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ABSTRACT 

A sensitive and miniature magnetic field intensity measuring device is desired since 

people have become concerned about the effect of magnetic fields on health. Such a device 

cannot be constructed with a conventional fiber optic sensor which is too complex and bulky 

to be used as a portable device. In this research work, a magnetostrictive magnetometer was 

fabricated with a piece of Tcrfenol-D rod and a low-cost laser diodc. The prototype has 

demonstrated very promising results, indicating that such a device is capable of meeting the 

requirements of simplicity of design and high sensitivity. The use of Terfenol-D as a 

transducer in a magnetic field intensity measurement is reported for the first time. Also, an 

experimental study on the diode sensor provided infonnation that cannot be found in the 

literature. Laser diode sensor moocHing is discussed in order to explore further the principles 

of the magnetometer. 
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1. INTRODUCTION 

1.1 Ovcrvicw 

Recently, people have become concerned about the biological effects of magnetic fields 

on human beings and, therefore, there is a need for a portable magnetic field measuring 

device. Various instruments are available for serving such purposes. However, all of the 

available devices measure the magnetic field strength by an induced EMF technique. The 

sensitivity of this technique depends on the cross-sectional area of the induction coil as well as 

the the total number of turns in the coil. It may be difficult to achieve a sensitive device and a 

reasonable size with the induced EMF technique. Recently, optical detection techniques 

implemented with single mode optical fibers and diode lasers have demonstrated micro

Oersted range sensitivity which can hardly be achieved by electronic techniques. However, 

fiber optic sensors cannot meet the requirements of simplicity of design, ruggedness of 

construction, and miniaturization or portability of the entire measuring system. Therefore, 

highly sensitive fiber optic sensors have not been produced commercially and are used in 

laboratory environment only. A miniature, yet relatively sensitive device using an optical 

detection scheme is desired for research work in field measurement of the magnetic field 

intensity. 

1.2 Problem Statement 

The goal of this research work was to seek a 'proof of concept' of a pOI1able, yet 

relatively sensitive magnetic field measuring device based on the optical detection scheme. 
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1.3 General Overview 

In Chapter 2, the necessary physics to underst,md the principles of a laser and its 

modelling are discussed. Allhough this research work is related to semiconductor diode 

lasers, the operating principles of the diode laser are brief1y discussed in Chapter 3. It was 

found that a proper understanding of conve11lionallaser physics was much more important and 

helpful in reading current literature than understanding semiconductor laser physics. Chapter 

4 discusses the basic elements of the magnetometer, which includes a magnetic field 

transducer, a sensor and the necessary electronrcs. The detail of the implementation of the 

magnetometer prototype and the preliminary evaluation results are covered in Chapter 5. 

Furthermore, Chapter 5 reports an experimental study on the laser diode sensor and contains 

experimental results that are reported for the first time. Chapter 6 discusses the modelling 

aspect of the diode laser sensor. 
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2. REVIEW OF LASER PIIYSICS 

2.1 Atomic Radiation 

2.1.1 Einstein's A and II coefficient 

A. Einstein identified three radiative processes that arc responsible for the generation 

of electromagnetic energy in an atomic system [1]. These processes arc spontaneous 

emission, absorption and stimulated emission. The above processes lay the fundamentals of 

laser operation and are discussed in detail in the following context relating to a two-level 

system as shown in Fig. 2.1. 

(a) Spontaneous emission 

As the name implies, spontaneous emission describes the process by which the 

electrons in level 2 (sec Fig. 2.1) decayed spontaneously to level 1. In doing so, these 

electrons emit energy in the forn1 of a photon. If the density of population in level 2 is N2, the 

decay of this level can be modelled as 

dN2/dt spontaneous emission= -A21 N2 

(2. 1. 1) 

This equation implies that if no other process took place, the atomic population would 

decrease with a time constant t= 1/ A21. Also, the population at level I increases as fast as 

level 2 decreases because electrons leaving level 2 can only go to level 1 in this model, and 

hence dN I/dt = -dN2/dt. 



4 

f ·3'-' 
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(b) Absorption 

In this process, electrons in level I absorb a photon and converts itself into one of the 

electrons in level 2. The rate at whkh this process takes place depends on the number of 

absorbing electrons and the field from which they extract energy. The rate equation for this 

process can be written as 

dt 
absorption 

dN
I 

= + 8 2 IN I p(v) = - (i"l"" 
absorption 

(2. 1. 2) 

where N2 is the population density at level 2, N 1 is the population density at level 1, p(v) is 

the energy density of the field, l3 21 is a conslalll. 

(c) Stimulated emission 

This process is the reverse of absorption. The electron gives up its energy to the field, 

adding coherently to the intensity. Thus the added photon is at the same frequency, at the' 

same phase, in the same sense of polarization, and propagates in the same direction as the 

wave that induced the electron transition. The rate equation for this process depends on the 

number of electrons to be stimulated and the strength of the stimulating field. 

stimu latcd 

cmission 

dN , 
= - B N p(V) = - -

2 r 2 d t 
stimu latcd 

cmission 

(2. 1. 3) 
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Fig. 2.2 Radiative processes in a two levels electronic system: (a) Spontaneous 
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These three processes are shown in Figs. 2.2a, 2.2b and Fig. 2.2c. The 

spontaneous emission in Fig. 2.2a can radiate into any of 41t steradians with any sense of 

polarization. In the absorption process, part of the incoming wave is not absorbed and 

continues along the path. The picture for absorption is just the reverse of the stimulated 

emission. 

2.1.2 Relationship between the A and 13 coefficients 

By defining the above radiative processes, Einstein was able to reproduce the black 

body radiation formula. At thennodynamic equilibrium, the rate of going 'down' must be 

balanced by the rate of going 'up'. That is, 

(2. 1. 4) 

and 

(2. 1. 5) 

At equilibrium, the time rate of change must be zero. Therefore, 

N 2 _ 13 12 P (v ) 

NI - 1\21+ 13 2I P(v) 

(2. 1. 6) 
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Equation (2. 1. 6) represents the population density ratio of level 1 to level 2. One can also 

invoke classical Boltzman statistics to provide another equation on the ratio: 

(2. 1. 7) 

where k= Boltzman constant,T=tcmperaturc in Kelvin, h=Planck's constal1l, v is the 

frequency of radiation. 

Comparing equation (2. 1. 7) and (2. 1. 6), the energy density function, p(v), can be 

expressed as: 

A ~ I 

P (v) = -13-
L

- x -13---:-h-,'--
2 I \ 2 itT 
~ -1 
13

21 

(2. 1. 8) 

To reproduce the black body radiation formula derived by Max Planck in Eisberg [2], 

3 2 

() 
87rI1V 

pv=-~-

c3 
hv 

hv 

kT e - 1 

(2. 1. 9) 

Einstein concluded that the ratio of 1312 to 1321 was one, and consequently 
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(2. 1. 10) 

where 1=0,1,2 ........ . 

The above equation is very useful because it relates spontaneous emission to stimulated 

emission. Furthermore, the above equation is derived under the assumption that B12fB21 is 

equal to one, therefore the absorption coefficient is also known. In other words, if one of the 

coefficients (i.e., A21. B 12 or B21) is known, all are known. 

2.1.3 Line shape function 

In the previous analysis, the derivation started by using the idea of discrete energy 

states in an electron. But if these energy states were perfectly sharp, the uncertainty principle 

would indicate an infinite indeterminacy in the time that the electron is in one of these states. 

Therefore, the energy-level picture is forced to be modified. This is accomplished by 

smearing the energy levels into a sharply peaked band, as shown in Fig. 2.3. Although the 

diagram greatly exaggerates the broadening of the energy levels, it emphasizes that radiation 

does appear on either side of the line center. Fig. 2.3 also emphasizes the fact that different 

energy levels have different broadening. The bell-shaped curves representing the energy levels 

can be interpreted as the relative probability of an electron being found in a band dE2 around 

energy E2, given that the electron is at level 2. Since transitions can occur between dE2 and 

dE 1, the radiation spectrum is also broadened. 
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Mathematically, a line shape function, g(v) is needed to account for the spectral 

broadening. The line shape function is defined such that g(v)dv is the probability of emission 

of a photon with frequency between v and v + dv. If the atoms emits a photon, it has to 

appear somewhere. So the integrated probability must be unity, 

(2. 1. 11) 

Although the limit of integration is from zero to infinity, one can expect the main contribution 

to be in a very narrow band about v21. A detail discussion on a line shape function is given in 

reference [3]. Generally speaking, one can classify the broadening process into two 

categories: homogeneous broadening and inhol11ogenous broadening. If every atom were 

more or less the same as any other one, or there were no distinguishing feature about anyone 

group, the broadening mechanism is known as homogeneous broadening. On the other hand, 

if there is a characteristic that distinguishes one group of atoms from another, the broadening 

mechanism is called inhomogenolls broadening. In the case of inhol11ogenous broadening, 

different groups of atoms arc distinguished by different frequency responses. One example of 

in homogenous broadening is the Doppler broadening, in which different groups of atoms 

have different velocity components. 

The idea of a line shape is very important and is summarized here: 

The line-shape function ,g(v)dv , is the relative probability that: 

a. A photon emitted by a spuntaneuus transition will appear bet ween v and v + 

elv. 

b. Radiatiun in the frequcncy interval v tu v + dv can bc absurbed by atums in 

state 1. 
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Fig. 2.3 Modification of energy level 
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c. Radiation in this interval will stimulate atoms 111 level 2 to give up their 

internal energy. 

The above three conditions involve spontaneous emission (i.e., condition a), absorption (i.e., 

condition b), and stimulated emission (i.e., condition c). However, the same line-shape 

function applies to all these processes. It should be noted that in realilY the line-shape function 

may have a complicated fonn, and may even be mathematically intractable. 

This subsection has brieOy summarized the background material useful in the 

operation of a laser using a two k:vcl atomic system as an example. The concepts of Einstein's 

A and B coefficients are introduced, the principal radiative mechanisms (i.e., spontaneous 

emission, stimulated emission and absorption) are discussed, and the concept of line shape 

function is examined. 

2.2 Laser Oscillatiull and Amplification 

2.2.1 A modified description of transition rates 

In the previous section, the Einstein coefficients were introduced, and in the 

derivation, there exists an energy density function, p(v), which accounts for the interaction of 

a continuous radiation spectrum with the discrete energy levels of a group of atoms. The 

inclusion of an energy density function implies that the bandwidth of the radiation (i.e., 

energy spread) is much larger than the band of emission or absorption. However, in dealing 

with lasers, one usually has a finite amount of radiant energy per unit volume in a bandwidth 

that is much smaller than the corresponding spread expressed by the line shape of the 

transition. Therefore, the application of the energy density function in the derivation needs to 
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be modified. For example, the rate of ch.mge of the population at level 2 as a result of a 

monochromatic wave at a frequency v with energy density Pv is now written as: 

absorption 

stimulateu emission 

(2. 2. 1) 

Rather than using energy density, Pv, it is uscfulto talk in tenns of illlensity (i.e., Watts/unit 

area). The intensity can be obtained from energy density by recognizing that electromagnetic 

energy travels at the velocity c/n, where c is the speed of light and n is the refractive index of 

the material. Therefore, 

c 
In = ilPv 

and equation (2. 2. 1) can be re-written as: 

d t 

2 

Ao 
= - A g(v) . 

218nn2 
stimulate 

absorption 

emission 

I v 
(N - N\-

2 I' hv 

(2. 2. 2) 

(2. 2. 3) 

It should be noted that Iv/hv is just the number of photons passing a unit area per unit time, 

and is better known as photon flux. 



14 

2.2.2 Amplification by an atomic system 

Consider a beam of lllo'1(x;llromatic light passing through an optical medium, and 

suppose the medium contains electrons in energy level I and energy level 2. In the previous 

analysis on the A and 13 coefficients, one can easily see that the rate of stimulated emission 

will exceed the absorption rate if the popUlation at level 2 is bigger th~U1 the population at level 

1. That is, 

(2. 2. 4) 

Such a condition is contrary to the thennal equilibrium distribution given by Boltzm:m's 

equation, and this condition is known as population inversion. Usually, an external pumping 

agent is required to achieve or maintain the population inversion condition. The pumping 

process may be in the fonn of electrical pumping, optical pumping or some other means [4]. 

If one can maintain the population inversion in an optical medium while a beam of 

monochromatic radiation (with a proper frequcncy) passes through it, the medium will amplify 

the incoming radiation. 

One can imagine an experiment in which a slab of inverted material, !1z long, is being 

irradiated by an incoming polarized electromagnetic wave with intensity Iv, and the outgoing 

radiation is detected by a photodetector. The cxperiment setup is shown in Fig. 2.4. One 

must note that the photodctcctor in this expcrimcnt cannot distinguish betwecn the various 

physical processes involved. For example, a photon radiated spontancously by the slab, and 

reaching the photodetector gives the same response as a photon produced by stimulated 

emission. Therefore, spontaneous emission from this slab contributes noise in the 



15 

E 
I 

--- __ I' 

H -

Fig. 2.4 A generic optical amplifier 

Polarizer 

I 
----

--
I ~I' 

Bandpass filter I' ! --_. 
2 



I 6 

experiment. To enhance the signal-to-noise ratio of this experimcnt, one can limit the 

bandwidth of the photodetector by some sort of a filter with a passband delta v around the 

frequency v of the sourcc. Also, bne can put in a polarizer to reject one half of the 

spontaneous emission power, and one can limit thc field of view to match thc incoming beam. 

With these modifications, the outpllt now consists of thc input intensity plus stimulated 

emission plus spontaneous emission minus absorption. Onc can forn1Ulatc the change in 

intensity as: 

I v 
L11 = h v . B -. IT (v) . N L1 z 

v 21 C c:> \: 2 

I v 
- h v B 12 c· g (v) . N 1 L1z 

1 d.f2 . 
+hv A Llv· g(v)· _. --. N L1z 

21 2 4;r 2 

(2. 2. 5) 

Further manipulating of equation (2. 2. 5), gives the following expression to model the 

change in intensity per !J.z as: 

(2. 2. 6) 

The second ternl on the right hand side is the noise tcnn from spontaneous emission since this 

signal is present even if there is no input signal. This noise tern1 is essential to initiate the 
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oscillation in the laser. It is convenient to use a gain coefficient and rewrite equation (2. 2. 6) 

as follow: 

(2. 2. 7) 

It should be noted that the above gain coefficient is the 'small-signal' coefficient. In other 

words, the incoming intensity is sufficiently small that the populations of level 2 and level 1 

are negligibly perturbed. One can integrate equation (2. 2. 7) to obtain 

I y = I y(O)cxplgain(v)zJ 

= Go(v)I yeO) 

Go = ex p\ g a i 11 (v )J I 

(2. 2. 8) 

The gain coefficient Go is interpreted as the small signal power gain of an amplifier of length 

d. One important point of the gain coefficient is its frequency dependent propcny. Strictly 

speaking, different gain coefficients needs to be assigned to each incoming intensity with 

different frequencies. 
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2.2.3 Threshold for laser oscillation 

In the previous section, an inverted system is discussed and the system behaves as an 

narrow band amplifier. To make an amplifier into an oscillator, one must provide a proper 

feedback to the amplifier. A simple way of doing this is shown in Fig. 2.S. The condition 

for which an amplifier with feedback behaves as ~U1 oscillator is known as the threshold 

condition. The threshold for oscillation exists when the round-trip gain of the amplifier is 

greater or equal to one. To completc one round trip, the light intcnsity is amplified twice, and 

part of the power is lost as the light reflects from each mirror. Mathcmatically, this can be 

represented as: 

(2. 2. 9) 

where Rl and R2 are the ref1cctivities at mirror 1 and mirror 2 and d is the length of the 

amplifier medium. One can rearrange equation (2. 2. 9) to obtain the threshold figure for the 

gain coefficient as: 

(2. 2. 10) 

where Loss is the loss per unitlcngth. 
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Fig. 2.5 A simple laser system with amplifier and feedback mirror 
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Equation (2. 2. 10) implies that there is a considerable range of frequencies for which the 

inequality is satisfied. (A graphical solution for equation (2. 2. 10) is shown in Fig. 2.6.) 

This fact is transparent if one remembers that the gain coefficient is a function of the line shape 

function, and therefore laser oscillation can take place in a relatively wide range of frequency. 

However, laser oscillation will occur at a discrete frequency decided by the cavity mode that 

has the highest gain-to-Ioss ratio. In the case of the plane mirror reflector, the cavity is similar 

to a Fabry-Perot interferometer. The pass bands of the Fabry-Perot resonator occur at some 

equally spaced frequencies. These frequencies differ by the free spectral range given by: 

c 
Free Spectral Range = 2 . d . 11 

g 

(2. 2. 11) 

where c is the speed of light, ng is the group rcfractiveimlcx, and d is the length of the cavity. 

The longitudinal modes of the cavity :lre given by integer multiples of equation (2. 2. 11). 

2.2.4 Laser oscillation in a homogenolls hroadened material 

As mentioned in the previous section, once the threshold condition is met, laser 

oscillation can take place. However, the homogenolls broadened gain curve implies that 

oscillation can take place in a range of frequencies. Nevertheless, laser oscillation is observed 

to take place at discrete frequencies. This section explains the physics involved in the 

oscillation process. 

At the start-up of oscillation, the medium is inverted and spontaneous emission has 

already filled the cavity with radiation at all sorts of frequencies. However, clue to the Fabry-
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Perot resonator, not all frequencies can exist in the cavity, only those which coincide with the 

longitudinal mode of the Fabry-Perot cavity modes. Nevertheless, there is a very good chance 

that the spontaneous emission produces photons which match the cavity mode. 

Consequently, a standing wave pattern is formed. At the beginning of oscillation, the fields in 

the cavity modes are just beginning to form as a result of spontaneous emission. These 

resonant fields are amplified by stimulated emission. Those close to the line center and which 

match the gain profile are amplified after travelling back and forth in the cavity. The fields 

which lie in the cavity modes but not so close to the center of the line shape function get 

amplified to a lesser extent. After a number of round trips, the intensity at the line center 

frequency will have been amplified to a significant amount but the intensity cannot grow 

indefinitely. The amplification process implies that the population density at level 2 is being 

depleted, and the population inversion must have decreased .. When the stimulated field grows 

to a certain extent, it causes the electrons at level 2 to give up their energy as fast as they are 

being pumped up to level 2. A steady state condition is reached eventually. Therefore, the 

gain of the system must change to a lower value until the rate of production of the excess 

inverted population is balanced by the rate of stimulated emission. This phenomenon is 

known as gain saturation. The above physical process is of utmost important in laser 

oscillation, and is summarized as follow: 

a. The laser gain coefficient saturates at a value slightly lower than the loss, 

with the difference being made up by t,he spontaneous emission, at the 

frequency of oscillation. The shape of the gain function is similar to the 

initial one but the peak value is reduced (because this is a homogeneously 

broadened system). 
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b. The spectral power of emission has changed, with the central mode much 

larger than the others. Those modes that suffer a loss rather than gain due to 

the saturation phenomena are supported by the spontaneous emission only. 

c. Laser oscillation occurs at the center of the cavity mode which has the 

highest net gain. 

The evolution of laser oscillation from spontaneous emission is shown in Fig. 2.7. It 

should be noted that laser oscillation in an inhomogeneous system is quite different since 

spectral hole burning is involved. 

2.2.5 Amplified spontaneous emission (ASE) 

Consider an inverted medium as shown in Fig. 2.X: The atoms at level 2 may radiate 

spontaneously into a frequency interval coinciding with the cavity mode and which matches 

the gain profile of the inverted medium. Light intensity, resulting from the spontaneous 

emission, can travel in a positive or negative direction. At z=O, an atom may radiate 

spontaneously, and part of its energy is amplified by the inversion between z=O and z=l. 

Thus, part of the spontaneous emission energy is being amplified. Also, spontaneous 

emission continually adds to this amplified intensity along z. This energy contributed by 

spontaneous emission is undesirable in an optical amplifier since the ASE drains some of the 

inverted atoms and helps saturating the gain. In a laser oscillator, the ASE effect should be 

included into the modelling of laser opemtion [5]. 
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3. SEMICONDUCTOR DIODE LASER 

The previous chapter is devoted to the physics of laser operation and most of the 

concepts are related to an inverted electron system. Although this research work deals with a 

semiconductor diode laser, 1110st of the knowledge of the inverted electron system applies to 

the laser diode. In addition, a sound background in conventional laser physics is essential in 

understanding much of the semiconductor laser literature. The purpose of this chapter is to 

provide a general review of a semiconductor diode laser. 

3.1 General Review 

The semiconductor laser diode is one of the most important types of laser systems 

being used today. Semiconductor laser diodes use a semiconductor as the lasing medium and 

are capable of direct modulation up into the gigahertz range. In addition, diode lasers are 

relatively low cost and compact. The basic mechanism for light emission from a 

semiconductor material has been studied extensively [6]. A laser diode utilizes the 

recombination of electrons and holes at a pn junction to produce coherent emission as a dc 

current passes through the diode. Similar to other electronic laser systems, three radiative 

processes are involved. Instead of using electronic levels 1 and 2 as in the previous 

discussion, one talks about bands in a semiconductor (i.e., conductor bands and valence 

bands). The three important radiative processes are: 

a. Absorption: an electron in the valence band can absorb the incident radiation and be excited 

to the conduction band leading to the generation of an electron-hole pair. 
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b. Spontaneous emission: an electron can make make a spontaneous transition in which it 

recombines with a hole. 

c. Stimulated emission: incidein radiation stimulates an electron in the conduction band to 

make a transition to the valence band and emit coherent light. 

As discussed in the previous chapter. to achieve a laser oscillator, one needs an 

inverted medium and a proper feedback mechanism. To produce an inverted medium, one 

needs a pumping agent. In a semiconductor laser diode. the pumping mechanism is the 

forward bias of the pn junction. Under forward bias. a large density of electrons is created in 

the bottom of the conduction band and simultaneously. in the same region of space, a large 

density of holes is created at the top of the valence band (see Fig. 3.1). When an optical 

beam with a frequency slightly greater than Eg/h. where Eg is the bandgap energy, passes 

through the medium. the beam will be amplified through a stimulated emission process. To 

make the amplifying medium into a laser. one must provide a feedback mechanism. which is 

usually done by cleaving or polishing the ends of the pn junction diode at right angles to the 

junction. The threshold value for oscillation is reached as the gain overcomes the losses in the 

diode cavity. Therefore. one will expect a threshold current magnitude in the laser diode. 

The early laser diode was based on a pn junction fonned in the same semiconductor 

material by proper doping and these arc referred to as hOl11ojunction lasers. However. these 

laser diodes required a very large threshold current ane! could operate only at liquid helium 

temperature. A significant reduction in threshold current densities was achieved by 

heterojunction technology. A heterojunction is a junction fomled between two dissimilar 

semiconductors. Today, most of the laser diodes arc based on a double heterojunction 

structure in which a thin layer of a semiconductor with a narrow bandgap is sandwiched 

between two larger bandgap semiconductors. This is shown in Fig. 3.2a. One special 

feature of the double heterostructure is the optical confinement in the active layer because the 
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refractive index of the semiconductor decreases with an increase in the bandgap. Thus, the 

refractive index of the active layer is higher t!ian the two surrounding regions and this 

provides a slab waveguide for optical confinement (see Fig. 3.2b). Various waveguiding 

mechanisms are available in commercial laser diodes. Most laser diode waveguiding 

techniques can be separated into two categories: gain-guided lasers and index-guided lasers. 

For a detailed description of various waveguiding structure, one should consult the most 

current literature. An example of a gain-guided laser and an index-guided laser (i.e., buried 

heterostructure) is shown in Fig. 3.3. 

3.2 Typical Output Characteristics; 

3.2.1 L-I Curve 

Fig. 3.4 shows a typical light outpllt versus current characteristic of a GnAs 

semiconductor laser. The output power stans to increase very rapidly around a threshold 

current, which roughly represents the beginning of laser oscillation. Very often, the kink in 

the L-I curve is very smooth, and the smoothness of the kink depends on the rate of effective 

spontaneous emission in the laser diodes. The L-I curve is very sensitive to temperature 

change and is shown in Fig. 3.5. 

3.2.2 Spectral width of emission 

One important characteristic of a laser diocle is the spectral width of emis~ion. The 

spontaneous emission spectrum is usually very broad with a typical width of about 200 to 300 

Angstrom. As the laser starts to oscillate, the spectral width narrows down. A spectrum of a 
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multimode diode laser is shown in Fig. 3.6. It should be noted that the mode spacing 

between various modes is the mode spacing for the laser diode cavity or the resonant cavity as 

discussed in Chapter 2. The FWHM (Le., Full Width at Half Maximum of the spectrum) for 

a multimode laser is around 3 nm. The number of lasing modes decrease as the output power 

increases as shown in Fig. 3.7. This is the result of gain saturation. When the laser is 

operating in a single mode, the spectral width is less than 1 Angstrom. 

3.2.3 Temperature drift 

The wavelength of a laser diode increases with rising temperature. Wavelength jumps 

are known as mode hopping. Between these jumps the wavelength increases linearly with 

rising temperature. Taking into account mode hopping, the temperature drift of the 

wavelength is approximately 0.2 nm/degree Celsius. The mode hopping phenomenon is 

shown in Fig. 3.8. 

Besides the above characteristics, the performance of laser diodes is being compared in 

terms of beam divergence, polarization ratio, pulse response and far field radiation pattern. 

The technical specification of the laser diode being used in this research work is shown in the 

Appendix. 
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4. ELEMENTS OF AN OPTICAL MAGNETOMETER 

4.1 Review of Current Technology 

The applications of magnetic sensor technology are numerous and diverse. For 

example, the magnetic sensor has obvious applications in the Navy for submarine detection. 

The magnetometer has also been used for medical diagnostics purposes, in the measurement 

of mega-ampere plasma currents in fusion devices and in non-destructive evaluation. 

Currently available magnetometers include a SQUID (Superconductivity Quantum Interference 

Device), fluxgate and induction probe. Within the past ten years, government laboratories and 

universities have been studying the possibility of using fiber optic magnetic sensors to replace 

existing sensors in many applications. 

Two types of fiber optic magnetic sensors have been extensively studied -

magnetostrictive sensors and Faraday rotation sensors. The fundamental difference between 

the two sensors is the physical mechanisms on which they are based. The Faraday effect is a 

linear process involving a direct interaction between the external magnetic field and the light 

propagating in the core of the fiber. Due to the linear nature of the device, Faraday sensors 

have been used widely for ac current measurement. The magnetostrictive sensors, on the 

other hand, utilize a non-linear interaction between the external field and the magnetostrictive 

material. The resultant distortion of the magnetostrictive material must be transferred to the 

fiber by physically attaching the fiber to the magnetostrictive material. The non-linear nature 

of the magnetometer can be used advantageously for signal processing, such as heterodyne 

detection [7]. Fig. 4.1 shows the recent research efforts in magnetic sensors. According to 

current literature, magnetostrictive sensors, based on metallic glass, (e.g., Metglass 2605) and 
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heterodyne techniques, can measure in the micro-Oersted region. In this research project, the 

magnetostrictive approach was adopted. 

4.2 Magnetoslriclive Transducers 

The basic principle of a magnetic field transducer is to convert the strength of the 

magnetic field into a measurable quantity, such as impedance, strain, or voltage. In this 

research work, a piece of Terfenol-D rod was used as a magnetic field strength to strain 

transducer. Terfenol-D is a highly magnetostrictive alloy of Terbium-dysprosium-Iron with 

the chemical fonnula Tbo.3DYO.7Fe 1.95. It is capable of producing over fifty times the strain 

demonstrated by nickel [3], a well known magnetostrictive element. However, Terfenol-D 

has a lower relative penneability than nickel and this may make the design of magnetic circuits 

more difficult. In addition, Terfenol-D requires a dc bias field for optimum perfonnance. The 

magnitude of this bias field is about six to seven times higher than for nickel. However, 

Terfenol-D demonstrates some unique features which cannot be found in conventional 

magnetostrictive materials. For example, Terfenol-D has an extremely high saturation 

magnetostriction at around 12(X) ppm under no stress and increases to about 2000 ppm under 

a compressive stress of 2.0 ksi, which is shown in Fig. 4.2 and Fig. 4.3. Also, the 

differential (i.e., small signal) magnetostriction of Tcrfcnol-0 varies from 4.2 ppm/Oe to a 

maximum of 10.8 ppm/Oe under a compressive stress of 0 ksi and 1.1 ksi respectively (see 

Fig. 4.4). Consequently, Terfenol-D offers the possibility of varying its sensitivity to 

magnetic field strength by adjusting the compressive stress magnitude. However, it should be 

noted that slightly different bias fields are needed for Terfcnol-D to operate at its optimum 

point under different stress conditions. This is demonstrated in Fig.4.S [9]. Although 

Terfenol-D demonstrates hystersis in its 13-1-1 curve, the ac perfonl1ance of the transducer is 
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not affected. Since the information of the magnetic field intensity is given by the peak to peak 

amplitude of the magnetostriction, which is not dependent on the hystersis history. 

4.3 Short Externnl Cnvity Lnscr Diode Sensor 

Fiber optic sensors have demonstrated high sensitivity [10] in magnetic field 

measurements. However, they are only limited to laboratory applications due to their 

complexity. Therefore, fiber optic sensors are unattractive for applications that require a 

simple, rugged, miniature but relatively sensitive device. Short external 'cavity laser diode 

sensors or simply diode sensors, however, seem to be a perfect candidate for such 

applications. A diode sensor is a phase sensing device. which has demonstrated a minimum 

detectable phase shift of 10 micro-radian at 70 Hz and a phase shift of 1 micro-radian at 1 

KHz. [11]. Moreover, diode sensors arc packagable into a small device. The sensor also 

has the advantage of being very simple and relatively cheap. In this research work, a 

compact-disk player type laser diode, lasing at 0.78 micrometer was used. Fig. 4.6 shows 

the experimental arrangement of the diode sensor. The sensor consists of a laser diode 

operating in a cw mode and an external retlector. The position of the retlector was modulated 

by a transducer. In this research work, the Terfenol-D rod became the transducer. The output 

signal was obtained by the photocletector, which was included in the same package as the laser 

diode in this research work. The external retlector feeds light back to the laser cavity and 

perturbs the operation of the diode laser. When the light is fed back in phase with the light in 

the semiconductor laser cavity, the effective rellcctivity of the facet facing the reflector is 

raised. Conversely, when the light is fcd back out of phase, the effective facet reflectivity is 

lowered. This change in facet retlectivity was retlcctcd in the power output of the laser diode 

under a constant bias condition. It should be noted that the phase of the light was determined 
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by the distance between the reflector and the laser facet and by the reflection coefficient of the 

reflector. Furthennore, the sensing scheme achieved its bes( performance for a short external 

cavity (Le., less than 10 micrometer), which was fonned by the laser facet and the ex(ernal 

reflector. 

4.4 Supporting Electronics and Components 

The critical elements of the magnetometer were discussed in the previous conrexr. In 

addition to the magnetic field transducer and the sensor, some auxiliary equipment was 

needed. For example, in biasing the laser diode, a power supply with soft turn-on and turn

off features is required. Also, to make sure the laser diode is not overheated, a Peltier device 

was used. Moreover, some means of prodllcing a de bias field for the transducer was needed. 

A solenoid was being used to generate the magnetic field. Funhermore, some signal 

processing electronics such as an averaging scope and filters were needed to enhance the 

signal-to-noise ratio. 
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s. IMPLEMENTATION AND EVALUATION OF TIlE LASER DIODE 

MAGNETOSTRICTIVE TERFENOL-D MAGNETOMETER PROTOTYPE 

The necessary components for fabricating the magnetostrictive magnetic sensors were 

discussed in the previolls chapter. The detail of the implementation and preliminary testing 

which resulted is presented in the following section. 

5.1 Implementation of the Magnetometer 

The first step in fabricating the magnetometer was to remove the encapsulation of the 

laser diode package to allow the fonnation of a short extemalcavity. The second step 

involved the polishing of the Terfenol-D rod end surface to perfonn the function of the 

external reflector. The polishing work is very important since a bad reflector will scatter the 

laser beam, and the diode will not operate as a sensor. The Terfenol-D rod was polished with 

10 micrometer, 9 micrometer,S micrometer, 3 micrometer and 1 micrometer fiber optic grade 

sandpapers. The quality of the polished surface was checked by shining a laser beam onto the 

surface and observing the diffraction pattern under a microscope. The third step involved the 

machining of the housing for the prototype. The cross-section view of the housing is shown 

in Fig. 5.1. An important point in the hOllsing is the cylindrical compartment for the 

Terfenol-D rod. The compartment was made such that the rod was free to slide and still kept 

the longitudinal axis of the Terfcnol-D rod coinciding with the axis of the laser beam. Also, 

one end of the Terfenol-D rod was fixed with respect to the housing and the other end was 

free to move. FurthemlOre, the housing was equipped with a screw to fine tune the position 

of the distance between the end surface of the rod and the laser facet (see Fig. 5.1). Finally, 
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the Peltier device was incorporated into the laser diode platform (see Fig. 5.1). After the 

diode was wired properly, the entire housing was inserted into a solenoid, which provided the 

de bias field, for evaluation. 

5.2 Evaluation of the Prototype 

To evaluate the prototype properly and precisely, one should examine both the laser 

diode sensor and the Terfenol-O rod. However, the evaluation of the laser diode sensor 

required a displacement device, such as a piezoelectric positioner or a stepper motor 

positioner, having a resolution of O. I micrometer or less. Since this was not available in 

Electrical Engineering and Computer Engineering's microwave laboratory, the testing of the 

laser diode sensor was carried Ollt in the 'Optics and Thermal Wave Laboratory' of the NDE 

center using a x-y-z positioner with I micrometer resolution. However, sllch a positioner was 

still found to be inadequate. Special techniques were lIsed and these will be discussed later. 

5.3 Operation of Laser Diode with Feedback 

The de-encapsulated laser diode was studied under a microscope, and is shown in 

Fig. 5.2 and a blown-up view is shown in Fig. 5.3. One very important point, which is 

critical to the diode sensor operation, was observed. As shown in Fig. 5.3, the laser diode 

package consists of a header, a low-cost photodetector, a heat sink, three connecting pins, and 

a laser chip. A close examination of the diode under the microscope indicated that the laser 

chip and the heat sink are not aligned. Some examples of these problems are shown in Fig. 

5.4. The lateral offset of the laser chip and the edge of the heat sink may be 50 micrometer, 

which severely degrades the sensitivity of this device. Also, when the prototype housing was 



Fig. 5.2 De-encapsulated laser diode seen under a microscope 
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designed, this effect was not known. Therefore, the minimum coupling distance is limited by 

the offset distance from the edge of the heat sink which prevents the Terfenol-D rod from 

close coupling with the laser facet ( see Fig. 5.4). The L-J curve of the laser diode under the 

influence of the external cavity fOnlled by the Terfenol-D end surface is shown in Fig. 5.5. 

The L-I curve of the laser diode shifts to the right hand side accompanied with a change in the 

slope. According to literature [11], this corresponds to light fed back in phase. Similarly, a 

corresponding out-of-phase condition should be observed as shown in Fig. 5.6. It should 

be mentioned that the in-phase and out-of-phase condition differs by only half a wavelength 

(Le., 390 nm). In addition, the fine positioning screw was not capable of providing a 

resolution down to the desired accuracy. Therefore, it was necessary to keep repeating the 

experiment by randomly positioning the Terfenol-D rod looking for in-phase and out-of-phase 

conditions. However, the out-of-phase condition could not be found. 

5.4 Evaluation of the Terfenol-D Rod 

The Terfenol-D rod was evaluatcd with a hetcrodyne I-IeNe laser interferometer from 

the Optics and Thermal Wave Laboratory of NDE center by Mr. Jin-Yong Kim. The 

experimental setup is shown in Fig. 5.7. The solenoid was driven at 1.4 KHz to produce a 

magnetic field intensity of 1 Oc. The dc bias was adjusted until the response was maximum. 

The optimum bias field was found to be I R3.o Oe, which was close to the calculated result 

[12]. Although the operating frequency of the device was 00 Hz, evaluating the Terfenol at 

1.4 kHz approximates the response in the line frequency operation. The main reason for 

using such\a frequency was to allow the PLL in the dcmodulation circuit of the interferometer 

to function properly. The result of this measurement is shown in Fig. 5.8. 
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5.5 Evaluation of the Magnetometer 

After the laser diode and the Terfenol-D rod were examined, the magnetometer was 

evaluated. The experiment setup is shown in Fig. 5.9. The prototype was evaluated under 

various conditions: a.) 5 Oe at 90Hz with dc bias at around 183 Oe and the laser diode bias at 

62.8 rnA (see Fig. 5.10), b.) same as I with laser diode bias at 52.2 mA (see Fig. 5.11), 

c.) same as 1 with laser diode bias at 50.9 mA (see Fig. 5.12), d.) I Oe at 90 Hz with dc 

bias same as 1 and laser diode bias at 60.2 mA (see Fig. 5.13). It should be noted that a 

waveform distortion was observed in one of the above experiments. No theoretical 

explanation can be offered at this point. Also, the response of the magnetometer under 

different de magnetic field intensities were observed. The laser diode was biased at 43.77 

rnA, the frequency of the ac magnetic field was at 10Hz, and the dc bias field was changed 

from 225.7 Oe to 246.1 Oe. As the dc bias was changed from 225.7 Oc to 246.1 Oe, 

waveform distortion was observed. The results are shown in Fig. 5.14 and Fig. 5.15, 

respectively. Also, a very serious w:lvefonn distortion was obtained during the experiment by 

increasing the ac magnitude of the testing field, and is shown in Fig. 5.16. Judging from 

the above experimental results (i.e., Fig. 5.1 0-16), one can conclude that the de bias, the 

ac field and the laser diode bias current can induce distortion. However, no explanation can 

be offered at this time due to the complex operating principle, which is discussed in Section 

5.7, of the diode sensors. 

5.6 Evaluation of the Solenoid 

The inductance and capacitance of the solenoid arc altered by the incorporation of the 

magnetometer into its core. This concern was studied with an impedance analyzer and the 
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results are shown in Fig. 5.17 - Fig. 5.2 I. The solenoid was tested with these 

conditions: a.) nothing in the core, b.) I steel rod in the core, c.) 4 steel rods in the core, d.) 

a Hall probe in the core, and e.) the magnetometer in the core. It was observed that the 

magnetometer did not alter the characteristics (i.e., inductance and capacitance) of the 

solenoid. 

5.7 Experimental Study on the Diode Laser Sensor 

As mentioned in the previous context, both the Terfenol-D perfonnance and the diode 

sensor performance were critical to the overall functioning of the magnetometer. However, 

the evaluation of the diode sensor is very difficult since one has to reproduce the movement of 

the external reflector with a resolution of about 0.1 micrometer. This was accomplished with 

the experimental setup as shown in Fig. 5.22. A gold-plated plane mirror mounted on a x

y-z positioner with 1 micrometer resolution was used to simulate the external reflector. The 

distance between the laser facet and the mirror was adjusted so that the mirror was almost 

touching the laser facet, and the out-or-phase condition was obtained. It is recommended that 

this experiment be carried out on a noating optical table since the vibration from closing the 

door or a human voice can vibrate the mirror and produce significant noise. Once the out-of

phase condition was found, the mirror was moved away from the laser facet by turning the 

knob of the x-y-z positioner while the pattern was stored on a sampling scope. The 

experiment results are displayed in Fig. 5.23 and Fig. 5.24. The in-phase and out-of

phase condition were shown very clearly. However, the result was contrary to reference 

[llll], which failed to predict the exponential decay or. the output signal as the external cavity 

lengthens. Also, as the external cavity got longer, the in-phase and out-of-phase condition 

was hard to distinguish. However, the average of the output signal was larger than the output 
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signal without external cavity. This point was already mentioned in the previous context. The 

experimental result reported here is very similar to that published by Voumard, Salathe and 

Weber [13]. However, to the.best of the experimenters' knowledge, no such detailed 

experimental result has been published. The result of this measurement is very significant 

because it raises the question of validity in the modelling of this device as reported in [11]. 

Also, it provides very valuable infom1ation on the operational characteristics of the 

magnetometer. The physics of the magnetometer's operation became more complicated due to 

the nonlinear interaction of the cavity length and output power. The situation can become 

quite complicated since the dc bias for the Terfenol-D rod alters the dc length of the rod, 

which, in tum, alters the external cavity length. As a result, one has to take extreme care in 

interpreting the preliminary results of the magnetometer prototype evaluation. To properly 

understand the operation of this device and to illterpn:t the data properly, one has to model the 

diode sensor numerically, which is covered in the next chapter. 
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6. INTRODUCTION TO TilE MODELLING OF LASER DIODE 

MAGNETOMETER TERFENOL-D MAGNETOMETER 

As mentioned in the above, the physics of this simple device is not so straightforward. 

Many experiments have been done to evaluate the perfom1ance of the magnetometer, and 

many phenomena are reponed in the above chapters. The purpose of this chapter is to discuss 

the aspect of modelling the perfonmlllce of the magnetometer. The problem can be separated 

into two areas: 1.) modelIing of the Terfcnol-D rod movcmcnt. 2.) modelIing of the laser 

diode sensor operation. The modelling of the Terfenol-D rod movement is not covered here. 

This portion of modelling is carried Ou( by specialists in this area [14]. The rest of this thesis 

focuses on the modelling aspect of the laser diode sensor only. 

6.1 A Proper Model 

To model the laser diode sensor, one has to understand thoroughly the underlying 

physics of the laser diode. Using a very primitive and approximate approach, one can 

understand the operation of the sensor as follows: when the effective facet reflectivity is high, 

more light energy is being trapped inside the laser cavity. As a result, the output power at the 

other end of the mirror, which has maintained the same reflectivity, is increased. When the 

reflectivity is low, most of the light energy leaks out of the cavity, the amollnt of light 

reflecting back to the cavity is low and stimulated emission is reduced. Therefore, the laser 

diode is operating as a superluminescent LED. This explanation can help in understanding the 

basic principle of the laser diode sensor operation. However, it already raises a lot of 

questions in the modelling of the sensor. ror example, in reference 11 [11], the diode 
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sensors were modelled using the conventional laser rate equation and with the assumption that 

spontaneous emission was very small, and can therefore be neglected. I-Iowever,'when the 

effective reflectivity of the diOde laser facet is reduced, stimulated emission is lowered. 

Consequently, the spontaneous emission constitutes a major part of the emission power. 

Ignoring the effect of the spontaneous emission may not be very correct. Furthermore, as the 

effective reflectivity is increased, the intemallight intensity of the cavity increases and this 

implies the photon density is increased. 

A further question arises about taking into account gain saturation. Again, a simple 

rate equation approach cannot answer this question. Moreover, the rate equation totally 

neglects the spatial variation of photon density and gain distribution along the cavity length. If 

the mirror reflectivity of the laser diode is high, the regular rate equation can be used without 

much problem. However, as the mirror reflectivity is changed from a high value to a low 

value, a simple model which ignores spatial variation may not be adequate (see Fig. 6.1) 

[15]. The validity of the simple rate equations has been discussed by many authors, slIch as 

Marcuse [16], Cassidy [1"'], and Sommers [18]. In the formulation by Marcllse [16], he 

suggested modelling the laser amplifier or oscillator with a time and space traveling wave 

equation which used the time dependent rate equation at a panicular point in the laser cavity, 

and then applying a traveling wave equation to sum up the effects of all points. Also, Marcuse 

considers a mllitimode laser instead of a single mode laser. This is a very complete model 

since it takes into account almost everything besides gain saturation which can be incorporated 

into the modelling process without much difficulty [191. The incorporation of the mlltlimode 

effect is an important point because it has been demonstrated that the mirror reflectivity affects 

the width of the line-shape function [20] and it was reponed that if the facet reflectivity of a 

laser diode was substantially reduced, then the laser exhibited multimode operation [21]. 

However, the formulation of Marcuse's model leads to a set of non-linear coupled equations, 
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which cannot be solved casily cvcn with numcrical methods. Therefore, it is very hard to 

obtain the physics from Marcusc's fonnulation to explain somc of the observed phenomenon. 

Cassidy has suggested the application of Fabry-Perot approaches to modelin'g a diode 

laser rather than the rate equation approach [5]. He has shown that the time dependent rate 

equation ignores the effect of ASE. Also, Cassidy [1'/] has devcloped an analytical solution 

to the modeling of the laser diode which avoids the non-linear coupled equations and 

numerical convergence problem in Marcuse's model. He suggested the main perturbation in a 

laser diode with mirror reflectivity changes, was the effective spontaneous emission, which is 

the spontaneous emission power coupled to one of the guided modes of the cavity. He 

explained that as the reflectivity was increased, the threshold for lasing was decreased and 

maintaining the same pumping level produced higher inverted population. As the population 

at the upper level increases, the chance for spol1laneolls emission increases. With higher 

spontaneous emission power, the effective spontaneous power received by each guided mode 

increases. Therefore, the laser will tend to ntn multimodc [7.2]. This probably explains the 

reason for not observing the out-of-phase condition in the evaluation of the laser diode with 

external cavity (about 50 micrometer long) since the power contributed from the side modes 

increases but the out-of-phase condition only affects a single frequency (i.e., the fundamental 

mode). 

The actual implementation and the result of the modeling are not discussed here. It 

should be noted thar to model the laser diode means studying the output spectrum, the light 

output power and the spatial distribution of the photon density and electron density in the 

longitudinal direction. The studying of the beam SpOl size. near-field pattern and far-field 

pattern requires the knowledge of the waveguiding mechanism and the injected current 

diffusion in the transverse and lateral directions. 
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7. FUTURE 'VORK 

This prototype has demoilstrated the feasibility of applying Terfenol-D and a low-cost 

laser diode in fabricating a magnetometer. However, this is not the ultimate goal of this 

project. Future work includes the fabrication of a three dimensional portable magnetometer 

based on the technology described here. Also, the physics of the magnetometer should be 

explored further. In addition, means for improving magnetometer sensitivity or a second 

generation prototype should be explored. Moreover, calibration equipment should be 

developed for calibrating the magnetometer. MoclcIIing of both the magnetostrictive response 

of the Terfenol-D sensor and of the laser cavity are desirable. 
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8. CONCLUSIONS 

In this research work, the feasibility of a miniature optical magnetostrictive 

magnetometer, using Terfenol-D as the magnetostrictive element and a diode laser as a sensor, 

was explored. A magnetometer prototype utilizing the above elements was fabricated and 

evaluated. The prototype has demonstrated the feasibility of detecting magnetic field intensity 

in ten milli-Oersted range, which corresponds to a transducer movement of approximately 0.1 

Angstrom. These figures are deduced from the evaluation result of the Terfenol-D rod under 1 

Oe magnetic field intensity using a heterodyne interferometer. 

In addition, an experimental study on the perfom1ance of the diode laser sensor was 

carried out and a non-linear output of the sensor was observed. These experimental results are 

reported for the first time. The experimental result obtained from the evaluation process

indicated that a precise model of the external cavity laser diode sensors is needed. 
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11. APPENDIX 

TECHNICAL SPECIFICATION OF LASER DIODE ML-4402 FROM 

MITSUBISHI 
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