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ABSTRACT

An expert system has been developed at lowa State University to diagnose com-
mon problems and prescribe maintenance planning procedures for motor-operated
valves at the Duane Arnold Energy Center in Palo, lowa. The system is capable
of two methods of diagnosis. The first uses the confidence factors inherent in the
system used to develop the program (known as Level5). Level5 has a one to one
correspondence between a symptom and its diagnosis. The second method uses con-
fidence factors similar to those used in the Mycin medical diagnosis expert system
to determine the relative likelihood of several different possible valve problems based
on a combination of symptoms. This allows the user to choose which diagnosis is the

most likely.
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1. INTRODUCTION

1.1 Problem Statement

Maintenance at a nuclear power plant is a time-consuming and expensive task.
It has been estimated that over $100,000,000 is lost each year merely in plant down
time due to maintenance [1]. One area of maintenance that consumes over 30%
of the industries’ annual maintenance budget is valve maintenance. Clearly, any
measures that can be taken to reduce the cost of this endeavor and increase public
safety by improving the quality and thoroughness of maintenance procedures would
be beneficial. For this reason, a valve diagnostic and maintenance planning program
was developed at lowa State University for implementation at the Duane Arnold
Energy Center in Palo, lowa. This program is capable of diagnosing many problems
common to motor-operated valves (MOVs) at the plant.

In the original expert system, each valve symptom has a corresponding diagnosis.
This is a useful feature, but in the real world there is usually not a 100% correspon-
dence between a symptom and a diagnosis. Often there is more than one symptom
present, and this combination of symptoms can indicate a different problem than any
one of the component symptoms alone would. That is why it would be useful to have
an expert system capable of taking multiple symptoms into account. The goal of

this research was to implement an expert system capable of doing this via the use of



confidence factors. Confidence factors will be explained fully in later chapters, but
basically they are numbers reflecting an expert’s degree of confidence in a conclusion.
By suitably combining the confidence factors for each individual symptom, a ranking

of possible causes for valve problems from most likely to least likely can be obtained.

1.2 Scope of Thesis

Chapter 1 provides aﬁ explanation of the field of artificial intelligence and de-
scribes how expert systems fit into this field. Tt begins by explaining the goal of
artificial intelligence in general, then moves on to expert systems in particular in
Section 1.4. Some concepts common to most expert systems are discussed here.

Chapter 2 reviews some famous successful expert systems. [t also covers the
status of expert systems in the nuclear industry to date, and introduces some specific
applications of expert systems in the field.

Chapter 3 introduces the idea of the confidence factor or CF as a method of
ranking diagnoses. The Mycin confidence factor system is discussed in Chapter 3.
This was the first successful diagnostic program as well as the first to use the confi-
dence factor system. The various constraints that govern ('Fs are described here, as
well as methods for combining the confidence factors, since most expert systems that
incorporate confidence factors use a modified form of the Mycin confidence factors.

Chapter 4 describes the expert system development tool (Level5) that was used
to implement the valve problem diagnosis and maintenance planning program that
is being developed in the nuclear engineering department at lowa State University.
The structure of its rules is discussed as well as the method of determining confidence

factors used by Level5.



Chapter 5 introduces some alternatives to confidence factors that may be suitable
for future development. Section 5.1 covers the topic of fuzzy logic pioneered by L.
Zadeh in the early 1970s. Fuzzy logic methods may be an alternative to confidence
factors in that users could indicate their confidence in a conclusion through linguistic
statements rather than numbers. The conventions and mathematical notation used
by the fuzzy logic system are covered in Section 5.1.1. Section 5.1.2 describes some
successful system controllers that use fuzzy logic. Section 5.2 describes an alternate
method of ranking possibilities called Dempster-Shafer calculus that is different from
the confidence factor concept and may be suitable for development in a future expert
system.

Chapter 6 describes the valve maintenance and diagnostics program developed
using Level5 and goes through an example session with the expert system in order
to illustrate some of its capabilities. This chapter includes an illustration of how

confidence factors can be used to help improve the diagnosis of valve problems.

1.3 Introduction to Artificial Intelligence
Artificial intelligence ( AI) has been defined as:

“The study of mental facilities through the use of computational models”

20
Al includes the following general areas:
1. Robotics- This area is primarily concerned with developing visual and tactile

processing programs that will allow robots to observe and interpret their envi-
ronments.



2. Natural language processing- Concerned with developing programs that can
read, speak, and understand language as people use it in everyday conversation.

3. Expert systems- Cloncerned with developing programs that use symbolic knowl-
edge to simulate the behavior of a human expert, i.e., to “reason” like a human
being.

More simply put, the ultimate goal of Al as stated in [2] is to “build a person”
or at least something that acts as efficiently and intelligently as a person. At present,
researchers are far from achieving this goal.

In order to create a machine capable of duplicating human reasoning processes,
it is necessary to have some understanding of just how people do reason. Previous
tests of intelligence have -concentrated on how well people think when compared to
one another, rather than how people think in a qualitative sense which is what Al
researchers need to establish.

The basic steps of human thinking are divided much the same way that computer
“reasoning” is thought of by computer scientists. The steps involved are encoding,
storing, and recalling information [3|. Although the steps are the same, the processes
utilized by computers versus humans could be (and almost certainly are) very differ-
ent. Human problem solving is the model for most expert systems, since even though
this may not be the most reasonable way of doing things, at least Al researchers

know that it is possible to reason in this way.



1.4 Introduction to Expert Systems

Expert systems can be broadly defined as:

“computerized processes or programs that attempt to emulate human
thought processes associated with the application of expertise to problem-
solving” 4.

Research in the area of expert systems includes investigation into the meth-
ods and techniques for constructing man-machine systems with specialized problem-
solving expertise. Expert systems are often developed with the aid of a tool or shell
which is an interface between the user and the computer language used to implement
the system. The system in use to develop the system discussed in this thesis is known
as Level5 (formerly Insight2+)1. [ts shell language is known as PRL (for Production
Rule Language). Level5 uses Pascal as its primary processing language, although
the user does not need to know Pascal to use Level5.

Knowledge in any field is of two sorts: public and private. The public facts
can usually be found in textbooks and other references, but expertise generally also
involves a good amount of private knowledge. This private knowledge is usually in
the form of “rules of thumb,” or heuristics. Heuristics enable a human expert to make
educated guesses, recognize promising approaches to problems, and deal effectively
with erroneous or incomplete data. It is in the area of private knowledge that expert
systems can play an important role.

In the past, knowledge in one of the more heuristic areas could only be gotten

by hiring an expert (at often considerable expense), who had learned the rules of

1Level5 is published by Information Builders, Inc. 1250 Broadway, New York,
N.Y. 10001. (212) 736- 4433.



thumb through years of experience. Expert systems have the potential to change
this to a large extent by capturing the knowledge of the expert in a computer pro-
gram. The knowledge in an expert system is confined to a narrow area of expertise,
mainly because of the sheer magnitude of trying to cover a very broad area of knowl-
edge. Expert systems are most effective in situations where human expertise is in
great demand and short supply. In these cases, expert systems offer the following

advantages:

Greater reliability and consistency.

e (Greater speed.

Increased accessibility.

Reproducibility of results.

The knowledge in them remains after the expert leaves.

The nuclear industry, because of the complexity of much of its technology and
because of its high requirements for safety, has need of experts in many fields. These
experts must be highly trained and they do not “grow on trees” so the criteria
for effective expert systems is met. Expert systems can play an important role in
diagnostics, operator training, safety analysis, and other areas (see Chapter 2).

Expert systems generally use a limited English vocabulary of the form IF (con-
dition A) AND (condition B) THEN (conclusion) to express relationships among
objects. Statements of this kind are referred to as production rules. Because of
the rule-like nature of these statements, expert systems are sometimes referred to as

rule-based systems.



Two different methods of reasoning are generally associated with these basic
rules, namely backward and forward chaining. In a forward chaining (or data driven)
system, an initial set of facts is used to infer new facts by executing the appropriate
rules. This technique is useful when there are many possible solutions to a problem,
because many different possibilities can be pursued at once. Backward chaining (or
goal driven) systems begin by assuming a final or root goal and then attempting to
satisfy this goal by determining the truth or falsity of the rules and facts that conclude
the desired goal. This technique works well on systems that have a relatively small
number of known, well-defined solutions. Level5 is a primarily backward chaining
tool although it is capable of forward chaining.

One of the most useful features of expert systems is their ability to come to con-
clusions in the face of incomplete or even erroneous data. Expert systems accomplish
this either through the use of baysian statistics (covered in Chapter 3) or through
the use of confidence factors or C'Fs, which reflect the experts confidence that a given
fact or condition is true. This feature will be covered extensively in the following
chapters.

An expert system typically consists of two main components: the knowledge base
and the inference engine. The knowledge base and working memory constitute one
part of the system, and the inference engine and all the subsystems and interfaces

constitute the second part. Figure 1.1 shows a block diagram of a generic expert

system.
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1.4.1 The Knowledge Base

The knowledge base contains the facts and rules that embody the expert’s knowl-
edge. On the surface, much knowledge looks like it consists of deep or complex ideas,
but it is often found that this is not the case; knowledge can often be broken down
into simple relationships between objects [5].

There are five different methods which expert systems use to encode the facts and
relationships that represent knowledge. A brief description of each type is pr‘esented

below. The interested reader is referred to 5| for more details.

1. Semantic networks- The semantic network or semantic net is one of the oldest
representational schemes in Al. A semantic net consists of a series of nodes
connected together by lLinks. The nodes usually represent objects or attributes
of objects. The links connecting them represent the relationships between the
nodes. Two common links are the “has-a” link and the “is-a” link. The first
simply refers a to characteristic of the object such as “the valve has-a leak.”
The second refers to a general class the object belongs to such as “the valve
ts-a motor-operated valve.”

2. Object-attribute-value triplets (OAVs)- Objects can be physical objects such as
door or window, or they can be conceptual ideas. Attributes are characteristics
associated with objects such as color, size or shape. Values are the value of
the attribute. This scheme is just a specialized case of a semantic net with the
object-attribute link being a has-a link and the attribute-value link being an
is-a link. The OAV triplets can be modified by certainty or confidence factors
which represent the user’s confidence that a value for an attribute exists. This
is the scheme used in the development of Mycin, which is covered in Chapter 3.

3. Rules- Rules can be used with OAV representations. They consist of a premise
(also called an antecedent) which can be composed of several expressions or
if-clauses. This is followed by a single conclusion or then-clause. Examples of
Level5 rules are covered in C'hapter 4.

4. Frames- A frame is a description of an object that contains slots for all the
information associated with the object. Slots are like attributes in that they
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may store values. They may also contain default values, pointers to other
frames, sets of rules, or procedures by which values may be obtained. Frames
are more difficult to develop than OAV triplets but they allow for a richer
storage of knowledge.

5. Logical expressions- Logical expressions can also be used to represent knowl-
edge. The two most popular methods of representing logical relationships are
prepositional logic and predicate calculus. Prepositions are statements that are
either true or false. They are linked together by connectives such as AND, OR,
NOT, etc. Prepositional logic is concerned with the truthfulness of statements.
Predicate calculus is an extension of prepositional logic. The basic units of
predicate calculus are called objects. Statements about objects are called pred-
icates. For example “is-red(ball)” is an assertion that the ball is red. Some
AT computer languages, notably Prolog, use this type of representation in their
rules.

1.4.2 The Inference Engine

The inference engine contains the inference strategies and controls that an expert
system uses when manipulating facts and rules. It examines existing facts and rules,
and adds new facts when possible. The inference engine also decides in which order

the inferences are made.

1.4.2.1 Inference The most common reasoning strategy that inference en-
gines employ is known as modus ponens. This strategy simply states that if it is given
that an antecedent leads to a conclusion, and it is known that the antecedent is true,
then the conclusion is true. As an example of this, consider the following example

where you have cancer is the antecedent and you are sick is the conclusion:



11

IF you have cancer THEN you are sick

you have cancer (1.1)

you are sick

If it is known that you have cancer then it can be concluded that you are sick.
Note that this is different from reasoning by abduction which will be covered in
Section 3.2.

A feature that is unique to the reasoning strategy of expert systems, which
conventional languages lack, is the ability to reason with uncertain information. One
method of handling uncertainty deals with handling unknown information. In this
case the rules are allowed to fail if their antecedents can not be evaluated. If the rules’
antecedents are connected by AND statements then the failure of one condition leads
to the failure of the entire rule. If, on the other hand, the antecedents are connected
by OR statements, the failure of one antecedent does not necessarily mean that the

entire rule must fail.

1.4.2.2 Control There are two problems that the control portion of the in-

ference engine must address:

e [t must have a way to decide where to start.
e [t must have a way to resolve conflicts that emerge due to alternative lines of
reasoning.
Because Level5 is a backward chaining system, the first problem is solved by the
fact that it starts with the goal statement and looks for rules that conclude the goal.

If there is more than one rule that concludes the goal, then Level5 looks for the rule
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with the highest confidence value. In the case where the confidence values are the
same, the first rule encountered gets fired first. To address the second problem, an
identical system is employed in the case of rules with the same conclusion if they

have the same confidence factors.
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2. LITERATURE REVIEW

2.1 Introduction

Expert systems had their practical debut with a program called Heuristic Den-
dral in 1965 [2/,5]. In that year Joshua Lederberg, who was a Nobel Prize-winning
chemist, developed the basic algorithm for a system designed to establish the chemi-
cal structure of unknown molecules. Edward Feigenbaum of Stanford University and
Bruce Buchanan set out to try to incorporate Lederberg’s rules into an heuristic ex-
pert system. Given a molecule’s atomic formula and its mass spectrograph, Dendral
was able to determine the structure of unknown compounds. Obtaining the heuristic
rules needed to implement Dendral took over fifteen man-years, but the knowledge
gained from it helped tremendously to establish the field of knowledge engineering.
The Stanford group used its knowledge to go on to develop other expert systems,
probably the most famous of which is the Mycin system which will be covered in
Chapter 3.

Following the success of Mycin, companies began to take note of expert systems

technology. Some of the more successful are presented below.

e Macsyma- Developed at MIT to assist in solving complex mathematical prob-
lems [5. This system is still under continual improvement and is used by
hundreds of researchers daily. It is the most powerful program yet developed
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to solve algebraic equations using a computer. It played a major role in con-
vincing the artificial intelligence community that expert systems are capable of
high levels of performance.

Hearsay I and II- Developed at C'arnegie-Mellon University from the late 1960s
to mid 1970s [5]. This system was designed to understand spoken human speech
patterns. At the close of the project, the program was able to understand over
1,000 words and respond in about the same time that a human would. Hearsay
clearly demonstrated the superiority of heuristic methods over statistical meth-
ods when dealing with problems involving the meanings of words in context.

Prospector- Developed in the early 1970s at Stanford Research Institute, Inter-
national (SRI) for the U.S. Geological Survey |5]. Prospector was designed to
provide consultations to geologists in the early stages of searching for ore-grade
mineral deposits. It allows users to stop it at any stage in the consultation pro-
cess and actually volunteer information. It then adjusts its inferencing strategy
according to the information provided. In 1980, Prospector became the first
expert system to achieve major commercial success when it discovered a large
molybdenum deposit.

Xcon- Developed by Digital Equipment Corporation to configure their Vax
computers 2. This forward chaining expert system has all but replaced people
in its area of expertise. The Xcon program now configures all orders for Vax
computers.

2.2 Expert Systems Uses in the Nuclear Industry

An expert system can be a vigilant assistant to plant operators as well as an aid

in plant management and maintenance in nuclear power plants, where safety is of

great concern. Because of demands for greater safety margins, lower environmental

impacts, increased performance, etc., automation of most functions in nuclear power

plants is inevitable [6]. Because of the complexity of these power plants, the use of

expert systems in such areas as operator training, diagnostics, and safety analysis

will be invaluable.



Because of their importance to cost and safety in the nuclear industry many
different organizations including nuclear equipment vendors, engineering firms, na-

tional laboratories, the utility industry, universities, and others have shown interest
in developing expert systems technology. The main areas of emphasis in the industry

have been [4]:

1. Fault recognition.
2. Diagnosis and recovery.

3. Task planning.

N

. Intelligent operator interfaces.

o

. Intelligent systems control.

The system described in this thesis falls into the second and third areas. There
are many ;}'Stenls being developed in each area. It is the purpose of this section to
give the reader an idea of some of the systems that have been implemented.

The most coherent efforts have been undertaken by EPRI (the Electric Power
Research Institute), which is funded by a consortium of utility companies from
around the world. One of the first EPRI-sponsored projects was Realm (the Reactor
Emergency-Alarm-Level Monitor), developed by Technology Applications, Inc. for
Indian Point Unit 2 in cooperation with Consolidated Edison of New York. Realm
was designed to identify emergency situations at a nuclear power plant by comparing
symptoms it observes with the list of events stored in its database. This is important
because the NRC (Nuclear Regulatory Commission) has issued specific guidelines

on how to classify a particular emergency situation, with each situation requiring a
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specific set of responses. [t reportedly performed well in a recent drill when operated
in parallel with the plant’s normal emergency operating procedures [4].

An expert system called PIPES is a pc-based software system developed by
Combustion Engineering which automates the lengthy process by which steam gen-
erator tubes are to be eddy current tested for structural flaws. PIPES also assists in
implementing the inspection test pattern necessary to verify repairs [7].

Westinghouse offers a complete motor-operated valve maintenance program called
VITALS (Valve Intelligent Test and AnaLysis System) and an on-line Valve Moni-
toring System (VMS). They have developed the system in response to tougher guide-
lines on motor-operated valves (MOVs) mandated by the NRC in June, 1989. The
data collected by VMS and VITALS is sent to an expert system developed by West-
inghouse for analysis, or printed out for human inspection. Typical time for set-up
a.nd. testing of valves is less than two hours as opposed to the up to twenty hours
normally required [8].

Ohio State University is developing an Operator Advisor System (OAS) to aid
nuclear plant operators in identifying abnormal operating conditions [9]. The sys-
tem is being developed for the Perry BWR (Boiling Water Reactor) power plant.
[t has three components: monitoring, procedure management, and diagnosis. The
monitoring portion is designed to detect known malfunction states and threats to
plant safety. The procedure management component is designed to control plant
malfunction states and initiate safety maintenance procedures when it anticipates
threats to safety. The diagnostic portion is designed to diagnose both known and
unknown malfunction states before the traditional plant alarms are triggered. This

system uses the “symptom-oriented” approach towards safety that has been in favor
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since the Three Mile Island accident rather than the “event-oriented” approach. The
event-oriented approach has been abandoned because too much emphasis was placed
on the operator’s ability to identify the exact problem quickly even in the case of
multiple events occurring simultaneously, and because it is not possible to define all
possible events and situations beforehand.

At Towa State, a system known as ESAS (Expert System for Analyzing Systems)
has been developed [10]. ESAS finds cut-sets for a PRA (Probabilistic Risk As-
sessment) without having to first generate fault-trees. A cut-set is a set of com-
ponents whose failure causes the failure of the system. Constructing fault-trees is
time-consuming and requires some guesswork. Also, most computer codes for find-
ing fault-trees require a mainframe to execute. Therefore, by eliminating fault-trees,
much time and effort can be saved.

As mentioned in Section 1.1, a valve problem diagnosis and maintenance planning
expert system has been developed by Michael J. Winter and Dr. Richard Danofsky
at Jowa State University [1|. The system is capable of diagnosing many problems
commonly found in MOVs, and specifying the post-maintenance tests that need to
be performed on these valves once maintenance has been performed. This system

will be covered in more detail in Chapter 6.
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3. MYCIN

3.1 Background of Mycin

One of the first expert systems ever created is known as Mycin [5]. Mycin was
developed in the middle seventies at Stanford University, with the goal of assisting
physicians in the diagnosis and treatment of meningitis (inflammation of the mem-
branes around the brain and spinal cord) and bacteremia infections (infections caused
by bacteria in the blood). Prior to the development of Mycin, Al had been criticized
for solving only “toy” problems with little or no practical significance. The Stanford
researchers set out to implement an expert system that had practical value.

The problem domain of meningitis was chosen because this disease requires quick
treatment. However, because laboratory results may take twenty-four to forty-eight
hours to complete, the attending physician was often forced to call in expert help to
aid in his diagnosis. This often took precious time: time that quite often neither the
patient nor the doctor could afford to waste. Because of the advantages of expert
systems (see Section 1.4) this area seemed to be one that could greatly benefit from
expert systems technology.

To make a diagnosis, Mycin asks the user various questions about the patient,
such as his or her disease history and whether certain bacteria are present in the

patient’s body. Based on this information Mycin draws conclusions about which
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diseases may be present and ranks them according to their likelihood.

The results of the first trials were very encouraging. Mycin gave correct diagnoses
in 65% of the tested cases, while the human physicians scored 63% on the average
‘5. This was somewhat surprising both because the expert system did better than
expected and because the experts did worse,

Because of the early success of Mycin, many expert systems software developers
looked at Mycin’s reasoning strategy when designing their systems. Because of this
most expert systems, including Level3, use a modified form of Mycin's confidence
factor system. Mycin's developers have developed a tool known as Emycin which
employs Mycin’s inferencing strategy, leaving it to the individual developers to input
their own rules. Because so many expert systems developers have used a modified

form of Mycin confidence factors, they will be covered in detail in this chapter.

3.2 Baysian Statistics

Mycin uses a form of reasoning known as abduction. Reasoning by abduction
has the following format; if it is known that A follows from B, and also that B exists
or is true, it can inferred that A exists or is true. Written in predicate calculus format

this is:

(IF A B)
B (3.1)
A
This form of inference is not legal inference as deduction is, because it can lead

to incorrect conclusions. For example, a use of abduction that would lead to an



incorrect conclusion might be:

IF you have cancer THEN you are sick

vou are sick (3.2)

you have cancer

The patient may indeed have cancer but this is hardly certain on the basis of just
one symptom. However, since this is the type of reasoning that physicians actually use
in making diagnoses (although usually with more than one piece of evidence), it is still
a valuable reasoning tool in areas that involve the diagnosis of a problem or disease
from its “symptoms”. Such areas include medical diagnosis, mineral exploration and
equipment maintenance.

Another potential disadvantage of the abduction method is that it is possible
to get more than one correct answer to a question. For example, if your dog comes
into the house all wet you might decide that it was caught in a rain shower, but it is
also possible that the dog walked by a lawn sprinkler. It is not known which of these
possibilities is true with absolute certainty. The best one can do is try to determine
which of several possibilities is the most probable.

In order to weigh the facts for or against each conclusion the expert system
developer must somehow make two decisions. The first is to decide how strongly a
fact weighs for or against a conclusion, and the second is to determine how to combine
the various pieces of evidence into a final conclusion [2]. This is accomplished in
many expert systems via the implementation of confidence factors or C'Fs which will
be covered in detail in Section 3.3. Confidence factors are geﬂerally numbers between

zero and one which reflect the expert system user’s level of belief or dishelief in a fact



or conclusion.

The Mycin program uses a modified form of Baysian statistics, which are based
on conditional probabilities. In the case of the Mycin program this is the probability
that a patient has a disease D) in light of some evidence £ or P(D | E). Each E
term consists of one or more 5';\33 which correspond to the symptoms of the problem.
This is in contrast to the more familiar unconditional probability P(D) which is
the probability that a certain disease is present before any evidence is gathered.
Unconditional probabilities are sometimes called prior probabilities and conditional
probabilities are called posterior probabilities.

Prior probabilities are defined mathematically by the expression:

D

(3.3)
-where Pop is the total population and D is the number of people in the popula-
tion with condition D. The posterior or conditional probability is defined as:

DNE
D|E)=—7—
P(D | E) P

(3.4)

Where P(D | E') means the probability of D given the evidence E. It is equal to
the intersection of sets D and E divided by the set of individuals exhibiting E. An
expression like P(D | E) often cannot be evaluated directly because it is never known
for certain how many people with a group of symptoms E actually have disease D in
a given population. One thing that can be much more easily determined however is
the probability that a patient will exhibit a set of symptoms given that the disease

is present, or P(E | D). Physicians can also determine the probability of the disease

occurring in the population P(D) and the instances of a certain symptom occurring
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in the population P(£). From these factors, P(D | F) can be determined using

Bayes’s theorem which states:

P(D) x P(E | D)
P(E)

P(D | E)= (3.5)

Since the numbers on the right side of the equation are easier to obtain than the
ones on the left, Bayes’s theorem simplifies the task of calculating the probabilities
involved. |

But there is an even greater problem involved with calculating conditional prob-
abilities that has not been addressed. For m diseases and n symptoms, there are
approximately m x n numbers to calculate (actually m x n conditional probabilities
4 m disease probabilities + n symptom probabilities). This is not too formidable a
task, especially if it is recognized that some symptoms and diseases can be ruled out
as being unrelated to one another. A difficulty occurs when one must consider the
possibility of multiple symptoms in a disease, however.

For example, suppose P(D | S1&S52) needs to be calculated, where S1&52
stands for the presence of two symptoms simultaneously. Then for each pair of
symptoms ¢ and j P(S1&S2 | D) and P(S1&52) need to be determined. The
number of these pairsis n*(n —1) =~ n? so now approximately m = n? combinations
must be considered. This is a great increase over the number of possibilities that had
to be considered previously, and if three symptoms must be considered the problem
becomes even worse. As an example, if there are 500 diseases with 3,000 symptoms
(m = 500,n = 3,000) the number of single symptom cases that must be considered

is approximately 1,500,000, which is a large but manageable number for today’s

computers. If, on the other hand, we consider the two symptom case the number
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of values rises to 500 = 30002 = 4,500, 000,000, and adding more interdependent
symptoms makes the situation even worse [2|. In addition to this, in the real world
the conditional probabilities of multiple symptom diseases or problems will probably
not be known.

It is therefore necessary to implement a system where single symptom conditional
probabilities can be combined with other single symptom probabilities to give a good
approximation to the multiple symptom case without having to calculate so many
values. Mycin solved this problem via the implementation of the so-called confidence

factor, or C'F.

3.3 Mycin Confidence Factors and Measures of Belief and Disbelief

In the Mycin system the concept of confirmation is used rather than that of strict
probability. Confirmation does not indicate that a hypothesis is proven, but rather
that an observation lends credence to it [11]. This level of support in an observation
is denoted as Clh.e|, or the degree of confirmation in h based on the observation
e. Confirmations cannot be manipulated as though they were probabilities, as this
leads to inconsistencies or paradoxes. An example of this is the famous Paradox of
the Ravens [11]. Suppose hl is the statement “All ravens are black™ and A2 is the
statement “All non-black things are non-ravens.” Even though these two statements
are logically equivalent, it is not valid to assert that C'[hl,e] = ('[h2, ¢ for all e,
as would be the case in probability theory. For example if ¢ is the evidence that a
vase is greemn, i1t seems silly to suggest that the green vase supports the fact that all
ravens are black even though it does support the fact that all non-black things are

non-ravens.
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Another important point to consider is that C'[h, ¢ does not equal 1 — C'[h, €] L,
A disconfirmation function of some sort is then needed because a supposition and its
inverse are not related as they are in conventional probability theory. Another way
of saying this is that the CFs are not symmetrical [12].

For example, suppose there are two rules with associated CFs (assume they are

Myecin rules even though they are presented in a format similar to Level3):

RULE A
IF stalled motor
THEN valve stem binding CF 0.7

RULE B
IF excessive handwheel effort
THEN valve stem binding CF 0.6

Mycin rules use a technique known as uncertainty addition to combine CFs.

Using Equation 3.29 (to be shown later) the combined CF of packing too tight is:

X+Y(1-X)=0.7+0.6(1—-0.7) =0.88 (3.6)

In other words, it is 88 percent certain that the valve stem is binding if both
symptoms are present. If, as in conventional probability, we assumed that P(A) =

1 — P(A) then the following rules would result:

RULE A
IF NOT stalled motor
THEN NOT valve stem is binding CF 0.3

LA bar over a variable means its negation or opposite.
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RULE B
IF NOT excessive handwheel effort
THEN NOT valve stem is binding CF 0.4

This would give the chance of valve stem is not binding given the two symptoms

as:

0.3+ 0.4(1 - 0.3) = 0.58 (3.7)

in which case valve stem binding would be 1 —0.58 = 0.42. This is quite different from
the previous answer, so obviously conventional probability theory is not relevant.

In order to determine some way to combine these confidence measures some new
terms need to be introduced. These terms are called measures of belief (M B) and

measures of disbelief (M D) and are defined as follows:

MBlh,e] = X :The measure of increased belief in h based on e is X. (3.8)

MDlh,e] = X : The measure of increased disbelief in h based on e is X.(3.9)

The evidence ¢ may not be an event but could be another hypothesis that is
itself subject to confirmation.
Under Mycin's system if a rule increases belief in a hypothesis, it also propor-

tionately decreases the disbelief in the hypothesis according to the formula:

P(h |e)— P(h)
1— P(h)

‘i Pk | B) > P(h). (3.10)

This is called the measure of increased belief in h resulting from e. This is

equivalent to M Blh,e| discussed above and, as noted, occurs when the conditional
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probability is greater than the prior probability. C'onversely. if the conditional prob-
ability is less than the prior probability, the systems disbelief would increase while

its belief would decrease. This proportionate decrease in belief is given by:

P(h) — P(h | €)
P(h)

if P(h|e)< P(h) (3.11)

This is the measure of increased disbelief in h resulting from ¢ and is denoted
by MD/h,e|.

In short, the measure of increased belief is proportionate to the decrease in
disbelief. and the measure in increased disbelief is proportionate to the decrease in
belief. Belief is estimated by P(h) at any given time and disbelief is estimated by
1 — P(h). Some important points to note here are that a single piece of evidence e
cannot both favor and disfavor a hypothesis, so when M Blh,e| > 0, M Dh.el = 0.
Similarly, when M DJh,e] -~ 0, M Blh,e] = 0. This leads to the somewhat more

formal definitions of MB and MD given below:

] 1 if P{h)=1
_‘ h — r ! :
IBlh, €| nm.r.P(h_e),P(h)J—P(h) otherwise (3.12)
max|1,0/—P(h)
. 1 if P(h) =10
.1ID7 I,ej = ”Ii”\lp(h E).P(h)]—P{h) Other“'rise (3-13)
min[l,Oj—P(h) '

Finally, we define a certainty factor (CF) as the difference between the mea-
sures of belief and disbelief divided by a weighting factor which will be explained in

Section 3.4:
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MB[h,e] — MD[h,e]

CF = e ——
1 — min(MB h,e|, MDh,e|)

(3.14)

This certainty factor is necessary when two competing hypothesis must be com-
pared. The certainty factor can range in value from —1 to | as opposed to MB and
MD which both have values between 0 and 1. If a piece of evidence ¢ neither confirms

nor disconfirms a hypothesis it is assigned a C'F of zero.

3.4 Combining Measures of Belief and Disbelief

The certainty factor was originally defined as simply the difference between the
MB and MD factors but this was changed to the form noted in Equation 3.14 in
more recent versions of Mycin for two reasons. First, under the old rules there was
a tendency for a piece of evidence with a large MD to overwhelm several pieces of
positive evidence, or vice versa. The second deals with the commutivity of the C'Fs
and will be explained below.

The tendency of one large piece of negative (positive) evidence to overwhelm
several positive (negative) pieces was taken into account by a term in the denominator
which acts as a weighting factor to decrease the effects of either a MB much larger
than its corresponding MD or vice versa [13]. For example, under the original system
if there was a large body of evidence which supported a conclusion with an MB of

0.99 and a single piece of evidence with a MD of 0.8 the CF would be:

CF=MB-MD=20.99-08=0.19 (3.15)

This gives a disproportionate weight to the single piece of negative evidence.

Under the new system however, the CF is:
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MB - MD 0.99 —10.8 ~0.19

CF = - _,
1 —min(MB,MD) 1 — min(0.99,0.8) 0.20

~ 0.95 (3.16)

which is a more realistic result.

The following characteristics of MB and MD should also be noted:

MBlh,e, = 0ifeand h are independent or if e disconfirms h.  (3.17)

MD|h,e, = 0ifeand h are independent or if e confirms h. (3.18)

One of the paradoxes encountered by the developers of Mycin was the fact that
although an expert may agree with a hypothesis to a degree X, he does not necessarily
agree with the hypothesis negation with a degree | — X. In terms of the previously

defined notation this is represented as:

CFlh,e] + CFlh,e] #1 (3.19)

Using the rules developed so far, it can be shown that in fact the sum of these
terms does not equal one, but zero, which agrees more closely with what one would
expect on an intuitive level because it implies that if a piece of evidence supports a
hypothesis it disfavors the negation of the hypothesis equally. This is true because
MBlh.e| = MD'h.e| and, recalling the mathematical definitions of the measures of

helief and disbelief:

o _ P(h | e)— P(h h) —
CFlhe] + CFlh,e] = 2 lj)P('h)( L g £ 1) 5{‘:) 1 (3.20)
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[t is important that the developer of an expert system using certainty factors
either weights the rules so that the sum of the mutually exclusive hypothesis does
not exceed one, or otherwise normalizes them in some way.

It was mentioned earlier that some sort of approximation technique is needed in
order to handle the case of multiple symptoms for a certain hypothesis. Remember
that while it is possible to evaluate these using Bayves's theorem, large amounts of
data storage are required. The confidence factor alleviates this problem because,
since the confidence factors do not represent probability per se, approxinlati‘ons can
be made using them that would not be otherwise valid.

There are several defining criteria that should be met by the confidence factors
involving two or more symptoms if they are to be logically consistent and make sense

intuitively. These criteria are broken down into four categories and presented below.

3.5 Defining Criteria of Mycin Confidence Factors

1. Limits - M B|h, E] increases towards 1 as confirming evidence is found. Simi-
larly, M D h, E] increases towards 1 as disconfirming evidence is found. In both
cases, they reach 1 only if a piece of evidence either confirms or disconfirms the
hypothesis completely. The combined evidence CF, C'Flh, E. &E_|, should
fall somewhere between the C'F with the disconfirming evidence and the CF
with the confirming evidence. In other words, C'F'h,E_| <« CFlh,EL&E_| <
C'Flh,E.], where E_ stands for confirming evidence and E_ stands for dis-
confirming evidence.

(V]

Absolute confirmation/disconfirmation - If M Blh,E, | = 1 then MD/h, E_| =
0 and C'F[h, E] = 1. Similarly, if the MD term equals 1, then MB = 0 and
the ('"F = —1. Tt is also impossible for the MB and MD in a given rule to both
equal 1.

3. Commutivity - The order that the evidence is discovered does not affect the
final confidence factor.
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MBIh, S1&S52] = MBIh, §2&S1] (3.21)
MD[h,S1&52] = MDIh,52&S1] (3.22)
C'Flh,S1&S2] = CF[h,S52&S1] (3.23)

4. Missing information - If the truth or falsity of a symptom in a hypothesis
cannot be determined, then the various factors are determined by disregarding
that symptoms’ effect. If S2 is unknown:

MBh,S1&82] = MBIh.S1) (3.24)
MDh,S1&S82) = MDh, S (3.25)
C'Flh,S1&52] = CFlh,S1] (3.26)

These rules have a few important implications. Some of these are:

1. The MB of a hypothesis never decreases unless the associated MD goes to 1.

2]

The MD of a hypothesis never decreases unless the associated MB goes to 1.

3. A CF of zero indicates either that the disconfirming and confirming evidence
are equal, or that there is an absence of both confirming and disconfirming
evidence.

4. T E = FE_&FE_ then ('F|h, E| represents the C'F of a rule covering only those
cases wherein all the conditions of F, and E_ are satisfied. Since it is im-
practical to write such rules, especially where more than two symptoms are
involved, some method of combining the component symptoms from separate
rules is needed.

3.6  Combining Mycin Confidence Factors

[t was mentioned earlier that C'Fs cannot exceed 1 or go below —1. Because

of this requirement, the designers of Mycin have implemented several rules to make
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sure this does not occur. In addition, procedures dealing with disjunctions and
conjunctions of hypotheses have been developed to cover those cases where a body
of evidence could point to more than one hypothesis (logical AND), or where the
evidence does not clearly indicate which of two functions may be true (logical OR).

These combining functions are presented below.

1. Incrementally acquired evidence - This rule gives a method of modifying the
existing MB or MD as new evidence comes to light, keeping in mind that the
limits on the resulting C'F must lie between -1 and 1. Under the old Mycin
rules, the combining functions were defined as:

MBlh.S1&S2] = :
[0 if MD[h,S1&S2] =1
| MB[h,S1] + MB[h,S2)(1 — MB[h,S1]) otherwise

o]
o
e |
~—

MDh,S51&82] = (3.28)
0 if MBh,S1&52) =1
MDI[h,S1] + MD[h,S2](1 — MD[h,S1]) otherwise

These rules were revised somewhat because under this system it was necessary
to partition the evidence into positive and negative weights in order to preserve
commutivity of evidence when the MBs and MDs were combined into C'Fs later.
Under the new system Mycin simply stores the current C'F value and combines
it with new evidence as this becomes available. The new Mycin combining
functions are [13]:

[ X+Y(1-X) XY >0

, R X+Y v v

CFC’O;UBI_:\’E(‘\‘} ) = l L—man(|z|.y|) one of X,¥ >0
~CreomBINE(-X.-Y) XY <0

(3.29)

The results are different from the old system only in the case where the CFs to
be combined are of opposite sign.
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2. Conjunctions of hypothesis - The measure of belief (disbelief) in a conjunction

of hypothesis is only as good as the belief (disbelief) in the hypothesis believed
less (more) strongly.

M B[h1&h2, E]| = min(MBh1,E|, MB[h2,E)) (3.30)

MDh1&h2, E) = maz(MD[h1,E], MDIh2, E]) (3.31)

3. Disjunctions of hypothesis - The measure of belief (disbelief) in a disjunction
of a hypothesis is as good as the belief (disbelief) in the hypothesis believed
more (less) strongly.

M B[hl V h2, E] = maxz(M B|hl, E], M B[h2, E]) (3.32)

MDI[h1V k2, E] = min(MD[h1, E], MD(h2, E|) (3.33)

4. Strength of evidence - This rule applies to the case where it is not known for
certain whether S is true but a CF is known reflecting the degree of belief in
S. M Bt and M D! refer to the degrees of belief in the hypothesis when the
symptoms are known for certain.

MBIk, §1] = MBI[h,S1] x maz(0,CFS1, E]) (3.34)

MDIh,S1) = MD1lh, $1] x maz(0,CF|S1, E]) (3.35)

As an example of the combining rules, consider the following example:

Symptom: Stalled motor

Cause: Valve stem binding (40%)
Packing too tight (60%)

Symptom: Leaking packing

Cause: Packing too loose (not too tight) (90%)
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In this hypothetical situation, the expert has a valve symptom of “stalled motor”.
Sixty percent of the time this condition is caused by the valve stem binding, while
forty percent of the time it is caused by the packing being too tight. On the basis
of just this symptom therefore, the expert would conclude that “packing too tight”
is the cause of the problem. Suppose however, that the expert also observes another
symptom, namely that of “leaking packing” indicating that the packing is too loose.
This changes the situation. Packing too loose can be interpreted as being a measure
of disbelief in “packing too tight”. The new confidence factor for “packing too tight”

is then:

60 — 90

CE= = min(60,90)

—-75 (3.36)

.

On the basis of the second symptom *“valve stem binding” becomes the most

likely candidate.

3.7 Problems with Mycin’s Approximations

The four combining functions satisfy the defining criteria mentioned earlier, but
there are some problems. First of all, it has been assumed throughout that the
symptoms S1 and S2 are independent; this may not be true in actual practice.
Secondly, the combining criteria always cause the MB or MD to increase regardless
of the relationship between the new and prior evidence. However, the developers of
Mycin point out in [11] that confirmation theory has little to do with probability
theory in the numerical sense, and that the usefulness of the theory depends on its
accuracy in a given context. In other words: if it works, use it .

In their original analysis, Shortliffe and Buchanan compared the C'F’s obtained
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from simulated data using combining functions 3.27 and 3.28 and compared them
with the exact CFs calculated from Equations 3.12 and 3.13. They found that the
functions give good approximations to the numbers obtained using exact data. The
greatest discrepancies occurred when the functions were applied many times to reach
the final result 2 and when the pieces of evidence were strongly related (i.e., not
independent ) for the hypothesis under consideration. This is to be expected because
the rules developed by Shortliffe and Buchanan tacitly assumed independence of

symptoms.

For convenience, some important Mycin relations are summarized in Table 3.1.

2 . ”
“Reflecting Zadeh’s postulate that the more steps involved in reaching a result,
the “fuzzier” that result is (see Section 5.1).



Table 3.1: Some impbrtant Mycin relations

Purpose Equation
Conditional probability of D given E. | P(D | E) = P(D);(‘Z[)EID)
Meanuse of beliet MBlh,e| = W if P(h | e) < P(h)

1 it Pih) =1
Measure of belief (alternate). MBlh,e| = { maz(P(hle),P(h)|—P(h) ihsrwiie
maz|l,0|—P(h) SR
Wisasiine of disblist MDlh,e| = %}ﬂ’” it P(h | £) > P(h)

Measure of disbelief (alternate).

I if P(h) =0
MDlh,e] = { min{P(hle),P(h)|=P(h)
mun(1,0{—P(h)

otherwise

Combining confidence factors.

X+Y(1-X)
X+Y
1—man(|zi,|y|)
~CFooyBINE(=X,-Y) X,¥ <0

¥ 50

CFoomBINE(X,Y) = one of X,Y >0

Ge
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4. LEVELS5

An expert system will often be developed with the help of a tool or shell, which
is a system designed to facilitate the rapid development of knowledge-based systems
that address a specific class of problems. The shell is basically an “overlay” on an
existing language and is designed to make program development easier. As mentioned
in Section 1.4, Level5’s platform language is Pascal. Other tools have been developed
using Lisp and Prolog. The Level5 tool was developed by Information Builders, Inc.
'14]. The language used by Level5 is known as PRL for Production Rule Language
and is constructed in a straightforward [F-THEN structure; this makes program

development and modification easy to perform.

4.1 Basics of Leveld Rules

The basic structure of a Level5 program consists of one or more goals, each of
which may have sub-goals. The inference engine looks through the knowledge base to
find a rule that has a goal as its conclusion. It then looks at the conditional statements
that must be satisfied to meet this conclusion. Each of these conditional statements
may be the conclusion of other rules, and these rules will also have conditions to
satisfy. The knowledge base tries to determine the values of these statements by

using the rules encoded in it or by querying the database. If it cannot determine the
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values in this way, the knowledge base asks the user for the information it needs.

1.0.

8

4.1.0.3 PRL fact types. There are four basic fact types in Level5 version

These are [14]:

. simple fact-These are variables that have a true or false value. For example,

the user might be asked:
"Will welding be performed that violates the pressure boundary?"

Where the entire clause
"Will welding...boundary?"

would be the simple fact. The user would respond by pressing the TRUE
function key or the FALSE function key. When queried by the knowledge base
for the value of a simple fact, the user can also be asked to provide his confidence
in truth or falsity of the fact on a scale of 0 to 100. In this case, the simple fact
will be assigned a value of true or false depending on if the user’s answer was
above or below a certain threshold assigned by the program developer.

attribute value-This type of variable designation is used whenever there is an
antecedent part of a clause that can have one of several values. For example:

valve operator maintenance IS operator replaced
valve operator maintenance IS spring pack reworked
valve operator maintenance IS limit switch maintained
valve operator maintenance IS motor replaced

Each one of the statements with the antecedent
valve operator maintenance

would most likely come from separate rules within the knowledge base. When
the knowledge base needs to know the value of
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valve operator maintenance

the user will be presented with a screen similar to:

What is: valve operator maintenance

operator replaced
spring pack reworked
limit switch maintained
motor replaced

The user would then select the desired answer, which would then become the
value of the attribute value variable. Attribute value variables can take on
multiple values simultaneously if they are declared using the reserved MULTI
command.

3. string-This variable type is analogous to the string variables in other languages
and can be any ASCII character. They must be declared at the beginning of
the knowledge base by preceding the variable name with the reserved word
STRING, otherwise the PRL compiler cannot distinguish them from numeric
fact types. When the knowledge base queries the user for an answer (or checks
the data base), the case of the characters in the answer is not important.

4. numeric-The numeric data type is used when the user needs to respond with a
number that will be used in a subsequent mathematical of logical operation. If
the number need not be used in one of these operations, it could just as easily
be assigned as a string variable.

Subsequent versions of Level5 include the fact types of time and interval but since

this system was developed using version 1.0 these fact types will not be covered.

4.2 CF and CONF Statements

Level5 has two different methods of handling uncertainty. These are the CON-

FIDENCE (CONF) statement and the C'F statement. The way that Level5 handles
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these two types of confidence is somewhat different. The CF statement will be ex-
amined first, then the CONF statement.

Before this it will be necessary to explain the term OR-class as it is referred to in
the PRL language. The OR-class of a fact consists of all the rules that can conclude
that fact via a THEN, AND, or ELSE PRL statement [15]. Rules in the same OR-
class are evaluated following the order in which they appear in the knowledge base
unless they have confidence factors in the conclusion of each rule. In this case, the
rules are pursued in order of highest confidence value (CF). If all members of a fact’s
OR-class are considered and a conclusion cannot be reached, the conclusion is set to
false if the fact is a simple fact. If the fact type is attribute value any values not
assigned are set to false. C'Fs can only be used in the conclusion portion of a rule or
in conjunction with an INIT or REINIT statement, which are two statements used
to initialize a fact’s value after the knowledge base has chained to another program.

The CONF statement is a confidence assignment operator that can be used
from within the antecedent portion of a rule. Two examples of the use of the CONF

statement would be:

SIMPLEFACT fact type:

RULE A
IF facta
THEN factb

AND CONF (factc) := 80
!

This would set the confidence value of factc to 80.

ATTRIBUTE-VALUE fact type:
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AND CONF (valve operator maintenance IS motor
replaced) := 75

This would set the confidence of motor replaced to T5.

The CONF statement is treated differently from the CF statement. For example,
in the following rule using the C'F statement if the user answers false when queried
about facta, then factb is set to false. this is true because in this case of a single rule

the rule itself is a member of facth’s OR-class of rules.

RULE A

IF facta

THEN conclusion CF 100
AND factb

Now consider two miniature knowledge bases, or KBs. One without the CONF

statement, and one including it.

1. conclusion example 1
| ;

RULE A
IF facta
THEN conclusion example 1

AND factb
!

RULE B

IF factb

THEN conclusion example 1
!

END
In this case, if the user answers false to facta, no further conclusions can be
reached and factb’s value is false. Now consider a second KB that is nearly identical,

except that it uses the CONF statement:
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1. conclusion example 2
1

RULE A
IF facta

THEN conclusion example 2

AND CONF (factb) := 100
I

RULE B
IF factb

THEN conclusion example 2
|

END

In this case if the user responds with false when queried for facta’s value factb
remains uninitialized (see Section 4.5 following) because the CONF assignment does
not include the rule in the assigned fact’s OR-class of rules. This is because factb is
not concluded in that rule by a THEN, AND, or ELSE statement alone but rather
by an AND CONF(factb) statement. The user will then also be queried for factb’s

value when RULE B is fired.

4.3 Calling External Programs

Level5 also has the useful ability to call external programs from within the
knowledge base itself. This feature allows Level5 to call programs in the Fortran or
C languages, for example. Through Fortran, Level5 can perform complex arithmetical
functions or use dBase III data files to recover valve information. The first feature

was used when incorporating the Mycin-like C'Fs into the expert system.
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4.4 Parameter Passing Routine

In order to pass parameters between a Fortran program and Level5, an interme-
diate parameter-passing routine named ASCIIPRM must be used (see Appendix A).
ASCIIPRM has routines for passing character, numeric, and logical data between
Fortran and Level3. ASCIIPRM must be linked with any Fortran program that
passes parameters to the Level5 program or receives parameters from Level3.

Level5 has the ability to call on any external programs with a .BAT, .COM
or .EXE file designation in order to perform mathematical or data base functions
or any other tasks the developer believes would be more conveniently handled by
a program external to Level5. These programs are called using the ACTIVATE
command followed by the name and the full path name of the desired program if the
external program is not in the same directory as the PRL program. For example, if
the program to be called is called PARMTEST, a sample rule calling this program

would look something like the following:

RULE For testing parameter passing
IF Outputs displayed

AND ACTIVATE c:\temp\PARMTEST.EXE
DISK c:\temp\PARAM.DAT

SEND Real out

SEND Integer out

SEND String out

SEND Character out

SEND Boolean out

RETURN Real in

RETURN Integer in

RETURN String in

RETURN Character in

RETURN Boolean in
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THEN Parameter test
AND DISPLAY Input parameters

The DISK command identifies the disk file name where the knowledge base and
the external programs exchange ASCII information. The SEND command designates
the variables the knowledge base sends to the external program. The RETURN com-
mand requests the values to be returned to the knowledge base from the external
program. The ACTIVATE command also allows a program to be started by the ex-
ternal program activated by the knowledge base. This is done using the COMMAND

function. For example the line:

AND ACTIVATE c:\temp\PARMTEST.EXE COMMAND example

instructs the external program to activate the program ezample. Any .BAT, .COM
or .EXE file can be called in this way.

The knowledge base will write the out-going data into the disk file designated
by the DISK command using the standard ASCII format which is as follows:

Line 1: number of parameters to be sent or received in the file.

e “C” in column one for each line of character data with a space between the “C”
and the data

e “N” in column one for each item of numeric data with a space between the “N”
and the data.

e “L” in column one for each item of logical (true or false) data with a space
between the “L” and the data.

The correspondence between PRL fact types and external fact types is given

below:
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Table 4.1: Correspondence between ASCII and PRL
data types [14].

External Fact Type PRL Fact Type
boolean SIMPLEFACT or ATTRIBUTE
real NUMERIC
string STRING
character STRING

It may seem strange that Level5 transfers the value of an ATTRIBUTE value
fact as true or false. It does this because when an attribute value is sent to an éxternal
program, Level5 looks up the attribute’s confidence value and compares it with the
value’s associated THRESHOLD statement. If the value has a CF greater than or
equal to the threshold, then a value of true is sent to the external program; otherwise
a false value is sent. Conversely, when an external program returns a boolean fact
type, it is assigned a C'F of 100 if the boolean is true, or a CF of 0 if the boolean is
false.

The Level5 knowledge base must receive any data from external programs in the
same format, and in the same order in which they are requested in the RETURN
statement by the knowledge base. This is because values are sent and returned in the
order they are declared in the knowledge base. As a result the names of the variables
in the external programs do not have to match the names in the knowledge base,
but the corresponding data types must be the same between Level5 and the external

program.
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4.5 Level5 and Mycin Confidence Factors Compared

Level5 uses a different approach to confidence factors than Mycin. In the Level5
system, confidence factors range from 0 to 100 with the exceptions noted below. If
the CF of a fact is not known at a given point in time it is assigned a value of -1.

This can happen as a result of three conditions. These are:

1. If the CF is part of a rule that has not yet been active.

B

. It was not initialized.

3. Its value has not been received from an external program.

Finally, if the state of the variable is unknown the C'F is assigned a value of —2.
This occurs if the user responds by pressing the UNKN key when queried for the CF
[15].

This is in contrast to the Mycin method, where values range between —1 and 1,
with confirming evidence ranging between 0 and 1 while disconfirming evidence ranges
between 0 and —1. Actually, the measure of disbelief (MD) has a value between 0
and 1, but acts as a negative number because of the formula for confidence factors
in Mycin (see Equation 3.14).

The major difference however, is that under the Level5 system decreases in
confidence are not possible. As pointed out in Section 4.2 confidence factors in

Level5 are assigned on the basis of whichever rule concluding a given fact has the

higher CF.
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5. OTHER METHODS FOR DETERMINING CONFIDENCE

5.1 Fuzzy Logic

Fuzzy logic was pioneered by Lotfi A. Zadeh (among others) and was introduced
to the world at large in his famous 1973 paper “Outline of a New Approach to the
Analysis of Complex Systems and Decision Processes” 16. Zadeh's intention was
to introduce a system of logic that would allow the modeling of systems that were
generally considered to be too complicated for accurate modeling using conventional
mathematical techniques. This is stated succinctly by the principle of incom-
patibility which says that as the complexity of a system increases, our ability to
make precise and significant statements about its behavior diminishes '16]. Zadeh’s
original concept was to apply the techniques of fuzzy logic to some of the “softer”
sciences such as sociology, politics, and economics, where the rigorous mathematical
techniques that serve physics and engineering so well have largely failed due to the
much greater complexity and, at the same time, vagueness inherent in these sciences.
Because fuzzy logic employs linguistic variables in the form of IF-THEN rules, it is
classed under the heading of artificial intelligence.

Fuzzy logic differs from conventional logic theory mainly because an element of
a fuzzy logic set can have partial membership in a set, i.e., it need not be completely

“in” a set. A degree of membership is generally characterized by a number between
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zero and one, depending on how confident the developer is that a given value fits a
certain description. Systems using fuzzy logic do not need to explicitly specify the
relationships between every single input and output variable via differential equations
or other mathematical relationships.

Fuzzy logic presents an interesting use relating to confidence factors in expert
systems. Instead of asking the users of the system to input their confidence in a fact
as a precise number, they could instead choose from a list of terms such as “positive”,
“fairly certain”, etc. These linguistic variables could then be mapped onto an array
of values similar to Equation 5.21 in Section 5.1.2. This would avoid having the users
input their confidence in a fact, leaving it the job of the expert system developer
to assign the various confidence values. This would make the expert system more

transparent to the end user.

5.1.1 Fuzzy Logic Rules

The rules of fuzzy logic have a certain resemblance to Boolean algebra, upon
which they are based. However, there is an important difference; namely, that the
values of the variables are not strictly limited to on/off or +/— values. This is in
keeping with the fact mentioned earlier which stated that a variable can be partially
in a set without being completely in it. The set of all the possible values a fuzzy
variable can take on is referred to as a “universe of discourse” denoted by the symbol
“U”. Each member is given a value, usually between zero and one, indicating its

degree of membership in the set. Thus the expression:

U=1/1+0.8/2+0.5/3 (5.1)
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states that the set member 1 is completely in the set, the member 2 is 80% in
the set, and so on. A typical rule in a fuzzy logic controller might look like: “IF =z is

small THEN y is very large.”where small is defined as:

small =0.5/0.4 +0.7/0.5+ 1/0.6 +0.7/0.T - 0.5/0.8 (5.2)

Thus if z were 0.6 it would have a 100% membership in small, and correspond-
ingly y would be 100% “very large”. If r was not 100% small then y would not be
100% very large but would have partial membership in that particular set. Gener-
ally, there would be no change in the value of very large until a certain threshold
value was reached [16].

A fuzzy relation, denoted by R, is defined by the expression:

H= f mplz,y)/(z.y) (5.3)
AxXY

where the degree of membership is given by the numerator and the denominator
characterizes the combinations between the members of the sets X and Y. For

example, if

X = {a,b} (5.4)
Y = {c,d} (5.5)

then if a fuzzy relation between the members of X and Y called “relationship” was

defined it might look like:

relationship = 0.9/(a,c) + 0.7/(a,d) + 0.3/(b,c) + 0.2/(b, d) (5.6)
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Alternatively, if R is a relation from X to Y, and S is a relation from Y to Z,

then the composition of R and S is defined to be:

RoS= [ ving(ew) nusly.2)/(2.) (5.7)
Xx2Z

where V is the max function and / is the min function defined such that:

aVbh= - (5.8)

Al = B (5.9)

As an example of the max function, consider the matrices defined below:

0.3 03 0.5 0.9 0.32 0.8
— (5.10)

0.6 0.9 0.4 1.0 0.36 0.9
The matrix products would be taken in the normal way by multiplying the
corresponding row entry by the appropriate column entry but instead of adding the

products to get the resulting final matrix entry, the maximum of the two products

formed for each entry is used, for example:

entry(1,1) = (0.3)(0.5) + (0.8)(0.4) = 0.15 + 0.32 — 0.32 (5.11)

entry(2,1) = (0.6)(0.5) + (0.9)(0.4) = 0.3 + 0.36 — 0.36 (5.12)

and so on. Some other important relations are defined in Table 5.1.
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Table 5.1: Fuzzy mathematical relations

-A=(1-m(y))/y compliment (not)
A+ B=(mgly)Vvmp(y))/y logical or/union
AN B =(mg(y) Amp(y))/y logical and/intersect
AB =m q(y)mply)/y product
CON(A) = A concentration or very
DIL(A) = A0S

4125

A0.75 minus A

As an example of some of these rules, consider a universe of discourse defined

as:
U=1+2+3+..+10 and,
Y = 04/1+0.7/2+0.6/3+0.2/6
X = 05/1+04/2+1/5+1/4
then
XandY =05/1+0.7/240.6/3+1/4+1/5+0.2/6,
while

XorY =04/1+04/2

(5.13)

(5.17)

As an example of evaluating a linguistic expression according to the fuzzy logic

rules, consider the expression not very small or, as it can also be written —(very

small) where we will define small as being:
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small =1/1+0.8/2+0.6/3 +0.4/4+0.2/5 (5.18)

then very small would be:

very small = 1/1 +0.64/2 +0.36/3 + 0.16/4 + 0.04/5 (5-19)

where the degrees of membership have been squared as per the definition given above.

Finally,

- very small = (1 -1)/1+(1-0.64)/2+(1-0.36)/3+(1—0.16)/4+(1—0.04)/5
(5.20)

Problems can sometimes arise in fuzzy control systems when the final control
action must be chosen. The output of any fuzzy algorithm is a fuzzy set itself, and so
various grades of membership are assigned to the members of this fuzzy set. There
are two methods of determining the appropriate “defuzzified” output to be sent to
the controller. If one of the members has a degree of membership in excess of the
others then no problem occurs.and its value is sent to the controller, but if there are
two values that have a nearly identical degree of membership (or if all values have the
same degree of membership, and a “plateau” occurs), then the appropriate control
action must somehow be chosen from among them, and the other method is chosen.
In this method, the “center of mass” or weighted average of the individual values is

taken.
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5.1.2 Examples of Successful Fuzzy Controllers

Mamdani and Assilian [17] have implemented an interesting application of a
fuzzy logic controller. Their paper describes a device designed to control a steam
engine and boiler combination. The controller used two algorithms to govern the
system: one to respond to the heat change of the steam, the other to respond to
changes in the throttle position at the input to the engine. The steam engine and
boiler combination had two inputs (heat input to the boiler and throttle opening at
the input of the engine cylinder), and two outputs (steam pressure in the boiler and
the speed of the engine). The fuzzy controller used six fuzzy variables to accomplish

its task. These were:

1. PE = Pressure error or difference between present value of pressure and the set

point.
2. SE = Speed error or difference between present value of speed and the set point.
3. CPE = Delta PE or difference between PE at time t and ¢ — 1.
4. CSE = Delta SE or difference between present SE and SE at ¢t — 1.
5. HC = Heat change.

6. TC = Throttle change.

These variables could each take on seven values corresponding to varying mem-
bership in seven fuzzy subsets. These subsets ranged from PB (Positive Big) to NB
(Negative Big). The results of the fuzzy controller were compared to those obtained

using a fixed digital controller (see Figure 5.1, p. 60).
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The results seem to indicate better performance by the fuzzy controller as shown
by the overshoot evidenced by the digital controller in the one case, and the relatively
long time it took to reach the set point in comparison to the fuzzy controller in the
other. The fuzzy controller worked so well that the original idea of designing a
learning fuzzy controller was discarded as being unnecessary.

Feeley and Johnson [18) have demonstrated an interesting application of a fuzzy
logic controller to a pressurized water reactor. The reactor was modeled using a set
of nine non-linear coupled differential equations. The nine state variables included

in their analysis were:

1. Neutron density.

8%}

One group of delayed neutrons.
3. Control rod position.
4. Fuel pin temperature.
5. Hot leg temperature.

6. Cold leg temperature.

. Steam generator saturation temperature.
8. Steam flow control valve position.

9. Turbine speed.

The two controller output (plant input) variables were the voltages applied to

the control rod and steam flow control valve actuators. The controller input (plant
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output) variables were average primary coolant temperature and turbine speed. The
power removed through the turbine was treated as a controller disturbance input.
In this case, each input or output was converted into one of five states ranging from
“positive big” to “negative big”. The controller used two relational matrices (R’s);
one for the control rod actuator signal and one for the steam flow valve signal. The
output variables were defuzzified using a center of area (mass) technique. Figures 5.2
and 5.3 (pp. 61-62) show that the controller responded quite well to changes in the
set point. Figure 5.2 shows the controllers response to a set point change in Tqp of
plus and minus five degrees, while the turbine speed S; was held constant. Figure 5.3
shows the controller response to simultaneous Ty, and St set point changes, and
again the response was good. Figure 5.4 (p. 63) illustrates the disturbance rejection
capabilities of the controller as the turbine load was varied between +/—2.5 MW.
As shown, the controller was able to maintain T, to within one degree and S to
within one rev./sec.

Roglans-Ribas [19] has implemented a fuzzy controller to perform small power
level changes in a nuclear reactor. The controller utilized for this purpose had two

input variables:

1. DEM - Delta power, or difference between power demanded and actual power.

2. C'HE - Rate of change of power level.

and one output variable, CONR - Reactivity inserted by the controller.
The fuzzy set for power difference had five members from big positive to big

negative. The sets for control reactivity and change of power were divided into five

and three sets, respectively. Each fuzzy set was divided into seven categories from
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negative to positive three, and the degrees of membership for each of the fuzzy sets
were assigned on that basis. For example, the fuzzy set for power difference, DEM,

would look like:

-3 -2 -1 0 1 2 3
BIP 0.0 0.0 00 0.1 04 08 1.0
SMP 0.0 0.0 0.0 03 1.0 0.5 0.1
ZER 0.0 0.1 03 1.0 0.3 0.1 0.0
SMN 0.1 05 1.0 0.3 0.0 0.0 0.0
BIN 1.0 08 04 0.1 0.0 0.0 0.0
thus if an input had a fuzzified value of 2, its membership in BIP (Big Positive) would
be 0.8, its membership in SMP (Small Positive) would be 0.5 and so on.

The fuzzified values to be used in the linguistic controller were determined (for
the case of power difference) by expressing the DEM change as a percentage of the
original power. A unit of DEM would then be 0.1% of the power difference, for
example. ’The overall performance of this controller seemed to be very good, with
rapid approaches to the set point being common. Only very small over- or under-
shoots were experienced. The only problem seemed to be in the fact that once the
final power was inside of a certain percentage of its final value, the controller would
allow it to oscillate in a “dead band”. This was because the power was so close to its
final value that the controller determined that no further control action was required.
The assignment of fuzzified values to the controller via the fuzzy algorithm was not
fine enough to distinguish any difference in values at the ou.tput.. This could easily

be remedied by further “quantizing” the possible fuzzy output values, however.
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5.1.3 Expert Systems Uses of Fuzzy Logic

Fuzzy logic presents a unique opportunity to model systems that are either too
complex or too tedious to model using conventional mathematical techniques. By us-
ing a series of fairly simple rules, fuzzy logic permits the construction of linguistically-
based rules of an [F-THEN format. As noted in Section 5.1 this makes expert systems
easier for the average person to use.

The various control systems implemented using fuzzy algorithms have proven
both its usefulness and effectiveness as a systems controller. In fact, fuzzy controllers
seem to be quite robust, in many cases out-performing their digital counterparts. In
the future, we will no doubt begin to see fuzzy logic applied to the more esoteric

sciences such as economics and psychology as well.

5.2 Dempster-Shafer Belief Calculus

The Dempster-Shafer belief calculus is another method of finding confidence
factors. It was not used within this expert system: however because it offers an
interesting alternative to C'Fs, it will be covered briefly here. A suggestion for future
work would be to compare the Dempster-Shafer method for determining confidence

factors with the Mycin method to see if there are any significant differences.

5.2.1 Dempster-Shafer Calculus Compared to Baysian Statistics

Dempster-Shafer calculus is similar to Baysian statistics in that both assign a
number between zero and one to reflect the degree of belief in a fact or conclusion.
However, it is different from conventional probability theory in that the belief in an

event occurring P(A) plus the belief in an event not occurring P(A4) need not sum
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to one. In fact, the belief in both may be zero. For example, an expert may assign a
belief of zero to “valve packing is too tight” while simultaneously assigning a value of
zero to his belief that it is not too tight because the evidence to date is inconclusive.
Section 5.2.2 will show how Dempster-Shafer calculus handles a state of ignorance in

a situation.

5.2.2 The Belief Function

In Dempster-Shafer calculus, the developer begins with a set of possible events
here denoted by E. Suppose our set of possible events includes three elements as in

120 . The set is denoted by:

E ={B,J S} (5.22)

The belief function is not defined over this set. It is defined over the power set

of E, which is defined as the set consisting of all the subsets of F and is denoted by
o E
2

. This set contains the following elements:

2 = {0,{B}. {7}, {S}.{B,J}.{B,S}.{J. S}.{B.J.S}} (5.23)

where () is the empty set.
The belief function maps the power set of events into the range [0.1]. The

notation for the belief function is:

Bel:2E (0,1 (5.24)

The belief function must also satisfy the following three conditions:
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Bel(0) = 0 (5.25)
Bel(E) = 1 (5.26)
Bel(AjU...UAp) > Y Bel(4;)— Y Bel(4;NA4;)+ ...
i

oA
+H=1)"T1Bel(4; N ... A;) (5.27)

The third condition provides a constraint over building up a belief for a set of
events. As an example, suppose that belief values were assigned to B and S. The

third condition simply states:

Bel({B}) + Bel({S}) < Bel({B.S}) (5.28)

or, in other words, the belief that the symptom is in the set {B,S} can be no less
than the sums of the individual beliefs.
A belief function that represents a state of ignorance is given by:
0 if A+#
Bel(A) = (5.29)
1 fA=F
This is referred to as a vacuous belief function. It indicates that while it is
known that the correct answer is somewhere in the total set of possibilities, there
is no similar belief regarding any of the subsets of the total set. The vacuous belief

function allows a distinction to be made between lack of belief (or ignorance) and

disbelief.
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5.2.3 Probability Masses

Dempster-Shafer belief calculus does not ask the user to assign values to belief
functions over a set of alternatives, because this would require the user to constantly
keep in mind the constraints of Equations 5.25 through 5.27. Instead, these values
are built from basic probability assignments that can be determined by the user [20].

A basic probability assignment, m, is like a belief function in that it maps the
power set of the set of alternatives into the range [0,1]. It is different, however,

because the only requirements for the basic probability assignment are:

m(0) = 0 (5.30)

Z m(A) = 1 (5.31)

The first condition states that no probability assignment should be made to the
empty set while the second states that the sum of all the assignments over all the
subsets equals one. m is sometimes referred to as the probability mass of subset A.
The relationship between the probability masses assigned to the subsets of the set of

possible events and the belief value assigned to each subset is given by:

Bel(4) = ) m(B) (5.32)
BcCA
In other words, the belief in a subset A is the sum of the probability mass m(B)

assigned to all proper subsets B of A.
As an example of the uses of probability masses in the determination of belief
values, suppose the probability masses listed in Table 5.2 have been assigned by the

user.
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Figure 5.1: Comparison Between a Fuzzy and Digital Controller for a Steam Engine.
(Digital controller: x ,0 . Fuzzy controller: ®)

Table 5.2: Example of assignment of probability masses

Event Mass
{B} 0.1
{J} 0.2
{S} 0.1
{B,J} 0.1
{B,S} 0.1
18} 0.3

{B,J,S} 0.1
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The probability mass is not the same as probability because it is known, for
example, that the probability that one of the alternatives { B, .J, S} is true is one but
the probability mass assigned to {B,.J, S} is only 0.1. Also note that the sum of the
probability masses is one as required by Equation 5.31. The probability masses can
be used directly to determine that the degree of beliefin B is 0.1,in J is 0.2 and in S
is 0.1 because these three sets have no subsets. But if the degree of belief in { B, J}

is required then Equation 5.32 must be used so that:

Bel({B,J}) =m({B}) + m({J}) + m({B,J})=01+02+01=04 (5.33)
Using Equation 5.32 the set of belief values is given in Table 5.3.

Table 5.3: Probability masses and corresponding belief functions

A {B} 10 1S} {BJ} {B5} {Js} {BJS}

m(A) 0.1 0.2 0.1 0.1 0.1 0.3 0.1
Bel(A) 0.1 0.2 0.1 0.4 0.3 0.6 1.0

5.2.4 Dempster’s Rule

Dempster’s rule allows several combined belief functions to form a new single
belief function. In order to use Dempster’s rule, the user must have two or more
belief functions defined over the same set of possible events but based on different
evidence. These differing belief functions could represent the set of valve problems
based on different sets of symptoms, for example.

If we refer to one set of symptoms as 4 and another set of symptoms as B, then

Dempster’s rule is written as [20]:



2 4;nBj=Am1(4;)m(Bj)

m(A) = Note: SA-;'F‘BJ':@ ml(Ai)mQ(Bj) < 1

L= X g;nB;=0™1(4)ma(5;)

Dempster’s rule adds up the intersections of the probability masses for the symp-
toms and normalizes the result to produce a new probability mass. The numerator
represents the summation of the intersection of the probability masses for sets 4 and
B. The “Bj = A" condition indicates that sets 4 and B are taken over the same set
of symptoms. Note the condition on Equation 5.34. This term represents the amount
of probability mass distributed among subsets that have empty intersections. If this
term equals one, it means that the two subsets have nothing in common. This term

is independent of the subset A4 and only needs to be determined once for a given A

and B.
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6. VALVE DIAGNOSIS AND MAINTENANCE PLANNING
EXPERT SYSTEM

6.1 Introduction

This chapter describes an expert system being developed by the Nuclear En-
gineering Department of lowa State University in cooperation with the engineering
staff of Duane Arnold Energy Center in Palo, Towa. The purpose of the expert system
is to assist the engineers in valve problem diagnosis and maintenance. The purpose
of this research is to demonstrate the applicability of expert system technology to
nuclear power plant operation [21],[22]. As previously mentioned, the expert system
tool Level5 is being used to develop the program.

This chapter provides a status report on the project and describes the features
of the program. Following this is a description of the module added to allow incor-

poration of multiple-symptom cases using a Mycin-like C'F system.

6.2 Valve Maintenance Planning

Valve maintenance planning at a complex installation like a nuclear power plant
is a time-consuming task because of the large number of valves involved and the high
level of quality required. Valve maintenance planning typically involves the following

steps:
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1. Diagnosing the problem.
2. Prescribing maintenance. and,

3. Determining the factors which affect the maintenance task.

The maintenance personnel must consult many sources to collect the information
necessary for analyzing of the problem. These sources include the operations staff
who reported the problem, a database that contains valve information, procedures
and guides for determining maintenance requirements, parts inventory lists, and so
on. The engineer must also coordinate the required maintenance with previously
scheduled maintenance plans, testing requirements, and plant operation schedules.
The development of a sufficiently sophisticated knowledge-based system to assist in
maintenance planning would result in a substantial time savings, chiefly by automat-

ing information gathering and routine decision making [1|

6.3 Features of the Expert System

The knowledge base currently has three main sub-systems. These are diagnosis,
prescription of suggested maintenance, and maintenance planning. These features
are shown in Figure 6.1.

There are four main modules in the valve maintenance program. IEVALVE.PRL
is the main calling program. It asks the user whether valve maintenance planning,
valve diagnosis, diagnosis and maintenace planning, batch testing, or database edit-
ing functions are required. It also retrieves information about the valve from the
database. Depending on the user’s answer IEVALVE.PRL chains to one of the other

three programs.
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Figure 6.1: Block Diagram of Valve Maintenance Knowledge Base
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IEVALVEL.PRL is the diagnosis portion of the knowledge base. It contains
twelve common valve symptoms for the valve operator and valve body. Based on
the symptoms selected by the user, the system returns with a diagnosis for each
symptom.

IEVALVE2.PRL is the maintenance planning portion of the knowledge base.
It can be entered in either of two ways. If maintenance planning alone is selected
from the main menu, the user is presented with three separate lists dealing with the
valve body, valve operator, and motor control center. The user then selects which
maintenance actions were performed. See Figures 6.2 through 6.4. The expert system
returns with a CMAR (Corrective Maintenance Action Request) form detailing which
post-maintenance tests need to be performed (see Figure 6.11 in Section 6.4).

If diagnosis and maintenance planning is selected then the expert system gener-
ates the CMAR form based on the maintenance required to repair the problem based
on its diagnosis. Currently, there are no diagnoses present for motor control center
problems, so only maintenance planning alone can be done for it, not diagnosis.

IESYMP1.PRL is the portion of the program that takes multiple symptom diag-
noses into account. After the maintenance task and the valve ID have been entered,
the user is asked whether single or multiple symptom diagnosis is required. If sin-
gle symptom diagnosis is selected, the knowledge base chains to IEVALVEL.PRL. If

multiple symptom diagnosis is chosen the knowledge base chains to IESYMP1.PRL.

6.3.1 Diagnosis

At the beginning of the session the user is asked which function is desired, and

the ID number of the valve in question. If diagnosis is chosen, the user is asked which
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IEVALVE2

Select all the maintenance activities performed on the motor control center

Breaker was replaced or rewired

Handswitch was replaced

Power cable was replaced

After making your selectlons press F4 for DONE

2 UNKN 3 STRT 4 DONE

6 WHY? 8 MENU 9 HELP 10 EXIT

Figure 6.2: Selection of Valve Body Maintenance Actions




IEVALVE2

Select all the maintenance activities performed on the valve operator

===+ Valve operator was replaced

Valve operator motor was replaced

Torque switch was maintained (replaced, adjusted, rewired)

Limit switch was maintained (replaced, adjusted, rewired)

Spring pack was reworked

Torque bypass switch was maintained (replaced, adjusted, rewired)
Valve operator was lubricated

Electrical wire maintenance was performed

Replaced sealtite from operator to motor
After making your selections press F4 for DONE

1 PAGE 2 UNKN 1 STRT 4 DONE 6 WHY? 8 MENU 9 HELP 10 EXIT

Figure 6.3: Selection of Valve Operator Maintenance Actions




IEVALVE2

balect all the malntenance activities performed on the valve body

|—=»> Valve body was completely replaced

Valve was disassembled so that the pressure seal was
broken (bonnet removed)

valve packing was adjusted
Repacklng was performed on the valve
The body to bonnet gasket was replaced

The valve seating surface was maintained

Tha valve stem was maintalned

After makling your selections press F4 for DONE

2 UNKN 3 STRT 4 DONE 6 WIY? 8 MENU 9 IELP 10 EXIT

Figure 6.4: Selection of Motor Control Clenter Maintenance Actions




73

part of the valve is malfunctioning and the symptoms exhibited by that part. The
knowledge base will then tell the user the probable cause of the malfunction and the
steps necessary to correct the problem. More than one area of the valve and more
than one symptom can be selected per session. The reader is referred to Section 6.4
for an example session with the expert system under single-symptom conditions.
Note that under single-symptom conditions, there is a 100% confidence that a
certain problem is being caused by a given symptom. Under the multiple-symptom
case discussed in Section 6.5 a given symptom can point to more than one possible
diagnosis. Each diagnosis has varying degrees of confidence based on the symptoms

present.

6.3.2 Maintenance Planning

After diagnosis, the post-maintenance testing requirements can be determined.
The user can select the valve body, the valve operator, the motor control center, or
any combination of the three as possible areas to be maintained. The user then selects
the maintenance to be performed and the knowledge base recommends which tests on
the CMAR form must be performed to verify that the valve operates correctly after
the maintenance is completed. The fields describing radiation work permit (RWP),
primary containment (pri cont), cleanliness control procedure (CCP) and NPRDS
have recently been added.

The user could also request combined diagnosis, prescription of maintenance,
and determination of post-maintenance information. In this case, the expert sys-
tem automatically determines the areas to be repaired and the maintenance to be

performed on the basis of the diagnosis it makes.
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Finally, the batch testing mode allows test cases with known answers to be
compared with a subsequent batch of results. This allows the user to check the

effects of changes on the knowledge base.

6.3.2.1 Verification Testing The area of verification testing has recently
been added to the program. Rules in the knowledge base now enable the user to
determine whether one of four so-called “VT" tests need to be performed. The
appropriate tests are determined on the basis of valve size, whether welding has been
performed, whether the valve has pressure-retaining bolting, etc.

The program file IEVITEST.PRL, which is incorporated in IEVALVE2.PRL,
contains rules dealing with verification testing of motor-operated valves. These are
additional tests that must be performed if maintenance is done on certain valves that
have a diameter greater than one inch. There are four VT tests that may have to be

performed. These are:

1. VT1 test- This is a visual inspection of the valve looking mainly for corrosion
and damaged threads on the valve body. It is performed if the valve has been
disassembled and if it has pressure-retaining bolting. This includes cases of
valve replacement on either the valve body or operator. It also includes cases
in which valve body maintenance includes repairing or replacing the seating
surface. It is also required if the valve operator is replaced.

2. VT2 hydro test- This test is done by pressurizing the valve at a high pressure. It
is done whenever welding has been performed that violates the valve's pressure
boundary.

3. VT2 pressure test- This test is done by pressurizing the valve at lower pressure
than the VT1 test. It is done whenever the pressure boundary has been violated
by something other than welding, such as valve disassembly.

4. VT3 test- This is a visual inspection looking for internal signs of cracks and
corrosion as well as evidence of steam cuts, which occur when steam causes
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erosion of the valve threads. It is required if the valve diameter is greater than
four inches and the valve has been disassembled.

The reader is referred to Appendix B for a listing of the rules used to prescribe

verification testing.

6.4 Example Session

The features of the expert system C.an best be illustrated by an example. Upon
entering the program, the user is presented with a screen similar to Figure 6.5 that
asks which of the functions shown there the user wishes to perform.

Suppose the user chooses to diagnose, prescribe, and plan maintenance tasks
and selects both the valve body and operator as the locations of the diagnosis to be
made. See Figure 6.6.

He would then select both by positioning the cursor next to “valve operator,”
then next to “valve body.” The user could then select which problems were present in
each area. For example, the user might indicate that there is a problem with both the
valve operator and body and that the valve operator exhibits excessive handwheel
effort while the valve body may have both a binding valve stem and leakage between
the valve disk and seating area. See Figures 6.7 and 6.8. The knowledge base would
then recommend actions to correct these problems. See Figures 6.9 and 6.10 for the
system’s diagnosis.

The system would then generate a form similar to that shown in Figure 6.11 to
aid in the completion of the CMAR form. The form of the output was chosen to
mimic that of the CMAR report so the staff could more easily fill in the CMAR from

the print out.



Valve Maintenance Planning Assistant

belect your requlred task:

Determine maintenance planning Information for a valve
Diagnose problems and prescribe maintenance for a valve

—="» Diagnose problems, prescribe malntenance, and determine
maintenance planning information for a valve

Edit the valve data base
Run the batch testing knowledge base

Leave knowledge base

2 UNKN 3 STRT 6 WHY? 8 MENU 9 HELP 10 EXIT

Figure 6.5: System Main Menu
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IEVALVEL

Select all the valve systems whlch contain the
parts that are exhlbltling problem symptoms

valve body

valve operator

After making your selectlons press F4 for DOMNE

2 UNKHN 3 STRT 4 DONE G WHY? 8 MCEHU

9 HlELP

10

EXIT

'Figure 6.6: Selection of Locations for Diagnosis




Valve Diagnosis Knowledge Base

Select all the problem symptoms evident in
the valve operator

——» Excessive handwheel effort
Stalled motor
Reversing starter contacts fail to open
Continued tripping of overload relay
" Restriction in the movement of the reversing starter

The sealtite between the operator and motor is broken

After making your selections press F4 for DONE

2 UNKN 3 STRT 4 DOHE 6 WHY? 8 MENU 9 HELP 10 EXIT

Figure 6.7: Selection of Valve Body Symptoms




valve Dlagnosls Knowledge Base

Select all the problem symptoms evident in
the valve body

==+ Excessive handwheel effort

Leakage between valve body and bonnet area
Leakage through stuffing box and around stem
There is no more packing adjustment left
Valve stem is binding when operated

Leakage between valve disc and seat area

After making your selections press F4 for DONE

2 UNKN 3 STRT 4 DONE 6 WHY? 8 MENU 9 HELP 10 EXIT

—— - s G s R e s

Figure 6.8: Selection of Valve Operator Symptoms




IEVAILVEL
-Worn seatlng or forelgn matter on the seat has been
dlagnosed from the symptom of leakage between the
valve dlsk and seat area. The malntenance action
prescriptlon Is to check the seat for forelgn matter
and remove {t. IF no forelgn matter ls present, the
malntenance prescription is to grind the seat.

The gland nuts have been dlagnosed as being elther too
tight or unevenly tightened from the symftom of

valve stem binding. The malntennnce actlon prescription
{s to adjust the gland nuts (packing adjusted).

2 CONT 1 STRT 6 WIIY? 7 PRHT B MENU 9 IIELP

10 EXIU

Figure 6.9: Diagnosis of Valve Body Symptoms
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IEVALVEL

- The stem has been dlagnosed as needling lubrlcatlon
slnce the handwheel exhlblted excesslve effort.

2 conr 3 sTnr 6 Wiy? 7 prur s NENY 9 NELP 10 EXIT

Figure 6.10: Diagnosis of Valve Operator Symptoms




82

Valve Maintenance Planning Knowledge Base
4% Valve MHalntenance Planning Results #4#
Valve ID: MO 2000 P&ID: M-120 @-2
1
QL: 1 prl conkt: N NPRDS: Y MIF:
tagout: y req for S/U: 7 cepy ¥ procf1l:
JELL: Y heavy load: H ASHME: Y procf2:
RWP: NOT REQ fire prot: M EQ: ¥ procl3:
---------------- post-maintenance requirement -—-----eooo—____
BTC stroke close test i{s required

PIT position indication test is required

Class 2 System Functional Test is required

2 CONT 3 STRT 6 WHY? 7 PRNT B MENU 9 HELP 10 EXIT

Corrective Maintenance Action Request ((CMAR) Forin as Presented

Figure 6.11:
by the System
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The current database includes approximately 120 safety-related motor-operated
valves (MOV's). It includes the information listed as well as other information nec-

essary to determine the appropriate post-maintenance tests:

o The valve's P&ID coordinate which tells the location of the valve.

e The valve's diameter in inches.

e The valve's maximum stroke close time.

e Whether the valve is in primary containment.

e The valve type (although currently all valve types are MO or motor-operated).
e The valve's in-service testing (IST) class.

e The normal position of the valve (open or closed).

e Whether the valve is in a harsh environment.

o Whether a radiation work permit is needed to work on the valve.

6.5 Incorporation of Multiple Symptom Diagnosis

After entering the valve ID when requested by the system, the user is asked
whether single symptom or multiple symptom diagnosis is required. Currently this
option is available for the diagnose and prescribe maintenance menu selection. If
multiple-symptom diagnosis is chosen the knowledge base chains to IESYMP1.PRL.

The user is presented with a series of symptoms and asked whether they apply

to the case at hand. Each symptom has a series of possibilities as to what could
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be causing the problem. If a symptom is totally unrelated to a given problem, then
the problem is given a C'F of zero for that particular symptom. In a similar fashion,
a symptom could indicate to the system developer that a certain problem is not
likely. In this case, the likelihood of the problem would be given a negative CF for
the given symptom. As an example, some typical rules from IESYMPL.PRL (the

multiple-symptom C'F program) are given below.

RULE for leaking packing

IF leaking packing present
THEN leaking packing

AND paktite:=-0.90

AND stembind:=0

AND opencirc:=0

AND ACTIVATE storcf.exe

DISK cf.dat
SEND paktite
SEND stembind
SEND opencirc

AND DISPLAY leaking packing display
AND FILE leaking packing display
ELSE NOT leaking packing

AND paktite:=0.90

AND stembind:=0

AND opencirc:=0

AND ACTIVATE storcf.exe

DISK cf.dat

SEND paktite

SEND stembind

SEND opencirc

AND DISPLAY not leaking packing display
AND FILE not leaking packing display

RULE for stalled motor
IF stalled motor present
THEN stalled motor



AND
AND
AND
AND
DISK
SEND
SEND
SEND
AND
AND
ELSE
AND
AND
AND
AND
DISK
SEND
SEND
SEND
AND
AND

paktite:=0.6
stembind:=0.4
opencirc:=0
ACTIVATE storcf.exe
cf.dat

paktite

stembind

opencirc

DISPLAY stalled motor display
FILE stalled motor display

NOT stalled motor '
paktite:=-0.6

stembind:=-0.4

opencirc:=0

ACTIVATE storcf.exe

cf.dat

paktite

stembind

opencirc

DISPLAY not stalled motor display
FILE not stalled motor display

The first rule states that there is a 90% confidence that the packing is not too

tight based on the symptom of leaking packing. If leaking packing were not present,

then the rule states that there is a 90% confidence that the packing is too tight.

Similarly, the second rule states that there is a 60% confidence that the packing is

too tight and a 40% confidence that the valve stem is binding based on the symptom

of stalled motor. If stalled motor is not present then the confidence value for packing

too tight is -60% and the confidence value of binding valve stem is -40%.

Based on the two symptoms leaking packing and stalled motor, the combined

('Fs based on these two symptoms would be:

leaking packing = -0.75
valve stem binding = 0.40



open circuit = 0.00

as discussed in Section 3.6. The zero C'F on open circuit indicates that no conclusions
can be reached regarding this problem based on these symptoms.

The confidence factors presented in the above rule and in the remainder of the
knowledge base are for illustrative purposes only. Because of the time limit involved,
and the difficulty sometimes presented in assigning meaningful confidence factors,
the C'Fs used in the [IESYMP1 knowledge base are for demonstrative purposes only
and should not be construed as being accurate in a real-life situation.

See Appendix C for a listing of the multiple-symptom knowledge base

[ESYMP1.PRL and the associated Fortran programs which it calls.

6.6 Conclusions and Suggestions for Future Work

The expert system will show its usefulness in the time it will save in maintenance
planning and diagnosis. Suggestions by the Duane Arnold staff have helped to expand
the scope of tests covered by the maintenance planning section and have improved
the usability of the program.

The current system includes about 120 motor-operated safety-related valves. It
can prescribe which post-maintenance tests need to be performed on the valve based
on the maintenance done on it. The system is also capable of diagnosing common
problems with the valve body and operator. If the diagnosis function is selected, the
system can prescribe the necessary post-maintenance tests based on its diagnosis of

the problem.

While the maintenance section is the most developed at this time. future plans
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should include expanding and refining the diagnosis section of the knowledge base.
Work should also be done in expanding the number of symptoms with associated
problem CFs that are present in the multiple-symptom knowledge base, as well as
determining accurate confidence factors for these cases. The knowledge base, or one
similar to it, could also be expanded to cover other component areas.

As mentioned in Chapter 5, work could be done studying the feasability of
incorporating some sort of fuzzy logic or Dempster-Shafer method into an expert

system 1n order to compare its results to those of the present expert system.
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