
Neural networks using homotopy continuation methods

by

Joseph C. Chow

A Thesis Submitted to the
Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Department: Electrical and Computer Engineering
Major: Electrical Engineering

Signatures have been redacted for privacy Signatures have been redacted for privacy

Iowa State University
Ames, Iowa

1991

11

TABLE OF CONTENTS

ABSTRACT

CHAPTER I. INTRODUCTION

1.1. Introduction
1.2. Thesis Outline

CHAPTER II. NEURAL NETWORKS

2.1. Background
2.2. Multilayer Perceptron Network
2.3. The Learning Procedure
2.4. Gradient Descent Method
2.5. Characteristics of Weight Space

CHAPTER III. HOMOTOPY METHODS

Page

IV

1

1
5

7

7
12
14
18
20

22

3.1. Introduction 22
3.2. Homotopy Theory 23

3.2.1. path description 24
3.2.2. degree theory 28

3.3. Homotopy Path Existence and Finiteness 30
3.4. Types of Homotopy Functions 34

3.4.1. all-solution homotopy method 34
3.4.2. single-solution homotopy method 35

3.5. Applications of Homotopy Methods in Various Fields 36
3.6. Homotopy Algorithms 37

m

CHAPTER IV. APPLICATION OF HOMOTOPY 42
METHODS TO NEURAL NETWORKS

4.1. Introduction 42
4.2. Generalized Polynomial Approximation Method 43
4.3. Fixed-Point Method 47

CHAPTER V. MULTI-RESULTANT METHOD 49

5.1. Introduction 49
5.2. Homogeneous System 49
5.3. Neural Network Example 53

CHAPTER VI. RESULTS AND DISCUSSIONS 55

6.1. Introduction 55
6.2. Problem Fonnulation 57
6.3. Discussions 60

CHAPTER VII. SUMMARY AND FUTURE 64
WORK

REFERENCES 67

ACKNOWLEDGEMENTS 72

APPENDIX A. NEURAL NETWORK TRAINING 73
PROGRAM USING FIXED-POINT
HOMOTOPY METHOD

IV

ABSTRACT

Neural networks offer a powerful tool for performing classification tasks

due to their ability to generate complex decision surfaces. Unfortunately, in

most realistic cases where the decision surface separating the data set is highly

nonlinear, the classification obtained most likely represents a suboptimal

solution. This is largely due to the fact that search techniques employed by

training algorithms may converge to local minima.

This thesis proposes the application of the homotopy continuation method

for training neural networks. Homotopy continuation methods overcome the

disadvantages such as long training time and the convergence to local minima,

encountered with the conventional training methods. The homotopy

continuation method is a globally convergent numerical method where a

homotopy function describes a continuous deformation of a simple

perfonnance surface into the surface associated with a complex, nonlinear

optimization problem. The validity of the proposed method is demonstrated by

means of an example where the conventional backpropagation method

converges to a local minimum resulting in a large classification error (>50%).

The homotopy continuation method, however, results in accurate

classification perfonnance without excessive computational effort. Preliminary

results indicate the potential of this approach with respect to both training time

and classification accuracy.

1

CHAPTER I.

INTRODUCTION

1.1. Introduction

Information handling has become an issue of great concern to modem

society. For instance, the medical industry requires information to be

processed efficiently in order to ensure prompt and accurate medical

diagnosis. Similarly, the banking industry demands a fast information

handling system to accommodate the great volume of transactions. A major

step associated with the design of modem information systems, however, is

automatic pattern classification.

Pattern classification is considered one of the fundamental attributes of

human beings [1]. Human beings are faced with classification decisions every

waking moment. Such a decision making process demands the identification

and classification of spatial and temporal patterns. Some examples of temporal

patterns include speech, electrocardiogram, and target signatures. On the other

hand, examples of spatial patterns include characters, images, and weather

maps. In general, pattern classification is a problem of discriminating the input

data patterns among population members. Most of the conventional pattern

classifiers utilize this concept in achieving the desired classification. The

primary function of a pattern classifier is to render decisions concerning the

class membership of the input patterns. In order to accomplish this, a decision

2

or discriminant function is necessary. These decision functions represent

decision surfaces partitioning the feature space, needed for correct

classification.

One of the simplest approaches in designing a pattern classifier is through

the use of distance functions. This approach utilizes the concept of clustering

in forming decision surfaces. Clusters with dissimilar attributes constitute

different classes. The similarity in input attributes can usually be measured in

terms of the Euclidean distances among the input patterns; the shorter the

Euclidean distance, the closer the attributes. Pattern classifiers such as

maximum distance classifier, K-means classifier, and isodata algorithm [1] are

all based on the distance function theory.

A second class of pattern classifiers is based on an adaptive approach

which relies on the process of training. Trainable pattern classifiers are

generally taught by means of iterative learning processes. A typical learning

algorithm involves presentations to the classifier with training patterns and

corresponding desired outputs during the training phase. The classifier is then

taught iteratively to associate the sample input patterns with their

corresponding desired outputs. An example of such a type of classifier is the

artificial neural network.

Work on artificial neural networks began over 40 years ago. Pioneers of

this work include McCulloch and Pitt [2], Hebb [3], and Rosenblatt [4]. More

recently, Hopfield and Rumelhart [14] [46] revived interest in the subject by

introducing new network topologies and training algorithms. The work was

primarily motivated by the desire to mimic the human brain. The recent

realization of human-like performance in speech and image recognition helped

3

rekindle interest in neural networks [5]. In particular, neural networks attempt

to mimic the architecture of the human nervous system.

The biological nervous system consists of neuron cells which represent

the basic element in the cognitive learning process. These neuron cells are

interconnected with each other so information can be prop~gated. The

propagation process can be accomplished by either firing or resting of each

neuron cell. Artificial neural networks consist of densely interconnected

neuron-like elements called nodes. These nodes are interconnected via weight

factors which signify the importance of a connection from one node to another

node. Artificial neural networks are seen to be particularly effective in

applications which require high computation rate, such as image and speech

recognition. Studies have shown that classification rates as high as 100% have

been attained in a two-class image identification problem [6].

Neural network structures are primarily classified based on the network

topology and the training algorithm employed. The class of neural networks

most commonly used for generating complex decision surfaces, useful for

classification, is the multilayer perceptron network.

During the training phase, the network's interconnection weights are

updated iteratively to minimize the merit error function [7]. The error function

is therefore, employed as the principal criterion in determining whether a

network has been properly trained. As a result, it is highly desirable to ensure

that the minimum obtained for the error function be a global minimum point

rather than a local minimum point

Traditional algorithms used for training employ local searching techniques

[5]. As an example, the commonly used backward error propagation

4

algorithm utilizes the gradient descent method where the performance is

dependent on the initial starting point If the initial point is in the vicinity of a

local minimum, the solution will most likely converge to the local minimum

[8] as illustrated in Figure 1.1. Another disadvantage of the gradient descent

method is that under certain conditions, the iterative process may oscillate

between two points and fail to converge.

Local minimum

- Global minimum

1

Figure 1.1 Local search technique

These drawbacks can be overcome by using homotopy continuation

methods which are global search methods. These methods are globally

convergent and in the case of polynomial systems offer an exhaustive set of

solutions [9]. The term globally convergent implies that regardless of the

location of the initial points, homotopy methods guarantee convergence to a

solution. Such a solution may not, however, represent the desired solution.

Solution exhaustive implies that all solutions to a given system can be found.

This thesis presents an innovative approach for training multilayer

perceptron neural networks using the homotopy continuation method.

Continuation methods are used extensively for solving optimization problems

5

in several fields. The proposed technique offers the globally optimal solution

which usually translates into better classification performance.

1.2. Thesis Outline

The rest of the thesis is organized as follows:

Chapter 2 presents the background information needed to understand the

operation of neural networks. Starting with a brief discussion of biological

neurons, a comparison between a biological neural system and the artificial

neural network is presented. Various types of artificial neural networks are

described with special attention focused on the multilayer perceptron model.

The operation of the multilayer perceptron and the backward error propagation

technique, commonly used for training this network are described. Issues

such as training time and convergence of local minima are also discussed.

Chapter 3 introduces the fundamental concepts of homotopy continuation

methods. The discussion includes both the theoretical basis and the numerical

procedure employed for arriving at the solution. The homotopy concept

involves deformation of a simple system with known solution into a more

complex system whose solution is desired. The method defines a family of

paths which track the solutions of the known system to the solutions of an

unknown system, thus obtaining the desired solutions. Conditions for path

existence and path finiteness are also presented.

Chapter 4 describes the original contribution of this research involving the

application of homotopy continuation methods for training neural networks.

6

Several approaches based on various types of homotopy methods along with

the difficulties encountered with each approach are presented. Following a

discussion of the polynomial approximation for the sigmoidal activation

function of the network nodes, a training algorithm using the fixed-point

homotopy method is presented.

Chapter 5 describes an alternate method capable of computing all real

solutions to nonlinear minimization problems. The polynomial resultant matrix

method is discussed with regard to both the advantages as well as the practical

computing aspects which limit the application of the method for training neural

networks.

Chapter 6 presents simulation results using the fixed-point continuation

method. Results obtained for a few two class problems confirm the validity of

the proposed homotopy methods for training neural networks.

Finally, Chapter 7 presents some concluding remarks and areas of future

research.

7

CHAPTER II.

NEURAL NETWORKS

2.1. Background

Artificial neural networks have drawn considerable attention as a powerful

approach for perfonning classification tasks. Initial work on neural networks

was motivated by a desire to mimic the human nervous system in an attempt to

emulate the human learning process [10] [11]. The underlying concept of

neural networks can be more easily understood by first examining the human

nervous system.

Biological nervous systems consist of a network of neuron cells

communicating with each other and with various parts of the body [12]. A

typical neuron cell is illustrated in Figure 2.1.

Dendrite

Figure 2.1 Biological neuron cell [12]

8

A neuron cell consists of a cell body called the soma, several cell

extensions called dendrites, and a single nerve fiber called the axon. Dendrites

of a cell are used to receive information from other cells. The axon, on the

other hand, is used to propagate information to dendrites of neighboring cells.

The junction where dendrites and axons meet is called the sypnapse. Inside

and around the soma are various types of ions such as sodium (Na+), calcium

(Ca++), potassium (K+), and chloride (CI-). When the membrane of the soma

is stimulated by a voltage change, it allows ions outside of the membrane to

pass across the membrane and change the internal state of the soma. The

voltage change in the cell body often results from information received by the

dendrites. In other words, the neuron is excited by the received information

through a voltage change in the cell body. This excitation process is called

sypnaptic firing. A neural network is formed by the interconnections of all the

neurons via the axons and dendrites. A single neuron can be modeled as a

processing unit that sums up all of the inputs and passes the result through a

threshold function. If the sum exceeds the threshold level, then an output will

be produced. The output produced is then passed on to other neurons through

an axon.

Artificial neural networks attempt to mimic the biological structure using

the same framework. These networks consist of simple computational nodes

and interconnecting weights. The nodes are often characterized by a nonlinear

function called the nodal activation function. The nodal activation function is

similar to that of the soma in that it takes the sum of all the inputs from other

nodes and determines whether a firing process should occur. The sum of the

inputs is passed through a nonlinear function which bounds the output

9

between one and zero, corresponding to the firing and non-firing state of the

biological counterpart. Typical nonlinear activation functions are shown in

Figure 2.2.

Sigmoid function

y

1.0

_____ ... ·1.0

Hard limiter function

y

Soft limiter function

Figure 2.2 Nonlinear nodal functions

10

The interconnecting weights are used to detennine the strength of a connection

from one neuron node to another. This weighting scheme, in tum, plays an

important role in the overall network configuration, and can be compared to

the sypnaptic strengths of neurons.

Numerous neural networks have been introduced by researchers over the

years, each suitable for a specific type of application problem [5]. Neural

networks can be classified based on the architecture, the nodal activation

function and the learning algorithm. The taxonomy of six major classes of

neural networks are illustrated in Figure 2.3.

Neuraf NeI Classifiers for FIXed Patterns

Bi1a.ry Input Contiooous·Values Input

~rvIsed Unsupervised SUpervised Unsupervised

~ ~ \
HoIfIeldNet ~ CiJP8f*ld ~ J.luaJayer Kohonen

Net Grossberg PartelitO" Self-organizing

CIassf ... Feature Maps

1 1 1 1 1
~lIlJm Leader Gaussian k·Nearesl K·Means
Classifier CllsIerillJ Cfassiifat' Ne~hbor. Ckls1ering

Algcrihm Mixture Algorithm

Figure 2.3 Taxonomy of neural networks [5]

11

Neural networks can be divided according to the type of inputs which can

be binary or continuous valued. These networks can be classified further

based on their training scheme which are in general, supervised, or

unsupervised. In supervised training schemes, the networks are provided with

the desired input/output pairs during the training procedure to achieve the

desired classification [4] [14]. Unsupervised training usually results in

generation of vector quantizers that can be used to form clusters of the input

data [15] [16] [17].

The perceptron network is the primary focus of this thesis for two

reasons. First, the perceptron network possesses the ability to handle

continuous valued inputs as opposed to only binary inputs. Second, the

perceptron network utilizes a supervised training scheme designed to train the

network in a systematic manner. The perceptron network originated from the

early work in bionics. In the 1950's, Rosenblatt [4] developed the perceptron

model, which many researchers felt was the natural model for learning

machines. This model employs the reward and punishment approach to train

the network. The perceptron algorithm is adaptive and is relatively flexible and

robust.

The simplest model of the perceptron networks is the single layer

perceptron. This network consists of one input layer and one output layer.

During the initial development of this network, much attention was drawn

with regard to its ability to classify simple pattern sets. However, single layer

perceptrons are only capable of distinguishing pattern sets which are linearly

separable. In most realistic applications the data sets are not linearly separable,

and single layer perceptron networks are, therefore, ineffective.

12

Multilayer perceptron networks, on the other hand, are capable of

generating highly nonlinear decision surfaces. These networks employ one or

more intennediate layers of hidden nodes. In addition, the use of nonlinear

nodal activation functions allows for the generation of nonlinear decision

surfaces. The multilayer perceptron network was not used commonly in the

past due to the lack of effective training algorithms. However, new training

algorithms developed in recent years have resulted in the widespread use of

the multilayer perceptron network. The network is discussed in greater detail

in the following section.

2.2. Multilayer Perceptron Network

The multilayer perceptron network generally consists of an input layer of

nodes, one or more hidden layers of nodes, and one output layer of nodes [7]

as illustrated in Figure 2.4.

Layer j

Layer i

Layerk

Figure 2.4 Simplified multilayer perceptron network

13

Connections between the nodes via weights are allowed from one layer to

another layer. Although the layers need not be adjacent, connections within

the same layer is forbidden. All units within a layer process data in parallel,

but the outputs of different layers are calculated sequentially starting from the

input layer and moving forward or upward to the output layer. Each node j in

a layer k+ 1 performs the following computations:

Step 1:

Nk

Xj = L Wij Yi
i=l

where Yi

Nk

is the output of nodes in layer i.

is the number of nodes in layer i.

are the interconnection weights. w" IJ

Step 2:
y' = f(x') = 1

J J 1 + e-(xj-t6j)

(2.1)

(2.2)

where 9j is a bias variable. This nonlinear function is primarily used to limit

the output of a node between the values of 0 and 1 as shown in Figure 2.5. In

addition, the sigmoid function of equation (2.2) has the advantage of being

differentiable.

The artificial neural network basically operates in two modes: the

classification mode and the training mode. In the classification mode, data

flows only in the forward direction.

14

y

Figure 2.5 Sigmoid function

The input patterns are presented at the input nodes and the output of each node

is propagated forward to the nodes of the next layer until an output is

produced at the output node. The output, typically, signifies the classification

of the input pattern. In the training mode, data flows in both, forward and

reverse direction. The training data is first presented to the input nodes which

produce an output at the output node, as is done in the classification mode.

The network output, is then compared with the corresponding desired output

and the error measured between the two is then used to adjust the weights in a

way that minimizes the error.

2.3. The Learning Procedure

The overall objective of the learning process is to obtain a set of

interconnection weights which will result in the actual output being as close as

possible to the desired output. In order to accomplish this, a measure of error,

E, is first defined by

E = ~ L ~ (Yj(c) - dic))2
C J

where

c is the input sample case index

j is the output node index

y is the actual output

d is the desired output

15

(2.3)

In order to minimize the error by adjusting the weights, it is necessary

to compute the partial derivative of E with respect to each weight in the

network. Since the training process entails propagating the error backwards

from the output layer to the input layer, the backward pass starts by

computing

aE
--y·-d·
aYj - J J

for a particular value of c. Applying the chain rule,

From equation (2.2), we have

ay·
_J = y' (1 - y.) ax' J J J

(2.4)

(2.5)

(2.6)

16

Furthennore, minimization of the error with respect to the weights, wij'

results in the equation

aE _ aE aXj _ 0
aw·· - ax· aw·· -IJ J IJ

which reduces to

For the output of the ith unit, the error contribution can be shown to be

which reduces to

and

Figure 2.6 illustrates the above steps graphically.

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

17

Output Layer

aE aE
aWij = aXj Yj

Figure 2.6 Graphical representation of learning equations [7]

This process is repeated until all layers have been reached so that all of the

weights in the network are corrected. In addition to the interconnected

weights, the bias variables used for enhancing the output convergence rate can

also be adjusted to achieve the optimal solution. For the output layer nodes,

we can estimate the bias value by solving the equation

(2.12)

Similarly for the hidden layer nodes, we have

18

(2.13)

By solving equations (2.7), (2.11), (2.12), and (2.13), a minimum error

value can be obtained.

The computational effort required for the backward pass is comparable

to the forward pass since it is linear in the number of connections and the

mathematical operations are similar. In addition, equations (2.4) and (2.9) in

the backward pass play the same role as y in the forward pass. The only

difference is that the sum is passed through a nonlinear function in the

forward pass whereas in the backward pass it is multiplied by equation (2.6).

In general, the connection weights are updated for each input-output

pair. This method requires no additional memory for the storage of the

derivative values. An alternate method, of course, is to sum the errors over all

input-output cases before the weights are updated.

2.4. Gradient Descent Method

The iterative procedure for determining the error minimum, based on

the gradient descent method, is shown in Figure 2.7. This weight correction

scheme calculates the gradient of the error curve and corrects the

interconnected weights by an amount, ilw, proportional to the gradient value.

This correction technique will move the weight values in the direction of the

error minimwn.

19

E

w

Figure 2.7 Steepest descent method

The incremental change in each weight is proportional to the accumulated

derivative of error with respect to the weights. For example,

oE
Il.w = -'Y­

ow (2.14)

where 'Y is a gain tenn. To increase the convergence rate of this method, a

momentum tenn, <l, can be added to give

oE
Il.w(t) = -'Y ow(t) + all.w(t-l)

(2.15)

where t is the iteration number. The momentum tenn, <l, is generally varied

from 0 to 1 in order to detennine the relative contribution of the gradients with

respect to the weight change.

A numerical algorithm employing the gradient-descent method for

training neural networks can be found in [5]. It is worthwhile to note that in

order to improve the convergence rate for the gradient method, several

20

additional parameters can be added [5]. These parameters include a gain term,

y, and a momentum tenn, a, as described earlier. Typically, these parameters

have to be determined experimentally thereby, contributing to an increase in

the complexity of the training process.

2.5. Characteristics of Weight Space

The dimensionality of the weight space is related to the number of

weights in the network in that each weight in the network corresponds to a

dimension in the weight space. A convenient way to understand the learning

procedure is to observe the movement on the error surface in a

multidimensional weight space. The error surface comprises of local

minimums, saddle points, and a global minimum. The objective is to

determine the global minimum point so as to achieve optimum classification.

A major drawback of this technique is related to the fact that the error

minimum achieved is highly dependent on the initial starting point, as shown

in Figure 2.8. In this one dimensional example, initial weights wa and wb will

both converge to local minima whereas w c will converge to the global

minimum. As a result, this method will perform poorly in cases where more

than one minimum is present. In addition, it is also possible that the method

will simply oscillate between two points and fail to converge completely. ill

Figure 2.8, the solution oscillates between the points wd and we. This calls

for the use of alternate search methods which are described in the next

chapter.

21

E

local minimums global mimimum

w

Figure 2.8 Convergence of gradient method (l-D case)

The effects of the gain and momentum terms have a direct impact on the

physical movement on the error surface. Unfortunately, in most practical

neural networks with large number of weight connections it is difficult to

visualize the impact. One way to illustrate the error curve in a high

dimensional weight space is to plot the movement of the error surface in

significant directions of weight spaces, and compare the results with error

surfaces plotted along random directions. This, in tum, aids the interpretation

of the error surface movement in a high dimensional weight space.

22

CHAPTER III.

HOMOTOPY METHODS

3.1. Introduction

Homotopy continuation methods are numerical techniques used to

detennine the zeroes of a system of nonlinear equations [18] [19]. The

underlying concept of the method involves identifying a simple system with

known solution and slowly defonning it into the desired system with

unknown solutions. During the defonnation process, a family of paths is

dermed from the solutions of the known system to the solutions of the

unknown system [20]. The continuation method is a numerical procedure

used to track this solution path, where every point on the path represents the

solution of the defonned system, for a particular value of the defonnation

parameter. When the known system is completely defonned into the unknown

system, the desired solutions to the unknown system are obtained. Unlike the

gradient based numerical methods, such as the Newton-Ralphson and the

steepest descent methods [21], homotopy continuation methods are globally

convergent and solution exhaustive. Globally convergent implies that the

method will converge to a solution irrespective of the location of the initial

starting point Solution exhaustive signifies that all solutions to a desired

system can be found. However, several conditions must be met for the

solution exhaustive property to hold. First, the system of interest must

23

consist of polynomial equations of known degree. Second, the initial system

must also consist of polynomial equations with the same degree as the

unknown system. In addition, the initial system should have no common

roots. This property was proved by Garcia and Zangwill in 1977 [22] and

independently by Drexler in 1978 [23]. Information describing the

relationship between Newton's method and homotopy method are discussed

in [24] and [25]. Other homotopy methods and their applications can be found

in [26], [27], [28], [29] and [30].

In the following sections, issues associated with the theory and

numerical implementation of homotopy continuation method are discussed.

3.2. Homotopy Theory

The homotopy function h(x,t) is defined as [31]:

h(x,t) == (1 - t) g(x) + t f(x) (3.1)

where t is the homotopic tracking parameter, g(x) is the system with known

solutions and f(x) is the system of interest whose solutions are desired. As the

parameter t varies from 0 to 1, h(x,t) deforms the known system, g(x), to the

the desired system, f(x). For example, at t = 0, h(x,O) = g(x) = 0 gives the

initial starting solutions of the known system.When t = 1, h(x,1) = f(x) = 0

gives the desired solution of the system of interest. The intermediate values of

t between 0 and 1 correspond to the different deformed functions, h(x,t).

24

The homotopy function can be generalized into a vector fonn,

h(A,t) = t f(A) + (1-t) g(A) (3.2)

where

h(A,t) = [h 1 (A,t), , hn(A,t)]

As t varies from 0 to 1, a family of paths is tracked from the solutions of

g(A,) = 0 to the solutions of f(A) = O.

3.2.1. path description

A typical continuation path for a one dimensional function is illustrated

in Figure 3.1. The continuation path is tracked by solving h(x,t) = 0 at each

incremental step oft. The continuation path, shown in Figure 3.1, is seen to

be continuously differentiable in space. Mathematically, the path can be

described by a set of differential equations. Since every point (x,t) on the path

satifies the equation h(x,t) = 0, the derivative of the homotopy function with

respect to the tracking parameter, t, is equal to zero.

25

x

Figure 3.1 Monotonic homotopy path

x denotes a zero of g(x)
Xl denotes a zero of f(x)

The homotopy differential equation is obtained by differentiating

equation (3.1) with respect to the tracking parameter,

! h(x(t» = Hx(X(t»dx~t) = 0
(3.3)

where Hx is the Jacobian matrix of the homotopy function with repect to x.

Partitioning equation (3.3) into a block matrix form and expressing x(t) =
(ACt), t) yields,

dA,(t)

at
Hx(x(t» ~~t) = [HA,(X(t» I ~ h(X(t))] = 0

1
(3.4)

26

where H)..(x(t)) now represents the Jacobian matrix with respect to the 'A

parameters. Rearranging equation (3.4) results in,

dA(t) = _ [Hl(X(t»] -1 ah(x(t»
dt ~ (3.5)

Equation (3.5) completely characterizes the continuation path of the

homotopy function. The path is guaranteed to be continuously differentiable if

the Jacobian matrix function H'A(x(t)) of the homotopy function is of full

rank. While equation (3.5) offers a precise description of the solution path, it

has limitations when path types as illustrated in Figure 3.2 are encountered.

This figure demonstrates cases where the variation of x is not isomorphic with

t.

x

i I ____ r:

i~
i i
i I
I i

1=0 t 1 1=1

Figure 3.2 Nonmonotonic homotopy path

In this case, simply incrementing the tracking parameter t to solve the

homotopy function will not yield an unique solution along the path. Such a

case is shown in Figure 3.2, for tl < t < t2, where there are multiple values of

27

x. The difficulty arises in "bending" the curve back to accommodate the

turning of the solution path. To alleviate this problem, the tracking parameter

is changed from t to the arc length, s, of the curve. Since the arc length is

strictly a monotonically increasing function with respect to the homotopy

parameters, the homotopy tracking parameter, t, can be dec.reased to allow the

solution path to bend back.

The homotopy solution path using the arc length, s, as the tracking

parameter can be described by differential equations similar to equation (3.4).

Let xes) be the point in the solution path after traveling a distance, s.

Representing xes) as

Xes) = (,,-(s),t(s»

We have as before

dh(s) == 0
ds

By applying the chain rule to equation (3.7) results in,

HsdK.=O
ds

(3.6)

(3.7)

(3.8)

where Hs is the {n x (n+l)}Jacobian matrix ofh. The matrix elements ofHs

are defined as

28

dh .. _ dhi(X)
I.j- dx. i=l, ,n;j=l, ,n+l

J (3.9)

In terms of the A parameters of equation (3.6), equation (3.8) can be

rewritten as

dx
H). t(x(s» -d = 0

• S (3.10)

Equation (3.10) can be solved in a manner similar to equation (3.3) to

gIve

[dxd(S)] . = _ [HA.,t(X(S»]-l . ah~X~S»
S -I -I XI (3.11)

where A-i denotes the matrix A with its ith column removed. The solution path

can now be completely described by equation (3.11).

3.2.2. degree theory

Homotopy continuation method is particularly useful when the

unknown system consists of polynomial functions. This is largely due to the

fact that for polynomial systems, the solutions obtained using the homotopy

methods are theoretically guaranteed to be exhaustive. In general, exhaustive

solution implies that all solutions to the unknown system will be found. The

degree of f is dermed as,

29

degree(f) = L sgn (det [Fx(x)] }
X E fl (3.12)

where f-l = {x I f(x) = 0 } represents the set containing all of the solutions to

fand

sgn [x] =[~
-1

X>O]
x=O
x<O (3.13)

The degree of a polynomial equation can be determined by simply

taking the degree of the highest tenn. Similarly, the degree of a polynomial

system can be found by taking the product of the highest order tenus of each

equation within the system [32]. For instance, let f(x) represent the

polynomial system comprising of fi(x), i = 1, , n, and let the

corresponding degree of fi(x) = di' i = 1, , n. Therefore, the total

degree, d, of the system,f, is:

n

d= IT di
i=l (3.14)

Generally, the number of solutions to a polynomial system can be

shown to equal to the degree of the system. This can be proved using

Bezout's theorem [20] which is stated below.

30

Bezout's Theorem

Let d = d 1· d2 dn be the total degree of f where f = 0 is the

polynomial system of interest Then

1) The total number of geometrically isolated solutions and solutions at

infmity, of f = 0, is no more than d.

2) IT f = 0 has neither an infmite number of solutions nor an infmite

number of solutions at infmity, then it has exactly d solutions and solutions at

infmity, including mUltiplicities.

3.3. Homotopy Path Existence and Finiteness

In order to apply the homotopy method for tracking the solution paths,

the conditions for path existence and path fmiteness must fIrst be met.

1=0 1=1 1=0 t=1

Figure 3.3 Spiral path Figure 3.4 Point path

31

1=0 1= 1 1= 0 1=1

Figure 3.5 Bifurcating path Figure 3.6 Crossing path

Some examples of non-paths are illustrated in Figures 3.3, 3.4, 3.5, and 3.6.

The path existence condition provides the criteria for the existence of solution

path and is described below.

Define

h-1 = ((x,t) I h(x,t) = O} (3.15)

as the set of all solutions (x,t) E Rn+1 to the system h(x,t) = O. Let

Hx,t=

(3.16)

32

be the Jacobian matrix of the homotopy function. If y = (x,t) is defined so that

Yi = xi for i = 1, , nand yn+l = t where x E Rn and y E Rn
+

l
, then the

partial Jacobian matrix H_i' which is an n x n matrix with the ith column

removed, is defined as,

ahl ahl ahl ahl
aYI aYi-1 dYi+1 aYn+l

H-i =

ahn ahn ahn ahn
aYI dYi-1 aYi+l dYn+l (3.17)

It can be shown that if H-i is invertible for some value of i, then a single

continuously differentiable path exists for (x,t) E h- l in the neighborhood of

(x,t) where (x,t) is a point in h-1. In other words, the solution path exists only

when H-i is of full rank for some value of i.

A homotopy solution path is said to be fmite if all points on the path

stay bounded for 0 < t < 1. For instance, if the homotopy function is path

fmite for t in [0,1) then the path can diverge only when t approaches 1. The

fmiteness property ensures that a solution to g(A) will converge to a solution

to f(A) provided that the number of solutions to f(A) is finite. In general, for

polynomial functions, the finiteness property merely restricts the form of the

equation of interest, but not the type of equation. The path fmiteness condition

is stated below.

Consider the problem of solving

i = 1, , n (3.18)

33

where x is an n dimensional vector, x = {Xl, X2,······, xn }, in the complex

space and fi: en ~ e is analytic and have all bounded solutions. Furthennore,

the system to be solved can be modeled as

(3.19)

where qi is a positive integer and Pi : en ~ C is analytic. In addition,

(3.20)

The path fmiteness property is guaranteed only if equation (3.20) is satisfied.

Rewriting the unknown function in a solvable form,

(3.21)

and defming the known function to be

(3.22)

the homotopy equation to be solved is

Qj + t (Pi (X) + 1) = 0 O~t~ 1 (3.23)

34

To solve equation (3.23), the solution paths start out at each of the

trivial solutions to Qi and follow the path until t = 1. Thus, all solutions to the

desired system are found.

3.4. Types of Homotopy Functions

The homotopy function can be defmed in many ways. Each of these

defmitions results in a different form of homotopy methods.

3.4.1. all-solution homotopy method

The all-solution homotopy function is defmed as

h(x,t) = (l-t) g(x) + t f(x) (3.24)

The all-solution homotopy scheme involves tracking of all the solutions

to a given nonlinear problem. The solutions obtained may either be real or

complex. Similarly, the initial points may also be either real or complex. The

all-solution homotopy method is an ideal technique for solving nonlinear

minimization problems since the solutions found include the global minimum

point.

The all-solution homotopy method can be easily applied to polynomial

systems since the number of solutions to the system is known a priori.

Choosing the degree of the initial known system, g(x), to be equal to the

degree of unknown system, f(x), then guarantees exhaustive set of solutions.

35

In contrast, applying the all-solution method to other types of nonlinear

problems is not trivial if the total number of solutions is not known a priori.

Furthermore, as is the case for neural networks, many applications require the

estimation of only real solutions to the problem. This restriction inhibits the

use of the all-solution homotopy method since the knowledge of the number

of real solutions to a system is seldom available. A more appropriate choice of

homotopy method for these problems is the single-solution homotopy

method.

3.4.2. single-solution homotopy methods

Single solution homotopy methods are numerical methods which track

one solution to a given problem at a time. These methods are, theoretically,

both robust and globally convergent in that they guarantee convergence

irrespective of the initial starting point. Single-solution homotopy methods are

of two types. The first type is called the flXed-point method where the

homotopy function is defined as

h(x,t) = (1-t) (x-Xo) + t f(x) (3.25)

The flXed-point method is very much similar in form to the all-solution

homotopy method. The fixed-point method can be considered as a special case

of the all-solution method where g(x) is chosen as the linear function (x-xo)'

regardless of the form of f(x). The second type of the single solution method

is called the Newton homotopy method,

36

h(x,t) = f(x) - (1-t) f("o) (3.26)

where Xo is the initial starting point.

The Newton homotopy method entails evaluating the system of interest

at the initial starting point and slowly tracking the solution until t = 1. Since

g(x) is not needed in this method, the tracking process is strictly perfonned

using the unknown system, f(x). It is important to note that in the Newton

homotopy method, only one solution is tracked at a time. A drawback of

single-solution homotopy methods is that they do not provide exhaustive

solutions. Nevertheless, the simplicity of implementation and global

convergence make them an attractive choice in many applications. In addition,

the fixed-point homotopy method can be used for tracking real solutions and

is, therefore, ideal for the purpose of this research.

3.5. Applications of Homotopy Methods in Various Fields

Homotopy continuation methods have received considerable attention

as a solution exhaustive approach for solving nonlinear optimization

problems. Nonlinear optimization problems are widely found in many

engineering applications such as digital signal processing, process control,

etc. Homotopy continuation methods have been applied to solve nonlinear

optimization problems to obtain globally optimum parameters .

In [9], Stonick calculates the minimum mean squared error pole/zero

parameter estimates using the homotopy continuation method. This problem

37

was further extended to the design of optimal infmite impulse response filters

[33] and also to obtain the auto-regressive-moving-average (ARMA)

parameter in system identification problems [34].

In [35], Watson, et al. utilized the homotopy method to determine the

DC operating point for an integrated circuit. The method is capable of solving

for the DC bias point even in the presence of nonlinear circuit components

such as diodes and capacitors.

Vasudevan, et al. [36] considered the fuel-optimal orbital rendezvous

problem. The problem consists of fmding a minimum fuel rendezvous

trajectory between two points. Although the results obtained took an order of

magnitude longer than conventional nonlinear programming algorithm,

nonetheless, valuable insights on the choice of initial known system were

gained.

Continuation methods have also been applied for determining the

frequency response curve of a nonlinear network [37]. Different

characteristics of the curve, such as the state of equilibrium, were also

obtained.

In addition, research has also been done in the areas of chemical

modeling [29] and kinematics [30] using homotopy methods.

3.6. Homotopy Algorithms

As mentioned in a previous section, two different formulations of the

homotopy functions are used, based on the monoticity of the solution path

with respect to the tracking parameter. In the case where the tracking

38

parameter t is monotonically increasing with respect to the solutions, the

numerical algorithm is described below.

1) Set h(x,t) = (1-t) g(x) + t f(x)

2) Solve for h(x,t) = 0 using Newton's method

3) 1ft = 1 go to step 6)

4) Increment t by a small incremental step

5) Goto step 2)

6) Solutions obtained for f(x) = 0

In the case of problems where the solution path is nonmonotonic, the

tracking parameter used must allow the value of t to decrease. In this case, the

arc length, s, of the solution path is typically used due to its monoticity with

respect to the homotopy parameter. The path is tracked by first calculating the

tangent of the curve and a predictor- corrector numerical scheme is then used

to take an incremental step in the direction of the tangent [38]. A predictor­

corre~tor scheme is illustrated in Figure 3.7. The incremental step size

depends on the degree of steepness of the curve. A bigger incremental step is

taken when the curve is flat (ie. tangent value is small) to predict the solution

to the function. A corrector scheme is then used to adjust the predicted value

back to the true solution path. In instances where the curve is fairly steep, a

smaller predictor step is taken to prevent solutions from diverging. The same

corrector scheme can also be applied to adjust the predicted value. A simple

algorithm utilizing the predictor-corrector method is illustrated below.

39

y

Predictor slep

x

Figure 3.7 Predictor-corrector scheme

The homotopy function in terms of the arc length, s, is given by

h(s) = h(x(s» = (1 - l(S» g(x(s» + l(S) f(x(s»

The step by step procedure is as follows:

1) . Set h(x,s) = (l-t(s)) g(x) + t(s) f(x)

2) Select m such that

{ m I \dxm~ > ~n~ 'v' m * n }
IclslIclSl

3) Calculate the tangent

dxm = 1
ds

(3.27)

40

[dX(S)f+
1

= [- [HxP -m ~~)I J
ds -m ~-

4) Detennine the direction of the tangent

If the inner product between the kth and k+ 1 th iteration of d~n < 0 then

5) Compute the predictor step

II [dX(S) lk+l

[x]k+l = xk + ds]
IIdx(s)Uk

ds

6) Corrector step

Solve hex) = 0 with xm fixed using Newton's method

where j and k denote the iteration numbers.

7) Repeat steps 2 through 6 until t = 1

41

The Il. in step 5 denotes the incremental step size and can be varied

depending on the steepness of the curve tangent. Other homotopy algorithms

can be found in [39].

42

CHAPTER IV.

APPLICATION OF HOMOTOPY METHODS TO

NEURAL NETWORKS

4.1. Introduction

This chapter describes the application of the homotopy continuation

method to the specific task of training neural networks. As presented in

Chapter 2, neural networks are trained by adaptively changing the

interconnection weights so as to minimize the network classification error.

Conventional gradient methods for error minimization result in convergence to

a local minimum. The objective of this chapter, therefore, is to solve equations

(2.7), (2.11), (2.12), and (2.13) using the homotopy continuation method

whereby optimum classfication performance is achieved.

The all-solution homotopy method is an ideal choice for this application

since it guarantees exhaustive solutions to the system of interest. This will

then enable the user to determine the globally optimum solution to the

problem. However, his method is applicable only to polynomial systems

where the total number of solutions is clearly defmed. The minimization

equations for the neural network application do not comprise of polynomial

functions. Rather, these equations consist of transcendental functions due to

the sigmoidal activation functions of the nodes. As a result, the number of

43

solutions cannot be detennined a priori which makes the all-solution

homotopy approach difficult to apply. The difficulty arises mainly because an

appropriate choice of g(x) cannot be made to properly track all solutions of

f(x).

Two approaches have been considered to overcome this problem. The

first approach involves modeling the sigmoid function using a polynomial

function such that the approximation is valid in a specified domain. The all­

solution homotopy method can then be used to track all solutions to the

system of minimization equations. The order of this system increases

drastically as the number of weights in the network increase. This presents

severe problems during implementation as will be discussed in detail in the

next section.

The second approach is much simpler than the first approach. Instead

of changing the nodal activation function to accommodate the use of all­

solution homotopy method, the sigmoid function is retained and a different

homotopy method is employed. The fixed-point homotopy method is used

due to both the simplicity of implementation and the global convergence

property. In addition, the fixed point homotopy method can be implemented

such that only real solutions to the system are tracked. This is especially

important in the neural network application where only the real valued weights

are considered.

4.2. Generalized Polynomial Approximation Method

In order to fully utilize the all-solution homotopy method, the nodal

44

activation function is modeled using a polynomial function to approximate the

sigmoid function such that the approximation is valid in a bounded domain

[40]. The domain is kept bounded to prevent the nodal output from diverging.

In general, there are two restrictions which must be placed on the

approximation function. First, the bounded domain should be large enough to

allow the output to adequately converge to either 0 or 1. Second, the order of

the modeling equation should be kept relatively low to reduce the complexity

of the system which is inherently high considering the number of weights in

the network. In order to meet the above criteria, the sigmoid function given in

equation (2.2) is approximated with a third degree polynomial function as

p(x) = 0.5 + 0.19745 x + 2.5224 X 10-8 X2 - 4.3917 X 10-3 X3 (4.1)

-3.8 ~ x ~ 3.8

where the bounded domain is chosen as [-3.8,3.8.]. The nodal output is

expressed as '

(

Ox < -3.8)
f(x) = p(x) -3.8 ~ x ~ 3.8

1 x> 3.8 (4.2)

Both the sigmoid function and the approximating polynomial are shown

in Figure 4.1.

The minimization equations to be solved are as shown below.

For the output nodes,

45

1.0

0.8

0.6
__ Sigmoidal function

0.4
- Approximation function

0.2

0.0 +-_IIjId~--r-....,......-,---r--,---r---r-__ --'
.{) o 2 4 6

x

Figure 4.1 Sigmoid function and approximation function

(2.7)

Similarly, for the hidden nodes

(2.11)

By substituting equation (4.1) into equations (2.7) and (2.11), it can be

shown that each equation results in a fIfth degree nonhomogeneous

polynomial function. Using the network structure given in Figure 2.4 which

contains six weights in the networks (ie. six equations in the system), the

degree of the resultant system becomes 56 = 15625. In other words, there are

15625 possible solutions for the system. Since the neural network demands

only real valued weights, the selection of g(x) is also limited to polynomial

46

functions with only real solutions. One method for generating the known

system, g(x), in general, is to randomly select 15625 unique real numbers and

forming a system of equations using these solutions. For example, for a

polynomial system consisting of six fifth order equations, the system can be

expressed in a general form as shown below:

aox~ + alX~ + a3X~ + + an-2X6 + an-l = 0

box~ + blX~ + b:3x~ + + bn-2X6 + bn-l = 0

Cox~ + CIX~ + C3xj + + Cn-2x 6 + Cn-l = 0

dox~ + dlX~ + d3X~ + + dn-2X6 + dn-l = 0

eox~ + elX~ + e3X~ + + en-2X6 + en-I = 0

fox~ + flX~ + f3X~ + + fn_2X6 + fn-l = 0

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

where Xi, i = 1, , 6 represent the unknown weights in the network, and

aj, bj' cjt djt ejt and fjt j = 0, 1, ... , n-l, represent the coefficients of the

polynomial equations. For this example, n can be shown to be 462 using

equation (2.3-9) in [1]. To fonnulate the known system, g(x), the coefficients

of the system must first be determined. The coefficients can be obtained by

substituting the randomly chosen real solutions into equations (4.3) through

(4.8) and solving the system of equations simultaneously. The resulting

overdetennined system can be solved using a least square approximation

method [42] to estimate the coefficients. However, the results obtained tend to

be extremely noisy with the signal to noise ratio being close to one, which

presents further problems. The development of a robust method for the

generation of g(x) is, therefore, necessary for the application of the all-

47

solution homotopy method for training neural networks [43].

4.3. Fixed-Point Method

The second approach considered here is more robust than the

polynomial modeling technique. This approach retains the use of sigmoid

function as the nonlinear nodal activation function [41]. The approach

employs the fixed-point homotopy method to track one solution at a time. This

method is superior to the conventional gradient methods in that it is globally

convergent. In addition, this method is much simpler to implement in terms of

computational resources. The only drawback is that the solution exhaustive

property is no longer guaranteed since the number of solutions to a system of

transcendental functions cannot be predetermined.

Consider the fixed-point homotopy function,

h(x,t) = (1-t) (x-xo) + t -f(x) (3.25)

where rex) denotes the system of equations given in equations (2.7), (2.11),

(2.12), and (2.13). To track a solution, a starting vector point Xo is picked

randomly to start the process. The tracking procedure incrementally traces a

solution path from Xo to a solution of rex). The solution obtained is used as

the weight values to calculate the actual output of the neural network. The

result is then used to determine the error corresponding to the weights

obtained. It is helpful to point out that, typically, several solutions need to be

tracked before a satisfactory answer can be attained. This is done by using

48

several of the previously tracked solutions to predict the location of the global

mmunUIn.

49

CHAPTER V.

MULTI-RESULTANT METHOD

5.1. Introduction

This chapter describes the multi-resultant method as an alternate

approach for the application of training neural networks. The multi-resultant

method is a numerical technique for detennining all real solutions to a set of

polynomial equations [44] [45]. As in many other engineering applications,

the training of neural networks requires only real valued solutions to a given

system of equations. In this case, the real valued solutions are the

interconnection weights of the network. In contrast to homotopy methods, the

algorithm does not require the generation of the polynomial system, g(x), for

obtaining the desired solution. In addition, the algorithm allows the user to

look for solutions in specific intervals of interest. The multi-resultant method

for a system of homogeneous equations is described next.

5.2. Homogeneous Systems

Consider a system of homogeneous polynomials with real coefficients,

in n variables.

50

(

fo (xo, ..••.. , Xn-t> J
rex) = : = 0

fn-t (Xo, ••.... , Xn-t) (5.1)

We then defme for each variable xi, a multi-resultant Ri(xi) = det Mi(xi) where

Mi is a large sparse matrix known as the multi-resultant matrix. It has been

shown in [47] that Ri(xi) = 0 is a necessary condition on the ith component of

any zero of f. If zi denotes zero of Ri(xi) = 0, then any zero of f belongs to

the Cartesian product

n-t
II Zi
i=O (5.2)

The actual zero points of f can be detennined numerically from the set

described in equation (5.2). Since the equation, Ri(xi) = 0, is a high order

polynomial equation, the problem of solving this equation is unstable. An

alternate solution is to replace Ri(xi) = 0 with the equivalent condition [45]

(5.3)

where v is a column vector. Equation (5.3) has been shown to be numerically

stable. The problem, thus, entails the calculation of the smallest eigenvalue of

M· (x·)TM· (x·) 1 1 1 1·

The procedure for constructing the multi-resultant matrix of a

polynomial system is best illustrated through an example. For convenience,

the variables x, y, z are used in place of Xl, x2, and x3. Consider the system

of polynomials

Po = X2 + yz - 3y2

PI = xy - 2z2

P2 = y2 + yz - xz

51

Let di be the degree of Pi. For the system in (5.4), we have

dl = d2 = d3 = 2 and n = 3.

Let

The basis for V n,L' the vector space of homogeneous polynomials in n

variables of degree L, is obtained as

(5.4)

(5.5)

The sets si are then constructed by selecting monomials that are divisible by

x? This gives

So = (x2z2, x2yz, x2y2, x3z, x3y, x4)

Sl = (y2Z2, y3z, 1', xy2z, xy3)

S2 = (z4, yz3, xz3, xyz2)

The corresponding sets, Ti' obtained by dividing si by x?, are

To = (Z2, yz, y2, XZ, xy, X2)

T} = (Z2, yz, y2, xz, Xy)

T 2 = (Z2, yz, xz, xy)

52

The muti-resultant matrix, M, is fonned by multiplying elements of Ti

by Pi and writing the coefficients in the reverse lexicographical order. For

instance, the 8th row of the multi-resultant matrix is formed by taking the

second element of T 1 (skipping over the 6 elements in TO and the first element

in TI) and multiplying it by PI to get xy2 - 2yz3. Writing the coefficients in

the reverse lexicographical form yields

ro~000001000000m

The remaining rows of the multi-resultant matrix can be built using the same

method. The dimension of the matrix is m x m where

(5.6)

and n is the system dimension. The solutions to system (5.4) occurs at the

minimum eigenvalues

53

(5.7)

The solutions to system (5.4) are obtained by numerically searching for the

minimum eigenvalue Amin(xi) over the interval Xi in [a,b] where a and bare

the interval bounds. The corresponding value of Xi is a solution to system

(5.4).

The multi-resultant method, developed by Allgower, Georg, and

Miranda, is theoretically capable of fmding real valued solutions to polynomial

systems having real coefficients. The application of this method for the

training of neural networks, again, requires the nodal activation function to be

modeled by a polynomial equation. However, the difficult task of generating a

known system, g(x), is no longer necessary. The procedure for applying the

multi-resultant method to the problem of training neural networks is described

next.

5.3. Neural Network Example

The procedure involved in applying the multi-resultant method to neural

networks is similar to that of the generalized polynomial approximation

method described in Chapter 4. The nodal activation function is modeled

using a polynomial approximation. The polynomial system to be solved is

formulated using equations (2.7) and (2.11). This system is described by

equation

54

f(w) = =0

(5.8)

The multi-resultant matrix, M, is obtained using method previously described.

A major disadvantage in applying the multi-resultant method to neural network

training is the enormous dimensions of the multi-resultant matrix. In the case

of the example given in section 4.1 where the system consists of six equations

of fifth order polynomial functions, the dimensions of the resultant matrix, M,

is obtained to be

m = (350) = 142506 (5.9)

Therefore, the resultant matrix has dimensions of 142506 x 142506. Although

the multi-resultant matrix is sparse, the computational effort involved in

calculating such a large matrix is still expensive. Hence the application of the

multi-resultant method to practical neural network structure requires the

development of numerical techniques for handling large sparse matrices.

However, the method theoretically represents an approach for finding the

globally optimum real solution of a polynomial system which is the general

objective of this thesis.

55

CHAPTER VI.

RESULTS AND DISCUSSIONS

6.1. Introduction

This chapter demonstrates the validity of the fixed-point homotopy

method for training neural networks. The perfonnance of the fixed-point

homotopy method for training a multilayer perceptron network is evaluated

using a two class problem. The set of test problems in a two dimensional

feature space with linear and nonlinear decision surfaces are shown in Figures

6.1,6.2,6.3, and 6.4. The sample patterns from the two classes used to train

the network are also shown. The neural network used to classify the above

problems is shown in Figure 6.5.

x

Decision
surface

Figure 6.1 Input sample problem #1

Class I

Class 0 Decision
surface

I

Figure 6.2 Input sample problem #2

56

aassO

x

x

Decision
Surface

Class 1

Figure 6.3 Input sample problem #3 Figure 6.4 Input sample problem #4

Y4

Figure 6.5 Experimental network

57

This network contains five interconnection weights designated

wI, , w5 as shown in Figure 6.5. In addition, two bias variables, 91 and

92, are included to improve convergence [46].91 is assigned to the hidden

node and 92 is assigned to the output node. The bias variables are adjusted

along with the weights to produce a minimum energy in the output error.

6.2. Problem Formulation

Using the nodal activation function as given in equation (6.1),

y = _--<1"--_
1 + e-(x+9)

the minimization equations to be solved for the output connections are,

Using the results in section 2.3, this set of equations reduces to

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

58

The corresponding equations for the hidden node connections are

aE _ L aE aY4(C) aX4(C) aY3(C) aX3(C) - 0
aW2 - c aY4(C) aX4(C) aY3(C) aX3(C) a W2 -

aE = L aE aY4(C) aX4(C) aY3(C) aX3(C) = 0
aW3 c ay4(C) aX4(C) aY3(C) aX3(C) aW3

which can be rewritten in the fonn

Similarly for the bias variables, we have

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

59

which can be rewritten as

The system to be solved can be fmally represented in vector fonn as

f(w) =

oE
OWl

oE
OW2

oE
OW5
oE
091

oE
092

=0

with the fIxed-point homotopy function being of the fonn

h(w,t) = f(w) t + (w - wo) (1 - t)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

60

The fIxed-point homotopy continuation method was implemented using a

numerical predictor-corrector scheme with t as the tracking parameter. The

training patterns and the same initial weights were also input to the gradient

descent method. The results are summarized in Table 1.

6.3. Discussions

The results shown in Table 1 indicate that the fIxed-point homotopy

method has considerable potential as a tool for training neural networks. The

major advantages offered by this technique are global convergence and

signillcantly lower training time.

The backpropagation algorithm has been used extensively for the

classifIcation of data. However, parameters such as initial weights, bias value,

and learning rate have to be chosen on the basis of trial and error. Very often

this results in excessive training time before the appropriate combination of

initial parameters are found. In this regard, the global convergence property of

the fIxed point homotopy method is particularly advantageous. Currently, the

fIXed-point method requires several initial points to be evaluated before the

desired solution can be obtained. However, this problem can be overcome

once the all-solution homotopy method is implemented. The all-solution

homotopy method allows the optimal solution to be found in one iteration.

In the case of linearly separable problems, both methods converged to

the desired solution for most initial values. However, for larger values of

61

Table 1. Summary of Simulation Results

Pattern Number Desired Output Homotopy Method Gradient Method

1 0.0000 0.1136 0.0000
1.0000 0.9785 0.0000
1.0000 0.9014 0.0000
1.0000 0.8790 0.0000
0.0000 0.1095 0.0000
1.0000 0.9794 0.0000
1.0000 0.9979 1.0000
1.0000 0.8739 0.9570
0.0000 0.1055 0.0000

2 1.0000 0.9899 0.0000
1.0000 0.9709 0.0000
1.0000 0.9981 0.0000
1.0000 0.8719 0.0000
0.0000 0.0285 0.0000
1.0000 0.9995 0.0000
0.0000 0.0076 0.9999
0.0000 0.1456 0.9999
0.0000 0.0396 0.9999

62

Table 1. (continued)

Pattern Number Desired Output Homotopy Method Gradient Method

3 0.0000 0.0000 0.9999
0.0000 0.1218 0.9999
0.0000 0.0000 0.9999
0.0000 0.0026 0.9999
1.0000 0.9999 0.9999
1.0000 0.9999 0.9999
1.0000 0.9999 0.9999
1.0000 0.9999 0.9999
1.0000 1.0000 1.0000

4 0.0000 0.0050 0.0003
0.0000 0.0026 0.0002
0.0000 0.0249 0.0009
0.0000 0.2187 0.0040
0.0000 0.1265 0.0028
1.0000 0.9999 0.9986
1.0000 0.9999 0.9996
1.0000 0.9999 0.9999
1.0000 0.9999 0.9984

63

tinitial weights, the gradient method failed to converge, whereas the fixed­

point homotopy method is still capable of converging to the desired solution

as seen in patterns #3 and #4. As the decision surface becomes more and more

complex, the gradient method, in general, fails more frequently than the fixed­

point homotopy method. The perfonnance of the two methods for data set # 1

and #2, starting from the same initial points, are shown in Table 1.

However, the merit of the backward error propagation method still lies

in the ease with which it can handle higher dimensional problems associated

with multilayered networks. Further work remains to be done before the

fixed-point homotopy method can be adapted for training layer networks of

larger dimesnsions.

64

CHAPTER VII.

SUMMARY AND FUTURE WORK

This thesis presents an innovative approach for training multilayer

perceptron neural networks. The overall objective is to achieve the globally

minimum error which ensures the best possible training parameters for

subsequent classifications. The network parameters include the

interconnection weight variables and the nodal bias variables.

A brief description of the topic of neural networks is presented. The

concept of neural networks is based on an extremely simplified model of the

human nervous system. Each neuron in the network can generate one of two

outputs: an output one which signifies the firing state of a neuron cell or an

output zero which represents the resting state of a neuron cell. The network is

first trained by presenting the input sample patterns along with the desired

output to the network. The discrepancy between the network calculated output

and desired output represents the training error which is used to adjust the

interconnection weights so that the energy in the error is minimized.

Consequently, it is essential that the minimum error obtained is a global

minimum and not a local minimum. The training technique most commonly

used to find the minimum point is the backward error propagation algorithm,

which is based on the gradient descent method. Two major criticisms of the

backward error propagation algorithm are: 1) Excessive training time, and 2)

65

lack of convergence, or convergence to the local minimum of the error

surface.

The approach proposed in this thesis for overcoming these drawbacks

involves the use of the homotopy continuation method for minimizing the

error function. Homotopy continuation methods are numerical methods used

to obtain the zeros of nonlinear systems. Homotopy methods offer two

important advantages, namely, global convergence and when the system of

interest consists of polynomial functions, all-solution homotopy methods

guarantee exhaustive solutions. However, in order to apply the all-solution

method to neural network training, the sigmoidal activation function must be

modeled by a polynomial function. The drawback with this approach is the

difficulty in generating the known polynomial system of equations, g(x), with

only real-valued solutions. However, at the expense of losing the all-solution

property, a variant of the homotopy method known as the fixed-point

homotopy method can be used. This method is globally convergent and it

tracks one solution at a time. The fixed-point homotopy method is often used

in problems where the number of solutions is not known a priori. Moreover,

the fixed-point method is particularly used in applications where only real

valued solutions are desired, as in the case of neural networks.

The contribution of this research lies in the formulation of the neural

network equations within a framework suitable for the application of the

homotopy continuation method. Application of the fIXed-point homotopy

method was performed by computing the Jacobian matrix and developing the

program codes for the predictor-corrector numerical scheme.

66

Simulation results for some two dimensional, two class data sets have

been presented. The results demonstrate the capability of the proposed method

to converge to the desired minimum in contrast to the gradient method which

was seen to result in oscillation or converged to a local minimum.

In conclusion, the fixed-point homotopy method has been demonstrated

to be superior to gradient search methods largely due to its global convergence

property. However, the work presented in this thesis is by no means

complete. Further research remains to be done before the proposed method

can be applied for finding the globally optimum weights in training neural

networks. This requires development of robust techniques for generating the

polynomial system, g(x). Once this problem is resolved, the all-solution

homotopy method can be employed to yield the globally optimum solution

with respect to the classification error. Another area that needs further

attention is the development of numerical techniques for implementing the

multi-resultant method for training neural networks. Finally, the application of

homotopy methods for training neural networlcs other than the multilayer

perceptron network, such as the Kohonen network needs to be studied.

67

REFERENCES

[1] J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles,
Addison-Wesley, Reading, Mass, 1974

[2] W. S. McCulloch and W. Pitts, "A Logical Calculus of the Ideas
Imminent in NelVous Activity," Bulletin of Mathematical
Biophysics, 5, 1943, pp. 115-133

[3] D. O. Hebb, The Organization of Behavior, John Wiley & Sons,
New York, NY, 1949

[4] R. Rosenblatt, Principles of Neurodynamics, Spartan Books,
New York, NY, 1959

[5] R. P. Lippmann, "An Introduction to Computing With Neural
Nets," IEEE ASSP Magazine, April 1987, pp. 4-22

[6] J. Chow, "Pattern Recognition Using Singular Value
Decomposition," EE-653 Project Report, Colorado State
University, 1990

[7] D. C. Plaut, S. J. Nowlan and G. E. Hinton, "Experiments on
Learning by Back Propagation," CMU-CS-86-126, Carnegie
Mellon University, Pittsburgh, PA, June 1986

[8] V. L. Stonick, "Global Methods of PolelZero Modeling for
Digital Signal Processing using Homotopy Continuation
Methods," Ph.D. Dissertation, North Carolina State University,
1989

[9] E. L. Allogower and K. Georg, Introduction to Numerical
Continuation Methods, Springer-Verlag, Berlin, 1990

[10] M. F. Kaplan and S. Schwartz, Human Judgement and
Decision Processes, Academic Press, New York, NY, 1975

[11] P. K. Simpson, Artificial Neural Systems, Pergamon Press,
Elmsford, NY, 1990

68

[12] D. E. Rumelhart and J. L. McClelland, Parallel Distributed
Processing, Vol. I, Massachusetts Institute of Technology,
Cambridge, MASS, 1989

[13] T. Y. Li, "On Chow, Mallet-Paret, and Yorke Homotopy for
Solving Systems of Polynomial," Bull. Inst. Math. Acad.
Sinica, 1983, pp. 433-437

[14] J. J. Hopfield, "Neural Networks and Physical Systems With
Emergent Collective Computational Abilities," Proceedings
of National Acad. Sci., Vol. 79, April 1982, pp. 2554-2558

[15] T. Kohonen, Self-Organization and Associative Memory,
Berlin, Springer-Verlag, 1984

[16] R. O. Duda and P. E. Hart, Pattern Classification and Scene
Analysis, John Wiley & Sons, New York, NY, 1973

[17] J. A. Hartigan, Clustering Algorithms, John Wiley & Sons,
New York, NY, 1975

[18] C. B. Garcia and W. I. Zangwill, "Determining All Solutions to
Certain Systems of Nonlinear Equations," in Mathematics of
Operations Research, Vol. 4, Feb. 1979, pp. 1-14

[19] C. B. Garcia and W. I. Zangwill, "Finding All Solutions to
Polynomial Systems and Other Systems of Equations," in
Mathematical Programming, Vol. 16,1979, pp. 159-176

[20] A. P. Morgan, Solving Polynomial Systems Using Continuation
for Engineering and Scientific Computations, Prentice-Hall,
Englewood Cliffs, NJ, 1987

[21] W. Press, et aI., Numerical Recipes, Cambridge University Press,
Cambridge, 1989

69

[22] C. B. Garcia and W. I. Zangwill, "Global Continuation
Methods for Finding All Solutions to Polynomial
Systems of Equations in N Variables," Center for Math
Studies in Business and Economics Report No. 755,
University of Chicago, 1977

[23] F. J. Drexler, "A Homotopy Method for The Calculation of
Zeroes of Zero-Dimensional Polynomial Ideals," in
Continuation Methods (H. G. Wacker, Ed.), Academic, NY,
1978, pp. 69-94

[24] C. B. Garcia and F. J. Gould, "Relations Between Several Path
Following Algorithms and Local and Global Newton Methods,"
SIAM Review, Vol. 22, July 1980, pp. 263-274

[25] H. B. Keller, "Global Homotopies and Newton's Methods," in
Recent Advances in Numerical Analysis, Academic Press, 1978,
pp.73-94

[26] S. N. Chow, J. Mallet-Paret and J. A. Yorke, "A Homotopy
Method for Locating All Zeroes of A System of Polynomials," in
Functional Differential Equations and Approximation of Fixed
Points, Lecture Notes in Math 730, Springe, N. W., 1979

[27] A. H. Wright, "Finding All Solutions to A System of Polynomial
Equations," Math. Comp., Vol. 44, 1985, pp. 125-133

[28] A. P. Morgan, "A Transfonnation to Avoid Solutions at
Infmity for Polynomial Systems," Appl. Math. Comput., Vol. 18,
1986, pp. 77 -86

[29] L. W. Tsai and A. P. Morgan, "Solving The Kinematics of The
Most General Six-and Five-Degree of Freedom Manipulators
by Continuation Methods," ASME J. Mechanisms,
Transmissions and Automation in Design, 1985, pp. 48-57

[30] K. Meintjes and A. P. Morgan, "A Methodology for Solving
Chemical Equilibrium Systems," Appl. Math. Comput., 1987,
pp.333-361

70

[31] C. B. Garcia and W. I. Zangwill, Pathways to Solutions, Fixed
Points and Equilibria, Prentice-Hall, Englewood Cliffs, NJ, 1981

[32] C. B. Garcia and T. Y. Li, "On the Number of Solutions to
Polynomial Systems of Equations," SIAM J. Numer. Anal., Vol.
17, Aug. 1980, pp. 540-546

[33] V. L. Stonick and S. T. Alexander, "On Reduced Computations
for Global IIR Filtering," ISCAS 1990, New Orleans, 1990,
pp.1327-1331

[34] V. L. Stonick and S. T. Alexander, "ARMA Parameter
Estimation Using Continuation Methods," Proceedings: 22nd
Asilomar Conf. Sig. Syst. Comput., Monterey, Ca, Oct. 31 -
Nov. 1 1988, pp. 184-188

[35] L. T. Watson, et al., "Globally Convergent Homotopy Methods
for The DC Operating Point Problem," Department of Computer
Science, Virginia Polytechnic Institute and State University, 1990

[36] G. Vasudevan, et al., "Homotopy Approach for Solving
Constrained Optimization Problems," IEEE Trans. on Auto.
Control, Vol. 36, April 1991, pp. 494-498

[37] E. Ikeno and A. Ushida, "The Arc-Length Method for the
Computation of Characteristic CUlVes," IEEE Trans. Circuit Syst.,
Vol. 23, 1976, pp. 181-183

[38] E. L. Allgower and K. Georg, "Predictor-Corrector and
Simplicial Methods for Approximating Fixed Points and Zero
Points of Nonlinear Mappings," in Mathematical
Programming, The State of The Art, Springer-Verlag, 1983,
pp.15-56

[39] L. T. Watson, S. C. Billups and A. P. Morgan, "HOMPACK: A
Suite of Codes for Globally Convergent Homotopy Algorithms,"
ACM Trans.on Math., Sept. 1987, pp. 281-310

71

[40] J. Chow, L. Udpa and S. Udpa, "Homotopy Continuation
Methods for Neural Networks," ISCAS Conference, Singapore,
June 1991, pp 2483-2486

[41] J. Chow, L. Udpa and S. Udpa, "Neural Network Training Using
Homotopy Continuation Methods," to appear in IJCNN,
Singapore, Nov. 1991

[42] G. H. Golub and C. F. Van Loan, Matrix Computations, The
Johns Hopkins University Press, Baltimore, MD, 1983

[43] E. L. Allgower, Oral Discussion, Colorado State University,
Dec. 1990

[44] E. L. Allgower, K. Georg and R. Miranda, "Computing Real
Solutions of Polynomial Systems," Department of
Mathematics, Colorado State University, 1990

[45] E. L. Allgower, K. Georg and R. Miranda, "The Method of
Resultants for Computing Real Solutions of Polynomial
Systems," to appear in SIAM J. Numer. Anal.

[46] D. E. Rumhelhart and J. L. McClelland, Parallel Distributed
Processing, Vol. II, Massachutts Institute of Technology,
Cambridge, MASS, 1989

[47] B. L. van der Waerden, Modem Algebra, Volume II,
Springer-Verlag, Berlin, 1940

72

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my adviser, Dr. L. Udpa,

for her continued guidance and encouragement throughout this research.

I would also like to extend my gratitude to Dr. S. Udpa for his

knowledgeable insights which have helped me in overcoming many obstacles

throughout my work. The most important thing I have learned in working

with Dr. L. Udpa and Dr. S. Udpa is not about homotopy theory, nor is it

about neural networks, instead, it is about how to be tolerant and forgiving

toward other people. I am deeply indebted to them for showing me the more

important things in life.

Further, I would like to thank Dr. E. Bartlett, Dr. J. Cornette, Dr. J.

Davidson, and Dr. W. Lord for their generous assistance in reviewing my

thesis. In addition, I would like to thank Dr. E. Allgower for his insightful

suggestions. I would also like to thank my fellow graduate student, Mike

Chan, for his help throughout my work. Not only did I gain valuable

knowledge about UNIX, but most importantly, I have gained a life-long

friend.

Next, I would like to thank the dearest person in my life, Anastasia

Waguespack, for her support and understanding. She was there beside me

every step along the way as we have vowed to do for each other.

Finally, I would like to thank my family, especially my Mom and Dad for

their encouragement and support, both fmancially and spiritually. They have

devoted their lives toward the making of my success and have sacrificed so

much in doing so.

73

APPENDIX A.

NEURAL NETWORK TRAINING PROGRAM USING FIXED­
POINT HOMOTOPY METHOD

program igiveup

c This program trains a multilayer perceptron neural network
c using the fixed-point homotopy method. The training algorithm
c employed is the conventional error back propagation algorithm.
c This program does not employ the numerical predictor-corrector
c scheme, instead, the tracking parameter t is incremented based
c upon the user-input step size. The iterative tracking process
c is stopped when t is equal to or greater than 1.
c

**
**
**** ****
**** Author: Joseph C. Chow ****
**** Thesis Topic: Neural Networks Using ****
**** Homotopy Continuation Methods ****
**** Date: 06/11/1991 ****
**** Time: 10:56:23 AM ****
**** ****

--
--
---- -------- ----
---- -------- ----
-------- Variable Dictionary --------
---- -------- ----
---- -------- ----
====a Dummy array used for passing arguments --------

74

---- to and from LINP ACK subroutines. -------- ----
----b Dummy array used for passing arguments -------- - ----
---- to and from LINP ACK subroutines. -------- ----
===change= Amount of correction added to the --------
---- weight vectors at each iteration. -------- ----

=== constant = Array representing the initial starting --------
---- points. -------- ----
----d = Desired outputs. -------- ----
===det Detenninant of the matrix used by ----- ----
---- LINP ACK subroutines. -------- ----
---- df Jacobian matrix of the unknown system. -------- - ----
----dg - Jacobian matrix of the known system. -------- ----
----dh - Jacobian matrix of the homotopy system. -------- ----
==== dick3 - Dummy function name for the sigmoid --------
---- function. -------- ----
==== error - The training error. --------
----f - Array representing the system to be -------- ----
---- solved. -------- ----
---- flag - Flag used to detennine which iteration. -------- ----
----g - Array representing the initial known -------- ----
---- system. -------- ----
----h - Array representing the homotopy system. -------- ----

==== hessold = Dummy array representing the Hessian --------
---- matrix of the system in interest -------- ----
==== rcond - Condition number of a matrix, used by --------
---- the LINP ACK subroutines. -------- ----.

Dummy counter variable . ----====1 - ----
==== ipvt - Array variable used by the LINP ACK --------
---- subroutines. -------- ----.

Dummy counter variable . --------J ---- - ----
----Ida Dummy variable used by the LINP ACK -------- - ----
---- subroutines. -------- ----
====n - Number of variables in the system. --------
==== step - Step size to increment the tracking --------
---- parameter, t. -------- ----
====t - Tracking parameter --------
====w - Array representing the five weights and --------
---- two bias variables in the network. -------- ----
----x3 Array representing different sample -------- - ----
---- cases of input x3. -------- ----

75

----x4 Array representing different sample -------- - ----
---- cases of input x4. -------- ----
---- yl = Array representing different sample -------- ----
---- cases of output y 1. -------- ----
---- y2 Array representing different sample -------- - ----
---- cases of output y2. -------- ----
----y3 Array representing different sample -------- - ----
---- cases of output y3. -------- ----
----y4 Array representing different sample -------- - ----
---- cases of output y4. -------- ----
====z Dummy array variable used by LINP ACK ----- ----
---- subroutines. -------- ----
---- -------- ----
---- -------- ----
--
==

==
==

==== dfn =

==== dfnl =

--- dgeco = ---

---- dgesl -----

---- fcnl -----

---- fcn2 -----

---- fcn3 -----

---- fcn4 -----

Subroutines Called

Subroutine used to calculate the Jacobian
matrix of the system in interest.
Same subroutine as dfn except only called
during the fIrst iteration of the
tracking process.
LINP ACK subroutine. Please see LlNP ACK
manual for further infonnation.
LINP ACK subroutine. Please see LINP ACK
manual for further infonnation.
Subroutine used to evaluate the
minimization equation derived from wi.
Subroutine used to evaluate the
minimization equation derived from w2.
Subroutine used to evaluate the
minimization equation derived from w3.
Subroutine used to evaluate the

---- fenS ----

---- fen6 ----

---- fen7 ----

-
=

-

76

minimization equation derived from w4.
Subroutine used to evaluate the
minimization equation derived from wS.
Subroutine used to evaluate the
minimization equation derived from theta 1.
Subroutine used to evaluate the
minimization equation derived from theta2.

--
--

--
--

-------- inputs =

-------- outputp =

-------- roots -

File Names

Input fue where the input sample
patterns and the desired outputs are
read.
Output file where the final weight
values, bias values, and error level
are stored.
Input file where the initial starting
points are read.

--
--

c Declare variables

double precision a(7,7),b(7),ehange(7)
double precision constant(7) ,d(9) ,det,df(7 ,7)
double precision dg(7, 7),dh(7 ,8),dick3
double precision error,f(7),g(7),h(7),hessold(7,7)
double precision rcond,step,t,w(7),work(7),x3(9),x4(9)
double precision y 1 (9),y2(9),y3(9),y4(9),z(7)

integer flag,i,ipvt(7),j,n

77

data ldanl

c Define the nodal sigmoid function

dick3(x,y)= 1.dO/(1.dO+exp(-x-y»

c Open data files

open(unit=7,file='inputs')
open(unit=8,file='roots')
open(unit=9,file='outputp')

c Read input vector and desired outputs

read (7 ,*)yl (1),y2(1),d(1),yl(2),y2(2),d(2)
read(7, *)yl (3),y2(3),d(3),yl(4),y2(4),d(4)
read(7, *)y 1 (5),y2(5),d(5),y 1 (6),y2(6),d(6)
read(7, *)y 1 (7),y2(7),d(7),yl (8),y2(8),d(8)
read(7, *)y 1 (9),y2(9),d(9)
close (7)

c Derme number of variables in the system

n=7

c Read the initial starting point The starting point
c is also used to fonn the known system.

5 do 10 j=l,n
read(8, *)wG)
constantG)=wG)

10 continue

flag=1

78

c User input incrementing step size of t

write(6, *)'input step size'
read(5, *)step
write(6, *)"

c this part of program will begine the tracking process

do 10000 t=O.dO,1.dO,step

write(6,*)'t =',t

c reset f, g, h, df, dg, dh

20 do 32 i=l,n
do 30 j=l,n

df(i,j)=O.dO
dg(i,j)=O.dO
dh(i,j)=O.dO

30 continue
f(i)=O.dO
g(i)=O.dO
h(i)=O.dO

32 continue

c compute the unknown system f(w)

call fcnl(n,yl,y2,d,f(1),w)
call fcn2(n,y 1 ,y2,d,f(2), w)
call fcn3(n,yl,y2,d,f(3),w)
call fcn4(n,yl,y2,d,f(4),w)
call fcn5(n,yl,y2,d,f(5),w)
call fcn6(n,y 1 ,y2,d,f(6), w)
call fcn7(n,yl,y2,d,f(7),w)

c compute the first iteration of df

79

if (flag .eq. 1) then
call dfnl(n,yI,y2,d,hessold,w)
flag=O

endif

c compute df

call dfn(n,yl,y2,d,df,hessold,w)

c compute the known system g(w)

g(1)=w(1)-constant(1)
g(2)=w(2)-constant(2)
g(3)=w(3)-constant(3)
g(4)=w(4)-constant(4)
g(5)=w(5)-constant(5)
g(6)=w(6)-constant(6)
g(7)=w(7)-constant(7)

c compute the derivative dg

do 40 i=I,n
dg(i,i)= I.dO

40 continue

c setting up the homotopic equations

. do 50 i=I,n
h(i)=(1.dO - t)*g(i) + t*f(i)

50 continue

c calculate the Jacobian of the homotopy functions

do 75 i=I,n
do 70 j=I,n

dh(ij)=(1.dO - t)*dg(ij) + t*df(i,j)
a(i,j)=dh(ij)

70 continue

80

75 continue

call dgeco(a,lda,n,ipvt,rcond,z)
if (rcond .eq. 0.0) goto 10020

c assign the B column vector

do 120 i=l,n
b(i)=-h(i)

120 continue

call dgesl(a,lda,n,ipvt,b,O)

do 140 i=l,n
change(i)=b(i)

140 continue

c Adjust the weight vectors based on the change calculated

do 200 i=l,n
w(i)=w(i)+change(i)

200 continue

do 300 i=l,n
if(dabs(change(i» .gt. 0.001) goto 20

300 continue

10000 continue

write(6, *)"

c This portion of the program calculates the output of the network
c and also the square error associated with the calculated weights

c
c compute input to layer 2

81

do 9010 i=1,9
x3(i)=w(2)*y1(i) + w(3)*y2(i)

9010 continue

c compute output to layer 2

do 9040 i=1,9
y3(i)=dick3(x3(i), w(6»

9040 continue

do 9060 i=1,9
x4(i)=w(1)*yl(i)+w(5)*y3(i)+w(4)*y2(i)

9060 continue

do 9080 i=1,9
y4(i)=dick3(x4(i), w(7»

9080 continue

c check for weights that yield the lowest error

error=O.dO

do 9085 i= 1,9
error=O .5dO*(y4(i)-d(i))**2.dO+error

9085 continue

c PRINT OUT THE RESULTS!!

write(9,*)'The error is: ',error
write(6,*),The error is: ',error
write(9, *)"
write(9,*),y4(1) =' ,y4(1)
write(9, *)'y4(2) =' ,y4(2)
write(9, *)'y4(3) =' ,y4(3)
write(9, *)'y4(4) =' ,y4(4)
write(9, *),y4(5) =' ,y4(5)
write(9, *)'y4(6) =',y4(6)
write(9, *)'y4(7) =' ,y4(7)

write(9, *)'y4(8) =' ,y4(8)
write(9, *)'y4(9) =' ,y4(9)
write(9, *)"
write(9, *)'w 1 =', w(1)
write(9,*),w2 =',w(2)
write(9, *)'w3 =', w(3)
write(9, *)'w4 =', w(4)
write(9, *),w5 =' ,w(5)
write(9,*),theta1 =',w(6)
write(9, *),theta2 =', w(7)
write(9, *)"

c write(9, *)"

goto 10030

c Display error message

82

10020 write(6,*),On set #',count
write(6,*),singular matrix was encountered!'

10030 continue

stop
end

83

subroutine fen 1 (n,y1 ,y2,d,fl ,w)

c This subroutine evaluates the minimization equation
c derived from wI.

c Please see main program for defmition of variables
c passed.

double precision dick3,y1 (9),y2(9),d(9),fl ,w(7)
double precision dummy(9)
double precision x3(9),y3(9),x4(9),y4(9)
integern

dick3(x,y)=1.dO/(l.dO+exp(-x-y))

c output connection

n=7

c compute input to layer 2

do 10 i=I,9
x3(i)=w(2)*y 1 (i)+w(3)*y2(i)

10 continue

do 20 i=1,9
y3(i)=dick3(x3(i), w(6))

20 continue

do 30 i=1,9
x4(i)=w(l)*y 1 (i)+w(4)*y2(i)+w(5)*y3(i)

30 continue

do 40 i=I,9
y4(i)=dick3(x4(i),w(7))

40 continue

fl=O.dO
do 50 i=1,9

84

dummy(i)=(y4(i)-d(i))*(1.dO-y4(i))*y4(i)*yl (i)
f1=f1 +dummy(i)

50 continue

return
end

85

subroutine fcn2(n,yl,y2,d,f2,w)

c This subroutine evaluates the minimization equation
c derived from w2.

c Please see main program for defmition of variables
c passed.

c

double precision dick3,yl(9),y2(9),d(9),f2,w(7)
double precision dummy(9)
double precision x3(9),y3(9),x4(9),y4(9)
integern

dick3(x,y)=I.dO/(l.dO+exp(-x-y»

c hidden connection

n=7

c compute input to layer 2

do 10 i=I,9
x3(i)=w(2)*y 1 (i)+w(3)*y2(i)

10 continue

do 20 i=I,9
y3(i)=dick3(x3(i),w(6»

20 continue

do 30 i=I,9
x4(i)=w(I)*yl(i)+w(4)*y2(i)+w(5)*y3(i)

30 continue

do 40 i=I,9
y4(i)=dick3(x4(i),w(7»

40 continue

f2=O.dO

86

do 50 i=1,9
dummy(i)=(y4(i)-d(i»*(1.dO-y4(i»*y4(i)*w(5)*

& (1.dO-y3(i»*y3(i)*yl(i)
f2=f2+dummy(i)

50 continue

return
end

87

subroutine fcn3(n,yl,y2,d,f3,w)

c This subroutine evaluates the minimization equation
c derived from w3.

c Please see main program for defmition of variables
c passed.

double precision dick3,yl(9),y2(9),d(9),f3,w(7)
double precision dummy(9)
double precision x3(9),y3(9),x4(9),y4(9)
integern

dick3(x,y)= l.dO/(l.dO+exp(-x -y))

c hidden connection

n=7

c compute input to layer 2

do 10 i=I,9
x3(i)=w(2)*y 1 (i)+w(3)*y2(i)

10 continue

do 20 i=1,9
y3(i)=dick3(x3(i),w(6))

20 continue

do 30 i=1,9
x4(i)=w(1)*y 1 (i)+w(4)*y2(i)+w(5)*y3(i)

30 continue

do 40 i=I,9
y4(i)=dick3(x4(i),w(7))

40 continue

f3=O.dO

88

do 50 i=1,9
dummy(i)=(y4(i)-d(i))*(1.dO-y4(i))*y4(i)*w(5) *

& (l.dO-y3(i»*y3(i)*y2(i)
f3=f3+dummy(i)

50 continue

return
end

89

subroutine fcn4(n,yl,y2,d,f4,w)

c This subroutine evaluates the minimization equation
c derived from w4.

c Please see main program for defmition of variables
c passed.

double precision dick3,yl(9),y2(9),d(9),f4,w(7)
double precision dummy(9)
double precision x3(9),y3(9),x4(9),y4(9)
integern

dick3(x,y)= l.dO/(l.dO+exp(-x -y))

c output connection

n=7

c compute input to layer 2

do 10 i=I,9
x3(i)=w(2)*y 1 (i)+w(3)*y2(i)

10 continue

do 20 i=I,9
y3 (i)=dick3 (x3 (i),w(6))

20 continue

do 30 i=I,9
x4(i)=w(1)*yl (i)+w(4)*y2(i)+w(5)*y3(i)

30 continue

do 40 i=I,9
y4(i)=dick3(x4(i),w(7))

40 continue

f4=0.dO

90

do 50 i=1,9
dummy(i)=(y4(i)-d(i))*(1.dO-y4(i))*y4(i)*y2(i)
f4=f4+dummy(i)

50 continue

return
end

91

subroutine fcn5(n,yl,y2,d,f5,w)

c This subroutine evaluates the minimization equation
c derived from wS.

c Please see main program for defmition of variables
c passed.

double precision dick3,yl(9),y2(9),d(9),f5,w(7)
double precision dummy(9)
double precision x3(9),y3(9),x4(9),y4(9)
integern

dick3(x,y)=l.dO/(I.dO+exp(-x-y»

c output connection

n=7

c compute input to layer 2

do 10 i=I,9
x3(i)=w(2)*y 1 (i)+w(3)*y2(i)

10 continue

do 20 i=I,9
y3(i)=dick3(x3(i), w(6»

20 continue

do 30 i=I,9
x4(i)=w(1)*y 1 (i)+w(4)*y2(i)+w(S)*y3(i)

30 continue

do 40 i=I,9
y4(i)=dick3(x4(i),w(7»

40 continue

fS=O.dO

92

do 50 i=1,9
dummy(i)=(y4(i)-d(i))*(1.dO-y4(i))*y4(i)*y3 (i)
f5=f5+dummy(i)

50 continue

return
end

93

subroutine fcn6(n,yl,y2,d,f6,w)

c This subroutine evaluates the minimization equation
c derived from thetal.

c Please see main program for defmition of variables
c passed.

c

double precision dick3,yl(9),y2(9),d(9),f6,w(7)
double precision dummy(9)
double precision x3(9),y3(9),x4(9),y4(9)
integern

dick3(x,y)=1.dO/(1.dO+exp(-x-y»

c hidden connection

n=7

c compute input to layer 2

do 10 i=I,9
x3(i)=w(2)*y1 (i)+w(3)*y2(i)

10 continue

do 20 i=I,9
y3(i)=dick3(x3(i), w(6»

20 continue

do 30 i=I,9
x4(i)=w(1)*y 1 (i)+w(4)*y2(i)+w(5)*y3(i)

30 continue

do 40 i=I,9
y4(i)=dick3(x4(i), w(7»

40 continue

f6=0.dO

94

do 50 i=1,9
dummy(i)=(y4(i)-d(i»*(1.dO-y4(i)*y4(i)*w(5)*

& (1.dO-y3(i»*y3(i)
f6=f6+dummy(i)

50 continue

return
end

95

subroutine fcn7(n,yl,y2,d,f7 ,w)

c This subroutine evaluates the minimization equation
c derived from theta2.

c Please see main program for defmition of variables
c passed.

double precision dick3,yl(9),y2(9),d(9),f7 ,w(7)
double precision dummy(9)
double precision x3(9),y3(9),x4(9),y4(9)
integern

dick3(x,y)=1.dO/(l.dO+exp(-x-y))

c output connection

n=7

c compute input to layer 2

do 10 i=I,9
x3(i)=w(2)*y 1 (i)+w(3)*y2(i)

10 continue

do 20 i=1,9
y3(i)=dick3(x3(i), w(6))

20 continue

do 30 i=1,9
x4(i)=w(1)*y 1 (i)+w(4)*y2(i)+w(5)*y3(i)

30 continue

do 40 i=1,9
y4(i)=dick3(x4(i), w(7))

40 continue

f7=O.dO
do 50 i=I,9

96

dummy(i)=(y4(i)-d(i))*(1.dO-y4(i))*y4(i)
t7=t7+dummy(i)

50 continue

return
end

97

subroutine dfnl (n,yl ,y2,d,hessold,w)

c This subroutine computes the Jacobian matrix of the
c system in interest. This program is only called during
c the fIrst iteration of each tracking process. This is
c used to provide numerical stability in subsequent calls
c of subroutine dfn.
c
c Please see main program for defmition of variables passed.

integer i,n
double precision dummy(7),y 1 (9),y2(9),d(9), w(7)
double precision f,for ,rev ,hstep,hessold(7 ,7)

n=7
do 20 i=l,n

dummy(i)=w(i)
20 continue

hstep = 1.d·5

c compute fIrSt iteration of hessian

c Compute derivative with respect to wI

do 40 i=l,n
w(i)=dummy(i)+hstep
call fcnl(n,yl,y2,d,f,w)
for=f
w(i)=dummy(i)·hstep
call fcnl(n,yl,y2,d,f,w)
rev=f
hessold(1 ,i)=(for·rev)/(2.dO*hstep)

40 continue

c Compute derivative with respect to w2

do 60 i=l,n
w(i)=dummy(i)+hstep
call fcn2(n,y 1 ,y2,d,f, w)
for=f
w(i)=dummy(i)-hstep
call fcn2(n,y 1 ,y2,d,f, w)
rev=f

98

hessold(2,i)=(for-rev)/(2.dO*hstep)
60 continue

c Compute derivative with respect to w3

do 80 i=l,n
w(i)=dummy(i)+hstep
call fcn3 (n,y 1 ,y2,d,f, w)
for=f
w(i)=dummy(i)-hstep
call fcn3(n,y1,y2,d,f,w)
rev=f
hessold(3,i)=(for-rev)/(2.dO*hstep)

80 continue

c Compute derivative with respect to w4

do 100 i=l,D
w(i)=dummy(i)+hstep
call fcn4(n,y1,y2,d,f,w)
for=f
w(i)=dummy(i)-hstep
call fcn4(n,y1,y2,d,f,w)
rev=f
hessold(4,i)=(for-rev)/(2.dO*hstep)

100 continue

c Compute derivative with respect to w5

do 120 i=l,D
w(i)=dummy(i)+hstep

call fcn5(n,yl,y2,d,f,w)
for=f
w(i)=dummy(i)-hstep
call fcn5(n,yl,y2,d,f,w)
rev=f

99

hessold(5 ,i)=(for-rev)/(2.dO*hstep)
120 continue

do 130 i=l,n
c Compute derivative with respect to w6

w(i)=dummy(i)+hstep
call fcn6(n,y 1 ,y2,d,f, w)
for=f
w(i)=dummy(i)-hstep
call fcn6(n,y 1 ,y2,d,f, w)
rev=f
hessold(6,i)=(for-rev)/(2.dO*hstep)

130 continue

c Compute derivative with respect to w7

do 135 i=l,n
w(i)=dummy(i)+hstep
call fcn7(n,yl,y2,d,f,w)
for=f
w(i)=dummy(i)-hstep
call fcn7(n,yl,y2,d,f,w)
rev=f
hessold(7 ,i)=(for-rev)/(2.dO*hstep)

135 continue

do 140 i=l,n
w(i)=dummy(i)

140 continue

return
end

100

subroutine dfn(n,y1,y2,d,df,hessold,w)
c
c This subroutine computes the jacobian matrix of
c the system in interest.
c
c See main program for defmition of variables passed.

integer i,n
double precision w(7),hessold(7, 7),df(7 ,7)
double precision y1 (9),y2(9),d(9),for,rev ,hstep
double precision f,dummy(7)

n=7

hstep =1.d-5

do 20 i=l,n
dummy(i)=w(i)

20 continue

c compute the gradient (analytical) wrt wI

do 30 i=l,n
w(i)=dummy(i)+hstep
call fcnl(n,y1,y2,d,f,w)
for=f
w(i)=dummy(i)-hstep
call fcnl (n,y 1 ,y2,d,f, w)
rev=f
df(1 ,i)=(for-rev)/(2.dO*hstep)
df(l ,i)=hessold(l ,i)+0.1 dO*(df(1 ,i)-hessold(l ,i»
hessold(1 ,i)=df(1 ,i)

30 continue

c compute the gradient (analytical) wrt w2

do 40 i=l,n
w(i)=dummy(i)+hstep

call fcn2(n,y 1 ,y2,d,f, w)
for=f
w(i)=dummy(i)-hstep
call fcn2(n,y 1 ,y2,d,f, w)
rev=f

101

df(2,i)=(for-rev)/(2.dO*hstep)
df(2,i)=hessold(2,i)+0.1 dO*(df(2,i)-hessold(2,i))
hessold(2,i)=df(2,i)

40 continue

c compute the gradient (analytical) wrt w3

do 60 i=l,n
w(i)=dummy(i)+hstep
call fcn3(n,yl,y2,d,f,w)
for=f
w(i)=dummy(i)-hstep
call fcn3(n,yl,y2,d,f,w)
rev=f
df(3 ,i)=(for-rev)/(2.dO*hstep)
df(3,i)=hessold(3 ,i)+O.l dO*(df(3,i)-hessold(3 ,i))
hessold(3,i)=df(3,i)

60 continue

c compute the gradient (analytical) wrt w4

do 80 i=l,n
w(i)=dummy(i)+hstep
call fcn4(n,y 1 ,y2,d,f, w)
for=f
w(i)=dummy(i)-hstep
call fcn4(n,y 1 ,y2,d,f, w)
rev=f
df(4,i)=(for-rev)/(2.dO*hstep)
df(4,i)=hessold(4,i)+O.1 dO*(df(4,i)-hessold(4,i))
hessold(4,i)=df(4,i)

80 continue

102

c compute the gradient (analytical) wrt w5

do 100 i=l,n
w(i)=dummy(i)+hstep
call fcn5(n,yl,y2,d,f,w)
for=f
w(i)=durnmy(i)-hstep
call fcn5(n,y1,y2,d,f,w)
rev=f
df(5,i)=(for-rev)/(2.dO*hstep)
df(5,i)=hessold(5 ,i)+O.1 dO*(df(5,i)-hessold(5 ,i»
hessold(5,i)=df(5,i)

100 continue

c compute the gradient (analytical) wrt w6

do 110 i=l,n
w(i)=durnmy(i)+hstep
call fcn6(n,y 1 ,y2,d,f, w)
for=f
w(i)=dummy(i)-hstep
call fcn6(n,y 1 ,y2,d,f, w)
rev=f
df(6,i)=(for-rev)/(2.dO*hstep)
df(6,i)=hessold(6,i)+O.1 dO*(df(6,i)-hessold(6 ,i»
hessold(6,i)=df(6,i)

110 continue

c compute the gradient (analytical) wrt w7

do 115 i=l,n
w(i)=dummy(i)+hstep
call fcn7 (n,y 1 ,y2,d,f, w)
for=f
w(i)=dummy(i)-hstep
call fcn7 (n,y 1 ,y2,d,f, w)
rev=f
df(7 ,i)=(for-rev)/(2.dO*hstep)

103

df(7 ,i)=hessold(7 ,i)+O.l dO*(df(7 ,i)-hessold(7 ,i»
hessold(7 ,i)=df(7 ,i)

115 continue

do 120 i=l,D
w(i)=dummy(i)

120 continue

return
end

