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1. INTRODUCTION 

A number of techniques have been developed to repair damaged or 

dissected peripheral nerves. They include end-to-end suturing, fascicular 

suturing, nerve grafts, and nerve bridges. The choice of techniques depends 

upon the clinical situation and the surgeon's preference. 

The end-to-end and the fascicular suture repair techniques are 

suitable for the nerve defect or injury which does not extend more than 

several millimeters. However, both of the techniques have their own 

disadvantages. In the end-to~end suturing technique, even though the 

outermost (epineural) layer of the dissected nerve ends is sutured together, 

poor alignment of fascicles and ingrowth of scar tissue into the nerve 

junction will result in unsatisfactory nerve function recovery (Marshall et al., 

1989). In the fascicular suturing technique , a more precise alignment of 

fascicles is expected; however, the increased trauma to the perineurial and 

the intrafascicular tissue caused by the sutures will retard the nerve 

regeneration. 

If the nerve injury is extensive and more than ten millimeters, then a 

nerve graft or a nerve bridge is preferred . It is difficult to acquire donor 

nerves for grafting. Thus, considerable research has been conducted on 

peripheral nerve repair using the nerve bridge technique (Jenq and 

Coggeshall, 1984, 1985, 1986, 1987; Seckel et al. , 1984; Satou et al., 1986; 

Le Beau et al., 1988; Gibson and Daniloff, 1989). Most of this research has 

emphasized the use of single-lumen nerve guides of synthetic or biological 

origin . The multiple-lumen nerve guide in the in vivo repair of rat sciatic 
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nerve described by Daniel (1991) was the first attempt to develop a multiple-

lumen nerve cuff to bridge a gap for peripheral nerve repair. The multiple-

lumen repair cuff provides orientation, mechanical support, and guidance for 

the outgrowing Schwann cells and regenerating axons. 

Regeneration and degeneration of nerve fibers and connective 

tissues after injury or severance of a peripheral nerve have been extensively 

studied using light (LM) and electron microscopy (EM) (Mira, 1979; Rosen et 

al. , 1983, 1992; Jenq and Coggeshall, 1984, 1985, 1986, 1987; Espejo and 

Alvarez, 1986; Le Beau et al. , 1988; Daniel, 1991). Scanning electron 

microscope (SEM) is an add itional tool for study of regenerated nerves 

because of the ability to view large portions of tissue using an improvement 

of depth of field and resolution for a wide range of magnifications. Many 

SEM studies emphasize the surface morphology of regenerated nerve fibers 

after dissection or enzymatic digestion of the surrounding tissue 

(Gershenbaum and Reisen, 1978; Orgel and Huser, 1980; Miyakawa et al., 

1981 ; Mathur et al. , 1983; Kumagai et al. , 1990; Tohyama and Kumagai, 

1992). Therefore, information about the nerve tissue may be lost because of 

the surrounding tissue damage caused by the dissection or by other 

treatments of the nerve specimen. To solve this problem, some authors have 

suggested using the silver staining technique commonly applied in light 

microscopy (Lewis, 1971 ; DeNee et al., 1974; Tayler et al., 1984; Von 

Langsdorff et al. , 1990). The silver impregnation methods have a high and 

specific affinity for neurofilament proteins and can be used to clearly outline 

individual axons without damaging the tissue surrounding the nerve fibers. 
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The present study was performed using the scanning electron 

microscope to observe rat sciatic nerve that had regenerated through single-

lumen silicone rubber repair tubes by using a silver impregnation stain for 

the axons. Also morphological data obtained from light microscopy was 

related to SEM observations for identical cross sections in order to provide a 

more detailed evaluation of the regenerative process. 
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2. LITERATURE REVIEW 

2.1 Background 

2.1.1 The mammalian peripheral nervous system 

Peripheral nerves are composed of numerous nerve fibers collected 

into several fascicles (bundles) and covered with a connective tissue sheath, 

the epineurium. Each fascicle within the epineurium is surrounded by a 

perineurium consisting of an outer connective tissue layer and an inner layer 

of flattened epithelioid cells. Each nerve fiber and associated Schwann cell 

has its own slender connective tissue sheath , the endoneurium. The 

endoneurium components include fibroblasts, an occasional macrophage, 

and collagenous and reticular fibers. 

Each axon can be classified as myelinated or unmyelinated, 

depending on whether or not it has a coating of myelin. The region of the 

exposed axon at the junction between Schwann cells is called the node of 

Ranvier. These nodes are located at discrete intervals along the whole 

length of the myelinated axon (Jenq et al. , 1986). Figure 2.1 is a schematic 

representation of a mammalian peripheral nerve and its components 

(Marshall et al., 1989). 

2.1.2 Nerve degeneration 

After nerve damage or severance, nerve degeneration occurs 

immediately. Waller (1850) states that the portion of the nerve that has been 

severed and separated from the central trophic area degenerates. 
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Figure 2.1: Schematic representation of the structure of a mammalian 

peripheral nerve (Marshall et al., 1989) 

Regenerat ion begins from the undegenerated proximal stump. It remains 

connected to the trophic center. Many factors such as the site of the lesion, 

the age of the individual , the length of the nerve destroyed, the w idth of the 

severance gap, the alignment of the cut ends, and the amount of damage 

and hemorrhage in adjacent tissues affect the growth and development of 

the regenerating nerve (Swaim, 1987). 

Hemorrhage and projection of a clot from the cut nerve ends occur 

immediately after nerve severance. Within 1 hour, there is marked swelling 

0.5 to 1 cm on both sides of the point of transact ion because of the 

accumulation of blood serum, plasma, and acid mucopolysaccharides. 
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Degeneration that occurs in the proximal nerve stump is not as 

extensive as that in the distal stump. It is called traumatic degeneration. It 

does not extend beyond the second or third node of Ranvier from the injury 

site. However, damaged axon, myelin and sheath connective tissue due to 

extensive trauma may extend several centimeters on both sides of the 

severed nerve. The survival of the neurons is improved when the distance 

from the cell body to the point of axonal severance is relatively short. The 

entire distal stump begins to degenerate when the axons and their myelin 

start degenerating. However, for about 2 weeks, the axons at the proximal 

end of the distal stump tend to enlarge and get isolated from the rest of the 

distal stump. The remaining portions of the distal axons degenerate more 

rapidly. Axon and myelin degeneration become evident along the distal 

stump at 48 hours after nerve transection. The loss of the myelin layer 

around axons occurs and the degenerating myelin became homogeneous. 

The myelin becomes ovoid and elliptical surrounding ax.anal fragments. 

Neurofibrils in the axoplasm degenerate and disappear, while the optical 

density in the axoplasm increases and the axoplasm forms clumps. The 

connective tissue framework of the distal nerve stump disappears, while the 

degenerative products of axons and myelin are removed by the 

macrophages which appear from intra- and extraneural sources. Schwann 

cells are also known to participate in phagocytizing axonal and myelin 

breakdown products. The process of debris removal begins 21 days after 

injury and lasts five weeks. During the five week period, the distal nerve 

stump becomes less swollen, and the phagocytic activity slowly subsides. 

Neurilemmal sheaths realign in an orderly fashion, and endoneurial sheaths 
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shrink or disappear. If regenerating axons do not invade into the distal nerve 

stump, the distal stump becomes even more contracted and is replaced by 

connective tissue (Swaim, 1987). 

Many investigators (O'Daly and lmaeda, 1967; Calabretta et al. , 1973; 

Gershenbaum and Rosen, 1978; Ide et al., 1983; Tohyama et al., 1986) have 

observed the morphological alterations in the nerve fibers and connective 

tissues associated with Wallerian degeneration using light, transmission, 

and scanning electron microscopy. These studies provide a detailed 

account of the changes which occur during the degeneration of myelinated 

axons. 

2.1.3. Nerve regeneration 

Nerve regeneration begins within the cell body and is similar in both 

motor and sensory nerves (Swaim, 1987). A considerable amount of energy 

that is expended by the cell body is required for the regeneration process. 

For approximately 10 to 20 days, the cell body becomes progressively larger 

owing to the chromatolysis. The cell body will not return to normal size until 

the nerve matures. During active regeneration, both RNA and DNA synthesis 

activity increase within the neuron. In addition , increased metabolic activity 

results in the increased enzymatic activity and incorporation of amino acids. 

The protein and organic material in the cell body increase by 50 to 100 times 

that compared to the normal soma. The alterations of the glial cells that 

surround the neuron also aid in supporting the increased metabolic activity 

in the neuronal soma. 
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The enlargement of the neuronal soma may peak early in the 

regeneration process and again as myoneural junctions are formed. The cell 

body may die if the injury is too close to it or, if it survives, the cell may not 

have enough metabolic capacity to support the axons that must be 

regenerated and axonal regeneration will not happen. 

New protoplasm that is synthesized by the cell body migrates by 

axoplasmic flow from the neuronal soma down the axon. The axoplasmic 

flow has a slow and a fast component. The slow component (1 mm/day) 

involves microperistalsis within the nerve trunk membrane, and the fast 

component (1 OOmm/day) involves the microtubules. During the passage 

down the axon, a part of slowly transported proteins is used to replace 

catabolized enzymes in the membrane. Nevertheless, most of the proteins 

still reach the terminal segments of the axon. Microtubules provide the fast 

transport of axoplasm to supply the increased nutrient requirements and 

metabolic activity at the synaptic regions. 

The changes that occur at and between the proximal and distal nerve 

stumps strongly influence the regeneration of a severed nerve. Proliferation 

of epineurial and endoneurial connective tissue, Schwann cells, and 

capillaries, which control the regeneration of axons at the proximal and 

distal nerve stumps occur within 1 to 3 days after injury. These tissues 

infiltrate the injury site and migrate toward each other and form a bridge and 

capillary bed between the stumps to make it easier for the regenerating 

axons to grow to the distal nerve stump. 

The increased metabolic activity of the neuronal soma occurs 4 to 20 

days after injury. It results in the sprouting of axons from the proximal stump. 
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Different types of injury result in different locations for the start of sprouting or 

budding of the regenerating axons. Budding begins at 1 to 3 cm proximal to 

the point of severance in the case of wide-spread traumatic injuries; 

however, this budding begins a few millimeters retrograde to the last node of 

Ranvier with a sharply localized injury. 

Schwann cells of the proximal and distal nerve stumps probably play 

the most important role in axonal regeneration. As Schwann cells proliferate, 

they form longitudinally oriented bands of Bungner, which are continuous 

with the persisting Schwann tubes in the nerve stump (Allt, 1976; Spencer, 

1977). The Schwann cells of each stump migrate toward each other and 

join . Because the Schwann cells of the proximal stump slightly precede 

those of the distal stump, they can be regarded as a guide for the 

regenerating axons. The rate of axonal regeneration at the marginal zone of 

realignment progresses about 0.25 mm/day. Beyond this point, regeneration 

occurs at the rate of 1 to 4 mm/day. Although 3 to 4 mm/day rate of 

regeneration for axonal tips occurs, the rate of functional return is only 1 to 2 

mm/day. The axonal regeneration rate changes during the course of 

regeneration in a single nerve, with lag periods at the beginning and end of 

regeneration. The state of the motor end plate and the condition of health of 

the muscle fibers also influence the success of axonal regeneration. Thus, 

physical therapy and care of muscles and skin are important for successful 

peripheral nerve regeneration (Swaim , 1987). 

Histologic changes of regenerated nerves associated with chronic 

compression when using repair cuffs have been studied (Mackinnon et al. , 

1985; O'Brien et al. , 1987). They observed a marked increase in the amount 
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of blood vessel , perineurial and epineurial tissue and a decrease in the 

amount of neural elements. In addition, dramatic increases in fibrous tissue 

and an absence of normal fascicular patterns were seen in the regenerated 

nerves (Mathur et al., 1983; Gibson and Daniloff, 1989). A smaller mean 

axon diameter and a larger number of regenerated axons in the repaired 

nerves as compared to the normal control were also reported (Rosen et al. , 

1983, 1989; Henry et al., 1985). 

2.2. Repair techniques 

Different types of injury and the gap length require different methods 

of nerve repair. For gap lengths less than 1 O mm, the end-to-end anatomosis 

is optimal. However, for gap lengths larger than 1 O mm, a graft is preferred. 

The autograft is the best option to repair injury nerves because it will not 

cause severe tissue reaction during the implantat ion period. Nevertheless, 

disadvantages of the autograft are the difficulty of acquiring a donor nerve 

for grafting and the inevitable risks of surgery at another site. To solve these 

problems, artificial nerve cuffs or guide tubes have been regarded as an 

alternative in the repair of injured nerves. Compared with nerve grafting , the 

implantation of nerve cuffs has resulted in good nerve regeneration. 

Previous work in developing the artificial nerve cuffs and the materials 

used to fabricate them is described below. 

In 1983, Mathur et al. used a polyglycolic acid tube (Davis & Geck) to 

bridge a 1 cm sciatic nerve gap in New Zealand rabbits. After eight months, 

they found that nerves regenerated across the 1 cm gap through the 
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polyglycolic acid conduit and the regrowth of myelinated axons grouped into 

"mini-fascicles" containing increased connect ive tissue. 

Seckel et al. (1984) used biodegradable nerve guides made of DL-

lactic acid (internal diameter=2 mm, wall thickness=250 µm) to bridge 5 mm 

and 10 mm gaps in adult Sprague-Dawley rats. Three months after repair, 

they observed the sciatic nerve of the adult rat successfully regenerated 

across the 5 mm gap through the biodegradable nerve guides, but across 

the 10 mm gap. They also found nerve regeneration in the biodegradable 

nerve guides did not elicit an evident immune response. 

Satou et al. (1986) used a si licone tube filled with a small amount of 

collagen gel (Cell Matrix II) to study axon regeneration across a 5 mm gap in 

the rat sciatic nerve and compared it with the control side in which the gap 

space in the tube was left empty. They found more rapid growth of sprouting 

axons toward the distal stump in the collagen gel filled tube as compared to 

the control side. In addition, the proliferation of both fibroblasts and larger 

Schwann cells was inhibited . They concluded that appropriate exogenous 

fine material such as a collagen matrix can accelerate the regeneration of 

nerves in the silicone tube. 

Valentini et al. (1987) used semipermeable polyvinyl-chloride acrylic 

copolymer guide tubes (wall thickness=0.15 mm) filled with collagen (type I 

or type II) or laminin gel to repair 4 mm mice sciatic nerve gaps. After 12 

weeks repair, they found fewer myelinated axons in the collagen gel filled 

tubes as compared to the control saline filled tubes. They concluded that the 

addition of growth-promoting substrates such as the collagen and laminin 

gels used in the present case can not improve nerve regeneration. 
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In 1989, Gibson and Daniloff used a silicone tube (Silastic, Dow 

Corning, 8mm in length) to bridge a gap of 5 mm in adult female Sprague-

Dawley rats and compared it with a nerve allograft. Electromyography was 

used to provide an objective assessment of functional nerve regenerat ion. At 

90 days post-implantation, the nerve graft group had superior conduction 

velocity times as compared to the sil icone implant group. They suggested 

that if a nerve cuff is used in repair of a transected nerve, it should be large 

enough to accommodate nerve enlargement or should be removed after the 

regenerating axons have bridged the transection site. 

In 1992, Rosen et al. used a synthetic biodegradable conduit made of 

glycolide trim ethylene carbonate (10 mm long) filled with a liquid collagen 

(Collagen {C3511]) to bridge gaps of 5 mm in adult Sprague-Dawley rat 

peroneal nerves. They compared the results for this case with sutured 

autografts. These rats were evaluated after 6 to 9 months of repair. They 

observed that there is negligible inflammatory response to the collagen 

matrix. Regenerated axon diameters were equal in the synthetic 

biodegradable conduit groups as compared to the sutured autograft groups. 

2.3. Characteristics of the silicone rubber cuffs 

After eliminating the impurities, silicone rubbers can be produced with 

average molecular weights into the millions. The methyl side groups of the 

polymer can be replaced by a vinyl or phenyl side groups to form 

methyl/vinyl , methyl/phenyl , or methyl/vinyl/phenyl copolymers, but the 

methyl side groups are generally predominant. 
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Cross-linking (vulcanization) is the process by which the polymer is 

turned into the three dimensional structure of a rubber with all its associated 

properties (Van Noort and Black, 1981 ). This process is init iated by a 

catalyst which in the case of heat vulcanizing silicone rubber is a 

dichlorobenzoyl peroxide (DBP). DBP will break down to form free radicals 

and release carbon dioxide while heated over 60° C. 

The dichlorophenyl radicals which have the properties of strong 

dehydration and oxidization can activate the methyl and vinyl chains by a 

radical transfer mechanism. Cross links then can be established by these 

activated vinyl and methyl groups. This reaction can take place in many 

ways. In general, methyl-methyl and methyl-vinyl interactions are the two 

most commonly used (Braley, 1970). 

2.4. Silver staining of nerve tissue 

Silver staining is commonly used in analyzing the axon features 

because of its ability to aid in distinguishing axons from the unstained 

surrounding tissue. The Bodian's stain used in the present study is one of 

the most reliable. Neurofilament proteins in the normal axons have a strong 

and specific affinity for Bodian's silver. However, immature axons or fine cell 

elements with few neurofilament proteins will not be stained by the Bodian's 

method (Katz and Watson, 1985). The roles of the free silver ions and 

albumin carrier in the staining process remain unknown; however, a specific 

amino acid sequence in the neurofilament proteins may act as a determinant 

of binding the neurofilament proteins with the silver (Phillips et al. , 1983). 
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Even though the exact reactions responsible for the selective affinity of 

Bodian's stain for neurofilament proteins remain to be discovered, the 

details of the chemical reactions that occur during the silver staining are well 

known. 

In the early stage of the staining, impregnation by silver results in the 

formation of silver nuclei in both axons and myelin. However, after exposure 

of the section to the action of reducing agents (e.g . formalin , pyrogallol, or 

hydroquinone) , the impregnation of axons increases without the myelin 

being affected. The phenomena can be explained by assuming that the 

axons contain more reducing groups than myelin (Wolman, 1955). After 

sections are impregnated by silver solutions, the sections can be treated 

with gold chloride to intensify the contrast between the more strongly stained 

areas and the less intensely impregnated sites. 

2.5. Scanning electron microscopy 

SEM provides three-dimensional information which can aid in the 

interpretation of the two-dimensional ultrastructural changes seen with the 

light or the transmission electron microscope (Gershenbaum and Roisen , 

1978). The powerful capability of the scanning electron microscope for the 

study of nerve tissue is due to the interactions between the primary beam 

electrons and the specimen atoms. These interactions may be placed into 

two groups: 

(1) . Elastic events. A primary beam electron comes close to a specimen 

atom nucleus or outer shell electron and rebounds with no significant energy 
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loss. These kinds of scattered electrons are referred to as backscatter 

electrons. 

(2) . Inelastic collisions. A primary beam electron collides with a specimen 

atom and results in a loss of energy from that atom, leading to the generation 

of secondary electrons, Auger electrons, characteristic and continuum X-

rays. 

The electrons are collected by a detector system (a different system 

for each variety) and converted to an electronic signal which is displayed on 

a cathode ray tube. The scanning of the SEM beam is synchronized with the 

scanning of the electron beam of the cathode ray tube, thus producing a 

representation of the area scanned on the CRT. Secondary electrons and/or 

backscatter electrons are frequently used in provid ing nerve tissue 

microstructural information. 

2.5.1. Secondary electrons 

The low energy electrons emitted from a sample with an energy less 

than 50 eV are usually regarded as the secondary electrons. The escape 

depth of secondary electrons represents only a small fract ion of the primary 

electron range . The secondary emission images provide information about 

the surface topography. 

2.5.2. Backscatter electrons 

A significant fraction of the beam electrons will escape after striking a 

target. The reemergent beam electrons are known as backscatter electrons. 

The yield of backscatter electrons is dependent on differences in the 
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specimen's mean atomic number. The higher the atomic number regions, 

the more backscattering of electrons. The backscatter electron signal can be 

used to derive useful information about the relative difference in average 

atomic number of regions of a specimen. In this way, silver-impregnated 

nerve fibers (atomic number=47) can be easily distinguished from the 

unstained surrounding tissue (atomic number approximately=6) using a 

SEM equipped with a backscatter electron detector (Taylor et al., 1984; Von 

Langsdorff et al., 1990). 
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3. MATERIALS AND METHODS 

3.1 Samples 

A new type of nerve repair cuff , the multiple-lumen silfcone rubber 

nerve cuff, was described by Daniel ( 1991). Observations made from the 

multiple-lumen cuff nerve repairs were compared with results obtained from 

normal controls, end-to-end nerve repairs, and single-lumen silicone rubber 

cuff repairs. Sixteen Sprague-Dawley adult male rats were used by Daniel 

for single-lumen silicone rubber cuff studies. The current project is an 

extension of these studies with an emphasis on single lumen nerve cuff 

repair. These nerve specimens had been sectioned at 1.5 to 2.5 µm thick, 

silver stained, toned with gold chloride, and mounted on microscopic slides 

for light microscopic observations. The slides were obtained from proximal, 

middle, and distal sciatic nerve sections obtained at 8, 12, 16, and 24 weeks 

after implantation. 

The present study represents a substantial increase in the portions of 

the nerve section areas studied by light microscopy (LM) so that statistical 

tests could be performed to establish size relationships for axons from the 

proximal, middle, and distal sections. In addition, a new approach has been 

taken to more fully characterize microstructural features of these samples. As 

the light microscope samples were stained with silver for visualization , the 

same samples offered a way to examine details of the axons of these nerve 

sections at higher magnifications using electron backscatter imaging, as well 

as to expand certain light microscope studies. 
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3.2 Light microscopy and scanning electron microscopy 

Micrographs of a normal control and the proximal, middle, and distal 

cross-sections of the regenerated nerves from the single lumen silicone 

rubber cuff studies were taken by light and scanning electron microscopy . 

The light micrographs were taken at 160X with a Dialux 20 (Leitz) light 

microscope. The type of film used was TP135-36 Kodak Technical Pan film. 

To examine the specimens under scanning electron microscopy, it 

was necessary to take the glass cover slip off the sample mounted on the 

glass slide. This was accomplished by placing selected slides in xylene. 

After five days, the xylene dissolved the adhesive that held the glass cover 

slip onto the top of the thin section. The cover slip was then taken off using 

tweezers. The thin section remained attached to the underlying glass slide. 

The samples were then stored in a desiccator. The specimens were coated 

with a 150A thin film of gold using a sputtering device (sample sputter 

coating unit E5100, Polaron Instruments Inc.) operated for one minute at 2.2 

keV and 20 mA ion current. To avoid specimen charging problems in the 

SEM , the edge of the glass slide was covered with a conductive adhesive (a 

mixture of colloidal graphite and isopropanol, Energy Beam Sciences, MA) 

and grounded to the sample stage. The specimens were then studied using 

a JEOL-840A scanning electron microscope equipped with a solid state 

backscatter electron detector. Secondary electron images were obtained 

using an accelerating voltage of 15 kV, an aperture size of 70 µm, a 23 mm 

working distance, and a probe current of 0.3 nA. Backscatter electron 

images were also obtained . These images were taken at an accelerating 
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voltage of 15 kV, an aperture size of 70 µm, and a probe current of 0.02 to 

0.3 nA. In addition, a smaller working distance (7 mm or 13 mm) was used to 

improve the resolution and signal strength for the electron backscatter 

images. The scanning electron micrographs were obtained using Type 55 

positive/negative Polaroid film . 

3.3 Quantitative evaluations 

3.3.1 Quantitative studies 

The proximal, middle, and distal cross-sections for each animal were 

used for axon size and distribution studies. Selected sections were 

photographed using the light microscope and then enlarged. The 

magnification of the enlarged micrographs was evaluated as follows. First, 

two locations on a feature in a micrograph were selected and the distance 

between them was measured. The two spots were also located on the 

negative that was used to make the enlarged micrograph and the distance 

between them was measured at 100 magnification using a Zeiss light 

microscope equipped with a calibrated Filar micrometer eyepiece (Bausch & 

Lomb) . The magnification of the enlarged micrograph was then obtained by 

dividing the distance value measured from the enlargement by that obtained 

from the microscope and multiplying the result by the true magnification of 

the negative which was obtained by direct measurement of the same feature 

distances using LM. Ten successive measurements of the magnifications for 

different locations were done and the mean of the ten measurements was 

taken as the true magnification of the enlarged micrograph (enlargement 
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range was 360 to 380X). Micrographs of the nerve sections were also 

obtained using a scanning electron microscope (SEM). All the SEM 

micrographs used for quantitative evaluations were at 1000 magnification. 

This permitted axon diameters to be specified to ±0.2 µm. The sample 

identifications are listed in Table 3.1 for the LM and SEM study. 

Table 3.1: Implant period, type of repair, animal number, nerve section, and 
slide number for sections used in the present LM and SEM study 

Implant Period Animal Nerve Slide 
& Type of Number Section Number 
Repair 
8 Weeks Proximal 91R632A 
Single-Lumen #41 Middle 91R632C 

Distal 91R632B 
12 Weeks Proximal 91R643A 
Single-Lumen #43 Middle 91R643C 

Distal 91R643B 
16 Weeks Proximal 91R726A 
Single-Lumen #16 Middle 91R726C 

Distal 91 R726B 
24 Weeks Proximal 91 R716A 
Single-Lumen #5 Middle 91R716C 

Distal 91 R716B 
Proximal 91 R717A 

#6 Middle 91R717C 
Distal 91R717B 

Proximal 91 R732A 
#47 Middle 91R732C 

Distal 91 R732B 
Proximal 91R733A 

#48 Middle 91 R733C 
Distal 91 R733B 

24 Weeks #9 Middle 91 R720 
Normal Control 
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Morphometric parameters of the examined nerves such as reference 

area, axon core diameters, axon counts , major and minor maximum 

diameter ratio, nerve area, axons per unit area, and percentage of nerve 

examined were obtained from LM and SEM. Details of the measurement 

methods are described in the following seven sections. 

3.3.1.1 Reference area 

To compare the axon regeneration among experimental and control 

specimens a grid overlay was used. The reference area for the section was 

then determined by summing the actual area values for all the squares of the 

grid. Axon counts and axon diameters were then measured for these grid 

regions. Area measurements are reported to the nearest 500 µm. 

3.3.1.2 Axon counts 

All of the axons in one square of the magnified photograph of the 

section were counted and marked off. When all the axons in one square of 

the section had been measured in this way, those of a second square were 

measured, and so on until all squares had been included. Axon counts were 

made of the axons in these squares, and the total number of axons in the 

section was then estimated from the axon counts and the total number of 

squares occupied by the nerve cross section. 

3.3.1.3 Axon core diameter and average axon diameter 

Two measurements were made of the diameter of each axon, one 

along the largest diameter and the other for the longest dimension 
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perpendicular to the first. The mean of the two measurements was then 

taken as the axon core diameter. The average axon diameter of the nerve 

section was obtained by summing these diameter values for all of the axons 

of the reference area and then dividing the result by the axon counts. 

3.3.1.4 Diameter ratio and mean diameter ratio 

The two axon diameter measurements described above were used to 

determine the diameter ratio . This quantity was obtained by dividing the 

largest axon diameter by the other obtained at right angles to the first. The 

mean diameter ratio for a section was then obtained by summing these ratio 

values for all of the axons and dividing the result by the axon counts. 

3.3.1 .5 Axons per unit area 

This quantity was obtained by dividing the axon counts by the 

reference area. 

3.3.1.6 Nerve area 

Grid area measurements were also used to determine the total area 

of a nerve. 

3.3.1.7 Percentage of nerve examined 

This quantity was determined by dividing the reference area by the 

nerve area. This was then expressed as the percentage examined. 
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3.3.2 Preparation of fiber diameter histograms 

The fiber diameter histograms of the controls and the single-lumen 

nerve repairs for the four time periods were plotted as percentage of total 

axons measured versus the axon core diameter. The axon distributions were 

determined for the proximal , the middle, and the distal sections for each 

animal. Small axons less than 1 µm in diameter were not represented in the 

histograms. Also, the total percentage of axons within ± 1 µm of the mean 

axon diameter in each section was tabulated. 

3.4 Statistical Methods 

Analysis of variance was performed on the quantitative data obtained 

from light and scanning electron microscopy. Tu key's test (Byrkit, 1987), 

which is capable of multip le comparisons between group means with 

different numbers of observations, was used to determine whether or not the 

differences among the mean axon diameters obtained from measurements 

for each of the sections in repaired nerves were significant, and whether or 

not the mean axon diameter differences were significant for each section in 

repaired nerves compared to the normal control. For each section, the mean 

axon diameters obtained from both LM and SEM were also compared. The 

statistical analysis was performed using the Statistical Analysis System 

(Cary, NC) version 6.06. 
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4. RESULTS 

4.1 Microstructure 

The normal control sections and the proximal , middle, and distal 

cross-sections of the regenerated nerves (8, 12, 16, and 24 week periods) 

observed using LM have been described by Daniel (1 991) . In the present 

study, these nerve specimens were also observed using the SEM. 

The secondary electron image of an undamaged normal control is 

shown in Figure 4.1 . The surfaces of axons were covered with the adhesive 

(Acrytol) remaining after removal of the glass cover slip which had been on 

top of this surface. The axons were not easy to discriminate in this type of 

image. However, in the backscatter electron images, the backscatter 

electrons passed through the thin layer of residual adhesive and revealed 

the underlying silver-stained axons as bright irregular-shaped closely 

packed structures (Figure 4.2) . For this reason, backscatter electron images 

were the primary type analyzed in the study. 

From the backscatter electron images, two general shapes of axons 

were seen: (1) approximately circular axons (cross section fully stained) 

which were termed category I axons and (2) elliptical or arcuate shaped 

axons or stained rim shaped features which were termed category II axons. 

These features are not seen clearly in LM images. Examples are shown in 

the SEM image of Figure 4.3. 

Also , nerve specimens contained small particulates of silver 

approximately 1 µm or less in diameter (Figure 4.4). However, these 



Figure 4.1 : Secondary electron micrograph of a cross-section of the right 
sciatic nerve at the mid-thigh level from a normal control, (animal 
#9, 24 weeks). Bodian stain. Scale bar=10 µm 

Figure 4.2: Backscatter electron micrograph of the identical field as Figure 
4.1. Axons are the bright features surrounded by myelin sheaths. 
Bodian stain. Scale bar=1 O µm 
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Figure 4.3: Backscatter electron image of a single-lumen cuff nerve section, 
(animal #48, middle section, 24 weeks). Category I and category 
II axons are in the field of view. Bodian stain. Scale bar=10 µm 

Figure 4.4: Backscatter electron image showing silver grains on the surface 
for a region of a single-lumen cuff nerve section, (animal #41 , 
middle section, 24 weeks) . Some regions of nerve sections were 
heavily covered with these features whereas even on the same 
section there were regions with relatively few particles of this 
type on the surface. Bodian stain. Scale bar=2 µm 
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particles did not seriously interfere with the observations of the axons in the 

nerve cross sections. 

4.1 .1 Control 

Figure 4.2 presents a cross sectional view of the sciatic nerve from a 

normal control rat. The axons of category I and category II were seen. The 

two types of axons varied in diameter and were closely packed in the nerve 

bundles. Some blood vessels were seen among the axons. 

4.1.2 Proximal section 

The structure changed dramatically at the proximal sites for all four 

time periods. As compared with the normal control, the differences in 

numbers and sizes of the category I and the category II axons were 

significant and a relat ively larger fraction of the regenerated nerve cross 

sectional area was covered with connective t issue. Regenerated axons 

grouped to form microfascicles and axons in the microfascicles were 

separated by the connective tissue (Figure 4.5). 

4.1.3 Middle section 

The structure of the middle sections was similar to that seen in the 

proximal sections as described above, except for the numbers and sizes of 

the regenerated axons (Figure 4.6) . 



Figure 4.5: Backscatter electron image of a single-lumen cuff nerve section, 
(animal #6, proximal section, 24 weeks). Microfascicles are 
apparent. Category I and category II axons are seen. Bodian 
stain. Scale bar=10 µm 

Figure 4.6: Backscatter electron image of a single-lumen cuff nerve section, 
(animal #6, middle section, 24 weeks) . Category I and category II 
axons are seen. Bodian stain. Scale bar=10 µm 
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4.1.4 Distal section 

The structural differences were not significant at the distal section as 

compared to the proximal and middle sections (Figure 4.7) . 

4.2 Fiber diameter histograms 

The fiber diameter histograms for the experimental and the control 

sections for the four time periods are shown in Appendix. They are 

designated LM or SEM analyses for the particular animals of Table 3.1 . 

Four low-resolution LM micrographs were too obscure to permit 

analyses of the regenerated axons. They included one from the proximal 

section of 8 weeks post-implantation nerve, two from the proximal and distal 

sections of 12 weeks post-implantation nerve, and one from the distal 

section of 16 weeks post-implantation nerve. 

In backscatter electron micrographs, category I and category II axon 

size distributions were determined. In addition, the two types of axons were 

combined to obtain the total axon fiber diameter histograms for the var ious 

sections. 

Moreover, distributions of percentage of axons within ±1 µm of the 

mean diameter for each nerve section observed using both LM and SEM are 

displayed in Table 4.1 through Table 4.4. Table 4.1 shows the distributions 

for the axons observed using LM. Table 4.2, Table 4.3, and Table 4.4 show 

the distributions respectively for the category I axons, the category II axons, 

and the total axons respectively using SEM. 



Figure 4.7: Backscatter electron image of a single-lumen cuff nerve section, 
(animal #6, distal section, 24 weeks) . Category I and category II 
axons are seen. Bodian stain. Scale bar=1 O µm 
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Table 4.1: Distributions of percentage of axons within ±1 µm of the mean diameter observed using LM 

Implant Period, Nerve Percentage of Axons Within ±1 µm of the Mean Diameter 
Type of Repair & Section Scale (µm) 
Animal Number 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 
24 Weeks, SLa Proximal 77 
#5 Middle 80 

Distal 85 
#6 Proximal 71 

Middle 84 
Distal 68 

#47 Proximal 52 
Middle 72 
Distal 64 

#48 Proximal 64 
Middle 82 c.v 
Distal 65 01 

16 Weeks, SL Proximal 84 
#16 Middle 92 

Distal b 

12 Weeks, SL Proximal 
#43 Middle 78 

Distal 
8 Weeks, SL Proximal 
#41 Middle 89 

Distal 81 
24 Weeks, Nee Middle 46 
#9 
aSL=Single-lumen cuff. 
bNot Available. 
cNC=Normal Control. 



Table 4.2: Distributions of percentage of category I axons within ±1 µm of the mean diameter observed 
using SEM 

Implant Period, Nerve 
Type of Repair & Section 
Animal Number 
24 Weeks, SLa Proximal 
#5 Middle 

Distal 
#6 Proximal 

Middle 
Distal 

#47 Proximal 
Middle 
Distal 

#48 Proximal 
Middle 
Distal 

16 Weeks, SL Proximal 
#16 Middle 

Distal 
12 Weeks, SL Proximal 
#43 Middle 

Distal 
8 Weeks, SL Proximal 
#41 Middle 

Distal 
24 Weeks, NCb Middle 
#9 
asL=Single-lumen cuff. 
bNC=Normal Control. 

1 1.5 

Percentage of Axons Within ±1 µm of the Mean Diameter 
Scale (µm) 

2 2.5 3 3.5 4 4.5 5 5.5 
70 

88 
85 

91 
79 

83 
51 

83 
82 

81 
70 
77 

83 
92 

67 
86 

78 
75 

71 
80 
85 

47 

6 

w 
O> 



Table 4.3: Distributions of percentage of category II axons within ±1 µm of the mean diameter observed 
using SEM 

Implant Period, 
Type of Repair & 
Animal Number 
24 Weeks, SL a 
#5 

#6 

#47 

#48 

16 Weeks, SL 
#16 

12 Weeks, SL 
#43 

8 Weeks, SL 
#41 

Nerve 
Section 

Proximal 
Middle 
Distal 

Proximal 
Middle 
Distal 

Proximal 
Middle 
Distal 

Proximal 
Middle 
Distal 

Proximal 
Middle 
Distal 

Proximal 
Middle 
Distal 

Proximal 
Middle 
Distal 

24 Weeks, NCb Middle 
#9 
aSL=Single-lumen cuff . 
bNC=Normal Control. 

Percentage of Axons Within ±1 µm of the Mean Diameter 
Scale (µm) 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 
71 

87 
85 

74 
79 
72 

59 
72 

68 
76 
74 

75 
74 

89 
62 

74 
82 

70 
76 

83 
77 

61 

6 



Table 4.4 : Distributions of percentage of total axons within ±1 µm of the mean diameter observed using SEM 

Implant Period, Nerve Percentage of Axons With in ±1 µm of the Mean Diameter 
Type of Repair & Section Scale (µm) 
Animal Number 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 
24 Weeks, SL a Proximal 61 
#5 Middle 87 

Distal 83 
#6 Proximal 81 

Middle 78 
Distal 76 

#47 Proximal 53 
Middle 75 
Distal 66 

#48 Proximal 78 
Middle 72 cu 
Distal 70 Q) 

16 Weeks, SL Proximal 76 
#16 Middle 88 

Distal 64 
12 W eeks, SL Proximal 80 
#43 Middle 77 

Distal 73 
8 Weeks, SL Proximal 71 
#41 Middle 81 

Distal 80 
24 Weeks, NCb Middle 50 
#9 
asL=Single-lumen cuff. 
bNC=Normal Control. 
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4.2.1 Fiber diameter histograms observed using LM 

4.2.1.1 Eight Weeks 

The fiber diameter histograms were generated for the single lumen 

nerve cuff experiment for one animal. More than 80% of the middle and the 

distal distributions were at diameters within ±1 µm of their mean diameters. 

A larger peak occurred at 3.5 µm in the distal distributions as compared to 

that occurring at 2.5 µm in the middle distributions. 

4.2.1.2 Twelve Weeks 

The fiber diameter histograms were generated for the single lumen 

nerve cuff experiment for one animal. The middle distribution in the group 

was between 1.5 to 8 µm and exhibited a skewed distribution, with a peak 

occurring at 3.0 µm. Approximately 78% of the middle distributions were 

within ±1 µm of the mean diameter. 

4.2.1.3 Sixteen Weeks 

The fiber diameter histograms were generated for the single lumen 

nerve cuff experiment for one animal. More than 90% of the proximal and 

middle distributions were smaller than 4.5 µm and both of the distributions 

had a peak occurring at 2.5 µm. More than 80% of the proximal and the 

middle distributions were at diameters within ±1 µm of their mean diameters. 
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4.2.1.4 Twenty-Four Weeks 

The fiber diameter histograms were generated for four single lumen 

nerve cuff experimental animals and for one normal control animal. In the 

cuff experiments, the proximal distributions for all the four animals were 

located at somewhat larger diameters, as compared to the middle and distal 

distributions. More than 60% of the distributions at the three nerve sections 

in each animal were within ±1 µm of their mean diameters except in the 

proximal section of animal #4 7. The normal control animal data showed a 

bimodal distribution with peaks occurring at 4.0 and 5.0 µm and more than 

80% of the axons were located between 2.5 and 8.5 µm. Only 46% of the 

axons were within ±1 µm of the mean diameter. 

4.2.2 Fiber diameter histograms observed using SEM 

4.2.2.1 Eight Weeks 

The fiber diameter histograms were generated for the single lumen 

nerve cuff experiment for one animal. In the category I axon group, the 

distributions at the three sections showed skewed distributions toward 

smaller sizes, with most of the groupings occurring between 1.5 and 4.0 µm. 

A larger peak (3.5 µm) was in the distal distributions in contrast to the middle 

and proximal distributions. In the category II axon group, approximately 90% 

of the distributions at all three sections were located between 2.0 and 5.0 

µm. In the total axon group, more than 95% of the distributions at the three 

sections were smaller than 5.5 µm, with maximum axon numbers occurring 

between 2.5 and 3.5 µm. For the three axon groups in each nerve section, 
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more than 70% of the axon distributions were within ±1 µ m of their mean 

diameters. 

4.2.2.2 Twelve Weeks 

The fiber diameter histograms were generated for the single lumen 

nerve cuff experiment for one animal. In the category I axon group, the peak 

in the distal distributions were located at a larger diameter (3.5 µm) as 

compared to the middle and proximal distributions. More than 50% of the 

proximal distribution occurred at the smaller diameters (between 2.5 and 3 

µm), with the middle distributions located between the proximal and distal 

distributions. In the category II axon group, no diameters smaller than 2.0 µm 

occurred in the middle and distal distributions. A larger peak was located at 

3.5 µm in the distal section in contrast to the proximal and middle sections. In 

the total axon group, the distal distributions were located at larger diameters 

(between 3.5 and 4 .5 µm) , as compared to the proximal and middle 

distributions. More than 70% of the distributions for the three axon groups in 

each nerve section were within ±1 µm of their mean diameters. 

4.2.2.3 Sixteen Weeks 

The fiber diameter histograms were generated for the single lumen 

nerve cuff experiment for one animal. The distal distributions in all groups 

were located at larger diameters between 3.0 and 4.5 µm, as compared to 

the proximal and middle distributions. No diameters larger than 5.5 µm 

occurred in all middle distributions. Approximately 60% to 90% of the 
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distributions for the three axon groups in each nerve section were within ±1 

µ m of their mean diameters. 

4.2.2.4 Twenty-Four Weeks 

The fiber diameter histograms were generated for four single lumen 

nerve cuff experimental animals and for one normal control animal. In the 

cuff experiments, the proximal distributions of the category I axon group 

were located between 2.0 and 9.5 µm in animal #47 (a wide spread) , and 

between 1.0 and 7.0 µm in the three other animals. The proximal 

distributions of all the four animals were located at larger diameters between 

3.0 and 4.5 µm as compared to the middle and distal distributions. In the 

category II axon group, the distributions at the three sections showed 

skewed distributions toward the smaller sizes. A wide diameter distribution 

from 1.5 to 10.5 µm also occurred in animal #47. In the total axon group, the 

proximal and distal distributions occurred at larger diameters (between 2.0 

and 4.5 µm) and the middle distributions were located at the smaller 

diameters (between 2.0 to 3.0 µm). More than 60% of the distributions for the 

three axon groups in each of the three nerve sections were within ±1 µm of 

their mean diameters, except in the proximal section of animal #47. 

In the normal control animal, a bimodal distribution with peaks 

occurring at 3.0 and 5.5 µm occurred in the category I axon and in the total 

stained axon groups. Approximately 50% of diameter distributions in the 

category II axon group occurred at 5.0 and 5.5 µm. Less than 60% of 

distributions for the category I axon and the total axon group were within ±1 

µm of their mean diameters. 
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4.3 Quantitative results 

The quantitative data were obtained from light and scanning electron 

micrographs. It should be noted that in the normal control animal , the 

quantitative data were obtained from sections taken from only one site in the 

sciatic nerve which was comparable to the middle of the repair site in the 

single-lumen cuff repaired nerves since the separation was only at one 

location. Four low-resolution LM micrographs as described before were not 

studied in the quantitative evaluations. In the SEM micrographs, the 

category I and the category II axons were used for the quantitative study. 

Moreover, the total axons which combined the two types of axons were also 

studied. The quantitative results are shown in Table 4.5 through Table 4.16. 

Table 4.5 to Table 4 .8 list the axon counts, reference area, and axons per 

unit area observed using LM and SEM. Table 4.9 to Table 4.12 list the mean 

axon diameter, nerve area, and percentage of nerve observed using LM and 

SEM. Table 4.13 to Table 4.16 list the axon diameter ratio and estimated 

total number of axons in each nerve cross section observed using LM and 

SEM. The results in these tables are grouped according to the nerve sites 

examined and to the implantation periods. Means and standard deviations 

are also presented. 

In addition to the comparisons described in the Statistical Methods, 

additional statistical comparisons were done for the SEM category I and 

category II axons. First , Tukey's test was used to determine whether or not 

the differences of the mean diameters obtained from the measurements for 

the two types of axons in each nerve section were significant and whether or 



Table 4.5: Axon counts, reference area and axons per unit area observed using LM 

Implant Axon Reference Axons per 
Period & Animal Counts Area Unit Area 
Type of Number (#) (µm2) (axons per µm2) 
Repair Prox Mid Dist 15rox Mid Dist Prox Mid Dist 
24 Weeks 
Single Lumen #5 4110 5920 3528 277500 256000 152000 0.015 0.023 0.023 

#6 3768 4632 2360 271500 199500 137500 0.014 0.023 0.017 

#47 2800 4392 2124 274500 250000 168500 0.010 0.018 0.013 

#48 2176 3198 3507 185000 192000 190000 0.012 0.017 0.018 
Mean 3214 4536 2880 252000 224500 162000 0.013 0.020 0.018 
soa 887 1116 743 45000 33500 22500 0.002 0.003 0.004 

16 Weeks 
Single Lumen #16 3924 3190 NI Ab 191000 116000 NIA 0.021 0.028 NIA 
12 Weeks 
Single Lumen #43 NIA 4070 NIA NIA 258500 NIA NIA 0.016 NIA 
8 Weeks 
Single Lumen #41 NIA 3860 1862 NIA 140500 95500 NIA 0.027 0.020 
24 Weeks 
Normal Control #9 c 2285 230500 0.010 -

a SD=Standard Deviation. 
bNot Available. 
cNot Applicable. 



Table 4.6: Category I axon counts, reference area and category I axons per unit area observed 
using SEM 

Implant Axon Reference Axons per 
Period & Animal Counts Area Unit Area 
Type of Number (#) (µm2) (axons per µm2) 
Repair Prox Mid Dist Prox Mid Dist Prox Mid l>ist 
24 Weeks 
Single Lumen #5 105 94 199 10000 10000 10000 0.010 0.009 0.020 

#6 53 42 66 10000 10000 10000 0.005 0.004 0.007 

#47 61 46 64 10000 7000 10000 0.006 0.007 0.006 

#48 88 88 42 10000 10000 10000 0.009 0.009 0.004 
Mean 77 68 93 10000 9000 10000 0.008 0.007 0.009 ~ 

01 

soa 24 27 72 0 2000 0 0.002 0.002 0.007 
16 Weeks 
Single Lumen #16 88 106 57 7000 10000 10000 0.013 0.011 0.006 
12 Weeks 
Single Lumen #43 49 108 61 10000 9500 10000 0.005 0.011 0.006 
8 Weeks 
Single Lumen #41 114 125 79 10000 10000 10000 0.011 0.013 0.008 
24 Weeks 
Normal Control #9 b 78 10000 0.008 

aSD=Standard Deviation. 
bNot Applicable. 



Table 4.7: Category II axon counts, reference area and category II axons per unit area observed 
using SEM 

Implant Axon Reference Axons per 
Period & Animal Counts Area Unit Area 
Type of Number (#) (µm 2) (axons per µm2 ) 
Repair Prox Mid Dist Prox Mid Dist Prox Mid i:5ist 
24 Weeks 
Single Lumen #5 72 187 119 10000 10000 10000 0 .007 0 .019 0.012 

#6 164 196 107 10000 10000 10000 0.016 0.020 0.011 

#47 129 133 65 10000 7000 10000 0.013 0.019 0.007 

#48 100 102 70 10000 10000 10000 0 .010 0.010 0.007 
~ 

Mean 116 155 90 10000 9000 10000 0.012 0.007 0.009 (J') 

SD a 39 45 27 0 2000 0 0 .004 0.005 0.003 
16 Weeks 
Single Lumen #16 131 179 98 7000 10000 10000 0 .019 0.018 0.010 
12 Weeks 
Single Lumen #43 153 132 70 10000 9500 10000 0 .015 0.014 0.007 
8 Weeks 
Single Lumen #41 85 173 124 10000 10000 10000 0 .009 0.017 0.012 
24 Weeks 
Normal Control #9 b 23 10000 0 .002 

aSD=Standard Deviation. 
bNot Applicable. 



Table 4.8: Total axon counts, reference area and axons per unit area observed using SEM 

Implant Axon Reference Axons per 
Period & Animal Counts Area Unit Area 
Type of Number (#) (µm2) (axons per µm2) 
Repair Prox Mid Dist Prox Mia Dist Prox Mid i:>ist 
24 Weeks 
Single Lumen #5 177 281 318 10000 10000 10000 0.018 0.028 0.032 

#6 217 238 173 10000 10000 10000 0.022 0.024 0.017 

#47 190 179 129 10000 7000 10000 0.019 0.026 0.013 

#48 188 190 112 10000 10000 10000 0.019 0.019 0.011 
Mean 193 222 183 10000 9000 10000 0.020 0.024 0.018 

~ soa 17 47 94 0 2000 0 0.002 0 .004 0.010 -.._J 

16 Weeks 
Single Lumen #16 219 285 155 7000 10000 10000 0.031 0 .029 0.016 
12 Weeks 
Single Lumen #43 202 240 131 10000 9500 10000 0.020 0.025 0 .013 
8 Weeks 
Single Lumen #41 199 298 203 10000 10000 10000 0.020 0.030 0.020 
24 Weeks 
Normal Control #9 b 101 10000 0.010 -

aSD=Standard Deviation. 
bNot Applicable. 



Table 4.9: Mean axon diameter, nerve area and percentage of nerve observed using LM 

Implant Mean Axon Diameter Nerve Area Percentage of 
Period & Animal ± Standard Deviation (µm2) Nerve Examined 
Type of Number (um) (%) 
Repair Prox Mid Dist Prox Mid Dist Prox Mid Dist 
24 Weeks 
Single Lumen #5 3.2±1.0 2.7±1.0 2.6±1 .0 1180000 550000 380000 24 47 40 

#6 3.6±1.3 2.5±0.9 3.3±1 .2 570000 510000 910000 48 39 15 

#47 4.6±1.7 3.5±1.1 3.9±1.3 670000 470000 530000 41 53 32 

#48 4.0±1.4 3.5±1 .0 3.2±1 .2 800000 510000 710000 23 38 27 
Mean 3.9 3.1 3.2 805000 510000 632500 34 44 29 

SD a 1.5 1.1 1.2 267000 32500 229000 12 7 10 ~ 
CX) 

16 Weeks 
Single Lumen #16 2.6±0.9 2.5±0.8 N/Ab 370000 380000 1110000 52 31 N/A 
12 Weeks 
Single Lumen #43 N/A 3.5±1.1 N/A 700000 510000 1410000 N/A 51 N/A 
8 Weeks 
Single Lumen #41 N/A 2.6±0.9 3.2±1 .1 130000 480000 770000 N/A 29 12 
24 Weeks 
Normal Control #9 c 5.7±1 .9 520000 44 -

a SD=Standard Deviation. 
bNot Available. 
cNot Applicable. 



Table 4.10: Mean category I axon diameter, nerve area and percentage of nerve observed using SEM 

Implant Mean Axon Diameter Nerve Area Percentage of 
Period & Animal ± Standard Deviation (µm2) Nerve Examined 
Type of Number (um) (%) 
Repair Prox Mid Dist Prox Mid Dist Prox Mid Dist 
24 Weeks 
Single Lumen #5 3.4±1.2 2.4±0.8 2.2±0.9 1180000 550000 380000 1 2 3 

#6 2.9±0.8 2.8±0.9 3.5±0.9 570000 510000 910000 2 2 1 

#47 4.9±1.6 3.6±0.9 3.8±1.0 670000 470000 530000 1 1 2 

#48 3.5±0.9 3.6±1.2 3.6±1 .1 800000 510000 710000 1 2 1 
Mean 3.9 3.o 3.1 805000 510000 632500 1 2 2 

SD a 1.5 1.1 1.2 267000 32500 229000 1 1 1 
~ 
<D 

16 Weeks 
Single Lumen #16 2.7±0.8 2.4±0.7 4.0±1.2 370000 380000 1110000 2 3 1 
12 Weeks 
Single Lumen #43 3.0±0.8 3.1±1 .0 3 .8±1.1 700000 510000 1410000 1 2 1 
8 Weeks 
Single Lumen #41 3.1±1.4 2.9±1.0 2.9±0.8 130000 480000 770000 8 2 1 
24 Weeks 
Normal Control #9 b 5.1±1.8 520000 2 -

a SD=Standard Deviation. 
b Not Applicable. 



Table 4.11 : Mean category II axon diameter, nerve area and percentage of nerve observed using SEM 

Implant Mean Axon Diameter Nerve Area Percentage of 
Period & Animal ± Standard Deviation (µm2) Nerve Examined 
Type of Number (um) (%) 
Repair Prox Mid Dist Prox Mid Dist Prox Mid Dist 
24 Weeks 
Single Lumen #5 3.2±1.3 2.3±0.8 2.7±0.8 1180000 550000 380000 1 2 3 

#6 3.3±1.0 3.4±1.1 3.4±1.1 570000 510000 910000 2 2 1 

#47 5.3±1.6 3.5±1.1 4.7±1.4 670000 470000 530000 1 1 2 

#48 3.6±1.1 3.6±1.1 4.0±1.1 800000 510000 710000 1 2 1 
Mean 4 .2 3.1 3.8 805000 510000 632500 1 2 2 

SD a 1.6 1.1 1.3 267000 32500 229000 1 1 1 
(JI 
0 

16 Weeks 
Single Lumen #1 6 3.0±1.1 2.8±0.8 4.1±1.4 370000 380000 1110000 2 3 1 
12 Weeks 
Single Lumen #43 3.3±1.0 3.4±0.9 4.1±1.2 700000 510000 1410000 1 2 1 
8 Weeks 
Single Lumen #41 3.5±1.0 2.9±1.0 3.2±1.1 130000 480000 770000 8 2 1 
24 Weeks 
Normal Control #9 b 4 .9±1 .6 520000 2 -

aSD=Standard Deviation. 
bNot Applicable. 



Table 4.12: Mean total axon diameter, nerve area and percentage of nerve observed using SEM 

Implant Mean Axon Diameter Nerve Area Percentage of 
Period & Animal ± Standard Deviation (µm2) Nerve Examined 
Type of Number (um) (%) 
Repair Prox Mid Dist Prox Mid Dist Prox Mid Dist 
24 Weeks 
Single Lumen #5 3.3±1.3 2.3±0.8 2.4±0.9 1180000 550000 380000 1 2 3 

#6 3.2±1.0 3.3±1.1 3.4±1.0 570000 510000 910000 2 2 1 

#47 5.2±1.6 3.5±1.1 4.3±1.3 670000 470000 530000 1 1 2 

#48 3.6±1.0 3.6±1.1 3.8±1.1 800000 510000 710000 1 2 1 
Mean 4.1 3.1 3.4 805000 510000 632500 1 2 2 

SD a 1.6 1.1 1.3 267000 32500 229000 1 1 1 
01 ....... 

16 Weeks 
Single Lumen #16 2.9±1.0 2.6±0.8 4.1±1.3 370000 380000 1110000 2 3 1 
12 Weeks 
Single Lumen #43 3.2±1.0 3.3±1.0 3.9±1.1 700000 510000 1410000 1 2 1 
8 Weeks 
Single Lumen #41 3.2±1.3 2.9±1.0 3.1 ±1.0 130000 480000 770000 8 2 1 
24 Weeks 
Normal Control #9 b 5.0±1.7 520000 2 -

aSD=Standard Deviation. 
bNot Applicable. 



Table 4.13: Diameter ratio and estimated total axons in each nerve cross section observed using LM 

Implant Diameter Ratio ± Axon 
Period & Animal Standard Deviation Counts 
Type of Number (#) 
Repair Prox Mid Dist Prox Mid Dist 
24 Weeks 
Single Lumen #5 1.6±0.6 2.0±0.9 1.4±0.4 17125 12596 8820 

#6 1.8±0.7 1.6±0.7 1.8±0.6 7850 11877 15733 

#47 1.5±0.5 1.8±0.8 1.7±0.5 6829 8287 6638 

#48 1.7±0.7 1.6±0.4 1.4±0.4 9461 8416 12989 
Mean 10316 10294 11045 

SD a b 4667 2263 4088 Ul 
I\) 

16 Weeks 
Single Lumen #16 1.8±0.7 1.6±0.5 N/Ac 7546 10290 N/A 
12 Weeks 
Single Lumen #43 N/A 1.9±0.8 N/A N/A 7980 N/A 
8 Weeks 
Single Lumen #41 N/A 1.5±0.5 1.7±0.7 N/A 13310 15517 
24 Weeks 
Normal Control #9 1.7±0.7 5193 

a SD=Standard Deviation. 
bNot Applicable. 
c Not Available. 



Table 4.14: Category I axon diameter ratio and estimated total category I axons in each neNe cross 
section obseNed using SEM 

Implant Diameter Ratio ± Axon 
Period & Animal Standard Deviation Counts 
Type of Number (#) 
Repair Prox Mid Dist Prox Mid Dist 
24 Weeks 
Single Lumen #5 1.6±0.5 1.7±0.6 1.6±0.6 10500 4700 6633 

#6 1.6±0.5 1.6±0.6 1.8±0.6 2650 2100 6600 

#47 1.4±0.3 1.7±0.5 1.6±0.6 6100 4600 3200 

#48 1.7±0.6 2.0±0.7 1.5±0.5 8800 4400 4200 
Mean 7013 3950 5158 01 

(,.) 

soa b 3426 1240 1733 
16 Weeks 
Single Lumen #16 1.8±0.9 2.0±1.1 1.6±0.5 4400 3533 5700 
12 Weeks 
Single Lumen #43 1.5±0.4 1.6±0.6 1.9±0.8 4900 5400 6100 
8 Weeks 
Single Lumen #41 1.8±0.9 1.4±0.3 1.9±0.7 1425 6250 7900 
24 Weeks 
Normal Control #9 1.7±0.5 3900 

a SD=Standard Deviation. 
b Not Applicable. 



Table 4.15: Category II axon diameter ratio and estimated total category II axons in each nerve cross 
section observed using SEM 

Implant Diameter Ratio ± Axon 
Period & Animal Standard Deviat ion Counts 
Type of Number (#) 
Repair Prox Mid Dist Prox Mid Dist 
24 Weeks 
Single Lumen #5 1.5±0.3 1.6±0.5 1.4±0.5 7200 9350 3967 

#6 1.3±0.2 1.3±0.2 1.5±0.4 8200 9800 10700 

#47 1.5±0.5 1.7±0.6 1.5±0.4 12900 13300 3250 

#48 1.5±0.4 1.8±0.5 1.6±0.5 10000 5100 7000 
Mean 9575 9388 6229 01 

~ 

SD a b 2501 3360 3395 
16 Weeks 
Single Lumen #16 1.4±0.4 1.6±0.5 1.5±0.5 6550 5967 9800 
12 Weeks 
Single Lumen #43 1.6±0.5 1.5±0.3 1.6±0.8 15300 6600 7000 
8 Weeks 
Single Lumen #41 1.6±0.5 1.5±0.5 1.4±0.4 1063 8650 12400 
24 Weeks 
Normal Control #9 1.7±0.4 1150 

aSD=Standard Deviation. 
bNot Applicable . 



Table 4.16: Axon diameter ratio and estimated total axons in each nerve cross section observed 
using SEM 

Implant Diameter Ratio ± Axon 
Period & Animal Standard Deviation Counts 
Type of Number (#) 
Repair Prox Mid Dist Prox Mid Dist 
24 Weeks 
Single Lumen #5 1.6±0.4 1.6±0.5 1.5±0.6 17700 14050 10600 

#6 1.4±0.3 1.4±0.4 1.6±0.5 10850 11900 17300 

#47 1.4±0.4 1.7±0.6 1.6±0.5 19000 17900 6450 

#48 1.6±0.5 1.9±0.6 1.6±0.5 18800 9500 11200 
Mean 16588 13338 11388 01 

01 
soa b 3867 3564 4472 

16 Weeks 
Single Lumen #16 1.6±0.7 1.8±0.8 1.5±0.5 10950 9500 15500 
12 Weeks 
Single Lumen #43 1.6±0.5 1.5±0.5 1.7±0.8 20200 12000 13100 
8 Weeks 
Single Lumen #41 1.7±0.8 1.5±0.4 1.6±0.6 2488 14900 20300 
24 Weeks 
Normal Control #9 1.7±0.5 5050 

aSD=Standard Deviation. 
bNot Applicable. 
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not the mean differences were significant for each type of axon in the three 

neNe sections in each animal. For each section in repaired nerves, the 

means of the two types of axons were compared, respectively, with those in 

the normal control. In addition, the means of the total axons obtained in the 

three sections in each repaired neNe were compared with each other as 

well as with the normal control. Finally, the means of the total axons 

obseNed using SEM were compared with those obtained using LM in the 

present study. The statistical comparisons can be seen in Table 4.17 

through Table 4.24. 

4.3.1 Quantitative results from LM 

Approximately 30 to 50 percent of areas in each neNe section were 

analyzed. The Tukey's test showed that all sections tested from the single-

lumen cuff repaired neNes over the four time periods had significantly lower 

mean axon core diameters than the normal control (Table 4.17). Among the 

three sections of the 24 week post-implantation neNe cases, the axon core 

diameters were the largest at the proximal sites as compared to the middle 

and distal sections (Table 4.18). However, the mean core diameter of the 

regenerated axons did not reach the normal control level size even after 24 

weeks. 

Reciprocal relationships between the axons per unit area calculations 

and the mean axon core diameters were found in the neNe sections of 24 

week post-implantation rats; i.e., the larger the mean axon core diameter 

became, the smaller the number for the axons per unit area. The numerical 

value of the axons per unit area in the normal control was smaller than that 



57 

Table 4.17: Mean axon diameter comparisons between repaired nerve 
sections and normal control observed using LM 

Animal Type of Repair Implant Section Significanceb 
Number Periods Comparisons a 

#41 Single-lumen 8 Weeks p N/A 
M ••• (p<0.0001) (+) 
D *** (p<0.0001) (+) 

#43 Single-lumen 12Weeks p N/A 
M *** (p<0.0001) (+) 
D N/A 

#16 Single-lumen 16 Weeks p *** (p<0.05) (+) 
M *** (p<0.05) (+) 
D N/A 

#5 Single-lumen 24 Weeks p ••• (p<0.0001) (+) 
M *** (p<0.0001) (+) 
D *** (p<0.0001) (+) 

#6 Single-lumen 24 Weeks p *** (p<0.0001) (+) 
M *** (p<0.0001) (+) 
D *** (p<0.0001) (+) 

#47 Single-lumen 24 Weeks p *** (p<0.0001) (+) 
M *** (p<0.0001) ( +) 
D *** (p<0.0001) (+) 

#48 Single-lumen 24 Weeks p *** (p<0.0001) (+) 
M *** (p<0.0001 ) (+) 
D *** (p<0.0001 ) (+) 

aP=Proximal; M=Middle; D=Distal; Comparing the sections with normal control. 
bN/A=Not Available;(+) Larger mean axon diameters in normal control. 
*** Comparisons significant at the 0.05 level, p value in brackets. 
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Table 4.18: Mean axon diameter comparisons between nerve sections 
in the same animal observed using LM 

Animal Type of Implant Section Signiticanceb 
Number Repair Periods Comparisons a 

#41 Single-lumen 8 Weeks P, M N/A 
P, D N/A 
M, D *** (p<0.0001) (-) 

#43 Single-lumen 12 Weeks P, M N/A 
P, D N/A 
M, D N/A 

#16 Single-lumen 16 Weeks P, M *** (p<0.01) (+) 
P,D N/A 
M, D N/A 

#5 Single-lumen 24 Weeks P, M *** (p<0.0001) (+) 
P,D *** (p<0.0001) (+) 
M,D * 

#6 Single-lumen 24 Weeks P,M *** (p<0.0001) (+) 
P, D *** (p<0 .0001) (+) 
M,D *** (p<0.0001) (-) 

#47 Single-lumen 24 Weeks P, M *** (p<0.001) (+) 
P, D *** (p<0.001) (+) 
M, D *** (p<0.001) (-) 

#48 Single-lumen 24 Weeks P, M *** (p<0.0001) (+) 
P, D *** (p<0 .0001) (+) 
M, D *** (p<0.0001) (+) 

aP=Proximal; M=Middle; D=Distal. 
bN/A=Not Available; (+) Larger mean axon diameters in the first nerve section; 
(-) Larger mean axon diameters in the second nerve section. 
***Comparisons significant at the 0.05 level, p value in brackets. 
* Comparisons not significant at the 0.05 level. 
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Table 4 .19: Mean diameter comparisons of the same category of axons in 
repaired nerve sections and in normal control observed using SEM 

Animal Type of Implant Nerve Axon Significancec 
Number Repair Periods Sectiona Comparisonsb 

#41 Single-lumen 8 Weeks p I *** (p<0.05) (+) 
p II *** (p<0.05) (+) 
M I *** (p<0.05) (+) 
M II *** (p<0.05) (+) 
D I *** (p<0.05) (+) 
D II *** (p<0.05) (+) 

#43 Single-lumen 12 Weeks p I *** (p<0.05) (+) 
p II *** (p<0.05) (+) 
M I *** (p<0.05) (+) 
M II *** (p<0.05) (+) 
D I *** (p<0.05) (+) 
D II * 

#16 Single-lumen 16 Weeks p I *** (p<0.05) (+) 
p II *** (p<0.05) (+) 
M I *** (p<0.05) (+) 
M II *** (p<0.05) (+) 
D I *** (p<0.05) (+) 
D II *** (p<0.05) (+) 

a P=Proximal; M=Middle; D=Distal. 
bl=Category I axons; ll=Category II axons; Comparing axons in the nerve 
sections with those in normal control. 

c(+) Larger mean axon diameters in normal control. 
*** Comparisons significant at the 0.05 level, p value in brackets. 
* Comparisons not significant at the 0 .05 level. 
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Table 4.19: Continued 

Animal Type of Implant Nerve Axon Signiticancec 
Number Repair Periods Section8 Comparisonsb 

#5 Single-lumen 24 Weeks p I *** (p<0.01) (+) 
p II *** (p<0.01) (+) 
M I *** (p<0 .01) (+) 
M II *** (p<0.01) (+) 
D I ••• (p<0 .01) (+) 
D II *** (p<0.01) (+) 

#6 Single-lumen 24 Weeks p I ... (p<0.01) ( +) 
p II ••• (p<0.01) (+) 
M I ••• (p<0.01) (+) 
M II ••• (p<0 .01) (+) 
D I ••• (p<0.01) (+) 
D II ••• (p<0.01) (+) 

#47 Single-lumen 24 Weeks p I * 
p II • 
M I ••• (p<0.0001) (+) 
M II ••• (p<0.0001) (+) 
D I ••• (p<0.0001) (+) 
D II * 

#48 Single-lumen 24 Weeks p I ••• (p<0.05) (+) 
p II ••• (p<0.05) (+) 
M I ••• (p<0.05) (+) 
M II ••• (p<0.05) (+) 
D I *** (p<0 .05) (+) 
D II ••• (p<0.05) (+) 
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Table 4.20: Mean axon diameter comparisons between repaired nerve sections 
and normal control observed using SEM 

Animal Type of Implant Section Significance b 
Number Repair Periods Comparisonsa 

#41 Single-lumen 8 Weeks p *** (p<0.0001) (+) 
M *** (p<0.0001) (+) 
D *** (p<0.0001) (+) 

#43 Single-lumen 12 Weeks p *** (p<0.0001) (+) 
M *** (p<0.0001 ) (+) 
D *** (p<0.0001 ) (+) 

#16 Single-lumen 16 Weeks p *** (p<0.0001 ) (+) 
M *** (p<0.0001 ) (+) 
D *** (p<0.0001 ) (+) 

#5 Single-lumen 24 Weeks p *** (p<0.0001) (+) 
M *** (p<0.0001) (+) 
D *** (p<0.0001) (+) 

#6 Single-lumen 24 Weeks p *** (p<0.0001) (+) 
M *** (p<0.0001) (+) 
D *** (p<0.0001 ) (+) 

#47 Single-lumen 24 Weeks p * 
M *** (p<0.0001 ) (+) 
D *** (p<0.0001 ) (+) 

#48 Single-lumen 24 Weeks p *** (p<0.0001 ) (+) 
M *** (p<0.0001 ) (+) 
D *** (p<0.0001 ) (+) 

aP=Proximal; M=Middle; D=Distal; Comparing the sections with normal control. 
b(+) Larger mean axon diameters in normal control. 
***Comparisons significant at the 0.05 level, p value in brackets. 
* Comparisons not significant at the 0.05 level. 
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Table 4.21 : Diameter comparisons between the category I and the category II 
axons in the same nerve section observed using SEM 

Animal Type of Implant Nerve Significanceb 
Number Repair Periods Section a 

#41 Single-lumen 8 Weeks p • 
M • 
D • 

#43 Single-lumen 12Weeks p • 
M • 
D • 

#16 Single-lumen 16 Weeks p • 
M • 
D • 

#5 Single-lumen 24 Weeks p • 
M • 
D ••• (p<0.05) (+) 

#6 Single-lumen 24 Weeks p • 
M • 
D • 

#47 Single-lumen 24 Weeks p • 
M • 
D ••• (p<0.0001) (+) 

#48 Single-lumen 24 Weeks p • 
M • 
D • 

#9 Normal Control 24 Weeks M • 

aP=Proximal ; M=Middle; D=Distal. 
b(+) Larger mean axon diameters in category II axons. 
••• Comparisons significant at the 0.05 level , p value in brackets. 
• Comparisons not significant at the 0.05 level. 
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Table 4.22: Mean diameter comparisons of the same category of axons in 
different nerve sections observed using SEM 

Animal Type of Implant Section Axon Significance c 
Number Repair Periods Comparisons a Typeb 

#41 Single-lumen 8 Weeks P, M I * 
P, M II *** (p<0.05) (+) 
P, D I * 
P, D II * 
M, D I * 
M, D II * 

#43 Single-lumen 12 Weeks P, M I * 
P, M II * 
P, D I *** (p<0.05) (-) 
P, D II *** (p<0.05) (-) 
M,D I *** (p<0.05) (-) 
M,D II *** (p<0.05) (-) 

#16 Single-lumen 16 Weeks P, M I * 
P,M II * 
P, D I *** (p<0.05) (-) 
P, D II *** (p<0.05) (-) 
M, D I *** (p<0.05) (-) 
M, D II *** (p<0.05) (-) 

a P=Proximal ; M=Middle; D=Distal. 
b l=Category I axons; I !=Category 11 axons. 
c(+) Larger mean axon diameters in the first nerve section; (-) Larger mean 
axon diameters in the second nerve section. 
*** Comparisons significant at the 0.05 level, p value in brackets. 
* Comparisons not significant at the 0.05 level. 
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Table 4.22: Continued 

Animal Type of Implant Section Axon Significancec 
Number Repair Periods Comparisonsa Typeb 

#5 Single-lumen 24 Weeks P,M I ••• (p<0.01) (+) 
P,M II ••• (p<0.01) (+) 
P, D I ••• (p<0.01) (+) 
P,D II *** (p<0.01) (+) 
M, D I * 
M,D II * 

#6 Single-lumen 24 Weeks P, M I * 
P,M II * 
P, D I *** (p<0.01) (-) 
P, D II * 
M, D I *** (p<0.01) (-) 
M, D II * 

#47 Single-lumen 24 Weeks P, M I ••• (p<0.0001) (+) 
P,M II *** (p<0.0001) (+) 
P,D I ••• (p<0.0001) (+) 
P,D II *** (p<0.0001) (+) 
M, D I * 
M,D II ••• (p<0.0001) (-) 

#48 Single-lumen 24 Weeks P, M I * 
P, M II * 
P, D I * 
P, D II * 
M, D I * 
M, D II * 
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Table 4.23: Mean diameter of total axons comparisons between nerve 
sections in the same animal observed using SEM 

Animal Type of Implant Section Significanceb 
Number Repair Periods Comparisons a 

#41 Single-lumen 8 Weeks P, M ••• (p<0.0001) (+) 
P, O * 
M, O • 

#43 Single-lumen 12 Weeks P, M • 
P, O ••• (p<0.0001) (-) 
M, O ••• (p<0.0001) (-) 

#16 Single-lumen 16 Weeks P, M • 
P, O *** (p<0.0001) (-) 
M, O ••• (p<0.0001) (-) 

#5 Single-lumen 24 Weeks P, M ••• (p<0.0001) (+) 
P, O ••• (p<0.0001) (+) 
M, O • 

#6 Single-lumen 24 Weeks P, M • 
P, O • 
M, O * 

#47 Single-lumen 24 Weeks P, M ••• (p<0.0001) (+) 
P, O .... (p<0.0001) (+) 
M, O *** (p<0.0001) (-) 

#48 Single-lumen 24 Weeks P, M * 
P, O * 
M, O * 

a P=Proximal; M=Middle; D=Distal. 
b(+) Larger mean axon diameters in the first nerve section; (-) Larger mean 
axon diameters in the second nerve sections. 
***Comparisons significant at the 0.05 level, p value in brackets. 
* Comparisons not significant at the 0.05 level. 
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Table 4.24: Diameter comparisons of axons in the same nerve section 
observed from LM and SEM 

Animal Type of Implant Section Significanceb 
Number Repair Periods Comparisonsa 

#41 Single-lumen 8 Weeks p N/A 
M *** (p<0.0001) (-) 
D * 

#43 Single-lumen 12Weeks p N/A 
M *** (p<0.0001) (+) 
D N/A 

#16 Single-lumen 16 Weeks p *** (p<0.0001) (-) 
M * 
D N/A 

#5 Single-lumen 24 Weeks p • 
M *** (p<0.0001) (+) 
D *** (p<0.0001) (+) 

#6 Single-lumen 24 Weeks p *** (p<0 .0001 ) (+) 
M *** (p<0.0001) (-) 
D * 

#47 Single-lumen 24 Weeks p . ... (p<0.0001) (-) 
M * 
D *** (p<0.0001 ) (-) 

#48 Single-lumen 24 Weeks p *** (p<0.0001) (+) 
M * 
D *** (p<0.0001 ) (-) 

#9 Normal Control 24 Weeks M *** (p<0.0001) (+) 

aP=Proximal ; M=Middle; D=Distal. 
bN/A=Not Available;(+) Larger mean axon diameter in LM; (-) Larger mean 
axon diameters in SEM . 

*** Comparisons significant at the 0.05 level, p value in brackets. 
* Comparisons not significant at the 0.05 level. 
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in any regenerated nerve section. Moreover, the number for the axons per 

unit area at the middle section in each repaired animal was larger than that 

at the proximal section. Large variations were seen tor comparisons of the 

estimated total number of axons in different nerve sections. 

The average diameter ratios in all of the nerve sections including the 

normal control were between 1.4 and 2.0. Thus, the shapes of the axons in 

the rats were substantially different from that of a circle where the value 

would be 1.0. 

4.3.2 Quantitative results from SEM 

Less than ten percent of the areas in each nerve section were 

analyzed. When comparing the category I and II axons in most of the 

repaired nerve sections, a significantly larger mean diameter was seen in 

the normal control (Table 4.19). Similar results were seen as when the mean 

diameter of the total axons in each nerve section was compared with that of 

the normal control (Table 4.20) . In the same nerve sections for each animal, 

no significant mean diameter differences were noted between the category I 

and the category II axons except in the distal sites of animal #5 and animal 

#47 (Table 4.21) . Both exceptions were caused by the skewing of the 

distributions of category II axons to larger axon diameters as compared with 

those of the category I axons. Large variations were seen for comparisons of 

the same category of axons in different nerve sections (Table 4.22), and tor 

comparisons of the mean diameters of total axons between nerve sections in 

the same animal (Table 4.23) . Finally, some signif icant differences were 
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seen for comparisons of the mean axon diameters obtained by using LM 

and SEM (Table 4.24). 

The numerical values of axons per unit area of the category If and the 

total axons at the three sections in each repaired animal were larger than 

that of the normal control. There were still large variations in the numerical 

values of axons per unit area and in the estimated total number of axons 

among the three sections in each animal. 

The average diameter ratios for the category I, the category If , and the 

total axons in all nerve sections including the normal control were between 

1 .3 and 2.0. Again, these shapes show a substantial departure from that of a 

circle where the ratio would be 1.0. 
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5. DISCUSSION 

The peripheral nerve regeneration of this study centered on the use of 

single lumen silicone rubber tubes. The tube functioned as a conduit for the 

regenerating nerve, providing longitudinal support and control of the 

orientation for migrating cells and growing axons. The growth environment 

was isolated from the extraneural environment. The results showed that a 5 

mm gap between the proximal and the distal stumps was successfully 

bridged by a structure composed of regenerating axons. 

Secondary electron images were not as useful in characterizing the 

axon features as were the backscatter electron images. The backscatter 

electron images provided useful contrast between the relatively low average 

atomic number of the connective tissue and that of the silver stained (gold 

toned) axons. 

Backscatter electron images provided structural information for axon 

features not easily seen in light microscopy. The present study showed the 

existence of stained features that did not cover a full circular axon cross-

section, but would be counted and interpreted as a full cross-section in 

convention light microscopic characterization of stained axon cross sections. 

The proportion of these features to that of complete axon cross sections was 

provided. The results suggested that they represented a stage in the 

development of the argyrophic protein of the axons. 

Two patterns of regenerated features were recognized: the axons fully 

surrounded by the endoneurium (category I) and those in which staining 

enhanced rim features or only a portion of the circular area (category 11), 
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which could not be discriminated by light microscopy but were observed 

using SEM in studying the proximal , middle, and distal sections of the 

repaired nerves. The category I axons are probably the axons growing faster 

during the regenerative process which have completely matured. The 

category II axon cross sections are probably related to the type of 

neurofilament proteins that developed during the regenerative process. 

Neurofilament proteins in the axons have a high affinity for free silver ions. 

Therefore , immature axons might contain fewer argyrophic neurofilament 

proteins to pick up the silver ions that would make up a cross section and so 

the area would be only partially stained by the Bodian's silver method (Katz 

and Watson, 1985). Another possibility for the format ion of category II axon 

cross sections is that the regenerating axons did not grow straight but in a 

spiral manner within the basal lamina tubes (Tohyama and Kumagai, 1992). 

Thus, there can be seen unstained spaces between the growing axons and 

the basal lamina tubes in certain cross sections. A portion of the category II 

axons in which staining enhanced only rim features may be the open 

endoneurial tubes left after severance of a nerve and subsequent 

degeneration , providing channels for the regenerat ing axons to grow into 

the distal nerve stump. In addition, these axon features may be caused by 

the sectioning , pulling out some of the axon material from the endoneurial 

tubes, and perhaps forming the rim-stained features . Moreover, a 

component of these axons are likely to be unmyelinated axons and 

collapsed capillaries. 

Instead of forming one central , large nerve fascicle at the three nerve 

sections as seen in the normal control, the regenerated axons grouped in 
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small packets which were separated by a wide area of connective tissue. 

Similar findings have been reported for "mini-fascicles" formation during 

nerve regeneration across a gap (Mathur et al. , 1983; Jenq and Coggeshall , 

1986). 

The fiber diameter histograms obtained from the light and scanning 

electron micrographs provided evidence that the regenerated nerve was 

comprised primarily of smaller fibers than those at the time the nerve gap 

was created because the histogram of the regenerated nerve was shifted to 

the left in comparison with that of the normal control. More than 60% of axon 

diameter distributions were within ±1 µm of the mean axon diameters in 

each nerve section except the normal control which had a pattern 

suggesting the presence of a bimodal distribution and the proximal section 

in animal #47 which had a wide spread distribution. The results showed that 

the majority of regenerating axons achieved an axon diameter frequency 

distribution which had a substantial peak occurring at the mean diameter 

value of the regenerating axons. Small regenerated axons which were less 

than 1 µm in diameter were not included in the histograms. Small 

regenerated axons with few neurofilament proteins would not be stained by 

the sliver-stain method (Katz and Watson, 1985), and few were seen in the 

SEM images. Thus, any small axons (less than 1 µm in diameter) were also 

omitted in the graphs for data of the LM studies. 

In the repaired nerve, myelinated fibers are undergoing degeneration 

and remyelination at the same time. Quantitative results obtained by using 

LM and SEM showed that complete recovery of these fibers, as defined by 

an increase in axonal diameter compared to normal dimensions was never 
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achieved at 24 weeks post-implantation, the longest time period of the 

present study. The diminished average regenerated axon size agrees with 

the observations of Mira (1979) , Henry et al. (1985) , Espejo and Alvarez 

(1986), and Le Beau et al. (1988) for similar age control rat comparisons in 

that the regenerated myelinated fibers never reach the normal average size, 

even after long implantation times of the order of two years. In addition, the 

mean diameters of the middle section axons were smaller than those of the 

proximal sections in almost all of the single cuff experimental animals. The 

trend of smaller mean axon diameters occurring in the middle sections could 

be because the repair cuffs might cause an environment of compression of 

the regenerating axons and therefore limit the sizes of these axons. Also , the 

development of capillaries and blood vessels in the middle sections might 

not be as extensive as for the proximal or distal sections. The middle section 

in each animal had an equal or a larger numerical value for axons per unit 

area compared with that of the proximal section. This may represent more 

proximal axons with successful growth into the repair site , or this may 

represent more branching of middle axons. No significant differences were 

seen tor comparisons of the mean diameters of axons in category I with 

those of the axons in category II. This may suggest that these two categories 

of axons are probably the same type of axons even though their shapes or 

morphological features are different. Significant differences were noted 

between the quantitative data obtained from light and scanning electron 

micrographs in the present study, such as the axon populations, mean axon 

diameters, and the numerical values of axons per unit area. This could be 

because the total size of the area using the SEM represented only a small 
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fraction of the nerve sample (<10%) in comparison with that for the LM. 

There was a possibility that the SEM areas scanned did not include enough 

axons for an adequate evaluation compared to the larger LM areas. 

The mean diameter ratios at the three nerve sections in each animal 

including the normal control were larger than one. These results were not in 

accord with some studies in which the regenerated fibers were more 

circular, lacking the irregular fluted appearance of the normal fibers 

(Mackinnon et al. , 1985, O'Brien et al., 1987). 
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6. CONCLUSIONS 

Both LM and SEM micrographs showed that the single-lumen cuff 

experiments were successful in bridging the 5 mm gap in the sciatic nerve of 

the rat at all four post-implantation periods as based on the presence of 

silver stained axons seen in cross sections of proximal, middle (covering the 

gap region) , and distal samples. 

Two regenerat ive features, the axons fully surrounded by the 

endoneurium and those in which staining enhanced rim features or only a 

portion of the circular area, were seen in the high-resolution backscatter 

electron micrographs . These were not distinguishable using light 

microscopy. The differences in morphology of the two categories of axons 

may be caused by several things: staining and sectioning or growth of the 

regenerating axons within the basal lamina tubes. The two categories of 

axons comprise the axons seen in LM. 

Based on the LM and SEM results, higher numerical values of axons 

per unit area for the cross-sections of the regenerated nerves were seen 

compared to those for the normal control. In addition, mean regenerated 

axon diameters did not reach sizes similar to those of the control for each of 

the four time periods. The higher numerical values of axons per unit area 

and smaller mean axon diameters in the regenerated nerves compared to 

the control indicate some branching during the regenerative process. 

There are many more proximal axons than those that enter or pass 

through the lumen of the single lumen cuffs, and the surface area of the 

proximal stump is larger than the cross-sectional area of the nerve in the 
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middle section. However, higher numerical values for axons per unit area 

measurements in the middle sections of the regenerated nerves as 

compared with those in the proximal sections may represent proximal axons 

with successful growth into the repair site that result in a higher value of 

axons per unit area in the middle section. No excessive branching was 

evident in the distal sections since no significant changes of axon densities 

occurred in the distal sections as compared with those in the middle 

sections. 

Significant differences were seen for the data comparisons from LM 

and SEM. This could be because the SEM areas seen represented only a 

portion of those included in the LM study. 



76 

BIBLIOGRAPHY 

Allt, G. 1976. Pathology of the peripheral nerve. Page 722 in D. N. Landon, 
ed. The Peripheral Nerve. John Wiley and Sons, Inc. , New York. 

Braley, S. 1970. The chemistry and properties of the medical-grade 
silicones. J. Macromol. Sci.-Chem. A4(3): 529-544. 

Byrkit, D. R., 1987. Statistics Today. The Benjamin Cummings Publishing 
Company, Menlo Park, 687-690. 

Calabretta, A. M., B. L. Munger, and W. P. Graham. 1973. The ultrastructure 
of degenerating rat sciatic nerves. J. of Surgical Research 14: 465-
471 . 

Daniel, J . M. K. 1991 . Reorganization and orientation of peripheral nerve 
fibers regenerating through a multip le-lumen silicone rubber cuff : An 
experimental study using the sciatic nerve of rats. Ph. D. Dissertation. 
Iowa State University. 152 pages. 

DeNee, P. B., J. L. Abraham, and P. A. Willard. 1974. Histochemical stains 
for the scanning electron microscope: Qual itative and semi-
quantitative aspects of specific silver stains. Scanning Electron 
Microscopy (Part I): 259-266. 

Espejo , F., and J. Alvarez. 1986. Microtubules and calibers in normal and 
regenerating axons of the sural nerve of the rat. The J. of Comp. 
Neuro. 250: 65-72. 

Gershenbaum, M. R., and F. J. Roisen . 1978. A scanning electron 
microscopic study of peripheral nerve degeneration and 
regeneration. Neuroscience 3: 1241-1250. 



77 

Gibson, K. L., and J . K. Daniloff. 1989. Comparison of sciatic nerve 
regeneration through silicone tubes and nerve allografts. 
Microsurgery 10: 126-129. 

Henry, E. W ., T. H. Chiu, E. Nyilas, T. M. Brushart, P. Dikkes, and R. L. 
Sidman. 1985. Nerve regeneration through biodegradable polyester 
tubes. Exp. Neuro. 90: 652-676. 

Ide, C., K. Tohyama, A. Yokota, T . Nitatori, and S. Onodera. 1983. Schwann 
cell basal lamina and nerve regeneration . Brain Research 288: 61-75. 

Jenq, C. B., and R. E. Coggeshall. 1984. Regeneration of axons in tributary 
nerves. Brain Research 310: 107-121 . 

Jenq, C. B. , and R. E. Coggeshall. 1985. Numbers of regenerating axons in 
parent and tributary peripheral nerves in the rat. Brain Research 326: 
27-40. 

Jenq, C. B., and A. E. Coggeshall. 1986. The effects of autologous transplant 
on patterns of regeneration in rat sciatic nerve. Brain Research 364: 
45-56. 

Jenq, C. B., and A. E. Coggeshall. 1987. Sciatic nerve regeneration after 
autologous sural nerve transplantation in the rat. Brain Research 406: 
52-61 . 

Katz, M. J ., and L. F. Watson . 1985. Intensifier for Bodian staining of tissue 
sections and cell cultures. Stain Technology 60: 81-87. 

Kumagai, K. I. , T. Ushiki, K. Tohyama, M. Arakawa, and C. Ide. 1990. 
Regenerating axons and their growth cones observed by scanning 
electron microscopy. J. Electron Microscopy 39: 108-114. 



78 

Le Beau, J.M., M. H. Ellisman, and H. C. Powell. 1988. Ultrastructural and 
morphometric analysis of long-term peripheral nerve regeneration 
through silicone tubes. J . of Neurocytology 17: 161-172. 

Lewis, E. A. 1971 . Studying neuronal architecture and organization with 
SEM. Scanning Electron Microscopy (Part I) : 281-288. 

Mackinnon, S. E., A. L. Dellon, A. R. Hudson, and D. A. Hunter. 1985. A 
primate model for chronic nerve compression. J . of Reconstructive 
Microsurgery 1: 185-194. 

Marshall, D. M. , M. Grosser, M. C. Stephanides, R. D. Keeley, and J. M. 
Rosen. 1989. Sutureless nerve repair at the fasc icular level using a 
nerve coupler. J. of Rehabilitation Research and Development 26: 63-
76. 

Mathur, A., J. C. Merrell, A. C. Russell , and E. G. Zook. 1983. A scanning 
electron microscopy evaluation of peripheral nerve regeneration. 
Scanning Electron Microscopy (Part II): 975-981 . 

Mira, J. C. 1979. Quantitative studies of the regeneration of rat myelinated 
nerve fibres: variations in the number and size of regenerating fibres 
after repeated localized freezings. J. Anat. 129: 77-93. 

Miyakawa, T. , A. Shimoji, R. Kuramoto , Y. Higuchi, and T. Kubota. 1981. 
Morphological observations of peripheral nerves by the scanning 
electron microscope. Folia Psychiat . Neural. Japonica. 35: 501-506. 

O'Brien, J.P., S. E. Mackinnon, and A. A. Maclean. 1987. A model of chronic 
nerve compression in the rat. Annals of Plastic Surgery 19: 430-435. 

O'Daly, J. A., and T. lmaeda. 1967. Electron microscopic study of Wallerian 
degeneration in cutaneous nerves caused by mechanical injury. 
Laboratory Investigation 17: 744-766. 



79 

Orgel, M. G., and J . W . Huser. 1980. A comparison of light and scanning 
electron microscopy in nerve regeneration studies. Plastic and 
Reconstructive Surgery 65: 628-634. 

Phillips, L. L., L. Auti lio-Gambetti , and R. J . Lasek. 1983. Bodian's si lver 
method reveals molecular variation in the evolution of neurofilament 
proteins. Brain Research 278: 219-223. 

Rosen, J . M., V. R. Hentz, and E. N. Kaplan. 1983. Fascicular tubulization: A 
cellular approach to peripheral nerve repair. Annals of Plastic 
Surgery 11 : 397-411 . 

Rosen , J . M. , H. N. Pham, G. Abraham, L. Harold, and V. R. Hentz. 1989. 
Artificial nerve graft compared to autograft in a rat model. J . of 
Rehabilitation Research 26: 1-14. 

Rosen, J. M. , J. A. Padilla, K. D. Nguyen, J . Siedman, and H. N. Pham. 1992. 
Artificial nerve graft using glycolide trimethylene carbonate as a nerve 
conduit filled with collagen compared to sutured autograft in a rat 
model. J . of Rehabilitation Research 29: 1-12. 

Satou, T., S. Nishida, S. Hiruma, K. Tanji , M. Takahashi , S. Fujita, Y. 
Mizuhara, F. Akai , and S. Hashimoto. 1986. A morphological study on 
the effects of collagen gel matrix on regeneration of severed rat sciat ic 
nerve in silicone tubes. Acta Pathol. Jpn. 36: 199-208. 

Seckel, B. R. , T . H. Chiu, E. Nyilas, and R. L. Sidman. 1984. Nerve 
regeneration through synthetic biodegradable nerve guides: 
Regulation by the target organ. Plastic and Reconstructive Surgery 
74: 173-181 . 

Spencer, P. S. 1977. Morphology of the injured peripheral nerve. Page 345 
in R. K. Daniel and J . K. Terzis, eds. Reconstructive Microsurgery. 
Little , Brown and Company, Boston. 



80 

Swaim, S. F. 1987. Peripheral neNe surgery. Pages 493-512 in J. E. Oliver, 
B. F. Hoerlein, and I. G. Mayhew, eds. Veterinary Neurology. W. B. 
Saunders Company, Philadelphia. 

Taylor, J. S. H., J . W. Fawcett, and L. Hirst. 1984. The use of backscattered 
electrons to examine selectively stained neNe fibers in the scanning 
electron microscope. Stain Technology 59: 335-341 . 

Tohyama, K. , A. R. Lieberman, and C. Ide. 1986. lmmunohistochemical 
studies of peripheral neNe regeneration . In: T. lmura, S. Maruse, T. 
Suzuki, eds. Proceedings of the Xlth International Congress on 
Electron Microscopy. Journal of Electron Microscopy 35 (supplement) , 
3209-3210. 

Tohyama, K., and K. I. Kumagai. 1992. Backscattered electron imaging by 
scanning electron microscopy of regenerating peripheral neNe axons 
immunostained with antineurofilament antibody. J. Electron 
Microscopy 41 : 397-401 . 

Valentini , A. E., P. Aebischer, S. R. Winn, and P. M. Galletti. 1987. Collagen-
and laminin-containing gels impede peripheral neNe regeneration 
through semipermeable neNe guidance channels. Exp. Neuro. 98: 
350-356. 

Van Noort, R. , and M. M. Black. 1981 . Silicone rubbers for medical 
applications. Pages 79-98 in D. F. William, eds. Biocompatibility of 
Clinical Implant Materials. CRC Press Inc., Florida. 

Von Langsdorff, D., S. S. Al i, and F. Nurnberger. 1990. An improved silver 
staining technique as an alternative nuclear or combined nuclear 
neNe-fiber impregnation for comparat ive light- , secondary and 
backscattered electron scanning microscopy. J. of Neuroscience 
Methods 35: 3-8. 



81 

Waller, A. 1850. Experiments on the section of glossopharyngeal and 
hypoglossal nerves of the frog, and observations of the alterations 
produced thereby in the structure of their primitive fibers. Philos. 
Trans. R. Soc. Lond. (Biol.] 140: 423-429. 

Wolman, M. 1955. Studies of the impregnation of nervous tissue elements, I. 
Impregnation of axons and myelin. Quarterly J . of Microscopical 
Science 96: 329-336. 



82 

ACKNOWLEDGEMENTS 

I express my sincere thanks to my major professor, Dr. Raymond T. 

Greer, for suggesting the project and for his patient encouragement and 

guidance throughout the course of my graduate study. I would also like to 

thank Dr. Mary Helen Greer and Frederick Hembrough for serving as 

members of my committee . 

Finally, I would most like to thank my parents, my sister, and my wife 

for the constant encouragement and support they have given me throughout 

my studies. 



83 

APPENDIX: FIBER DIAMETER HISTOGRAMS 
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