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ABSTRACT 

Neural networks offer a powerful tool for performing classification tasks 

due to their ability to generate complex decision surfaces. Unfortunately, in 

most realistic cases where the decision surface separating the data set is highly 

nonlinear, the classification obtained most likely represents a suboptimal 

solution. This is largely due to the fact that search techniques employed by 

training algorithms may converge to local minima. 

This thesis proposes the application of the homotopy continuation method 

for training neural networks. Homotopy continuation methods overcome the 

disadvantages such as long training time and the convergence to local minima, 

encountered with the conventional training methods. The homotopy 

continuation method is a globally convergent numerical method where a 

homotopy function describes a continuous deformation of a simple 

perfonnance surface into the surface associated with a complex, nonlinear 

optimization problem. The validity of the proposed method is demonstrated by 

means of an example where the conventional backpropagation method 

converges to a local minimum resulting in a large classification error (>50%). 

The homotopy continuation method, however, results in accurate 

classification perfonnance without excessive computational effort. Preliminary 

results indicate the potential of this approach with respect to both training time 

and classification accuracy. 
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CHAPTER I. 

INTRODUCTION 

1.1. Introduction 

Information handling has become an issue of great concern to modem 

society. For instance, the medical industry requires information to be 

processed efficiently in order to ensure prompt and accurate medical 

diagnosis. Similarly, the banking industry demands a fast information 

handling system to accommodate the great volume of transactions. A major 

step associated with the design of modem information systems, however, is 

automatic pattern classification. 

Pattern classification is considered one of the fundamental attributes of 

human beings [1]. Human beings are faced with classification decisions every 

waking moment. Such a decision making process demands the identification 

and classification of spatial and temporal patterns. Some examples of temporal 

patterns include speech, electrocardiogram, and target signatures. On the other 

hand, examples of spatial patterns include characters, images, and weather 

maps. In general, pattern classification is a problem of discriminating the input 

data patterns among population members. Most of the conventional pattern 

classifiers utilize this concept in achieving the desired classification. The 

primary function of a pattern classifier is to render decisions concerning the 

class membership of the input patterns. In order to accomplish this, a decision 
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or discriminant function is necessary. These decision functions represent 

decision surfaces partitioning the feature space, needed for correct 

classification. 

One of the simplest approaches in designing a pattern classifier is through 

the use of distance functions. This approach utilizes the concept of clustering 

in forming decision surfaces. Clusters with dissimilar attributes constitute 

different classes. The similarity in input attributes can usually be measured in 

terms of the Euclidean distances among the input patterns; the shorter the 

Euclidean distance, the closer the attributes. Pattern classifiers such as 

maximum distance classifier, K-means classifier, and isodata algorithm [1] are 

all based on the distance function theory. 

A second class of pattern classifiers is based on an adaptive approach 

which relies on the process of training. Trainable pattern classifiers are 

generally taught by means of iterative learning processes. A typical learning 

algorithm involves presentations to the classifier with training patterns and 

corresponding desired outputs during the training phase. The classifier is then 

taught iteratively to associate the sample input patterns with their 

corresponding desired outputs. An example of such a type of classifier is the 

artificial neural network. 

Work on artificial neural networks began over 40 years ago. Pioneers of 

this work include McCulloch and Pitt [2], Hebb [3], and Rosenblatt [4]. More 

recently, Hopfield and Rumelhart [14] [46] revived interest in the subject by 

introducing new network topologies and training algorithms. The work was 

primarily motivated by the desire to mimic the human brain. The recent 

realization of human-like performance in speech and image recognition helped 
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rekindle interest in neural networks [5]. In particular, neural networks attempt 

to mimic the architecture of the human nervous system. 

The biological nervous system consists of neuron cells which represent 

the basic element in the cognitive learning process. These neuron cells are 

interconnected with each other so information can be prop~gated. The 

propagation process can be accomplished by either firing or resting of each 

neuron cell. Artificial neural networks consist of densely interconnected 

neuron-like elements called nodes. These nodes are interconnected via weight 

factors which signify the importance of a connection from one node to another 

node. Artificial neural networks are seen to be particularly effective in 

applications which require high computation rate, such as image and speech 

recognition. Studies have shown that classification rates as high as 100% have 

been attained in a two-class image identification problem [6]. 

Neural network structures are primarily classified based on the network 

topology and the training algorithm employed. The class of neural networks 

most commonly used for generating complex decision surfaces, useful for 

classification, is the multilayer perceptron network. 

During the training phase, the network's interconnection weights are 

updated iteratively to minimize the merit error function [7]. The error function 

is therefore, employed as the principal criterion in determining whether a 

network has been properly trained. As a result, it is highly desirable to ensure 

that the minimum obtained for the error function be a global minimum point 

rather than a local minimum point 

Traditional algorithms used for training employ local searching techniques 

[5]. As an example, the commonly used backward error propagation 
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algorithm utilizes the gradient descent method where the performance is 

dependent on the initial starting point If the initial point is in the vicinity of a 

local minimum, the solution will most likely converge to the local minimum 

[8] as illustrated in Figure 1.1. Another disadvantage of the gradient descent 

method is that under certain conditions, the iterative process may oscillate 

between two points and fail to converge. 

Local minimum 

- Global minimum 

1 

Figure 1.1 Local search technique 

These drawbacks can be overcome by using homotopy continuation 

methods which are global search methods. These methods are globally 

convergent and in the case of polynomial systems offer an exhaustive set of 

solutions [9]. The term globally convergent implies that regardless of the 

location of the initial points, homotopy methods guarantee convergence to a 

solution. Such a solution may not, however, represent the desired solution. 

Solution exhaustive implies that all solutions to a given system can be found. 

This thesis presents an innovative approach for training multilayer 

perceptron neural networks using the homotopy continuation method. 

Continuation methods are used extensively for solving optimization problems 
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in several fields. The proposed technique offers the globally optimal solution 

which usually translates into better classification performance. 

1.2. Thesis Outline 

The rest of the thesis is organized as follows: 

Chapter 2 presents the background information needed to understand the 

operation of neural networks. Starting with a brief discussion of biological 

neurons, a comparison between a biological neural system and the artificial 

neural network is presented. Various types of artificial neural networks are 

described with special attention focused on the multilayer perceptron model. 

The operation of the multilayer perceptron and the backward error propagation 

technique, commonly used for training this network are described. Issues 

such as training time and convergence of local minima are also discussed. 

Chapter 3 introduces the fundamental concepts of homotopy continuation 

methods. The discussion includes both the theoretical basis and the numerical 

procedure employed for arriving at the solution. The homotopy concept 

involves deformation of a simple system with known solution into a more 

complex system whose solution is desired. The method defines a family of 

paths which track the solutions of the known system to the solutions of an 

unknown system, thus obtaining the desired solutions. Conditions for path 

existence and path finiteness are also presented. 

Chapter 4 describes the original contribution of this research involving the 

application of homotopy continuation methods for training neural networks. 
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Several approaches based on various types of homotopy methods along with 

the difficulties encountered with each approach are presented. Following a 

discussion of the polynomial approximation for the sigmoidal activation 

function of the network nodes, a training algorithm using the fixed-point 

homotopy method is presented. 

Chapter 5 describes an alternate method capable of computing all real 

solutions to nonlinear minimization problems. The polynomial resultant matrix 

method is discussed with regard to both the advantages as well as the practical 

computing aspects which limit the application of the method for training neural 

networks. 

Chapter 6 presents simulation results using the fixed-point continuation 

method. Results obtained for a few two class problems confirm the validity of 

the proposed homotopy methods for training neural networks. 

Finally, Chapter 7 presents some concluding remarks and areas of future 

research. 
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CHAPTER II. 

NEURAL NETWORKS 

2.1. Background 

Artificial neural networks have drawn considerable attention as a powerful 

approach for perfonning classification tasks. Initial work on neural networks 

was motivated by a desire to mimic the human nervous system in an attempt to 

emulate the human learning process [10] [11]. The underlying concept of 

neural networks can be more easily understood by first examining the human 

nervous system. 

Biological nervous systems consist of a network of neuron cells 

communicating with each other and with various parts of the body [12]. A 

typical neuron cell is illustrated in Figure 2.1. 

Dendrite 

Figure 2.1 Biological neuron cell [12] 
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A neuron cell consists of a cell body called the soma, several cell 

extensions called dendrites, and a single nerve fiber called the axon. Dendrites 

of a cell are used to receive information from other cells. The axon, on the 

other hand, is used to propagate information to dendrites of neighboring cells. 

The junction where dendrites and axons meet is called the sypnapse. Inside 

and around the soma are various types of ions such as sodium (Na+), calcium 

(Ca++), potassium (K+), and chloride (CI-). When the membrane of the soma 

is stimulated by a voltage change, it allows ions outside of the membrane to 

pass across the membrane and change the internal state of the soma. The 

voltage change in the cell body often results from information received by the 

dendrites. In other words, the neuron is excited by the received information 

through a voltage change in the cell body. This excitation process is called 

sypnaptic firing. A neural network is formed by the interconnections of all the 

neurons via the axons and dendrites. A single neuron can be modeled as a 

processing unit that sums up all of the inputs and passes the result through a 

threshold function. If the sum exceeds the threshold level, then an output will 

be produced. The output produced is then passed on to other neurons through 

an axon. 

Artificial neural networks attempt to mimic the biological structure using 

the same framework. These networks consist of simple computational nodes 

and interconnecting weights. The nodes are often characterized by a nonlinear 

function called the nodal activation function. The nodal activation function is 

similar to that of the soma in that it takes the sum of all the inputs from other 

nodes and determines whether a firing process should occur. The sum of the 

inputs is passed through a nonlinear function which bounds the output 
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between one and zero, corresponding to the firing and non-firing state of the 

biological counterpart. Typical nonlinear activation functions are shown in 

Figure 2.2. 

Sigmoid function 

y 

1.0 

_____ ... ·1.0 

Hard limiter function 

y 

Soft limiter function 

Figure 2.2 Nonlinear nodal functions 
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The interconnecting weights are used to detennine the strength of a connection 

from one neuron node to another. This weighting scheme, in tum, plays an 

important role in the overall network configuration, and can be compared to 

the sypnaptic strengths of neurons. 

Numerous neural networks have been introduced by researchers over the 

years, each suitable for a specific type of application problem [5]. Neural 

networks can be classified based on the architecture, the nodal activation 

function and the learning algorithm. The taxonomy of six major classes of 

neural networks are illustrated in Figure 2.3. 

Neuraf NeI Classifiers for FIXed Patterns 

Bi1a.ry Input Contiooous·Values Input 

~rvIsed Unsupervised SUpervised Unsupervised 

~ ~ \ 
HoIfIeldNet ~ CiJP8f*ld ~ J.luaJayer Kohonen 

Net Grossberg PartelitO" Self-organizing 

CIassf ... Feature Maps 

1 1 1 1 1 
~lIlJm Leader Gaussian k·Nearesl K·Means 
Classifier CllsIerillJ Cfassiifat' Ne~hbor. Ckls1ering 

Algcrihm Mixture Algorithm 

Figure 2.3 Taxonomy of neural networks [5] 
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Neural networks can be divided according to the type of inputs which can 

be binary or continuous valued. These networks can be classified further 

based on their training scheme which are in general, supervised, or 

unsupervised. In supervised training schemes, the networks are provided with 

the desired input/output pairs during the training procedure to achieve the 

desired classification [4] [14]. Unsupervised training usually results in 

generation of vector quantizers that can be used to form clusters of the input 

data [15] [16] [17]. 

The perceptron network is the primary focus of this thesis for two 

reasons. First, the perceptron network possesses the ability to handle 

continuous valued inputs as opposed to only binary inputs. Second, the 

perceptron network utilizes a supervised training scheme designed to train the 

network in a systematic manner. The perceptron network originated from the 

early work in bionics. In the 1950's, Rosenblatt [4] developed the perceptron 

model, which many researchers felt was the natural model for learning 

machines. This model employs the reward and punishment approach to train 

the network. The perceptron algorithm is adaptive and is relatively flexible and 

robust. 

The simplest model of the perceptron networks is the single layer 

perceptron. This network consists of one input layer and one output layer. 

During the initial development of this network, much attention was drawn 

with regard to its ability to classify simple pattern sets. However, single layer 

perceptrons are only capable of distinguishing pattern sets which are linearly 

separable. In most realistic applications the data sets are not linearly separable, 

and single layer perceptron networks are, therefore, ineffective. 
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Multilayer perceptron networks, on the other hand, are capable of 

generating highly nonlinear decision surfaces. These networks employ one or 

more intennediate layers of hidden nodes. In addition, the use of nonlinear 

nodal activation functions allows for the generation of nonlinear decision 

surfaces. The multilayer perceptron network was not used commonly in the 

past due to the lack of effective training algorithms. However, new training 

algorithms developed in recent years have resulted in the widespread use of 

the multilayer perceptron network. The network is discussed in greater detail 

in the following section. 

2.2. Multilayer Perceptron Network 

The multilayer perceptron network generally consists of an input layer of 

nodes, one or more hidden layers of nodes, and one output layer of nodes [7] 

as illustrated in Figure 2.4. 

Layer j 

Layer i 

Layerk 

Figure 2.4 Simplified multilayer perceptron network 



13 

Connections between the nodes via weights are allowed from one layer to 

another layer. Although the layers need not be adjacent, connections within 

the same layer is forbidden. All units within a layer process data in parallel, 

but the outputs of different layers are calculated sequentially starting from the 

input layer and moving forward or upward to the output layer. Each node j in 

a layer k+ 1 performs the following computations: 

Step 1: 

Nk 

Xj = L Wij Yi 
i=l 

where Yi 

Nk 

is the output of nodes in layer i. 

is the number of nodes in layer i. 

are the interconnection weights. w" IJ 

Step 2: 
y' = f(x') = 1 

J J 1 + e-(xj-t6j) 

(2.1) 

(2.2) 

where 9j is a bias variable. This nonlinear function is primarily used to limit 

the output of a node between the values of 0 and 1 as shown in Figure 2.5. In 

addition, the sigmoid function of equation (2.2) has the advantage of being 

differentiable. 

The artificial neural network basically operates in two modes: the 

classification mode and the training mode. In the classification mode, data 

flows only in the forward direction. 
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y 

Figure 2.5 Sigmoid function 

The input patterns are presented at the input nodes and the output of each node 

is propagated forward to the nodes of the next layer until an output is 

produced at the output node. The output, typically, signifies the classification 

of the input pattern. In the training mode, data flows in both, forward and 

reverse direction. The training data is first presented to the input nodes which 

produce an output at the output node, as is done in the classification mode. 

The network output, is then compared with the corresponding desired output 

and the error measured between the two is then used to adjust the weights in a 

way that minimizes the error. 

2.3. The Learning Procedure 

The overall objective of the learning process is to obtain a set of 

interconnection weights which will result in the actual output being as close as 

possible to the desired output. In order to accomplish this, a measure of error, 

E, is first defined by 



E = ~ L ~ (Yj(c) - dic))2 
C J 

where 

c is the input sample case index 

j is the output node index 

y is the actual output 

d is the desired output 
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(2.3) 

In order to minimize the error by adjusting the weights, it is necessary 

to compute the partial derivative of E with respect to each weight in the 

network. Since the training process entails propagating the error backwards 

from the output layer to the input layer, the backward pass starts by 

computing 

aE 
--y·-d· 
aYj - J J 

for a particular value of c. Applying the chain rule, 

From equation (2.2), we have 

ay· 
_J = y' (1 - y.) ax' J J J 

(2.4) 

(2.5) 

(2.6) 
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Furthennore, minimization of the error with respect to the weights, wij' 

results in the equation 

aE _ aE aXj _ 0 
aw·· - ax· aw·· -IJ J IJ 

which reduces to 

For the output of the ith unit, the error contribution can be shown to be 

which reduces to 

and 

Figure 2.6 illustrates the above steps graphically. 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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Output Layer 

aE aE 
aWij = aXj Yj 

Figure 2.6 Graphical representation of learning equations [7] 

This process is repeated until all layers have been reached so that all of the 

weights in the network are corrected. In addition to the interconnected 

weights, the bias variables used for enhancing the output convergence rate can 

also be adjusted to achieve the optimal solution. For the output layer nodes, 

we can estimate the bias value by solving the equation 

(2.12) 

Similarly for the hidden layer nodes, we have 
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(2.13) 

By solving equations (2.7), (2.11), (2.12), and (2.13), a minimum error 

value can be obtained. 

The computational effort required for the backward pass is comparable 

to the forward pass since it is linear in the number of connections and the 

mathematical operations are similar. In addition, equations (2.4) and (2.9) in 

the backward pass play the same role as y in the forward pass. The only 

difference is that the sum is passed through a nonlinear function in the 

forward pass whereas in the backward pass it is multiplied by equation (2.6). 

In general, the connection weights are updated for each input-output 

pair. This method requires no additional memory for the storage of the 

derivative values. An alternate method, of course, is to sum the errors over all 

input-output cases before the weights are updated. 

2.4. Gradient Descent Method 

The iterative procedure for determining the error minimum, based on 

the gradient descent method, is shown in Figure 2.7. This weight correction 

scheme calculates the gradient of the error curve and corrects the 

interconnected weights by an amount, ilw, proportional to the gradient value. 

This correction technique will move the weight values in the direction of the 

error minimwn. 
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E 

w 

Figure 2.7 Steepest descent method 

The incremental change in each weight is proportional to the accumulated 

derivative of error with respect to the weights. For example, 

oE 
Il.w = -'Y­

ow (2.14) 

where 'Y is a gain tenn. To increase the convergence rate of this method, a 

momentum tenn, <l, can be added to give 

oE 
Il.w(t) = -'Y ow(t) + all.w(t-l) 

(2.15) 

where t is the iteration number. The momentum tenn, <l, is generally varied 

from 0 to 1 in order to detennine the relative contribution of the gradients with 

respect to the weight change. 

A numerical algorithm employing the gradient-descent method for 

training neural networks can be found in [5]. It is worthwhile to note that in 

order to improve the convergence rate for the gradient method, several 
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additional parameters can be added [5]. These parameters include a gain term, 

y, and a momentum tenn, a, as described earlier. Typically, these parameters 

have to be determined experimentally thereby, contributing to an increase in 

the complexity of the training process. 

2.5. Characteristics of Weight Space 

The dimensionality of the weight space is related to the number of 

weights in the network in that each weight in the network corresponds to a 

dimension in the weight space. A convenient way to understand the learning 

procedure is to observe the movement on the error surface in a 

multidimensional weight space. The error surface comprises of local 

minimums, saddle points, and a global minimum. The objective is to 

determine the global minimum point so as to achieve optimum classification. 

A major drawback of this technique is related to the fact that the error 

minimum achieved is highly dependent on the initial starting point, as shown 

in Figure 2.8. In this one dimensional example, initial weights wa and wb will 

both converge to local minima whereas w c will converge to the global 

minimum. As a result, this method will perform poorly in cases where more 

than one minimum is present. In addition, it is also possible that the method 

will simply oscillate between two points and fail to converge completely. ill 

Figure 2.8, the solution oscillates between the points wd and we. This calls 

for the use of alternate search methods which are described in the next 

chapter. 
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E 

local minimums global mimimum 

w 

Figure 2.8 Convergence of gradient method (l-D case) 

The effects of the gain and momentum terms have a direct impact on the 

physical movement on the error surface. Unfortunately, in most practical 

neural networks with large number of weight connections it is difficult to 

visualize the impact. One way to illustrate the error curve in a high 

dimensional weight space is to plot the movement of the error surface in 

significant directions of weight spaces, and compare the results with error 

surfaces plotted along random directions. This, in tum, aids the interpretation 

of the error surface movement in a high dimensional weight space. 
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CHAPTER III. 

HOMOTOPY METHODS 

3.1. Introduction 

Homotopy continuation methods are numerical techniques used to 

detennine the zeroes of a system of nonlinear equations [18] [19]. The 

underlying concept of the method involves identifying a simple system with 

known solution and slowly defonning it into the desired system with 

unknown solutions. During the defonnation process, a family of paths is 

dermed from the solutions of the known system to the solutions of the 

unknown system [20]. The continuation method is a numerical procedure 

used to track this solution path, where every point on the path represents the 

solution of the defonned system, for a particular value of the defonnation 

parameter. When the known system is completely defonned into the unknown 

system, the desired solutions to the unknown system are obtained. Unlike the 

gradient based numerical methods, such as the Newton-Ralphson and the 

steepest descent methods [21], homotopy continuation methods are globally 

convergent and solution exhaustive. Globally convergent implies that the 

method will converge to a solution irrespective of the location of the initial 

starting point Solution exhaustive signifies that all solutions to a desired 

system can be found. However, several conditions must be met for the 

solution exhaustive property to hold. First, the system of interest must 
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consist of polynomial equations of known degree. Second, the initial system 

must also consist of polynomial equations with the same degree as the 

unknown system. In addition, the initial system should have no common 

roots. This property was proved by Garcia and Zangwill in 1977 [22] and 

independently by Drexler in 1978 [23]. Information describing the 

relationship between Newton's method and homotopy method are discussed 

in [24] and [25]. Other homotopy methods and their applications can be found 

in [26], [27], [28], [29] and [30]. 

In the following sections, issues associated with the theory and 

numerical implementation of homotopy continuation method are discussed. 

3.2. Homotopy Theory 

The homotopy function h(x,t) is defined as [31]: 

h(x,t) == (1 - t ) g(x) + t f(x) (3.1) 

where t is the homotopic tracking parameter, g(x) is the system with known 

solutions and f(x) is the system of interest whose solutions are desired. As the 

parameter t varies from 0 to 1, h(x,t) deforms the known system, g(x), to the 

the desired system, f(x). For example, at t = 0, h(x,O) = g(x) = 0 gives the 

initial starting solutions of the known system.When t = 1, h(x,1) = f(x) = 0 

gives the desired solution of the system of interest. The intermediate values of 

t between 0 and 1 correspond to the different deformed functions, h(x,t). 
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The homotopy function can be generalized into a vector fonn, 

h(A,t) = t f(A) + (1-t) g(A) (3.2) 

where 

h(A,t) = [h 1 (A,t), ...... , hn(A,t)] 

As t varies from 0 to 1, a family of paths is tracked from the solutions of 

g(A,) = 0 to the solutions of f(A) = O. 

3.2.1. path description 

A typical continuation path for a one dimensional function is illustrated 

in Figure 3.1. The continuation path is tracked by solving h(x,t) = 0 at each 

incremental step oft. The continuation path, shown in Figure 3.1, is seen to 

be continuously differentiable in space. Mathematically, the path can be 

described by a set of differential equations. Since every point (x,t) on the path 

satifies the equation h(x,t) = 0, the derivative of the homotopy function with 

respect to the tracking parameter, t, is equal to zero. 



25 

x 

Figure 3.1 Monotonic homotopy path 

x denotes a zero of g(x) 
Xl denotes a zero of f(x) 

The homotopy differential equation is obtained by differentiating 

equation (3.1) with respect to the tracking parameter, 

! h(x(t» = Hx(X(t»dx~t) = 0 
(3.3) 

where Hx is the Jacobian matrix of the homotopy function with repect to x. 

Partitioning equation (3.3) into a block matrix form and expressing x(t) = 
(ACt), t) yields, 

dA,(t) 

at 
Hx(x(t» ~~t) = [HA,(X(t» I ~ h(X(t))] = 0 

1 
(3.4) 
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where H)..(x(t)) now represents the Jacobian matrix with respect to the 'A 

parameters. Rearranging equation (3.4) results in, 

dA(t) = _ [Hl(X(t»] -1 ah(x(t» 
dt ~ (3.5) 

Equation (3.5) completely characterizes the continuation path of the 

homotopy function. The path is guaranteed to be continuously differentiable if 

the Jacobian matrix function H'A(x(t)) of the homotopy function is of full 

rank. While equation (3.5) offers a precise description of the solution path, it 

has limitations when path types as illustrated in Figure 3.2 are encountered. 

This figure demonstrates cases where the variation of x is not isomorphic with 

t. 

x 

i I ____ r: 

i~ 
i i 
i I 
I i 

1=0 t 1 1=1 

Figure 3.2 Nonmonotonic homotopy path 

In this case, simply incrementing the tracking parameter t to solve the 

homotopy function will not yield an unique solution along the path. Such a 

case is shown in Figure 3.2, for tl < t < t2, where there are multiple values of 
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x. The difficulty arises in "bending" the curve back to accommodate the 

turning of the solution path. To alleviate this problem, the tracking parameter 

is changed from t to the arc length, s, of the curve. Since the arc length is 

strictly a monotonically increasing function with respect to the homotopy 

parameters, the homotopy tracking parameter, t, can be dec.reased to allow the 

solution path to bend back. 

The homotopy solution path using the arc length, s, as the tracking 

parameter can be described by differential equations similar to equation (3.4). 

Let xes) be the point in the solution path after traveling a distance, s. 

Representing xes) as 

Xes) = (,,-(s),t(s» 

We have as before 

dh(s) == 0 
ds 

By applying the chain rule to equation (3.7) results in, 

HsdK.=O 
ds 

(3.6) 

(3.7) 

(3.8) 

where Hs is the {n x (n+l)}Jacobian matrix ofh. The matrix elements ofHs 

are defined as 
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dh .. _ dhi(X) 
I.j- dx. i=l, ...... ,n;j=l, ...... ,n+l 

J (3.9) 

In terms of the A parameters of equation (3.6), equation (3.8) can be 

rewritten as 

dx 
H). t(x(s» -d = 0 

• S (3.10) 

Equation (3.10) can be solved in a manner similar to equation (3.3) to 

gIve 

[dxd(S)] . = _ [HA.,t(X(S»]-l . ah~X~S» 
S -I -I XI (3.11) 

where A-i denotes the matrix A with its ith column removed. The solution path 

can now be completely described by equation (3.11). 

3.2.2. degree theory 

Homotopy continuation method is particularly useful when the 

unknown system consists of polynomial functions. This is largely due to the 

fact that for polynomial systems, the solutions obtained using the homotopy 

methods are theoretically guaranteed to be exhaustive. In general, exhaustive 

solution implies that all solutions to the unknown system will be found. The 

degree of f is dermed as, 
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degree(f) = L sgn ( det [Fx(x)] } 
X E fl (3.12) 

where f-l = {x I f(x) = 0 } represents the set containing all of the solutions to 

fand 

sgn [x] =[ ~ 
-1 

X>O] 
x=O 
x<O (3.13) 

The degree of a polynomial equation can be determined by simply 

taking the degree of the highest tenn. Similarly, the degree of a polynomial 

system can be found by taking the product of the highest order tenus of each 

equation within the system [32]. For instance, let f(x) represent the 

polynomial system comprising of fi(x), i = 1, ........ , n, and let the 

corresponding degree of fi(x) = di' i = 1, ........ , n. Therefore, the total 

degree, d, of the system,f, is: 

n 

d= IT di 
i=l (3.14) 

Generally, the number of solutions to a polynomial system can be 

shown to equal to the degree of the system. This can be proved using 

Bezout's theorem [20] which is stated below. 
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Bezout's Theorem 

Let d = d 1· d2 .... dn be the total degree of f where f = 0 is the 

polynomial system of interest Then 

1) The total number of geometrically isolated solutions and solutions at 

infmity, of f = 0, is no more than d. 

2) IT f = 0 has neither an infmite number of solutions nor an infmite 

number of solutions at infmity, then it has exactly d solutions and solutions at 

infmity, including mUltiplicities. 

3.3. Homotopy Path Existence and Finiteness 

In order to apply the homotopy method for tracking the solution paths, 

the conditions for path existence and path fmiteness must fIrst be met. 

1=0 1=1 1=0 t=1 

Figure 3.3 Spiral path Figure 3.4 Point path 
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1=0 1= 1 1= 0 1=1 

Figure 3.5 Bifurcating path Figure 3.6 Crossing path 

Some examples of non-paths are illustrated in Figures 3.3, 3.4, 3.5, and 3.6. 

The path existence condition provides the criteria for the existence of solution 

path and is described below. 

Define 

h-1 = ( (x,t) I h(x,t) = O} (3.15) 

as the set of all solutions (x,t) E Rn+1 to the system h(x,t) = O. Let 

Hx,t= 

(3.16) 
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be the Jacobian matrix of the homotopy function. If y = (x,t) is defined so that 

Yi = xi for i = 1, ........ , nand yn+l = t where x E Rn and y E Rn
+

l
, then the 

partial Jacobian matrix H_i' which is an n x n matrix with the ith column 

removed, is defined as, 

ahl ahl ahl ahl 
aYI aYi-1 dYi+1 aYn+l 

H-i = 

ahn ahn ahn ahn 
aYI dYi-1 aYi+l dYn+l (3.17) 

It can be shown that if H-i is invertible for some value of i, then a single 

continuously differentiable path exists for (x,t) E h- l in the neighborhood of 

(x,t) where (x,t) is a point in h-1. In other words, the solution path exists only 

when H-i is of full rank for some value of i. 

A homotopy solution path is said to be fmite if all points on the path 

stay bounded for 0 < t < 1. For instance, if the homotopy function is path 

fmite for t in [0,1) then the path can diverge only when t approaches 1. The 

fmiteness property ensures that a solution to g(A) will converge to a solution 

to f(A) provided that the number of solutions to f(A) is finite. In general, for 

polynomial functions, the finiteness property merely restricts the form of the 

equation of interest, but not the type of equation. The path fmiteness condition 

is stated below. 

Consider the problem of solving 

i = 1, ...... , n (3.18) 
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where x is an n dimensional vector, x = {Xl, X2,······, xn }, in the complex 

space and fi: en ~ e is analytic and have all bounded solutions. Furthennore, 

the system to be solved can be modeled as 

(3.19) 

where qi is a positive integer and Pi : en ~ C is analytic. In addition, 

(3.20) 

The path fmiteness property is guaranteed only if equation (3.20) is satisfied. 

Rewriting the unknown function in a solvable form, 

(3.21) 

and defming the known function to be 

(3.22) 

the homotopy equation to be solved is 

Qj + t (Pi (X) + 1) = 0 O~t~ 1 (3.23) 
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To solve equation (3.23), the solution paths start out at each of the 

trivial solutions to Qi and follow the path until t = 1. Thus, all solutions to the 

desired system are found. 

3.4. Types of Homotopy Functions 

The homotopy function can be defmed in many ways. Each of these 

defmitions results in a different form of homotopy methods. 

3.4.1. all-solution homotopy method 

The all-solution homotopy function is defmed as 

h(x,t) = (l-t) g(x) + t f(x) (3.24) 

The all-solution homotopy scheme involves tracking of all the solutions 

to a given nonlinear problem. The solutions obtained may either be real or 

complex. Similarly, the initial points may also be either real or complex. The 

all-solution homotopy method is an ideal technique for solving nonlinear 

minimization problems since the solutions found include the global minimum 

point. 

The all-solution homotopy method can be easily applied to polynomial 

systems since the number of solutions to the system is known a priori. 

Choosing the degree of the initial known system, g(x), to be equal to the 

degree of unknown system, f(x), then guarantees exhaustive set of solutions. 
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In contrast, applying the all-solution method to other types of nonlinear 

problems is not trivial if the total number of solutions is not known a priori. 

Furthermore, as is the case for neural networks, many applications require the 

estimation of only real solutions to the problem. This restriction inhibits the 

use of the all-solution homotopy method since the knowledge of the number 

of real solutions to a system is seldom available. A more appropriate choice of 

homotopy method for these problems is the single-solution homotopy 

method. 

3.4.2. single-solution homotopy methods 

Single solution homotopy methods are numerical methods which track 

one solution to a given problem at a time. These methods are, theoretically, 

both robust and globally convergent in that they guarantee convergence 

irrespective of the initial starting point. Single-solution homotopy methods are 

of two types. The first type is called the flXed-point method where the 

homotopy function is defined as 

h(x,t) = (1-t) (x-Xo) + t f(x) (3.25) 

The flXed-point method is very much similar in form to the all-solution 

homotopy method. The fixed-point method can be considered as a special case 

of the all-solution method where g(x) is chosen as the linear function (x-xo)' 

regardless of the form of f(x). The second type of the single solution method 

is called the Newton homotopy method, 
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h(x,t) = f(x) - (1-t) f("o) (3.26) 

where Xo is the initial starting point. 

The Newton homotopy method entails evaluating the system of interest 

at the initial starting point and slowly tracking the solution until t = 1. Since 

g(x) is not needed in this method, the tracking process is strictly perfonned 

using the unknown system, f(x). It is important to note that in the Newton 

homotopy method, only one solution is tracked at a time. A drawback of 

single-solution homotopy methods is that they do not provide exhaustive 

solutions. Nevertheless, the simplicity of implementation and global 

convergence make them an attractive choice in many applications. In addition, 

the fixed-point homotopy method can be used for tracking real solutions and 

is, therefore, ideal for the purpose of this research. 

3.5. Applications of Homotopy Methods in Various Fields 

Homotopy continuation methods have received considerable attention 

as a solution exhaustive approach for solving nonlinear optimization 

problems. Nonlinear optimization problems are widely found in many 

engineering applications such as digital signal processing, process control, 

etc. Homotopy continuation methods have been applied to solve nonlinear 

optimization problems to obtain globally optimum parameters . 

In [9], Stonick calculates the minimum mean squared error pole/zero 

parameter estimates using the homotopy continuation method. This problem 
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was further extended to the design of optimal infmite impulse response filters 

[33] and also to obtain the auto-regressive-moving-average (ARMA) 

parameter in system identification problems [34]. 

In [35], Watson, et al. utilized the homotopy method to determine the 

DC operating point for an integrated circuit. The method is capable of solving 

for the DC bias point even in the presence of nonlinear circuit components 

such as diodes and capacitors. 

Vasudevan, et al. [36] considered the fuel-optimal orbital rendezvous 

problem. The problem consists of fmding a minimum fuel rendezvous 

trajectory between two points. Although the results obtained took an order of 

magnitude longer than conventional nonlinear programming algorithm, 

nonetheless, valuable insights on the choice of initial known system were 

gained. 

Continuation methods have also been applied for determining the 

frequency response curve of a nonlinear network [37]. Different 

characteristics of the curve, such as the state of equilibrium, were also 

obtained. 

In addition, research has also been done in the areas of chemical 

modeling [29] and kinematics [30] using homotopy methods. 

3.6. Homotopy Algorithms 

As mentioned in a previous section, two different formulations of the 

homotopy functions are used, based on the monoticity of the solution path 

with respect to the tracking parameter. In the case where the tracking 
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parameter t is monotonically increasing with respect to the solutions, the 

numerical algorithm is described below. 

1) Set h(x,t) = (1-t) g(x) + t f(x) 

2) Solve for h(x,t) = 0 using Newton's method 

3) 1ft = 1 go to step 6) 

4) Increment t by a small incremental step 

5) Goto step 2) 

6) Solutions obtained for f(x) = 0 

In the case of problems where the solution path is nonmonotonic, the 

tracking parameter used must allow the value of t to decrease. In this case, the 

arc length, s, of the solution path is typically used due to its monoticity with 

respect to the homotopy parameter. The path is tracked by first calculating the 

tangent of the curve and a predictor- corrector numerical scheme is then used 

to take an incremental step in the direction of the tangent [38]. A predictor­

corre~tor scheme is illustrated in Figure 3.7. The incremental step size 

depends on the degree of steepness of the curve. A bigger incremental step is 

taken when the curve is flat (ie. tangent value is small) to predict the solution 

to the function. A corrector scheme is then used to adjust the predicted value 

back to the true solution path. In instances where the curve is fairly steep, a 

smaller predictor step is taken to prevent solutions from diverging. The same 

corrector scheme can also be applied to adjust the predicted value. A simple 

algorithm utilizing the predictor-corrector method is illustrated below. 
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y 

Predictor slep 

x 

Figure 3.7 Predictor-corrector scheme 

The homotopy function in terms of the arc length, s, is given by 

h(s) = h(x(s» = (1 - l(S» g(x(s» + l(S) f(x(s» 

The step by step procedure is as follows: 

1) . Set h(x,s) = (l-t(s)) g(x) + t(s) f(x) 

2) Select m such that 

{ m I \dxm~ > ~n~ 'v' m * n } 
IclslIclSl 

3) Calculate the tangent 

dxm = 1 
ds 

(3.27) 
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[dX(S)f+
1 

= [- [HxP -m ~~)I J 
ds -m ~-

4) Detennine the direction of the tangent 

If the inner product between the kth and k+ 1 th iteration of d~n < 0 then 

5) Compute the predictor step 

II [dX(S) lk+l 

[x]k+l = xk + ds] 
IIdx(s)Uk 

ds 

6) Corrector step 

Solve hex) = 0 with xm fixed using Newton's method 

where j and k denote the iteration numbers. 

7) Repeat steps 2 through 6 until t = 1 
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The Il. in step 5 denotes the incremental step size and can be varied 

depending on the steepness of the curve tangent. Other homotopy algorithms 

can be found in [39]. 
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CHAPTER IV. 

APPLICATION OF HOMOTOPY METHODS TO 

NEURAL NETWORKS 

4.1. Introduction 

This chapter describes the application of the homotopy continuation 

method to the specific task of training neural networks. As presented in 

Chapter 2, neural networks are trained by adaptively changing the 

interconnection weights so as to minimize the network classification error. 

Conventional gradient methods for error minimization result in convergence to 

a local minimum. The objective of this chapter, therefore, is to solve equations 

(2.7), (2.11), (2.12), and (2.13) using the homotopy continuation method 

whereby optimum classfication performance is achieved. 

The all-solution homotopy method is an ideal choice for this application 

since it guarantees exhaustive solutions to the system of interest. This will 

then enable the user to determine the globally optimum solution to the 

problem. However, his method is applicable only to polynomial systems 

where the total number of solutions is clearly defmed. The minimization 

equations for the neural network application do not comprise of polynomial 

functions. Rather, these equations consist of transcendental functions due to 

the sigmoidal activation functions of the nodes. As a result, the number of 
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solutions cannot be detennined a priori which makes the all-solution 

homotopy approach difficult to apply. The difficulty arises mainly because an 

appropriate choice of g(x) cannot be made to properly track all solutions of 

f(x). 

Two approaches have been considered to overcome this problem. The 

first approach involves modeling the sigmoid function using a polynomial 

function such that the approximation is valid in a specified domain. The all­

solution homotopy method can then be used to track all solutions to the 

system of minimization equations. The order of this system increases 

drastically as the number of weights in the network increase. This presents 

severe problems during implementation as will be discussed in detail in the 

next section. 

The second approach is much simpler than the first approach. Instead 

of changing the nodal activation function to accommodate the use of all­

solution homotopy method, the sigmoid function is retained and a different 

homotopy method is employed. The fixed-point homotopy method is used 

due to both the simplicity of implementation and the global convergence 

property. In addition, the fixed point homotopy method can be implemented 

such that only real solutions to the system are tracked. This is especially 

important in the neural network application where only the real valued weights 

are considered. 

4.2. Generalized Polynomial Approximation Method 

In order to fully utilize the all-solution homotopy method, the nodal 
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activation function is modeled using a polynomial function to approximate the 

sigmoid function such that the approximation is valid in a bounded domain 

[40]. The domain is kept bounded to prevent the nodal output from diverging. 

In general, there are two restrictions which must be placed on the 

approximation function. First, the bounded domain should be large enough to 

allow the output to adequately converge to either 0 or 1. Second, the order of 

the modeling equation should be kept relatively low to reduce the complexity 

of the system which is inherently high considering the number of weights in 

the network. In order to meet the above criteria, the sigmoid function given in 

equation (2.2) is approximated with a third degree polynomial function as 

p(x) = 0.5 + 0.19745 x + 2.5224 X 10-8 X2 - 4.3917 X 10-3 X3 (4.1) 

-3.8 ~ x ~ 3.8 

where the bounded domain is chosen as [-3.8,3.8.]. The nodal output is 

expressed as ' 

(

Ox < -3.8 ) 
f(x) = p(x) -3.8 ~ x ~ 3.8 

1 x> 3.8 (4.2) 

Both the sigmoid function and the approximating polynomial are shown 

in Figure 4.1. 

The minimization equations to be solved are as shown below. 

For the output nodes, 
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1.0 

0.8 

0.6 
__ Sigmoidal function 

0.4 
- Approximation function 

0.2 

0.0 +-_IIjId~--r-....,......-,---r--,---r---r-__ --' 
.{) o 2 4 6 

x 

Figure 4.1 Sigmoid function and approximation function 

(2.7) 

Similarly, for the hidden nodes 

(2.11) 

By substituting equation (4.1) into equations (2.7) and (2.11), it can be 

shown that each equation results in a fIfth degree nonhomogeneous 

polynomial function. Using the network structure given in Figure 2.4 which 

contains six weights in the networks (ie. six equations in the system), the 

degree of the resultant system becomes 56 = 15625. In other words, there are 

15625 possible solutions for the system. Since the neural network demands 

only real valued weights, the selection of g(x) is also limited to polynomial 
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functions with only real solutions. One method for generating the known 

system, g(x), in general, is to randomly select 15625 unique real numbers and 

forming a system of equations using these solutions. For example, for a 

polynomial system consisting of six fifth order equations, the system can be 

expressed in a general form as shown below: 

aox~ + alX~ + a3X~ + ...... + an-2X6 + an-l = 0 

box~ + blX~ + b:3x~ + ...... + bn-2X6 + bn-l = 0 

Cox~ + CIX~ + C3xj + ...... + Cn-2x 6 + Cn-l = 0 

dox~ + dlX~ + d3X~ + ...... + dn-2X6 + dn-l = 0 

eox~ + elX~ + e3X~ + ...... + en-2X6 + en-I = 0 

fox~ + flX~ + f3X~ + ...... + fn_2X6 + fn-l = 0 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

where Xi, i = 1, ........ , 6 represent the unknown weights in the network, and 

aj, bj' cjt djt ejt and fjt j = 0, 1, ... , n-l, represent the coefficients of the 

polynomial equations. For this example, n can be shown to be 462 using 

equation (2.3-9) in [1]. To fonnulate the known system, g(x), the coefficients 

of the system must first be determined. The coefficients can be obtained by 

substituting the randomly chosen real solutions into equations (4.3) through 

(4.8) and solving the system of equations simultaneously. The resulting 

overdetennined system can be solved using a least square approximation 

method [42] to estimate the coefficients. However, the results obtained tend to 

be extremely noisy with the signal to noise ratio being close to one, which 

presents further problems. The development of a robust method for the 

generation of g(x) is, therefore, necessary for the application of the all-
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solution homotopy method for training neural networks [43]. 

4.3. Fixed-Point Method 

The second approach considered here is more robust than the 

polynomial modeling technique. This approach retains the use of sigmoid 

function as the nonlinear nodal activation function [41]. The approach 

employs the fixed-point homotopy method to track one solution at a time. This 

method is superior to the conventional gradient methods in that it is globally 

convergent. In addition, this method is much simpler to implement in terms of 

computational resources. The only drawback is that the solution exhaustive 

property is no longer guaranteed since the number of solutions to a system of 

transcendental functions cannot be predetermined. 

Consider the fixed-point homotopy function, 

h(x,t) = (1-t) (x-xo) + t -f(x) (3.25) 

where rex) denotes the system of equations given in equations (2.7), (2.11), 

(2.12), and (2.13). To track a solution, a starting vector point Xo is picked 

randomly to start the process. The tracking procedure incrementally traces a 

solution path from Xo to a solution of rex). The solution obtained is used as 

the weight values to calculate the actual output of the neural network. The 

result is then used to determine the error corresponding to the weights 

obtained. It is helpful to point out that, typically, several solutions need to be 

tracked before a satisfactory answer can be attained. This is done by using 



48 

several of the previously tracked solutions to predict the location of the global 

mmunUIn. 
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CHAPTER V. 

MULTI-RESULTANT METHOD 

5.1. Introduction 

This chapter describes the multi-resultant method as an alternate 

approach for the application of training neural networks. The multi-resultant 

method is a numerical technique for detennining all real solutions to a set of 

polynomial equations [44] [45]. As in many other engineering applications, 

the training of neural networks requires only real valued solutions to a given 

system of equations. In this case, the real valued solutions are the 

interconnection weights of the network. In contrast to homotopy methods, the 

algorithm does not require the generation of the polynomial system, g(x), for 

obtaining the desired solution. In addition, the algorithm allows the user to 

look for solutions in specific intervals of interest. The multi-resultant method 

for a system of homogeneous equations is described next. 

5.2. Homogeneous Systems 

Consider a system of homogeneous polynomials with real coefficients, 

in n variables. 
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( 

fo ( xo, ..••.. , Xn-t> J 
rex) = : = 0 

fn-t ( Xo, ••.... , Xn-t) (5.1) 

We then defme for each variable xi, a multi-resultant Ri(xi) = det Mi(xi) where 

Mi is a large sparse matrix known as the multi-resultant matrix. It has been 

shown in [47] that Ri(xi) = 0 is a necessary condition on the ith component of 

any zero of f. If zi denotes zero of Ri(xi) = 0, then any zero of f belongs to 

the Cartesian product 

n-t 
II Zi 
i=O (5.2) 

The actual zero points of f can be detennined numerically from the set 

described in equation (5.2). Since the equation, Ri(xi) = 0, is a high order 

polynomial equation, the problem of solving this equation is unstable. An 

alternate solution is to replace Ri(xi) = 0 with the equivalent condition [45] 

(5.3) 

where v is a column vector. Equation (5.3) has been shown to be numerically 

stable. The problem, thus, entails the calculation of the smallest eigenvalue of 

M· (x·)TM· (x·) 1 1 1 1· 

The procedure for constructing the multi-resultant matrix of a 

polynomial system is best illustrated through an example. For convenience, 

the variables x, y, z are used in place of Xl, x2, and x3. Consider the system 

of polynomials 



Po = X2 + yz - 3y2 

PI = xy - 2z2 

P2 = y2 + yz - xz 
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Let di be the degree of Pi. For the system in (5.4), we have 

dl = d2 = d3 = 2 and n = 3. 

Let 

The basis for V n,L' the vector space of homogeneous polynomials in n 

variables of degree L, is obtained as 

(5.4) 

(5.5) 

The sets si are then constructed by selecting monomials that are divisible by 

x? This gives 

So = (x2z2, x2yz, x2y2, x3z, x3y, x4) 

Sl = (y2Z2, y3z, 1', xy2z, xy3 ) 

S2 = ( z4, yz3, xz3, xyz2) 

The corresponding sets, Ti' obtained by dividing si by x?, are 



To = ( Z2, yz, y2, XZ, xy, X2) 

T} = (Z2, yz, y2, xz, Xy) 

T 2 = ( Z2, yz, xz, xy ) 
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The muti-resultant matrix, M, is fonned by multiplying elements of Ti 

by Pi and writing the coefficients in the reverse lexicographical order. For 

instance, the 8th row of the multi-resultant matrix is formed by taking the 

second element of T 1 (skipping over the 6 elements in TO and the first element 

in TI) and multiplying it by PI to get xy2 - 2yz3. Writing the coefficients in 

the reverse lexicographical form yields 

ro~000001000000m 

The remaining rows of the multi-resultant matrix can be built using the same 

method. The dimension of the matrix is m x m where 

(5.6) 

and n is the system dimension. The solutions to system (5.4) occurs at the 

minimum eigenvalues 
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(5.7) 

The solutions to system (5.4) are obtained by numerically searching for the 

minimum eigenvalue Amin(xi) over the interval Xi in [a,b] where a and bare 

the interval bounds. The corresponding value of Xi is a solution to system 

(5.4). 

The multi-resultant method, developed by Allgower, Georg, and 

Miranda, is theoretically capable of fmding real valued solutions to polynomial 

systems having real coefficients. The application of this method for the 

training of neural networks, again, requires the nodal activation function to be 

modeled by a polynomial equation. However, the difficult task of generating a 

known system, g(x), is no longer necessary. The procedure for applying the 

multi-resultant method to the problem of training neural networks is described 

next. 

5.3. Neural Network Example 

The procedure involved in applying the multi-resultant method to neural 

networks is similar to that of the generalized polynomial approximation 

method described in Chapter 4. The nodal activation function is modeled 

using a polynomial approximation. The polynomial system to be solved is 

formulated using equations (2.7) and (2.11). This system is described by 

equation 
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f(w) = =0 

(5.8) 

The multi-resultant matrix, M, is obtained using method previously described. 

A major disadvantage in applying the multi-resultant method to neural network 

training is the enormous dimensions of the multi-resultant matrix. In the case 

of the example given in section 4.1 where the system consists of six equations 

of fifth order polynomial functions, the dimensions of the resultant matrix, M, 

is obtained to be 

m = (350 ) = 142506 (5.9) 

Therefore, the resultant matrix has dimensions of 142506 x 142506. Although 

the multi-resultant matrix is sparse, the computational effort involved in 

calculating such a large matrix is still expensive. Hence the application of the 

multi-resultant method to practical neural network structure requires the 

development of numerical techniques for handling large sparse matrices. 

However, the method theoretically represents an approach for finding the 

globally optimum real solution of a polynomial system which is the general 

objective of this thesis. 
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CHAPTER VI. 

RESULTS AND DISCUSSIONS 

6.1. Introduction 

This chapter demonstrates the validity of the fixed-point homotopy 

method for training neural networks. The perfonnance of the fixed-point 

homotopy method for training a multilayer perceptron network is evaluated 

using a two class problem. The set of test problems in a two dimensional 

feature space with linear and nonlinear decision surfaces are shown in Figures 

6.1,6.2,6.3, and 6.4. The sample patterns from the two classes used to train 

the network are also shown. The neural network used to classify the above 

problems is shown in Figure 6.5. 

x 

Decision 
surface 

Figure 6.1 Input sample problem #1 

Class I 

Class 0 Decision 
surface 

I 

Figure 6.2 Input sample problem #2 
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aassO 

x 

x 

Decision 
Surface 

Class 1 

Figure 6.3 Input sample problem #3 Figure 6.4 Input sample problem #4 

Y4 

Figure 6.5 Experimental network 
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This network contains five interconnection weights designated 

wI, ...... , w5 as shown in Figure 6.5. In addition, two bias variables, 91 and 

92, are included to improve convergence [46].91 is assigned to the hidden 

node and 92 is assigned to the output node. The bias variables are adjusted 

along with the weights to produce a minimum energy in the output error. 

6.2. Problem Formulation 

Using the nodal activation function as given in equation (6.1), 

y = _--<1"--_ 
1 + e-(x+9) 

the minimization equations to be solved for the output connections are, 

Using the results in section 2.3, this set of equations reduces to 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 
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The corresponding equations for the hidden node connections are 

aE _ L aE aY4(C) aX4(C) aY3(C) aX3(C) - 0 
aW2 - c aY4(C) aX4(C) aY3(C) aX3(C) a W2 -

aE = L aE aY4(C) aX4(C) aY3(C) aX3(C) = 0 
aW3 c ay4(C) aX4(C) aY3(C) aX3(C) aW3 

which can be rewritten in the fonn 

Similarly for the bias variables, we have 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 
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which can be rewritten as 

The system to be solved can be fmally represented in vector fonn as 

f(w) = 

oE 
OWl 

oE 
OW2 

oE 
OW5 
oE 
091 

oE 
092 

=0 

with the fIxed-point homotopy function being of the fonn 

h(w,t) = f(w) t + (w - wo) (1 - t) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

(6.17) 
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The fIxed-point homotopy continuation method was implemented using a 

numerical predictor-corrector scheme with t as the tracking parameter. The 

training patterns and the same initial weights were also input to the gradient 

descent method. The results are summarized in Table 1. 

6.3. Discussions 

The results shown in Table 1 indicate that the fIxed-point homotopy 

method has considerable potential as a tool for training neural networks. The 

major advantages offered by this technique are global convergence and 

signillcantly lower training time. 

The backpropagation algorithm has been used extensively for the 

classifIcation of data. However, parameters such as initial weights, bias value, 

and learning rate have to be chosen on the basis of trial and error. Very often 

this results in excessive training time before the appropriate combination of 

initial parameters are found. In this regard, the global convergence property of 

the fIxed point homotopy method is particularly advantageous. Currently, the 

fIXed-point method requires several initial points to be evaluated before the 

desired solution can be obtained. However, this problem can be overcome 

once the all-solution homotopy method is implemented. The all-solution 

homotopy method allows the optimal solution to be found in one iteration. 

In the case of linearly separable problems, both methods converged to 

the desired solution for most initial values. However, for larger values of 



61 

Table 1. Summary of Simulation Results 

Pattern Number Desired Output Homotopy Method Gradient Method 

1 0.0000 0.1136 0.0000 
1.0000 0.9785 0.0000 
1.0000 0.9014 0.0000 
1.0000 0.8790 0.0000 
0.0000 0.1095 0.0000 
1.0000 0.9794 0.0000 
1.0000 0.9979 1.0000 
1.0000 0.8739 0.9570 
0.0000 0.1055 0.0000 

2 1.0000 0.9899 0.0000 
1.0000 0.9709 0.0000 
1.0000 0.9981 0.0000 
1.0000 0.8719 0.0000 
0.0000 0.0285 0.0000 
1.0000 0.9995 0.0000 
0.0000 0.0076 0.9999 
0.0000 0.1456 0.9999 
0.0000 0.0396 0.9999 
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Table 1. (continued) 

Pattern Number Desired Output Homotopy Method Gradient Method 

3 0.0000 0.0000 0.9999 
0.0000 0.1218 0.9999 
0.0000 0.0000 0.9999 
0.0000 0.0026 0.9999 
1.0000 0.9999 0.9999 
1.0000 0.9999 0.9999 
1.0000 0.9999 0.9999 
1.0000 0.9999 0.9999 
1.0000 1.0000 1.0000 

4 0.0000 0.0050 0.0003 
0.0000 0.0026 0.0002 
0.0000 0.0249 0.0009 
0.0000 0.2187 0.0040 
0.0000 0.1265 0.0028 
1.0000 0.9999 0.9986 
1.0000 0.9999 0.9996 
1.0000 0.9999 0.9999 
1.0000 0.9999 0.9984 
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tinitial weights, the gradient method failed to converge, whereas the fixed­

point homotopy method is still capable of converging to the desired solution 

as seen in patterns #3 and #4. As the decision surface becomes more and more 

complex, the gradient method, in general, fails more frequently than the fixed­

point homotopy method. The perfonnance of the two methods for data set # 1 

and #2, starting from the same initial points, are shown in Table 1. 

However, the merit of the backward error propagation method still lies 

in the ease with which it can handle higher dimensional problems associated 

with multilayered networks. Further work remains to be done before the 

fixed-point homotopy method can be adapted for training layer networks of 

larger dimesnsions. 
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CHAPTER VII. 

SUMMARY AND FUTURE WORK 

This thesis presents an innovative approach for training multilayer 

perceptron neural networks. The overall objective is to achieve the globally 

minimum error which ensures the best possible training parameters for 

subsequent classifications. The network parameters include the 

interconnection weight variables and the nodal bias variables. 

A brief description of the topic of neural networks is presented. The 

concept of neural networks is based on an extremely simplified model of the 

human nervous system. Each neuron in the network can generate one of two 

outputs: an output one which signifies the firing state of a neuron cell or an 

output zero which represents the resting state of a neuron cell. The network is 

first trained by presenting the input sample patterns along with the desired 

output to the network. The discrepancy between the network calculated output 

and desired output represents the training error which is used to adjust the 

interconnection weights so that the energy in the error is minimized. 

Consequently, it is essential that the minimum error obtained is a global 

minimum and not a local minimum. The training technique most commonly 

used to find the minimum point is the backward error propagation algorithm, 

which is based on the gradient descent method. Two major criticisms of the 

backward error propagation algorithm are: 1) Excessive training time, and 2) 
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lack of convergence, or convergence to the local minimum of the error 

surface. 

The approach proposed in this thesis for overcoming these drawbacks 

involves the use of the homotopy continuation method for minimizing the 

error function. Homotopy continuation methods are numerical methods used 

to obtain the zeros of nonlinear systems. Homotopy methods offer two 

important advantages, namely, global convergence and when the system of 

interest consists of polynomial functions, all-solution homotopy methods 

guarantee exhaustive solutions. However, in order to apply the all-solution 

method to neural network training, the sigmoidal activation function must be 

modeled by a polynomial function. The drawback with this approach is the 

difficulty in generating the known polynomial system of equations, g(x), with 

only real-valued solutions. However, at the expense of losing the all-solution 

property, a variant of the homotopy method known as the fixed-point 

homotopy method can be used. This method is globally convergent and it 

tracks one solution at a time. The fixed-point homotopy method is often used 

in problems where the number of solutions is not known a priori. Moreover, 

the fixed-point method is particularly used in applications where only real 

valued solutions are desired, as in the case of neural networks. 

The contribution of this research lies in the formulation of the neural 

network equations within a framework suitable for the application of the 

homotopy continuation method. Application of the fIXed-point homotopy 

method was performed by computing the Jacobian matrix and developing the 

program codes for the predictor-corrector numerical scheme. 
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Simulation results for some two dimensional, two class data sets have 

been presented. The results demonstrate the capability of the proposed method 

to converge to the desired minimum in contrast to the gradient method which 

was seen to result in oscillation or converged to a local minimum. 

In conclusion, the fixed-point homotopy method has been demonstrated 

to be superior to gradient search methods largely due to its global convergence 

property. However, the work presented in this thesis is by no means 

complete. Further research remains to be done before the proposed method 

can be applied for finding the globally optimum weights in training neural 

networks. This requires development of robust techniques for generating the 

polynomial system, g(x). Once this problem is resolved, the all-solution 

homotopy method can be employed to yield the globally optimum solution 

with respect to the classification error. Another area that needs further 

attention is the development of numerical techniques for implementing the 

multi-resultant method for training neural networks. Finally, the application of 

homotopy methods for training neural networlcs other than the multilayer 

perceptron network, such as the Kohonen network needs to be studied. 
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APPENDIX A. 

NEURAL NETWORK TRAINING PROGRAM USING FIXED­
POINT HOMOTOPY METHOD 

program igiveup 

c This program trains a multilayer perceptron neural network 
c using the fixed-point homotopy method. The training algorithm 
c employed is the conventional error back propagation algorithm. 
c This program does not employ the numerical predictor-corrector 
c scheme, instead, the tracking parameter t is incremented based 
c upon the user-input step size. The iterative tracking process 
c is stopped when t is equal to or greater than 1. 
c 

************************************************************ 
************************************************************ 
**** **** 
**** Author: Joseph C. Chow **** 
**** Thesis Topic: Neural Networks Using **** 
**** Homotopy Continuation Methods **** 
**** Date: 06/11/1991 **** 
**** Time: 10:56:23 AM **** 
**** **** 
************************************************************* 
************************************************************* 

--------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------
---- -------- ----
---- -------- ----
-------- Variable Dictionary --------
---- -------- ----
---- -------- ----
====a Dummy array used for passing arguments --------
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---- to and from LINP ACK subroutines. -------- ----
----b Dummy array used for passing arguments -------- - ----
---- to and from LINP ACK subroutines. -------- ----
===change= Amount of correction added to the --------
---- weight vectors at each iteration. -------- ----

=== constant = Array representing the initial starting --------
---- points. -------- ----
----d = Desired outputs. -------- ----
===det Detenninant of the matrix used by ----- ----
---- LINP ACK subroutines. -------- ----
---- df Jacobian matrix of the unknown system. -------- - ----
----dg - Jacobian matrix of the known system. -------- ----
----dh - Jacobian matrix of the homotopy system. -------- ----
==== dick3 - Dummy function name for the sigmoid --------
---- function. -------- ----
==== error - The training error. --------
----f - Array representing the system to be -------- ----
---- solved. -------- ----
---- flag - Flag used to detennine which iteration. -------- ----
----g - Array representing the initial known -------- ----
---- system. -------- ----
----h - Array representing the homotopy system. -------- ----

==== hessold = Dummy array representing the Hessian --------
---- matrix of the system in interest -------- ----
==== rcond - Condition number of a matrix, used by --------
---- the LINP ACK subroutines. -------- ----. 

Dummy counter variable . ----====1 - ----
==== ipvt - Array variable used by the LINP ACK --------
---- subroutines. -------- ----. 

Dummy counter variable . --------J ---- - ----
----Ida Dummy variable used by the LINP ACK -------- - ----
---- subroutines. -------- ----
====n - Number of variables in the system. --------
==== step - Step size to increment the tracking --------
---- parameter, t. -------- ----
====t - Tracking parameter --------
====w - Array representing the five weights and --------
---- two bias variables in the network. -------- ----
----x3 Array representing different sample -------- - ----
---- cases of input x3. -------- ----
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----x4 Array representing different sample -------- - ----
---- cases of input x4. -------- ----
---- yl = Array representing different sample -------- ----
---- cases of output y 1. -------- ----
---- y2 Array representing different sample -------- - ----
---- cases of output y2. -------- ----
----y3 Array representing different sample -------- - ----
---- cases of output y3. -------- ----
----y4 Array representing different sample -------- - ----
---- cases of output y4. -------- ----
====z Dummy array variable used by LINP ACK ----- ----
---- subroutines. -------- ----
---- -------- ----
---- -------- ----
--------------------------------------------------------------------------------------------------------
==================================================== 

==================================================== 
==================================================== 
--------
--------
--------
--------
==== dfn = 
--------
==== dfnl = 
--------
--------
--- dgeco = ---
--------
---- dgesl -----
--------
---- fcnl -----
--------
---- fcn2 -----
--------
---- fcn3 -----
--------
---- fcn4 -----

Subroutines Called 

Subroutine used to calculate the Jacobian 
matrix of the system in interest. 
Same subroutine as dfn except only called 
during the fIrst iteration of the 
tracking process. 
LINP ACK subroutine. Please see LlNP ACK 
manual for further infonnation. 
LINP ACK subroutine. Please see LINP ACK 
manual for further infonnation. 
Subroutine used to evaluate the 
minimization equation derived from wi. 
Subroutine used to evaluate the 
minimization equation derived from w2. 
Subroutine used to evaluate the 
minimization equation derived from w3. 
Subroutine used to evaluate the 

--------
--------
--------
--------
--------
--------
--------
--------
--------
--------
--------
--------
--------
--------
--------
--------
--------
--------
--------
--------



--------
---- fenS ----
--------
---- fen6 ----
--------
---- fen7 ----
--------
--------

-
= 

-
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minimization equation derived from w4. 
Subroutine used to evaluate the 
minimization equation derived from wS. 
Subroutine used to evaluate the 
minimization equation derived from theta 1. 
Subroutine used to evaluate the 
minimization equation derived from theta2. 

--------
--------
--------
--------
--------
--------
--------
--------

--------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------
--------
--------
--------
--------
-------- inputs = 
--------
-------
-------- outputp = 
--------
--------
-------- roots -
--------
-------

File Names 

Input fue where the input sample 
patterns and the desired outputs are 
read. 
Output file where the final weight 
values, bias values, and error level 
are stored. 
Input file where the initial starting 
points are read. 

--------
--------
--------
--------
--------
--------
--------
--------
--------
--------
--------
--------
--------

--------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------

c Declare variables 

double precision a(7,7),b(7),ehange(7) 
double precision constant(7) ,d(9) ,det,df(7 ,7) 
double precision dg(7, 7),dh(7 ,8),dick3 
double precision error,f(7),g(7),h(7),hessold(7,7) 
double precision rcond,step,t,w(7),work(7),x3(9),x4(9) 
double precision y 1 (9),y2(9),y3(9),y4(9),z(7) 

integer flag,i,ipvt(7),j,n 



77 

data ldanl 

c Define the nodal sigmoid function 

dick3(x,y)= 1.dO/(1.dO+exp( -x-y» 

c Open data files 

open(unit=7,file='inputs') 
open( unit=8,file='roots') 
open( unit=9,file='outputp') 

c Read input vector and desired outputs 

read (7 ,*)yl (1 ),y2(1 ),d(1 ),yl(2),y2(2),d(2) 
read(7, *)yl (3),y2(3),d(3),yl( 4 ),y2( 4),d( 4) 
read(7, *)y 1 (5),y2(5),d(5),y 1 (6),y2( 6),d( 6) 
read(7, *)y 1 (7),y2(7),d(7),yl (8),y2(8),d(8) 
read(7, *)y 1 (9),y2(9),d(9) 
close (7) 

c Derme number of variables in the system 

n=7 

c Read the initial starting point The starting point 
c is also used to fonn the known system. 

5 do 10 j=l,n 
read(8, *)wG) 
constantG)=wG) 

10 continue 

flag=1 
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c User input incrementing step size of t 

write(6, *)'input step size' 
read(5, *)step 
write(6, *)" 

c this part of program will begine the tracking process 

do 10000 t=O.dO,1.dO,step 

write(6,*)'t =',t 

c reset f, g, h, df, dg, dh 

20 do 32 i=l,n 
do 30 j=l,n 

df(i,j)=O.dO 
dg(i,j)=O.dO 
dh(i,j)=O.dO 

30 continue 
f(i)=O.dO 
g(i)=O.dO 
h(i)=O.dO 

32 continue 

c compute the unknown system f(w) 

call fcnl(n,yl,y2,d,f(1),w) 
call fcn2(n,y 1 ,y2,d,f(2), w) 
call fcn3(n,yl,y2,d,f(3),w) 
call fcn4(n,yl,y2,d,f(4),w) 
call fcn5(n,yl,y2,d,f(5),w) 
call fcn6(n,y 1 ,y2,d,f( 6), w) 
call fcn7(n,yl,y2,d,f(7),w) 

c compute the first iteration of df 
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if (flag .eq. 1) then 
call dfnl(n,yI,y2,d,hessold,w) 
flag=O 

endif 

c compute df 

call dfn(n,yl,y2,d,df,hessold,w) 

c compute the known system g(w) 

g( 1 )=w( 1 )-constant( 1 ) 
g(2)=w(2)-constant(2) 
g(3)=w(3)-constant(3 ) 
g( 4 )=w( 4 )-constant( 4) 
g(5)=w(5)-constant(5) 
g( 6)=w( 6)-constant( 6) 
g(7)=w(7)-constant(7) 

c compute the derivative dg 

do 40 i=I,n 
dg(i,i)= I.dO 

40 continue 

c setting up the homotopic equations 

. do 50 i=I,n 
h(i)=(1.dO - t)*g(i) + t*f(i) 

50 continue 

c calculate the Jacobian of the homotopy functions 

do 75 i=I,n 
do 70 j=I,n 

dh(ij)=(1.dO - t)*dg(ij) + t*df(i,j) 
a(i,j)=dh(ij) 

70 continue 
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75 continue 

call dgeco(a,lda,n,ipvt,rcond,z) 
if (rcond .eq. 0.0) goto 10020 

c assign the B column vector 

do 120 i=l,n 
b(i)=-h(i) 

120 continue 

call dgesl( a,lda,n,ipvt,b,O) 

do 140 i=l,n 
change(i)=b(i) 

140 continue 

c Adjust the weight vectors based on the change calculated 

do 200 i=l,n 
w(i)=w(i)+change(i) 

200 continue 

do 300 i=l,n 
if(dabs(change(i» .gt. 0.001) goto 20 

300 continue 

10000 continue 

write( 6, *)" 

c This portion of the program calculates the output of the network 
c and also the square error associated with the calculated weights 

c 
c compute input to layer 2 
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do 9010 i=1,9 
x3(i)=w(2)*y1(i) + w(3)*y2(i) 

9010 continue 

c compute output to layer 2 

do 9040 i=1,9 
y3(i)=dick3(x3(i), w( 6» 

9040 continue 

do 9060 i=1,9 
x4(i)=w(1)*yl(i)+w(5)*y3(i)+w(4)*y2(i) 

9060 continue 

do 9080 i=1,9 
y4(i)=dick3(x4(i), w(7» 

9080 continue 

c check for weights that yield the lowest error 

error=O.dO 

do 9085 i= 1,9 
error=O .5dO*(y4(i)-d(i) )**2.dO+error 

9085 continue 

c PRINT OUT THE RESULTS!! 

write(9,*)'The error is: ',error 
write(6,*),The error is: ',error 
write(9, *)" 
write(9,*),y4(1) =' ,y4(1) 
write(9, *)'y4(2) =' ,y4(2) 
write(9, *)'y4(3) =' ,y4(3) 
write(9, *)'y4( 4) =' ,y4( 4) 
write(9, *),y4(5) =' ,y4(5) 
write(9, *)'y4(6) =',y4(6) 
write(9, *)'y4(7) =' ,y4(7) 



write(9, *)'y4(8) =' ,y4(8) 
write(9, *)'y4(9) =' ,y4(9) 
write(9, *)" 
write(9, *)'w 1 =', w(1 ) 
write(9,*),w2 =',w(2) 
write(9, *)'w3 =', w(3) 
write(9, *)'w4 =', w( 4) 
write(9, *),w5 =' ,w(5) 
write(9,*),theta1 =',w(6) 
write(9, *),theta2 =', w(7) 
write(9, *)" 

c write(9, *)" 

goto 10030 

c Display error message 
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10020 write(6,*),On set #',count 
write(6,*),singular matrix was encountered!' 

10030 continue 

stop 
end 
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subroutine fen 1 (n,y1 ,y2,d,fl ,w) 

c This subroutine evaluates the minimization equation 
c derived from wI. 

c Please see main program for defmition of variables 
c passed. 

double precision dick3,y1 (9),y2(9),d(9),fl ,w(7) 
double precision dummy(9) 
double precision x3(9),y3(9),x4(9),y4(9) 
integern 

dick3(x,y)=1.dO/(l.dO+exp( -x-y)) 

c output connection 

n=7 

c compute input to layer 2 

do 10 i=I,9 
x3(i)=w(2)*y 1 (i)+w(3)*y2(i) 

10 continue 

do 20 i=1,9 
y3(i)=dick3(x3(i), w( 6)) 

20 continue 

do 30 i=1,9 
x4(i)=w(l )*y 1 (i)+w( 4 )*y2(i)+w(5)*y3(i) 

30 continue 

do 40 i=I,9 
y4(i)=dick3(x4(i),w(7)) 

40 continue 

fl=O.dO 
do 50 i=1,9 
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dummy(i)=(y4(i)-d(i))*(1.dO-y4(i) )*y4(i)*yl (i) 
f1=f1 +dummy(i) 

50 continue 

return 
end 
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subroutine fcn2(n,yl,y2,d,f2,w) 

c This subroutine evaluates the minimization equation 
c derived from w2. 

c Please see main program for defmition of variables 
c passed. 

c 

double precision dick3,yl(9),y2(9),d(9),f2,w(7) 
double precision dummy(9) 
double precision x3(9),y3(9),x4(9),y4(9) 
integern 

dick3(x,y)=I.dO/(l.dO+exp( -x-y» 

c hidden connection 

n=7 

c compute input to layer 2 

do 10 i=I,9 
x3(i)=w(2)*y 1 (i)+w(3)*y2(i) 

10 continue 

do 20 i=I,9 
y3(i)=dick3(x3(i),w(6» 

20 continue 

do 30 i=I,9 
x4(i)=w(I)*yl(i)+w(4)*y2(i)+w(5)*y3(i) 

30 continue 

do 40 i=I,9 
y4(i)=dick3(x4(i),w(7» 

40 continue 

f2=O.dO 
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do 50 i=1,9 
dummy(i)=(y4(i)-d(i»*(1.dO-y4(i»*y4(i)*w(5)* 

& (1.dO-y3(i»*y3(i)*yl(i) 
f2=f2+dummy(i) 

50 continue 

return 
end 
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subroutine fcn3(n,yl,y2,d,f3,w) 

c This subroutine evaluates the minimization equation 
c derived from w3. 

c Please see main program for defmition of variables 
c passed. 

double precision dick3,yl(9),y2(9),d(9),f3,w(7) 
double precision dummy(9) 
double precision x3(9),y3(9),x4(9),y4(9) 
integern 

dick3(x,y)= l.dO/(l.dO+exp( -x -y)) 

c hidden connection 

n=7 

c compute input to layer 2 

do 10 i=I,9 
x3(i)=w(2)*y 1 (i)+w(3)*y2(i) 

10 continue 

do 20 i=1,9 
y3(i)=dick3(x3(i),w(6)) 

20 continue 

do 30 i=1,9 
x4(i)=w(1 )*y 1 (i)+w( 4)*y2(i)+w(5)*y3(i) 

30 continue 

do 40 i=I,9 
y4(i)=dick3(x4(i),w(7)) 

40 continue 

f3=O.dO 
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do 50 i=1,9 
dummy(i)=(y4(i)-d(i) )*( 1.dO-y4(i) )*y4(i)*w(5) * 

& (l.dO-y3(i»*y3(i)*y2(i) 
f3=f3+dummy(i) 

50 continue 

return 
end 
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subroutine fcn4(n,yl,y2,d,f4,w) 

c This subroutine evaluates the minimization equation 
c derived from w4. 

c Please see main program for defmition of variables 
c passed. 

double precision dick3,yl(9),y2(9),d(9),f4,w(7) 
double precision dummy(9) 
double precision x3(9),y3(9),x4(9),y4(9) 
integern 

dick3(x,y)= l.dO/(l.dO+exp( -x -y)) 

c output connection 

n=7 

c compute input to layer 2 

do 10 i=I,9 
x3(i)=w(2)*y 1 (i)+w(3)*y2(i) 

10 continue 

do 20 i=I,9 
y3 (i)=dick3 (x3 (i),w(6)) 

20 continue 

do 30 i=I,9 
x4(i)=w(1 )*yl (i)+w( 4 )*y2(i)+w(5)*y3(i) 

30 continue 

do 40 i=I,9 
y4(i)=dick3(x4(i),w(7)) 

40 continue 

f4=0.dO 
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do 50 i=1,9 
dummy(i)=(y4(i)-d(i) )*(1.dO-y4(i) )*y4(i)*y2(i) 
f4=f4+dummy(i) 

50 continue 

return 
end 
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subroutine fcn5(n,yl,y2,d,f5,w) 

c This subroutine evaluates the minimization equation 
c derived from wS. 

c Please see main program for defmition of variables 
c passed. 

double precision dick3,yl(9),y2(9),d(9),f5,w(7) 
double precision dummy(9) 
double precision x3(9),y3(9),x4(9),y4(9) 
integern 

dick3(x,y)=l.dO/(I.dO+exp( -x-y» 

c output connection 

n=7 

c compute input to layer 2 

do 10 i=I,9 
x3(i)=w(2)*y 1 (i)+w(3)*y2(i) 

10 continue 

do 20 i=I,9 
y3(i)=dick3(x3(i), w( 6» 

20 continue 

do 30 i=I,9 
x4(i)=w(1 )*y 1 (i)+w( 4 )*y2(i)+w(S)*y3(i) 

30 continue 

do 40 i=I,9 
y4(i)=dick3(x4(i),w(7» 

40 continue 

fS=O.dO 



92 

do 50 i=1,9 
dummy(i)=(y4(i)-d(i) )*(1.dO-y4(i) )*y4(i)*y3 (i) 
f5=f5+dummy(i) 

50 continue 

return 
end 
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subroutine fcn6(n,yl,y2,d,f6,w) 

c This subroutine evaluates the minimization equation 
c derived from thetal. 

c Please see main program for defmition of variables 
c passed. 

c 

double precision dick3,yl(9),y2(9),d(9),f6,w(7) 
double precision dummy(9) 
double precision x3(9),y3(9),x4(9),y4(9) 
integern 

dick3(x,y)=1.dO/(1.dO+exp(-x-y» 

c hidden connection 

n=7 

c compute input to layer 2 

do 10 i=I,9 
x3(i)=w(2)*y1 (i)+w(3)*y2(i) 

10 continue 

do 20 i=I,9 
y3(i)=dick3(x3(i), w(6» 

20 continue 

do 30 i=I,9 
x4(i)=w(1 )*y 1 (i)+w( 4 )*y2(i)+w(5)*y3(i) 

30 continue 

do 40 i=I,9 
y4(i)=dick3(x4(i), w(7» 

40 continue 

f6=0.dO 
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do 50 i=1,9 
dummy(i)=(y4(i)-d(i»*(1.dO-y4(i)*y4(i)*w(5)* 

& (1.dO-y3(i»*y3(i) 
f6=f6+dummy(i) 

50 continue 

return 
end 
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subroutine fcn7(n,yl,y2,d,f7 ,w) 

c This subroutine evaluates the minimization equation 
c derived from theta2. 

c Please see main program for defmition of variables 
c passed. 

double precision dick3,yl(9),y2(9),d(9),f7 ,w(7) 
double precision dummy(9) 
double precision x3(9),y3(9),x4(9),y4(9) 
integern 

dick3(x,y)=1.dO/(l.dO+exp( -x-y)) 

c output connection 

n=7 

c compute input to layer 2 

do 10 i=I,9 
x3(i)=w(2)*y 1 (i)+w(3)*y2(i) 

10 continue 

do 20 i=1,9 
y3(i)=dick3(x3(i), w( 6)) 

20 continue 

do 30 i=1,9 
x4(i)=w(1 )*y 1 (i)+w( 4 )*y2(i)+w(5)*y3(i) 

30 continue 

do 40 i=1,9 
y4(i)=dick3(x4(i), w(7)) 

40 continue 

f7=O.dO 
do 50 i=I,9 
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dummy(i)=(y4(i)-d(i) )*(1.dO-y4(i) )*y4(i) 
t7=t7+dummy(i) 

50 continue 

return 
end 
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subroutine dfnl (n,yl ,y2,d,hessold,w) 

c This subroutine computes the Jacobian matrix of the 
c system in interest. This program is only called during 
c the fIrst iteration of each tracking process. This is 
c used to provide numerical stability in subsequent calls 
c of subroutine dfn. 
c 
c Please see main program for defmition of variables passed. 

integer i,n 
double precision dummy(7),y 1 (9),y2(9),d(9), w(7) 
double precision f,for ,rev ,hstep,hessold(7 ,7) 

n=7 
do 20 i=l,n 

dummy(i)=w(i) 
20 continue 

hstep = 1.d·5 

c compute fIrSt iteration of hessian 

c Compute derivative with respect to wI 

do 40 i=l,n 
w(i)=dummy(i)+hstep 
call fcnl(n,yl,y2,d,f,w) 
for=f 
w(i)=dummy(i)·hstep 
call fcnl(n,yl,y2,d,f,w) 
rev=f 
hessold(1 ,i)=(for·rev )/(2.dO*hstep) 

40 continue 

c Compute derivative with respect to w2 



do 60 i=l,n 
w(i)=dummy(i)+hstep 
call fcn2(n,y 1 ,y2,d,f, w) 
for=f 
w(i)=dummy(i)-hstep 
call fcn2(n,y 1 ,y2,d,f, w) 
rev=f 
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hessold(2,i)=( for-rev )/(2.dO*hstep ) 
60 continue 

c Compute derivative with respect to w3 

do 80 i=l,n 
w(i)=dummy(i)+hstep 
call fcn3 (n,y 1 ,y2,d,f, w) 
for=f 
w(i)=dummy(i)-hstep 
call fcn3(n,y1,y2,d,f,w) 
rev=f 
hessold(3,i)=(for-rev )/(2.dO*hstep) 

80 continue 

c Compute derivative with respect to w4 

do 100 i=l,D 
w(i)=dummy(i)+hstep 
call fcn4(n,y1,y2,d,f,w) 
for=f 
w(i)=dummy(i)-hstep 
call fcn4(n,y1,y2,d,f,w) 
rev=f 
hessold( 4,i)=(for-rev )/(2.dO*hstep) 

100 continue 

c Compute derivative with respect to w5 

do 120 i=l,D 
w(i)=dummy(i)+hstep 



call fcn5(n,yl,y2,d,f,w) 
for=f 
w(i)=dummy(i)-hstep 
call fcn5(n,yl,y2,d,f,w) 
rev=f 
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hessold( 5 ,i)=( for-rev )/(2.dO*hstep) 
120 continue 

do 130 i=l,n 
c Compute derivative with respect to w6 

w(i)=dummy(i)+hstep 
call fcn6(n,y 1 ,y2,d,f, w) 
for=f 
w(i)=dummy(i)-hstep 
call fcn6(n,y 1 ,y2,d,f, w) 
rev=f 
hessold( 6,i)=(for-rev )/(2.dO*hstep) 

130 continue 

c Compute derivative with respect to w7 

do 135 i=l,n 
w(i)=dummy(i)+hstep 
call fcn7(n,yl,y2,d,f,w) 
for=f 
w(i)=dummy(i)-hstep 
call fcn7(n,yl,y2,d,f,w) 
rev=f 
hessold(7 ,i)=(for-rev )/(2.dO*hstep) 

135 continue 

do 140 i=l,n 
w(i)=dummy(i) 

140 continue 

return 
end 
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subroutine dfn(n,y1,y2,d,df,hessold,w) 
c 
c This subroutine computes the jacobian matrix of 
c the system in interest. 
c 
c See main program for defmition of variables passed. 

integer i,n 
double precision w(7),hessold(7, 7),df(7 ,7) 
double precision y1 (9),y2(9),d(9),for,rev ,hstep 
double precision f,dummy(7) 

n=7 

hstep =1.d-5 

do 20 i=l,n 
dummy(i)=w(i) 

20 continue 

c compute the gradient (analytical) wrt wI 

do 30 i=l,n 
w(i)=dummy(i)+hstep 
call fcnl(n,y1,y2,d,f,w) 
for=f 
w(i)=dummy(i)-hstep 
call fcnl (n,y 1 ,y2,d,f, w) 
rev=f 
df(1 ,i)=(for-rev )/(2.dO*hstep) 
df(l ,i)=hessold(l ,i)+0.1 dO*( df( 1 ,i)-hessold(l ,i» 
hessold( 1 ,i)=df( 1 ,i) 

30 continue 

c compute the gradient (analytical) wrt w2 

do 40 i=l,n 
w(i)=dummy(i)+hstep 



call fcn2(n,y 1 ,y2,d,f, w) 
for=f 
w(i)=dummy(i)-hstep 
call fcn2(n,y 1 ,y2,d,f, w) 
rev=f 
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df(2,i)=(for-rev )/(2.dO*hstep) 
df(2,i)=hessold(2,i)+0.1 dO*( df(2,i)-hessold(2,i)) 
hessold(2,i)=df(2,i) 

40 continue 

c compute the gradient (analytical) wrt w3 

do 60 i=l,n 
w(i)=dummy(i)+hstep 
call fcn3(n,yl,y2,d,f,w) 
for=f 
w(i)=dummy(i)-hstep 
call fcn3(n,yl,y2,d,f,w) 
rev=f 
df(3 ,i)=(for-rev )/(2.dO*hstep) 
df(3,i)=hessold(3 ,i)+O.l dO*( df(3,i)-hessold(3 ,i)) 
hessold(3,i)=df(3,i) 

60 continue 

c compute the gradient (analytical) wrt w4 

do 80 i=l,n 
w(i)=dummy(i)+hstep 
call fcn4(n,y 1 ,y2,d,f, w) 
for=f 
w(i)=dummy(i)-hstep 
call fcn4(n,y 1 ,y2,d,f, w) 
rev=f 
df( 4,i)=(for-rev )/(2.dO*hstep) 
df( 4,i)=hessold( 4,i)+O.1 dO*( df( 4,i)-hessold( 4,i)) 
hessold( 4,i)=df( 4,i) 

80 continue 
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c compute the gradient (analytical) wrt w5 

do 100 i=l,n 
w(i)=dummy(i)+hstep 
call fcn5(n,yl,y2,d,f,w) 
for=f 
w(i)=durnmy(i)-hstep 
call fcn5(n,y1,y2,d,f,w) 
rev=f 
df(5,i)=(for-rev)/(2.dO*hstep) 
df(5,i)=hessold(5 ,i)+O.1 dO*( df(5,i)-hessold(5 ,i» 
hessold(5,i)=df(5,i) 

100 continue 

c compute the gradient (analytical) wrt w6 

do 110 i=l,n 
w(i)=durnmy(i)+hstep 
call fcn6(n,y 1 ,y2,d,f, w) 
for=f 
w(i)=dummy(i)-hstep 
call fcn6(n,y 1 ,y2,d,f, w) 
rev=f 
df( 6,i)=(for-rev )/(2.dO*hstep) 
df( 6,i)=hessold( 6,i)+O.1 dO*( df( 6,i)-hessold( 6 ,i» 
hessold( 6,i)=df( 6,i) 

110 continue 

c compute the gradient (analytical) wrt w7 

do 115 i=l,n 
w(i)=dummy(i)+hstep 
call fcn7 (n,y 1 ,y2,d,f, w) 
for=f 
w(i)=dummy(i)-hstep 
call fcn7 (n,y 1 ,y2,d,f, w) 
rev=f 
df(7 ,i)=(for-rev )/(2.dO*hstep) 
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df(7 ,i)=hessold(7 ,i)+O.l dO*( df(7 ,i)-hessold(7 ,i» 
hessold(7 ,i)=df(7 ,i) 

115 continue 

do 120 i=l,D 
w(i)=dummy(i) 

120 continue 

return 
end 


