animal # 24 (BSE) 

12 Weeks, Multiple-Lumen cuff 

llJ Proximal 

fa Middle 

m Distal 

; 

l 

rt , ~ ~ J_ ~ n A 
T I I T T T I I 

fl 
I I I I I I 

I 1.5 2 2.5 3 3.5 4 4 .5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 IO 10.5 11 I 1.5 12 12.5 13 

Diameter (µm) 

0 



40 

35 

30 -~ 25 '-' -c: 
~ 20 CJ s.. 
~ 

Q.. 
15 

10 

5 

0 

Axon Diameter Distribution 
Animal # 14 (LM) 

16 Weeks, Multiple-Lumen Cuff 

Bl Proximal 

~ Middle 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 

Diameter (µm) 

0 
N 



40 

35 

30 ...... 
~ 
'-' 25 .. c 
~ v 20 "' ~ Q., 

15 

10 

5 

0 

Category I Axon 
Diameter Distribution 

Animal # 14 (BSE) 
16 Weeks, Multiple-Lumen Cuff 

II Proximal 

t(j Middle 

El Distal 

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 10 10.5 11 11.5 12 12.5 13 

Diameter (µm) 

0 w 



45 

40 

- 35 
~ .._, 

30 ... c 
QI 
CJ 25 .... 
QI 

Q., 20 

15 

10 

5 

0 

Category II Axon 
Diameter Distribution 

Animal # 14 (BSE) 
16 Weeks, Multiple-Lumen Cuff 

• Proximal 

~ Middle 

ll1 Distal 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 

Diameter (µm) 

0 .p.. 



Total Axon Diameter Distribution 
Animal # 14 (BSE) 

16 Weeks, Multiple-Lumen Cuff 

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 

Diameter (µm) 



40 

35 

30 

-~ 25 .._.. 
.... c 
~ 20 
(j 
'-
~ 

Q.. I5 

IO 

5 

0 

Axon Diameter Distribution 
Animal # 1 (LM) 

24 Weeks, Multiple-Lumen Cuff 

II Proximal 

f2J Middle 

El Dista1 

I 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 IO 10.5 11 11.5 I2 I2.5 I3 

Diameter (µm) 

0 
0\ 



40 

35 

- 30 
~ .._, 
.... 25 = C.I 
C.J ... 20 C.I 
~ 

15 

10 

5 

0 

Category I Axon 
Diameter Distribution 

Animal # 1 (BSE) 
24 Weeks, Multiple-Lumen Cuff 

II 

~ 

ml 

Proximal 

Middle 

Distal 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7 .5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 

Diameter (µm) 

...... 
0 
-..J 



40 

35 -- 30 -~ -- 25 -c 
QJ 
(J 
s.. 
QJ 
~ 

20 -

15 -

10 -

5 -
~ 

0 

Category II Axon 
Diameter Distribution 

Animal # 1 (BSE) 
24 Weeks, Multiple-Lumen Cuff 

11 Proximal 

~ Middle 

8 Distal 

~ ~ , I I I I 
I I I • I • 1•r•r•1 T 1 I I I I I I I I 

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 

Diameter (µm) 

0 
00 



40 

35 

30 -~ 25 .._.. -= Q> 20 y ... 
Q> 
~ 

15 

10 

5 

0 

Total Axon Diameter Distribution 
Animal # 1 (BSE) 

24 Weeks, Multiple-Lumen Cuff 

II Proximal 

~ Middle 

Iii , Distal 

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 

Diameter (µm) 

0 

'° 



40 

35 -
30 -

- 25 
~ 

-
'-" - 20 = -
QI 
<.> ... 
QI 15 Q., -

10 -

5 -

0 

: 

' 

; 
: 

: 

Axon Diameter Distribution 
Animal # 2 (LM) 

24 Weeks, Multiple-Lumen Cuff 

Bl 

~ 

m . 

I _m. 1 A_,, ..... .., -
I I I I I I I I I 

Proximal 

Middle 

Distal 

I I I I I I I I 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 IO 10.5 11 11.5 12 12.5 13 

Diameter (µm) 

,...... 
0 



40 

35 

30 -~ .._, 25 -c 
Q> 
c.J 20 .... 
Q> g. 

15 

10 

5 

0 

Category I Axon 
Diameter Distribution 

Animal # 2 (BSE) 
24 Weeks, Multiple-Lumen Cuff 

II Proximal 

~ Middle 

13 Distal 

l 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 

Diameter (µm) 



40 

35 

30 
..-.. 
~ 25 .._.. 
...... c 20 QJ 
<.J .... 
QJ 

i=.. 15 

10 

5 

0 

-

-

-
: -

: : 
: -

-

Category II Axon 
Diameter Distribution 

Animal # 2 (BSE) 
24 Weeks, Multiple-Lumen Cuff 

II 

~ 

8 . 

Proximal 

Middle 

Distal 

-1 : ~ 
~ : ~ ....._ as L - • • 

I I ' I I ' I I ' I I I I I I I ' I I I I ' I 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 

Diameter (µm) 



40 

35 

30 -~ 25 -.... 
= QJ 
~ 20 
'-
QJ 

Q... 
15 

10 

5 

0 

Total Axon Diameter Distribution 
Animal # 2 (BSE) 

24 Weeks, Multiple-Lumen Cuff 

IJ Proximal 

~ Middle 

El ' Distal 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 

Diameter (µm) 

w 



45 

40 

35 

30 ..-.. 
~ _. 
.... 25 = ~ v 
""' 20 ~ 

~ 

15 

IO 

5 

0 

Axon Diameter Distribution 
Animal # 3 (LM) 

24 Weeks, Multiple-Lumen Cuff 

II 

~ 

El 

Proximal 

Middle 

Distal 

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 IO 10.5 11 11.5 12 12.5 13 

Diameter (µm) 

.,. 



40 

35 -

30 -

- 25 -
~ -- 20 -c 
~ 
C.J 
'- 15 
~ 

Q., 
-

10 -. 
5 

0 

-
I 

: 

: : 
: : 

: 

• 

Categoty I Axon 
Diameter Distribution 

Animal # 3 (BSE) 
24 Weeks, Multiple-Lumen Cuff 

II Proximal 

~ Middle 

. 13 Distal 

b l"L. • • I I I I I I I I I I I . I I I I I . I . I 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 

Diameter (µm) 



40 

35 

30 -~ 25 '-" .... c 
~ 20 u 
'-
~ 

Q.. 15 

10 

5 

0 

Category II Axon 
Diameter Distribution 

Animal # 3 (BSE) 
24 Weeks, Multiple-Lumen Cuff 

Bl 

~ 

EJ 

Proximal 

Middle 

Distal 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 

Diameter (µm) 

0\ 



40 

35 

30 -~ 25 ---c 
OJ 20 (.I ... 
OJ 

Q,., 
15 

10 

5 

0 

Total Axon Diameter Distribution 
Animal # 3 (BSE) 

24 Weeks, Multiple-Lumen Cuff 

II Proximal 

~ Middle 

El Distal 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 

Diameter (µm) 

,_.. 
-....) 




