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GENERAL INTRODUCTION 

General Background and Objective 

In this thesis, ve study hov lot-size producers and electric pover 

suppliers determine optimal prices and other critical economic 

quantities (e.g., the order quantities for the lot-size producers and 

. the allocation priorities for the electric pover suppliers). Recently, 

the traditional economic order quantity model has been extended to the 

case of monopolistic and oligopolistic lot-size producers under profit 

maximization (see e.g., Min (1992a)). In this thesis, ve further extend 

the general framevork of the monopolistic and oligopolistic lot-size 

models by considering various aspects of model environments (e.g., 

competitive behavioral assumptions (Cournot vs. Bertrand), reduction of 

setup and inventory holding costs, purchasing and sales strategies, and 

performance criteria ( profit maximization vs. ROIl (return on inventory 

investment) maximization). On the other hand, for electric pover 

suppliers, ve formulate an expected total surplus (i.e., profit plus 

customers' net benefits) maximization model as a nonlinear programming 

problem when the amount of electric power demanded and its valuation to 

customers as well as the amount of electric power supplied are random. 

In addition, under the assumption that customers are risk-averse, we 
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formulate an interruption insurance model to transfer the risk of 

customers to the risk-neutral electric power supplier. The effects of 

errors due to the assumptions that customers' valuation and/or the 

amount of electric power demanded are constant over time are 

investigated via numerical examples. A brief introduction of background 

and motivation for our study (first for the lot-size producers, then for 

the electric power suppliers) is as follows. 

Keeping an inventory to meet potential demand in the future is 

prevalent in most businesses. Manufacturers, wholesalers, and retailers 

general have a stock of goods on hand. How to determine the "inventory 

policies" (i.e., when and how much to produce as well we how much to 

charge per unit) becomes a critical issue for lot-size producers. A 

simple model representing production-inventory situation is given by the 

well-known traditional economic order quantity (EOQ) model (see e.g, 

Hillier and Lieberman (1990)). 

The traditional EOQ model formulates the production-inventory 

system by considering only cost factors consisting of a fixed setup 

cost, a variable unit production cost, and an inventory holding cost. It 

should be pointed out, however, that the inventory policies of numerous 

businesses may depend on its relations to other business policies 

regarding pricing and sales. In this thesis, we attempt to integrate the 

policies of inventory and pricing/sales so as to maximize the policy 

maker's profit. In a recent paper by Min (1992a), it is assumed that the 

demand of customers depends on the price a lot-size producer charges and 

a profit maximizing model of inventory and quantity discount pricing 
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policies for a monopolist is presented. Also, Min (1992b) extended the 

profit maximizing model to the case of a symmetric oligopoly, under 

Cournot behavioral assumptions, consisting of lot-size producers of a 

single homogeneous product who compete with each other for the same 

potential buyers. In this thesis, we extend the general frameworks of 

Min (1992a, 1992b) to different environments. First, we compare and 

contrast the economic implications of equilibria under Cournot and 

Bertrand behavioral assumptions and perform sensitivity analysis on the 

decision variables such as market price and order quantity with respect 

to the parameters such as number of competing lot-size producers and the 

levels of setup and inventory holding costs. This competitive inventory 

and pricing model forms the basis for an economic decision model of 

setup cost and inventory holding cost reductions. The setup and 

inventory holding cost reductions model demonstrates that the 

competition among lot-size producers induces setup and inventory holding 

cost reductions. Also, by incorporating the special structure concerning 

the purchasing and sales activities of intermediary firms and by 

modifying the traditional EOQ model accordingly, we will show how to 

formulate the profit maximization problem for the intermediary firms. 

Finally, for a single seller, we compare and contrast the optimal 

inventory and pricing policies under profit maximization vs. ROIl 

(return on inventory investment) maximization when demand is linear in 

price. By studying the optimality conditions and the corresponding 

closed-form optimal solutions, several interesting economic implications 

are derived. 
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For an electric power supplier, we assume that the electric power 

supply is stochastic and the objective of supplier is to maximize the 

total surplus (i.e., profit plus costomers' net benefits). A critical 

issue of such an electric pover supplier is how to allocate the scarce 

electric pover in case of potential shortages. In our model, we employ 

an allocation scheme called the priority rationing which allocates the 

scarce power to the higher valued consumption units via pricing of the 

allocation priorities. Moreover, we improve this allocation scheme by 

incorporating the commonly shared random factors into the customers' 

valuation of electric power and the estimation uncertainty into the 

total amount of electric power demanded. In addition, under the 

assumption that customers are risk-averse, we formulate an interruption 

insurance model to transfer the risk of customers to the risk-neutral 

electric pover supplier. 

An Explanation of the Thesis Organization 

This thesis is composed of five papers which may be suitable for 

publication. In particular, the third paper "oPTIIAL SELLING qUANTITY 

AND PURCHASING PRICE fOB. INTERlEDllB.Y fIB.IS" appears in International 

Journal of Operations and Production lanagement volume 11, number 10, 

page 64-68, 1991. Some portions of the fifth paper "PRIORITY 

RATIONING /PRICING Of ELECTBlC POVEll UNDER CUSTOIEB.S' V ALU!TION 

UNCERTAINTY" appears in Twenty-ninth Annual Power Affiliate .leport 

section 23, page 279-289, Electric Power Research Center, Iowa State 
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University, May, 1992. 

In a recent paper by Min (1992b), he introduced a competitive EOQ 

profit maximizing model under Cournot behavioral assumption. In contrast 

to Cournot behavioral assumption, in the first paper "ECoNonC OlDER 

QUANTITY (EoQ) JoDELS UNDER ColPETITIoN VITH SENSITIVITY ANALYSIS", lie 

present an alternative behavioral assumption called Bertrand behavioral 

assumption (see e.g., Friedman (1990)). By examining the equilibrium 

conditions and subsequent sensitivity analyses under these tliO 

assumptions, lie derive economic relations of critical elements of EOQ 

models (such as order quantities per cycle) as llell as critical elements 

of the microeconomic market theory (such as market prices). 

In paper 2 "! ColPETITIVE Eoq JoDEL VITH OPTIONS TO REDUCE SETUP 

AND INVENTORY HOLDING COSTS", the basic model environments (such as 

setup and per unit production costs as llell as customer demand 

functions) and the assumptions on the model environments are analogous 

to Cournot model in Min (1992b) with the exception that we assume the 

options of investing in reducing the setup and inventory holding costs 

are available. By examining the economic implications in equilibrium and 

the subsequent sensitivity analysis, we present a unique insight (cf. 

Porteus (1985) and Zangllill (19S7»as to llhy several Japanese and 

American producers are striving to reduce the setup costs under ever 

increasing competition. Specifically, it llill be shown that, for a 

profit maximizing producer, as the number of competing producers 

increases, his optimal strategy dictates that he reduce his setup and 

inventory holding costs. 
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In paper 3 "OPTIIAL SELLING QUANTITY A..ND PURCHASING PRICE FOR 

INTERlEDllRY FillS", how intermediary firms can optimally determine both 

selling quantity and purchasing price of a product is investigated. By 

incorporating the special structure of intermediary firms' environments 

and by modifying the conventional economic order quantity (EOQ) model 

accordingly, we provide optimal decision rules regarding the selling 

quantity and purchasing price for intermediary firms. 

In paper 4 "AN ANALYSIS OF OPTillL INVENTORY AND PRICING POLICIES 

UNDER LINEAR DElAND", for a single seller, we compare and contrast the 

optimal inventory and pricing policies under profit maximization vs. 

ROIl (return on inventory investment, see e.g., Rosenberg(1990» 

maximization when demand is linear in price. By studying the optimality 

conditions and the corresponding closed-form optimal solutions, several 

interesting economic implications are derived. In particular, we show 

that when a cost factor such as the setup cost, inventory holding cost 

per unit per unit time, or per unit ordering cost after the setup is 

sufficiently high, the choice of the objective between profit 

maximization and ROIl maximization is inconsequential to the seller in 

so far as his optimal decisions are concerned. 

In paper 5 "PRIORITY PRICING AND INTEB.R.UPTION INSURANCE OF ELECTRIC 

POVER UNDER CUSTOIERS' VALUATION UNCERTAINTY", we extend the existing 

work (see e.g., Chao et ale (1986), Chao et ale (1987), and 

Vilson(1989» on the priority rationing of electric power by 

incorporating commonly shared random factors (such as temperature or 

humidity) associated with customers' valuation of electric power and the 
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uncertainty associated with the estimation of the total amount of 

electric power demanded. Next, under the assumption that customers are 

risk-averse, we formulate an interruption insurance model to transfer 

the risk of customers to the risk-neutral electric power supplier. 

Finally, via numerical examples, we attempt to investigate the effects 

of errors due to the assumptions that customers' valuation and/or the 

total amount of electric power demanded are constant over time (when 

they actually vary due to random factors). 

The rest of my thesis is organized as follows. First, those five 

papers mentioned earlier will be presented sequentially. Next, the 

general conclusion about this thesis is followed by the last paper. 

Finally, the literature cited in the general introduction and the 

general conclusion will be made. 
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PAPER 1. 

ECONonc ORDER QUANTITY (EOQ) IODEL UNDER COIPETITION 

lIITH SENSITIVITY ANALYSIS 
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ECONonc ORDER qUANTITY (EOq) IODELS UNDER COIPETITION 

nTH SENSITIVITY ANAL ISIS 

Cheng-lang CHEN and I. Jo lIN 

Iova State University 

ABSTRACT 

Ve extend the profit maximizing economic order quantity (EOQ) model with 

a constant demand rate over time to the case of a symmetric oligopoly 

consisting of sellers of a homogeneous product who compete with each 

other for the same potential buyers. A key feature differentiating this 

paper from the extant literature on the economic order quantity (EOQ) is 

that the competition aspects of the inventory theory are analyzed not 

only with respect to the number of competing sellers, but also with 

respect to two strategic behavioral assumptions (called the Cournot and 

the Bertrand behavioral assumptions) on the sellers regarding their 

competitors. Under these behavioral assumptions, the formulations and 

equilibrium strategies of our models explicitly depend on the number of 

competing sellers. From the resulting equilibrium conditions and 

subsequent analyses, we derive economic relations of critical elements 

of EOQ models (such as order quantities per cycle) as well as critical 

elements of the microeconomic market theory (such as market prices). 
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1. INTRODUCTION 

This paper extends the profit maximizing economic order quantity 

(EOQ) model ~ith a constant demand rate over time to the case of a 

symmetric oligopoly consisting of sellers of a single homogeneous 

product ~ho co~ete ~ith each other for the same potential buyers. The 

primary goal of this study is to understand economic implications of the 

resulting equilibrium in terms of critical elements of EOQ models (such 

as the sales quantity per unit time, the order quantity per cycle, the 

production (or order) cost and inventory holding cost) as ~ell as 

critical elements of the microeconomic market theory (such as the market 

price, the demand elasticity of buyers, and the number of competing 

sellers). 

Specifically, ~e ~ill derive and compare the sellers' decision 

variables such as optimal economic order quantities, sales quantities 

per unit time, and the market prices in equilibria under a Cournot-like 

behavioral assumption (i.e., each seller first predicts his competitors' 

sales quantities per unit time in maximizing his o~ profit; see e.g., 

Oren, Smith and Vilson [16]) and under a Bertrand-like behavioral 

assumption (i.e., each seller first predicts his competitors' per unit 

price in maximizing his o~n profit; see e.g., Friedman [5]). 

Furthermore, via sensitivity analyses, ~e derive and compare the 

directions and magnitudes of changes in the aforementioned decision 

variables ~ith respect to changes in inventory holding cost, setup cost 
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and the number of competing sellers under both Cournot-like and 

Bertrand-like behavioral assumptions. 

The idea of employing profits as a performance measure of EOQ type 

models has been explored as early as the 1950's (see, e.g., Vhitin [24] 

or Smith [19]). Ladany and Sternlieb [10] not only uses the profit 

levels as the performance measure, but also provides insights on 

relations among price, cost, and demand by making the demand dependent 

on the price and the price dependent on the cost and a fixed mark-up. 

Brahmbhatt and Jaiswal [2] extends the previous model by incorporating 

variable mark-up as a function of a capital intensity measure and by 

maximizing profit over the order quantity and the capital intensity. 

Arcelus and Srinivasan [1] also extends Ladany and Sternlieb [10] by 

treating demand as a function of price, price as a function of a 

variable mark-up rate times a unit cost under profit maximization over 

the order quantity and the variable mark-up rate. Moreover, Monahan [15] 

as well as Lal and Staelin [11] developed quantity discount schemes for 

the seller. Lee and Rosenblatt [12] extended Monahan [15] by 

incorporating more realistic features (e.g., constraints imposed on the 

amount of discount that can be offered). The rationale for the quantity 

discount in these papers is the cost savings resulting from coordination 

of sellers' production quantities and buyers' order quantities under the 

assumption that both buyers as well as sellers are EOQ based decision 

makers. The assumption that buyers are EOQ based decision makers is 

relaxed in a new quantity discount EOQ model in Min [13]. In Min [13], 

the rationale for the quantity discount is the seller's exploitation of 
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the heterogeneous preferences of the buyers regarding their purchase 

sizes. More recently, in Min [14], for both uniform pricing and quantity 

discount pricing (under the heterogeneous buyers' preferences 

assumption) cases, hov to incorporate competition aspects of sellers 

into EOQ models based on Cournot-like behavioral assumption is 

discussed. 

Also, under the assumption of dynamic and deterministic demands, 

there have been numerous studies investigating the optimal relations of 

production schedules, prices, and inventories (see e.g., Gaimon [6], 

Pekelman [17], Kunreuther and Schrage [9], and Thomas [21]) Thomas [22] 

investigates the optimal relations of production quantities and prices 

under the assumption of stochastic demands. Moreover, in Gaimon [7], 

the assumption of a single firm is replaced by a duopoly, and the 

optimal relations betveen production capacities and prices are studied 

vithin a differential game framework. Also, in Dockner and Jorgensen 

[4], optimal pricing strategy under competition is examined and 

non-cooperative as veIl as cooperative equilibria results are obtained. 

In Teng and Thompson [20], an oligopoly model is analyzed and optimal 

advertising policies are obtained when production costs obey a learning 

curve. Ve note that the models constructed and analyzed in the last 

three papers are also time dependent dynamic models. 

In this paper, we viII refer to the model under the Cournot-like 

behavioral assumption as the Cournot model while the model under the 

Bertrand-like behavioral assumption as the Bertrand model. For both 

models, we assume that all critical economic quantities sellers must 
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determine such as the optimal economic order quantity and price schedule 

are made under the framework of static decision making (cf. dynamic 

decision making framework; see e.g., [6], [17], [9], and [21]). In 

order to highlight the optimal relations among the critical economic 

quantities that are derived under the static decision making framework, 

we will make the following assumptions. Ve assume: 1) the demand is 

deterministic and constant over time; 2) production occurs (or orders 

arrive) instantaneously; 3) there is no learning effects in setup or 

production. Also we will not consider discounting prices and costs over 

time and other time dependent features such as promotion and 

advertising. In addition, we will assume that each seller can produce 

(or order) sufficient amount of products to meet any quantity demanded 

by buyers. Under these assumptions, we formulate Cournot and Bertrand 

models consisting of a systematic oligopoly of n sellers (i.e., sellers 

are identical in all economic respects such as production costs) 

offering a homogeneous product. From these formulations, we obtain 

symmetric Cournot and Bertrand equilibria. For both Cournot and 

Bertrand models, the formulations and equilibrium strategies explicitly 

depend on n, the number of competing sellers in the market. In 

equilibria, we derive interesting economic implications regarding 

prices, demand elasticities, the number of competitors, average and 

marginal production costs and average inventory holding costs. 

The rest of this paper is organized as follows. In section 2 and 

3, we construct and analyze the Cournot model and the Bertrand model 

respectively. In sections 4 and 5, we perform the sensitivity analyses 
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on the Cournot model and the Bertrand model respectively. In addition, 

in section 5, ~e compare and contrast the results from the equilibria 

and sensitivity analyses of the Cournot and Bertrand models. Finally, 

in section 6, ~e summarize and conclude. 
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2. THE CDURNDT IDDEL AND ECDNOIIC IIPLICATIONS IN EQUILIBRIUI 

For the construction of the Cournot Model, we will closely follow 

Min [14]. Ve assume that there are n identical sellers (producers or 

distributors) offering a single product. Also we assume that buyers have 

perfect information about the per unit prices n sellers charge. Hence, 

in equilibrium, all sellers will charge the same per unit price, p, the 

market price. For each seller i, i = 1, ..• , n, as in the cases of 

traditional EOQ models (see e.g., Hillier and Lieberman [8]), we assume: 

1) the goods are produced (or ordered) in equal numbers, Qi at a time; 

2) all Q. units arrive without delivery lag; 3) no shortage to a buyer 
1 

is permitted. Ve also assume that, for each seller i, the total cost per 

cycle consists of a production (or order) cost and an inventory holding 

cost. The production (or order) cost per cycle is represented by K + 

C(Qi) where K is the setup cost and C(Qi) is the production (or order) 

cost incurred in producing (or ordering) Qi units after the setup. On 

the other hand, the inventory holding cost is characterized by h, 

inventory holding cost per unit per unit time. As implied earlier, K, 

C(Q) and h are identical for all sellers. Ve further assume that C(Q) is 

strictly increasing and convex in Q, i.e., C'(Q) ) 0 and C"(Q) ~ o. 
The sales quantity (to buyers or customers) per unit time for the 

entire market is characterized by d(p), a function of per unit market 

price p. Ve assume that the sales quantity, given a price, is constant 

over time. Also we assume that the sales quantity function is strictly 
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decreasing in p, i.e., d'(p) < o. Under the monotonicity assumption of 

d/(p) < 0, the inverse function p(d) exists (with p/(d) < 0). The 

inverse function p(d) specifies the price p that clears d units in the 

market. Ve will assume that the inverse function p(d) is concave in d, 

i.e., p"(d) ~ o. Just as in microeconomic theory (see e.g., Varian 

[23]), we can refer to p(d) as the inverse demand function while d(p) as 

the demand function. Since the demand function d(p) is assumed to be 

constant over time, so is the inverse demand function p(d). 

Given the above definitions and assumptions, we develop a 

Cournot-like framework as follows. Ve assume that each seller i, i = 1, 

... , n will predict the total sales quantity per unit time of his n-l 

competitors, d_ i . Under this prediction, seller i maximizes his profit 

per unit time over his sales quantity per unit time di and economic 

order quantity Qi. For the total sales quantity per unit time for the 

entire market, d. + d ., the corresponding per unit market price is 
1 -1 

given by p(di + d_ i ). Hence, the total revenue per cycle for seller i is 

p(d. + d .) Q .. And the corresponding total cost per cycle and the cycle 
1 -1 1 

length are given by K + C(Q.) + hQ~j(2d1·) and Q.jd. respectively. Given 
1 1 1 1 

these expressions for the total revenue, cost, and the cycle length, the 

problem of maximizing profit per unit time for seller i, x., can be 
1 

stated as follows. 

Max 
d. ,Q. 

1 1 

x· = p(d. + d .)d. - (K + C(Q.))d.jQ. - hQ.j2 
1 1 -1 1 1 1 1 1 

(1) 

The first order optimality conditions of the maximization problem (1) 

are: 
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In order to derive the corresponding second order sufficient 

condition(s) for optimality, we first obtain the second order 

derivatives of the profit as follows. 

2 a 'l'. 

2 a 'l'. 
1 = p"{d. + d .)d. + 2p'(d. + d .) 

1 -1 1 1-1 

ad~ 
1 

2 a 'l'. 2 
______ 1 = (K + C(Q.) - Q.C'(Q.))/Q. 
ad.aQ. 

1 1 

2 a 'l'. 
1 

aQ~ 
1 

1 1 1 1 

= d
1
·(- Q~C"(Q.) - 2(K + C(Q.) - Q.C'(Q.)))/Q~ 

1 1 1 1 1 1 

From our assumptions that p'(o) < ° and p,,(.) ~ 0, we have 

____ 1 < 0. Therefore, the second order sufficient condition for 
ad~ 

1 

optimality is simply 

(4) 

(5) 

(6) 
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2 2 2 ]2 a 'C. a 'C. 

[ 
a 'C. 

1 1 1 > 0 ---- -

ad~ aQ~ ad.aQ. 
1 1 1 1 

(7) 

2 a 'C. 
llhere __ 1, 

2 2 a 'C. a 'C. 
__ 1_, and __ 1 are given by ( 4), ( 5 ) and ( 6) • 

ad~ 
1 

ad.aQ. 
1 1 

aQ~ 
1 

Throughout the rest of this paper, lle llill assume that the second order 

sufficient condition is satisfied for the region of interest. In 

addition, lle llill assume that the resulting profit level of each seller 

i, i = 1, "', n, evaluated at the optimal sales quantity per unit time 

and order quantity per cycle is strictly positive (i.e., no seller llill 

exit from the market). 

So far lle have examined the optimality conditions of a single 

seller. Ve nOll proceed to derive an equilibrium of n sellers. Under our 

assumption of identical sellers, there exists a symmetric equilibrium 

(see e.g., Oren, Smith, and Vilson [16]) where 

= d2 
and = Q2 

= 

= 

= d n 

= Q n 

(8) 

(9) 

i.e., the sales quantity per unit time as well as the economic order 

quantity are identical for all sellers. In this symmetric equilibrium, 

the total sales quantity per unit time from all competitors of seller i, 

d . is equal to (n-1)d. for i = 1, "', n. Therefore, the corresponding 
- 1 1 



19 

equilibrium conditions of the optimality conditions (2) and (3) are 

given by 

p'(nd.)d. + p(nd.) - (K + e(Q.))/Q. ~ 0 
11111 

-d. (e' (Q. )Q. - K - e(Q.))/Q~ - h/2 ~ 0 
11111 

(10) 

(11) 

Let us first examine equilibrium condition (10). The corresponding 

demand elasticity f, f ~ p(d)/(p'(d)d) by definition (see e.g., Varian 

[23]), evaluated at the symmetric equilibrium point becomes: 

(12) 

Hence, in the symmetric equilibrium, equation (10) can be restated as 

(13) 

Equation (13) states that, given a fixed number of competitors n, as the 

demand becomes more elastic (i.e., If I gets larger), the equilibrium 

price gets closer to the average production cost. Or as the demand gets 

more inelastic (i.e., If I gets smaller), the equilibrium price gets 

farther away from the average production cost. If we view the term 

-n-f-n-!~l- as a markup rate, the economic implication is that the markup 

rate is larger when the demand is more inelastic. On the other hand, 

given a fixed level of elasticity, f, we observe that as the number of 

competitors increases (i.e., as the competition gets more intense), the 
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price gets closer to the average production cost. Or as the number of 

competitors decreases (i.e., as the competition gets less intense), the 

price gets farther away from the average production cost. Ve also 

observe that as the number of competitors decreases, the markup rate 

increases. In addition, we note that if -1 < nf < 0, the price is 

negative. Furthermore if nf = -1, it can be easily verified that no 

order quantity per cycle Qi satisfies equation (10). Hence, throughout 

this paper, we limit our analysis to the cases where nf < -1. i.e., nf < 

-1 will be assumed. 

Let us now examine equilibrium condition (11). By rearranging 

terms of condition (11), we have 

(I + C(Qi»/Qi - C'(Qi) = hQi/(2di) (14) 

Equilibrium condition (14) states that for each seller i, i = 1, n, 

the average production cost is equal to the sum of the marginal 

production cost and the average inventory cost per unit. The economic 

implication is that the per unit production cost is strictly higher than 

the per unit inventory cost at the equilibrium since the marginal 

production cost is assumed to be positive. Also we note that if (I + 

C(Qi»/Qi ~ C'(Qi)' it can be easily verified that no order quantity per 

cycle Qi satisfies equation (11). Hence, throughout this paper, we limit 

our analysis to the cases where 

(I + C(Qi»/Qi > C'(Qi)' i.e., (I + C(Qi»/Qi > C'(Qi) will be assumed. 

Ve note that the relation between the equilibrium sales quantity 

per unit time di and the corresponding economic order quantity Qi for 1 
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= 1, ..• , n is implicitly determined by (13) and (14). By simultaneously 

solving conditions (13) and (14) given p(.), C(·), h, K, and n, we can 

numerically determine the values of di and Qi. 
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3. THE BERTRAND IODEL AND ECONOnC IIPLICATIONS IN EQUILIBllI1)J 

The basic model environments concerning EOQ based decision making 

sellers are analogous to those in section 2. Also ye assume that the 

sales quantity function is strictly decreasing in p, i.e., d'(p) < o. 
In contrast to the Cournot-like frameyork presented in the previous 

section, ye develop a Bertrand-like frameyork as folloys. Let us denote 

the per unit price seller i charges by Pi' i = 1, '.', n. Ve assume that 

each seller i, i = 1, "', n yill predict his n-1 competitors' prices, 

Pj' j = 1, "', n; j f i. Under our assumptions that the product is 

homogeneous and that buyers have perfect information about the per unit 

prices n sellers charge, the folloYing argument holds. If seller i's 

price Pi is set such that Pi is strictly higher than the lowest price of 

his n-1 competitors (i.e., Pi > P-i = min {Pjl j = 1, "', n; j f i}), 

then no buyer ~ill purchase from seller i. On the other hand, if seller 

i's price p. is set such that p. is strictly lo~er than the lowest price 
1 1 

of his n-1 competitors (i.e., Pi < P-i)' then no buyer yill purchase 

from any of his competitors. Finally, if seller i's price Pi is set such 

that p. is equal to the lowest price of his n-1 competitors (i.e., p. = 
1 1 

P-i) and there are k sellers with the same minimum price (including 

seller i), then each of the k sellers will equally share the total sales 

quantity in the entire market. Therefore, for i = 1, "', n, seller i's 

profit per unit time, Xi' conditioned on his price Pi is shoYn as 

follows. 
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Ti = Pid(Pi) - d(Pi)(K + C(Qi))/Qi - hQi/2 (15) 

if Pi < P-i = min {Pjl j = 1, ... , n; j * i}. 

(16) 

if p. = P . and there are k sellers ~ith the same minimum 
1 -1 

price (the sales quantity per unit time of seller i is 

= 0 (achieved by neither producing nor ordering) 

if p. > P .. 
1 -1 

(17) 

Seller i ~ill maximize his profit per unit time given in relations 

(15)-(17) over his price Pi and order quantity Qi. In the case of 

relation (17), since seller i's optimal policy is neither producing nor 

ordering, no further analysis is ~arranted for. Hence, throughout the 

rest of this section, ~e ~ill concentrate on the analysis of relations 

(15) and (16). For the analysis, ~e ~ill assume that profit relations 

(15) and (16) are non-negative and concave in Pi and Qi in the region of 

interests. Under these assumptions, the optimality conditions for Pi and 

Qi are: 

Either 

p. < p . 
1 -1 

aT. 
from (15), ~ = d(p.) + d'(p.)(p. -

vp~ 1 1 1 
1 

(18) 

(19) 



Or 

(20) 

Pi = P-i (21) 
8r. 2 
~ = (d(Pi)/k)(K + C(Qi) - QiC'(Qi»/Qi - h/2 = 0 (22) 

1 

where there are k sellers with the same minimum price 
-p. = P " 1 -1 

The optimal price p. and order quantity Q. are implicitly determined 
1 1 

from relations (18)-(20), or relations (21) and (22). 

So far we have derived the optimality conditions of a single 

seller. Ve now proceed to derive an equilibrium of n sellers. Under our 

assumption that the product is homogeneous, seller i, i = 1, "', n, can 

capture the entire market by slightly under-cutting the n-1 competitors' 

prices. Hence, so long as the current level of profit is positive, each 

seller will under-cut the n-1 competitors' prices. This incentive to 

under-cut will vanish only if the current level of profit is zero. 

Therefore, under our assumption of identical sellers, the following 

relations hold in an equilibrium. 

Pi = P2 = ... = Pn 

Pid(Pi)/n - (d(pi)/n)(K + C(Qi»/Qi - hQi/2 = 0 

i.e., r· = 0 for i = 1, "', n. 
1 

(23) 

(24) 



25 

The corresponding relations on the order quantity Qi's are given by, 

Q1 = Q2 = •.. = Qn 

(d(Pi)/n)(I + C(Qi) - QiC/(Qi))/Q~ - h/2 = 0 
or. 

i.e., ~ = 0 (from relation (22)) for i = 1, 
1 

n. 

(25) 

(26) 

A symmetric equilibrium of n sellers is implicitly determined by 

equilibrium conditions (23)-(26) while seller i's (i = 1, "', n) 

equilibrium price Pi and order quantity Qi are implicitly determined by 

(24) and (26). By simultaneously solving conditions (24) and (26) given 

d(.), C(·), h, I, and n, we can numerically determine the values of p. 
1 

and Qi' From these values and equilibrium conditions (23) and (25), the 

complete set of equilibrium prices and order quantities can be 

numerically determined. 

Ve examine equilibrium condition (24) first. Equilibrium condition 

(24) can be rearranged to become, 

p. = (I + C(Q.))/Q. + hQ.n/(2d(p.)) 
1 1 1 1 1 

(27) 

Condition (27) states that for seller i, i = 1, "', n, the price (= per 

unit revenue) is equal to the sum of the per unit production cost plus 

the per unit inventory holding cost. cf. conditions (2) and (10) in 

section 2 under the Cournot-like behavioral assumption where the 

conditions imply that the marginal revenue with respect to the sales 

quantity per unit time is equal to the marginal cost with respect to the 

sales quantity per unit time. 
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Let us now examine equilibrium condition (26). By rearranging 

terms of condition (26), we have 

(28) 

The economic interpretations of equilibrium condition (28) are analogous 

to those of condition (14) in section 2. That is, for each seller i, 1 = 
1, "', n, the per unit production cost is equal to the sum of the 

marginal production cost and the per unit inventory cost per unit. This 

implies that the per unit production cost is strictly higher than the 

per unit inventory cost at the equilibrium since the marginal production 

cost is assumed to be positive. Also we note that if (I + C(Qi»/Qi ~ 

C'(Qi)' it can be easily verified that no order quantity per cycle Qi 

satisfies equation (26). Hence, throughout this section, we limit our 

analysis to the cases where (I + C(Qi»/Qi > C'(Qi)' i.e., (K + 

C(Qi»/Qi > C'(Qi) will be assumed. Furthermore, from conditions (27) 

and (28), it can be easily seen that in equilibrium the price (per unit 

revenue) is strictly greater than the marginal production cost (by two 

times the per unit inventory holding cost). This result is consistent 

with that in section 2 under the Cournot behavioral assumption. Finally, 

we note that since the equilibrium profit level of the Bertrand model is 

always zero while the equilibrium profit level of the Cournot model may 

be positive, the Cournot profit level is higher than or equal to the 

Bertrand profit level. This is consistent with the micro economic market 

theory (see e.g., Varian [23]). 
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4:. SENSITIVITY ANALYSIS UNDER COURNOT IODEL 

In this section, we investigate the sensitivity of the sales 

quantity per unit time di and order quantity per cycle Qi in equilibrium 

with respect to the given parameters of the Cournot model depicted in 

section 2, the inventory holding cost h, the setup cost K, and the 

number of competing sellers n. Our analysis of sensitivity will be based 

on differential calculus (especially the implicit function theorem; see 

e.g., Chiang [3]), which requires variables (or parameters) to be 

continuous rather than discrete. Hence it will be necessary to treat the 

number of competing sellers n (n ~ 1), which is hitherto assumed to be 

an integer, as a continuous variable. Ve present the justification for 

treating n as a continuous variable (to the extent possible) by slightly 

rephrasing a portion of section 3, " Modeling Entry ", in Seade [18] as 

follows: 

Ve will allow n to be an actual continuous variable (or parameter) 

on which each economic quantity (e.g., price p) depends differentiably 

according to the given relations, but we restrict our attention to 

integer realization of this variable. Then, if we define x as any 

economic quantity dependent on n (e.g., economic order quantities), 

its change when one additional seller enters into the market is 6X = 
x(n+l) - x(n). It is clear that (sign 6X) = (sign x'(n)) whenever the 

latter sign does not change in the relevant range [n, n+l]; otherwise 

the sign of 6X is ambiguous. Ve will assume away cases where this 
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ambiguity arises and hence work with sign x'(n) directly. It is 

essentially this single-signedness assumption, which one can check, that 

underlies the common continuous treatment of discrete variables (or 

parameters) in problems of the present sort. 

At the equilibrium point (di , Qi)' by applying the implicit 

function theorem and by allowing n to be continuous, we obtain the 
ad. aQ. ad. aQ. 

following relations for the magnitudes of changes ~, ~, ~, ~, 
ad. aQ. 
~, and ~ with respect to an infinitesimal increase in inventory 

holding cost h, the setup cost K, and the number of competing sellers n. 

Let Fl and F2 denote the left hand sides of equilibrium conditions (10) 

and (11) respectively. From the assumption that the second order 

condition (7) is satisfied, the determinant of the Hessian matrix is 

positive. It can be easily verified that this implies the determinant of 

Jacobian of Fl and F2 with respect to di and Qi (shown in the left hand 

sides of (29)- (31» is also positive, satisfying a condition necessary 

for applying the implicit function theorem. Finally, for the inverse 

demand and cost quantities, p(.), p'(.), p"(.), C(.), C'(·), and 

C"(.), the arguments ndi and Qi are suppressed for more comprehensible 

presentation. Then, we have: 

[ ~ aQ. 
1 

on 
= [ -~ I aF2 

- on 
(29) 
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8F1 ar! I [~ I [- t I 00- oq-; 
1 1 

8F2 8F2 8Q. = 8F2 
1 

on. oq-; or - or 
1 1 

(30) 

[ ar! ~!l [~ I [ -t I on. oq-; 
1 1 

8F2 8F2 8Q. = 8F2 
1 

00- oq; 7Jil - 7Jil 
1 1 

(31) 

8F1 8Ft 8F2 8F2 
where 0Uj' ~ (= 0Gi ), and Oijf are calculated to be np"di + (n+l)p', 

(K + C - QiC')/Q~, and di(-Q~C" - 2(K + C - QiC'»/Qr respectively 

. 8Ft 8F2 8F1 8F2 8F1 8F2 
whIle on-' on-' or' or' on-' and on- are calculated to be 0, -1/2, 

-l/Qi' di/Qi, ((8p'/Bn)di +(8p/Bn», and 0 respectively. 

The inverse of the Jacobian matrix exists since its determinant is 

nonzero. Hence, we solve the systems of equations (29)-(31) for the 
8d. 8Q. 8d. 8Q. 8d. 8Q. III lId 1 f magnitudes of changes on-' on-' or' or' on-' an on- as ollows. 

In the following derivations, the quantity G is defined to be the 

inverse of the determinant of the Jacobian matrix in the left hand sides 

. 8F1 8F2 [8F1] 2 of (29)- (31). l.e., l/G = E 01[ - 01[ . Then, we have: 
1 1 1 



[ ~ 8Q. 
1 

on 

[ ~l 8Q. 
1 

or 

= G 

30 

[ ~ = G 8F~ 
- 7Jl[ 0 

8Fl I [ I 
~: 1/2 - 7J(f; 

1 

= G 

(Q.C' - K - C)/(2Q~) I 1 1 

(np11d i + (n+l)p/)/2 

[ 

8F2 - 8F

1 I [ l/Q. I 
z G ~:I 12 

- ~ ~ -d.fQ. 
(lU. (lU, 1 1 

1 1 

di(-QICII - (K + C - QiC/»/Qf I 
(QiC' - K - C)/Q~ - (npl'di + (n+l)p/)di /QI 

[ 

8F2 - aF
1 I [ -«apl /fJn)d.+(ap/fJn» I Ol[" 7Jl[ 1 

1 1 

= G 8F2 aF1 -oa: E 0 
1 1 

(32) 

(33) 

(34) 

(35) 

(36) 

- di(-Q~CII - 2(K + C - QiC/»«DpI/fJn)di+(Dp/fJn» I 
(37) 

(K + C - QiC/)«apl/fJn)di+(ap/fJn»/Q~ 

ad. aQ. ad. aQ. ad. aQ. 
Th d· d' t' f 1 1 1 lId I e eorrespon lng lree Ions 0 on' 00-' or' or' on-' an on-
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are summarized in the following proposition (see Appendix A for the 

proof) . 

Proposition 1: lssume that the sales quantity per unit time and order 

quantity per cycle (di , Qi) satisfy the equilibrium conditions (10) and 

(11) and the second order sufficient condition (7). lssume further that 

for the cost and the inverse demand functions, C'(Q) > 0, C"(Q) ~ 0, 

p'(d) < 0 and p"(d) S O. loreover, assume that the profit level at (di , 

Qi) is positive. 
ad. aQ. 

Then, 1) ~ < 0 and ~ < 0, 
ad. aQ. 

) 
1 1 

2 ar- < 0 and ~ > 0, 
ad. aQ. 

d ) 1 d 1 an 3 on- < 0 an on- < O. 

The economic implications of Proposition 1 are as follows. In the 

equilibrium, if the inventory holding cost is increased by a small 

amount, then the sales quantity per unit time as veIl as the order 

quantity per cycle will decrease for seller i, i = 1, "', n. Figure 1 

depicts the resulting changes in inventory levels over time after a 

small increase in the inventory holding cost. Ve note that the change in 

the frequency of ordering is indeterminate (i.e., the corresponding 

cycle length may be shorter or longer than before the change). Also, in 

the equilibrium, if the setup cost is increased by a small amount, then 

the sales quantity per unit time will decrease vhile the order quantity 

per cycle viII increase for seller i, i = 1, "', n. Figure 2 represents 
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the resulting change in inventory levels over time after a small 

increase in the setup cost. Ve note that the change in the frequency of 

ordering is decreased (i.e., the corresponding cycle length is longer 

than before the change). Finally, under the aforementioned 

single-signedness assumption, we conclude that if the number of 

competing sellers increases by a small number, the sales quantity per 

unit time as well as the order quantity per cycle will decrease in 

equilibrium. Figure 3 depicts resulting changes in inventory levels over 

time after a small increase in the number of competing sellers. Ve note 

that the change in the frequency of ordering is indeterminate (i.e., the 

corresponding cycle length may be longer or shorter.). The sensitivity 

results shown in the proposition also implies that, insofar as the 

directions of changes in equilibrium are concerned, the impacts of 

competition on the equilibrium are analogous to those of inventory 

holding cost on the equilibrium, but not to those of setup cost on the 

equilibrium. 
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5. SENSITIVITY ANALYSIS UNDER BERTRAND IODEL 

In this section, we investigate the sensitivity of the price p. and 
1 

the order quantity per cycle Qi in equilibrium with respect to the given 

parameters of the Bertrand model depicted in section 3, the inventory 

holding cost h, the setup cost K, and the number of competing sellers n. 

As discussed in section 4, we will treat the number of competing sellers 

n (n ~ 1) as a continuous variable. (see section 4 for details) 

At the equilibrium point (Pi' Qi)' by applying the implicit 

function theorem and by allowing n to be continuous, we will obtain the 
Bp. oQ. Bp. 8Q. 

following relations for the magnitudes of changes ~, ~, ~, ~, 
Bp. 8Q. 
~, and ~ with respect to an infinitesimal increase in inventory 

holding cost h, the setup cost K, and the number of competing sellers n 

as follows. 

Let E1 and E2 denote the left hand sides of equilibrium conditions 

(24) and (26) respectively. From the assumption that the profit 
or. 

expressions (15) and (16) are concave in Pi and Qi' ~ ~ 0 in the 
1 

equilibrium. For the successful application of the implicit function 
or. 

theorem, we will further assume that ~ > 0 in the equilibrium (see 
1 

e.g., Chiang [3]). Under this assumption, it can be easily verified that 

the determinant of Jacobian of E1 and E2 with respect to p. and Q. 
1 1 

(shown in the left hand sides of (38)-(40)) is strictly negative. Since 
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the determinant of the Jacobian is nonzero, an inverse matrix exists. 

Finally, for the demand and cost quantities, d(.), d'(,), C(·), C'(.), 

and C"('), the arguments Pi and Qi are suppressed for more 

comprehensible presentation. Then, ~e have: 

[ DEI DEI I [; I [- t I up; Ol[" 
1 1 

BE2 BE2 = BE2 (38) 
up; Ol[" - on 

1 1 

BEl ~ll [~ I [- ~ I up; orr; 
1 1 

BE2 BE2 = BE2 (39) 
up; orr; - or 

1 1 

[ ~1 ~ll [; I [- t I up; orr; 
1 1 

BE2 BE2 = BE2 (40) 
op; orr; - Oil 

1 1 

BEl BEl BE2 oE2 
~here GP;' orr; , up; , and ~ are calculated to be din + (d'/n) (Pi - (K + 

III 1 

C)/Q.), 0, (d'/n)(K + C - Q.C')/Q~, and (d/n)(-Q~C" - 2(K + C-III 1 

, 3 . . BEl BE2 BEl BE2 BEl oE2 
QiC »/Qi respectIvely ~hIle on' on' or' ox-' Oil' and Oil are 

calculated to be - Qi/2, -1/2, -d/ (nQi)' d/ (nQI), - (d/n2)(Pi - (K + 

C)/Qi), and - (d/n2)(K + C - QiC')/QI respectively. 

Ve no~ solve the systems of equations (38)-(40) for the magnitudes of 
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Up. 8Q. Up. 8Q. Up. 8Q. 

h Ill 11 1 f ' c anges on-' on-' ox-' OX-' 00-' and 00- as ollows. Let H denote the 

inverse of the determinant of the Jacobian matrix in the left hand sides 

of (38)- (40) . 

[; I 

[

Up. 

::: 

= H 

[

Up. 

:: 

i.e., l/H = 8El 8E2 BEl BE2 
Then, we have: up; 01[" - 01[" up; . 

1 1 1 1 

[~2 ~1 Q./2 01[-01[" 1 
1 1 

= H BE2 DEl 
-up; up; 1/2 

1 1 

= H [ (d/n)(-Q~C" - 2(1 + C - QiC'))/(2Q~) I 
d/(2n) 

[ ~2 BEl 

[ 
d/(nQi) I 01[" - oq; 

= H DE~ 
1 

8El 
- d/(nQ~) - up; up; 

1 1 

d2 (- Q~C" - 2(1 + C - QiC'))/(n2Qi) 

-d(d + d'(Pi - C'))/(n2Q~) 

[ ~2 DEl 
[ d(Pi - (K + C)/Qi)/n

2 

I 01[" - 01[" 

H BE~ 
1 

= BEl QiC')/(n2Q~) - up; UP.; d(1 + C -
1 1 

(41) 

(42) 

(43) 

(44) 

(45) 
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8p. OQ. 8p. OQ. 8p. OQ. 
Th d· d· . f 1 1 1 1 1 d 1 e correspon Ing lrectlons 0 on-' on-' ~, ~, on-' an on-

are summarized in the following proposition (see Appendix B for the 

proof). 

Proposition 2: 1ssume that the per unit price and order quantity per 

cycle (Pi' Qi) satisfy the equilibrium conditions (24) and (26). issume 

further that for the cost and the demand functions, C,(·) > 0, C,,(.) ~ 

0, d'(,) < O. 6oreover, assume that the profit level is non-negative and 
ar. 
~ > 0 at (p., Q.). 
v¥~ 1 1 

1 
8p. OQ. 

Then, 1) ~) 0 and ~ < 0; 
8p. 

2) ~) 0 while 
OQ. 
~ ) 0 if d + d'(Pi - C') > 0, 
OQ. 
~ = 0 if d + d'(Pi - C') = 0, 
OQ. 

and ~ < 0 if d + d'(Pi - C') < 0; 
8p. ~. 

)
11 

3 on- > 0 and on- < O. 

The economic implications of Proposition 2 are as follows. In the 

equilibrium, if the inventory holding cost is increased by a small 
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amount, then the per unit price will increase while the order quantity 

per cycle will decrease for seller i, i = 1, "', n. The sign of the 

corresponding change in the sales quantity per unit time for the entire 

market (i.e., d(Pi» will be negative since d(Pi) is strictly monotone 

decreasing in Pi' Hence, the sign of the corresponding change in the 

sales quantity per unit time for seller i (i.e., d(Pi)/n) will also be 

negative. That is, the sales quantity per unit time for seller i will 

decrease if the inventory holding cost is increased by a small amount. 

In section 4, under the Cournot behavioral assumption, the sales 

quantity per unit time for seller i as well as the order quantity per 

cycle decrease if the inventory holding cost is increased by a small 

amount. Furthermore, the sign of the corresponding change in the per 

unit price (i.e., p(ndi ) in section 4 where di denotes the sales 

quantity per unit time for seller i) will be positive since p(ndi ) is 

strictly monotone decreasing in di • That is, the per unit price will 

increase if the inventory holding cost is increased by a small amount. 

Therefore, we conclude that the directions of changes with respect to 

the inventory holding cost are identical for both Bertrand and Cournot 

models. 

Also, in the equilibrium, if the setup cost is increased by a small 

amount, then the per unit price will increase for seller i, i = 1, "', 

n. On the other hand, the order quantity per cycle will increase, remain 

the same, or decrease for seller i, i = 1, "', n, depending upon the 

conditions (in terms of d(Pi)' d'(Pi)' Pi' and C'(Qi» given in the 

proposition. The sign of the corresponding change in the sales quantity 
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I 

per unit time for the entire market (i.e., d(Pi)) viII be negative since 

d(Pi) is strictly monotone decreasing in Pi. Bence, the sign of the 

corresponding change in the sales quantity per unit time for seller i 

(i.e., d(Pi)/n) viII also be negative. That is, the sales quantity per 

unit time for seller i viII decrease if the setup cost is increased by a 

small amount. In section 4, under the Cournot behavioral assumption, 

sales quantity per unit time for seller i viII decrease vhile the order 

quantity per cycle viII increase if the setup cost is increased by a 

small amount. Furthermore, the sign of the corresponding change in the 

per unit price (i.e., p(ndi ) in section 4) viII be positive since p(ndi ) 

is strictly monotone decreasing in di . That is, the per unit price viII 

increase if the setup cost is increased by a small amount. Therefore, ve 

conclude that the directions of changes in the per unit price and the 

sales quantity per unit time for seller i vith respect to the setup cost 

are identical for both Bertrand and Cournot models vhile the direction 

of change in the order quantity per cycle for the Bertrand model may be 

different from the direction of change for the Cournot model. 

Finally, under the aforementioned single-signedness assumption, ve 

conclude that if the number of competing sellers increases by a small 

number, the per unit price will increase vhile the order quantity per 

cycle will decrease in equilibrium for seller i = 1, .•• , n. The sign of 

the corresponding change in the sales quantity per unit time for the 

entire market (i.e., d(Pi)) viII be negative since d(Pi) is strictly 

monotone decreasing in Pi. Let us denote the new sales quantity per unit 
A A 

time for the entire market by d (d < d(Pi)) and the new number of 
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A 

competing sellers by n (n > n). Then, the corresponding new sales 
A 

d(Pi) 
quantity per unit time for seller i is given by A • It can be easily 

n 

d(Pi) d(Pi) 
seen that ~ < ---n---. That is, the sales quantity per unit time for 

n 
seller i will decrease if the number of competing sellers is increased 

by a small number. In section 4, under the Cournot- behavioral 

assumption, sales quantity per unit time for seller i as well as the 

order quantity per cycle decrease if the number of competing sellers is 

increased by a small number. The sign of the corresponding change in the 

per unit price (i.e., p(ndi ) in section 4), however, is indeterminate 
A 

due to the following reason. Let di (di < di ) denote the new sales 
A 

quantity per unit time for seller i and let n (n > n) denote the new 

number of competing sellers. Then, the corresponding new per unit price 
A A A 

is given by p = p(ndi ). Since n > n and di < di , the sign of p(ndi ) -

p(ndi ) is indeterminate. i.e., the per unit price may increase, remain 

the same, or decrease when the number of competing sellers increase by a 

small number. Therefore, we conclude that the directions of changes in 

the sales quantity per unit time for seller i and the order quantity per 

cycle with respect to the setup cost are identical for both Bertrand and 

Cournot models while the direction of change in the per unit price for 

the Bertrand model may be different from the direction of change for the 

Cournot model. 

The sensitivity results shown in the proposition imply that, 

insofar as the directions of changes in equilibrium are concerned, the 



40 

impacts of competition on the equilibrium are analogous to those of 

inventory holding cost on the equilibrium, but may not be analogous to 

those of setup cost on the equilibrium. Ve further note that the 
oq. Op. 

directions of changes except those of ~ and ~ are identical for both 

Bertrand and Cournot models. i.e., the directions of changes (except 
OQ. Op. 

those of ~ and ~) are insensitive to either of the two behavioral 

(Bertrand and Cournot) assumptions. 
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6. CONCLlJDING BUAUS 

In this paper we extended the theory of competitive inventory 

policies to the case of a symmetric oligopoly under a Cournot-like 

behavioral assumption and a Bertrand-like behavioral assumption. First, 

in section 2 and 3, we showed how a profit maximizing EOQ model can be 

formulated for n identical sellers competing for the same potential 

buyers. From this formulation, symmetric equilibrium conditions were 

obtained. From these equilibrium conditions and the subsequent 

sensitivity analysis, following economic relations are derived. 

In the Cournot model symmetric equilibrium, 

1) given a fixed number of competitors n, as the demand becomes more 

elastic, the equilibrium price gets closer to the average production 

cost; 

2) given a fixed level of elasticity f, as the number of competitors 

increases, the price gets closer to the average production cost; 

3) the average production cost is equal to the sum of the marginal 

production cost and the average inventory holding cost; 

4) if the inventory holding cost is increased by a small amount, the 

sales quantity per unit time and the order quantity per cycle will 

decrease; 

5) if the setup cost is increased by a small amount, the sales quantity 

per unit time will decrease while the order quantity per cycle will 

increase; 
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6) if the number of competing seller is increased by a small number, the 

sales quantity per unit time and the order quantity per cycle will 

decrease. 

It can be easily verified that when n = 1, the EOQ model is analogous to 

a monopolist's profit maximizing EOQ model insofar as the equilibrium 

conditions and subsequent sensitivity analysis are concerned. Moreover, 

when n = 1 and the sales quantity per unit time is constant, the EOQ 

model is analogous to the traditional EOQ model insofar as the 

equilibrium conditions and subsequent sensitivity analysis are 

concerned. 

In the Bertrand model symmetric equilibrium, 

1) the price is equal to the sum of the per unit production cost and the 

per unit inventory holding cost while the per unit production cost is 

equal to the sum of the marginal production cost and the per unit 

inventory holding cost; 

2) if the inventory holding cost is increased by a small amount, the per 

unit price will increase while the order quantity per cycle will 

decrease; 

3) if the setup cost is increased by a small amount, the per unit price 

will increase while the order quantity per cycle will increase, 

remain the same, or decrease, depending upon the conditions given in 

the Proposition 2; 

4) if the number of competing seller is increased by a small number, the 

per unit price will increase while the order quantity per cycle will 

decrease; 
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5) insofar as the directions of changes are concerned, the impacts of 

Bertrand competition on the equilibrium are analogous to those of the 

inventory holding cost, but may not be analogous to those of the 

setup cost; 
8Q. Dp. 

6) the directions of changes except those of ~ and ~ are insensitive 

to either of the tvo behavioral (Bertrand and Cournot) assumptions. 

It can be easily verified that vhen n = 1, the EOQ model is analogous to 

a monopolist's profit maximizing EOQ model insofar as the optimality 

conditions (19) and (20) are concerned. Moreover, vhen n = 1 and the per 

unit price is constant, the EOQ model is analogous to the traditional 

EOQ model insofar as the optimality condition (20) is concerned. 

The EOQ model developed in this paper is applicable for broad 

classes of convex cost function C(·) and concave inverse demand function 

p(.). Our models relate to general practices since numerous industries 

and firms apply EOQ based decision making under competition. There are 

several possible extensions that viII further improve the relevance of 

our model to general practices. They include incorporation of more 

sophisticated features such as quantity discount price schedules, finite 

production rates, shortages, delivery lags, and promotional (e.g., 

advertising) effects as veIl as stochastic demand rates. 

From the perspective of game theory, both Cournot Model and 

Bertrand model in this paper can be considered as only an initial step 

tovard better understanding of competitive inventory policies. It is our 

hope that more sophisticated equilibrium concepts of game theory (e.g., 

subgame perfect equilibrium for sequential decisions) viII be exploited 
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in the future research on the competitive inventory policies. 
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APPENDll A: PlOOf Of PlOPoSITIoJf 1 

Ve note that the sales quantity per unit time and order quantity 

per cycle (di , Qi) satisfy the equilibrium conditions (10) and (11) and 

the second order sufficient condition (7) as assumed in Proposition 1. 

Ve also note that C/(·) > 0, C"(·) ~ 0, p/(.) < 0, and p,,(.) ~ 0 while 

G (defined in section 3) is strictly positive. Moreover, the profit 

level at (di , Qi) is assumed to be positive. Finally, we note that, for 

p(.), p/(.), p,,(.), C(·), C/(·), and C,,(·), the arguments ndi and Qi 
are suppressed. Before we prove Proposition 1, we present the following 

lemma. 

Lemma 1. Under the assumptions of Proposition 1, the following 

relations hold. 

1) 

2) 

3) 

p - (K + C)/Qi = 
(K + C - QiC/)/Qi 

-p/d. > hQ./(2d.) 
III 

-p/d. 
1 

= hQi/(2di) 

Proof of Lemma 1. By rearranging the equilibrium conditions (10) and 

(11), we obtain the relations 1) and 2), i.e., 

p - (K + C)/Q i = -p/di 

(K + C - QiC/)/Qi = hQi/(2di) 

(A.l) 

(A.2) 

For relation 3), we note first that the profit relation is 

given by (from (1) at di + d_ i = ndi ) pdi - (K + C)di/Qi - hQi/2. Since 
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the profit is assumed to be positive in the equilibrium for seller i = 

1, "', n, 'We have 

p (I + C)/Q i > hQ./(2d.) 
1 1 

(A.3) 

i.e., per unit revenue - per unit production cost> per unit inventory 

cost. 

By substituting (A.l) into (A.3), 'We obtain 

-p'di > hQi/(2di) 

o 

Proof of Proposition 1. Let us first consider relations 1) of 
ad. aQ. 

Proposition 1, ~ < 0 and ~ < O. From equations (33), 

(A.4) 

ad. 2 
~ = G (QiC' - 1 - C)/(2Qi) (A.5) 

From equation (14), 'We have QiC' - K - C < O. Since G > 0 and Qi > 0, 'We 
ad. 

have ~ < O. 

Also from equations (33), 
aQ. 
~ = G (np"di + (n+1)p')/2 

o 

aQ. 
Since p' < 0 and p" ~ 0, np"di + (n+1)p' < O. Hence, ~ < O. 

o 

(A.6) 

ad. aQ. 
Let us no'W consider relations 2) of Proposition 1, ~ < 0 and ~ > O. 

From equations (35), 

W. 2 4 
~ = G di(-QiC" - (K + C - QiC'))/Qi (A.7) 
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Since C" ~ ° and K + C - QiC/) 0, -Q~CII - (K + C - QiC/) < 0. 
ad. 

1 Hence, or- < 0. 

o 

Also from equations (35), 

aQ. 3 2 or = G «QiC' - K - C)/Qi - (np"di + (n+l)p')di /Qi) (A.8) 
aQ. or>OH 

-(np"di + (n+l)p/)di ) (K + C - QiC')/Qi (A.9) 

By substituting (A.2) of Lemma 1 into the right hand side of (A.9), we 

obtain 

- (np/di + (n+l)p/)di ) hQi/(2di) 

As for the left hand side of (A.9) (or (A.l0», we have 

-(np/di + (n+l)p')di ) -p'di 
since p" ~ 0, p' < 0, and n ~ 1. 

Also, by (A.4) of Lemma 1, we have 

-p'di > hQi/(2di) 
aQ. 

1 From (A.l0)- (A.12), (A.9) holds. Hence, or- ) 0. 

(A.l0) 

(A.ll) 

(A.12) 

o 
ad. aQ. 

Finally, let us consider relations 3) of Proposition 1, ~ < ° and ~ 

< O. 

From equations (37), 

~ = -G d.(-Q~C" - 2(K + C - Q,C'»«Op'/On)d.+(Op/an»/Q~ 
un 1 1 1 1 1 

(A.13) 
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Since C" ~ 0, K + C - QiC' > 0, p" ~ 0, and p' < 0, 

(-QIC" - 2(1 + C - QiC'»«Op'/Bn)di+(Op/Dn» > 0. 
ad. 

1 Hence, on- < 0. 

Also from equations (37), 

o 

~. 2 
~ = G (K + C - QiC')«Op'/Dn)di+(Op/Dn»/Qi (A.14) 

aQ. 
Since K + C - QiC' > 0, p" ~ 0, and p' < 0, ~ < 0 follows. 

o 
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APPENDll B: PROOf Of PROPOSITION 2 

lJp. 
Let us first consider relations 1) of Proposition 1, ~ > 0 and 

oQ. 
~ < o. From equations (42), 

lJp. 2 2 OFf = H (d/n)(-QiC" - 2(K + C - QiC'»/(2Qi) (B.l) 

From equation (28), we have K + C - QiC' > O. Since C" ~ 0, 
2 or. 

-Q.C" - 2(K + C - Q.C') < 0 while H < 0 by the assumption that ~. > O. 
1 1 VPi 

lJp. 
Therefore, ~ > o. 

Also from equations (42), 
oQ. 
OFf = H d/(2n) 

oQ. 
Since H < 0, we have OFf < o. 

o 

(B.2) 

o 
lJp. 

Let us now consider relations 2) of Proposition 1. i.e., ~ > 0 while 
oQ. aQ. aQ. 
~ ) 0 if d + d'(Pi - e') > 0; ~ = 0 if d + d'(Pi - e') = 0; ~ < 0 

if d + d'(p, - e') < o. From equations (44), 
1 

~ = H d2(-Q~e" - 2(K + C - Q.e'»)/(n2Q~) 
UA 1 1 1 

(B.3) 

2 lJp. 
Since -Q.e" - 2(K + e - Q.e') < 0 and H < 0, ~ > O. 

1 1 UA 

o 

Also from equations (44), 

aQ. 2 2 or = H [ - d (d + d' (p i - C'») / (n Q i ) ] (B.4) 
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H(-d) ) o. Therefore, if d + d'(Pi - C') 

if d + d' (p i - C') 

if d + d' (Pi - C') 

oq. 
) 0, then ~ ) 0; 

oq. 
1 = 0, then or- = 0; 

oq. 
1 < 0, then or- < O. 

o 

Op. oq. 
Finally, let us consider relations 3) of Proposition 1, ~ > 0 and ~ 

< o. 
From equations (46), 

~ = H d2(-Q~C" -

Since - Q~CII - 2(K + C -
1 

2(K + C - QiC'»(Pi - (K + C)/Qi)/(n3Q~) (B.5) 
Op. 

QiC') < 0 and Pi - (K + C)/Qi ) 0, ~ > O. 

Also from equations (46), 

~ = H d2(K + C - QiC')/(n3QI) 
OQ. 

Since K + C - QiC' ) 0, ~ < 0 follows. 

o 

(B.6) 

o 



54 

PAPER 2. 

A COIPETITIVE EOQ 10DEL 

llITH OPTIONS TO REDUCE SETUP AND INVENTORY HOLDING COSTS 
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A COIPETITIVE EOq 10DEL 

VITB OPTIONS TO llEDUCE SETUP AND INVENTORY HOLDING COSTS 

Cheng-lang Chen and I. Jo lin 

Iova State University 

ABSTUCT 

In this paper, the profit maximizing economic order quantity (EOQ) model 

is extended to the case of a symmetric oligopoly consisting of several 

producers who compete with each other for the same potential buyers. For 

each producer, we assume that the options of investing in reducing the 

setup and inventory holding costs are available. A primary goal of this 

paper is to understand economic implications of the resulting 

equilibrium in terms of critical elements of EOQ models such as the 

setup and inventory holding costs as well as critical elements of the 

micro economic market theory such as the market price and the number of 

competing producers. For an example, we present a unique insight as to 

why several Japanese and American producers are striving to reduce the 

setup costs under ever increasing competition. SpeCifically, it will be 

shown that, for a profit maximizing producer, as the number of competing 

producers increases, his optimal strategy dictates that he reduce his 

setup and inventory holding costs. 
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1. INTlODUCTION 

This paper extends the profit maximizing economic order quantity 

(EOQ) model with a constant demand rate over time to the case of a 

symmetric oligopoly consisting of producers of a single homogeneous 

product who co~ete with each other for the same potential buyers. Ve 

assume that, for each producer, the options of investing in reducing the 

setup and inventory holding costs are available. A primary goal of this 

study is to understand economic implications of the resulting 

equilibrium in terms of critical elements of EOQ models such as the 

sales quantity per unit time and the levels of setup and inventory 

holding costs as well as critical elements of the microeconomic market 

theory such as the market price and the number of competing producers. 

For an example, we offer a unique insight as to why several Japanese and 

American producers are striving to reduce the setup costs under ever 

increasing competition. Specifically, it will be shown that, for a 

profit maximizing producer, as the number of competing producers 

increases (i.e., the competition gets more intense), his optimal 

strategy dictates that he reduce his setup and inventory holding costs. 

The idea of employing profits as a performance measure of EOQ type 

models has been explored as early as the 1950's (see, e.g., Vhitin [29] 

or Smith [23]). Ladany and Sternlieb [11] not only uses the profit 

levels as the performance measure, but also provides inSights on 

relations among price, cost, and demand by making the demand dependent 
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on the price and the price dependent on the cost and a fixed mark-up. 

Brahmbhatt and Jaisval [3] extends the previous model by incorporating 

variable mark-up as a function of a capital intensity measure and by 

maximizing profit over the order quantity and the capital intensity. 

Arcelus and Srinivasan [1] also extends Ladany and Sternlieb [11] by 

treating demand as a function of price, price as a function of a 

variable mark-up rate times a unit cost under profit maximization over 

the order quantity and the variable mark-up rate. loreover, lonahan [16] 

as veIl as Lal and Staelin [12] developed quantity discount schemes for 

the seller. Lee and Rosenblatt [13] extended lonahan [16] by 

incorporating more realistic features (e.g., constraints imposed on the 

amount of discount that can be offered). The rationale for the quantity 

discount in these papers is the cost savings resulting from coordination 

of producers' production quantities and buyers' order quantities under 

the assumption that both buyers as veIl as sellers are EOQ based 

decision makers. The assumption that buyers are EOQ based decision 

makers is relaxed in a nev quantity discount EOQ model in Hin [14]. In 

Min [14], the rationale for the quantity discount is the seller'S 

exploitation of the heterogeneous preferences of the buyers regarding 

their purchase sizes. More recently, in lin [15], for both uniform 

pricing and quantity discount pricing (under the heterogeneous buyers' 

preferences assumption) cases, how to incorporate competition aspects of 

sellers into EOQ models based on Cournot-like behavioral assumptions 

(see e.g., Oren, Smith, and Vilson [17] or Varian [28] or Friedman [6]) 

is discussed. 
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Also, under the assumption of dynamic and deterministic demands, 

there have been numerous studies investigating the optimal relations of 

production schedules, prices, and inventories (see e.g., Gaimon [7], 

Pekelman [18], Kunreuther and Schrage [10], and Thomas [26]). Thomas 

[27] investigates the optimal relations of production quantities and 

prices under the assumption of stochastic demands. Moreover, in Gaimon 

[8], the assumption of a single firm is replaced by a duopoly, and the 

optimal relations bet~een production capacities and prices are studied 

~ithin a differential game frame~ork. Also, in Dockner and Jorgensen 

[5], optimal pricing strategy under competition is examined and 

non-cooperative as ~ell as cooperative equilibria results are obtained. 

In Teng and Thompson [25], an oligopoly model is analyzed and optimal 

advertising policies are obtained ~hen production costs obey a learning 

curve. Ve note that the models constructed and analyzed in the last 

three papers are also time dependent dynamic models. 

Recently, the superiority of an inventory management system called 

Zero Inventory (often synonymous ~ith Kanban and Just-in-Time; see e.g., 

Zang~ill [30]) has attracted a great deal of attention not only from 

industries but also from academia. The essential philosophy of Zero 

Inventory management system is that the inventory results from 

operational inefficiencies. Hence, the higher the level of inventory, 

the greater the operational inefficiency. From this perspective, it is 

~ell known that several Japanese and American producers strive to reduce 

the level of inventory as much as possible. In order to reduce the 

level of inventory, numerous experts in industries and academia find it 
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essential to reduce the setup cost of production. In Porteus [19], such 

efforts to reduce the setup cost are mathematically incorporated by 

introducing an investment cost function of reducing the setup cost to 

undiscounted EOQ models. For the cases of logarithmic investment cost 

functions and power investment cost functions, his models demonstrate 

decreased operational costs when the setup cost is reduced. Porteus 

[20] extends Porteus [19] to the cases of discounted EOQ models. 

Billington [2] formulates a model of which setup cost is a function of 

capital expenses and investigates the relations among holding, setup, 

and capital expenses. In Zangwill [30], however, it is argued via 

numerical examples that certain efforts to reduce the setup cost will 

actually increase the operational costs. We note that, in all these 

papers, the performance criterion has been the minimization of 

operational costs (as compared to the maximization of profits in our 

model) and the competition effects on the production and inventory 

policies are ignored. 

In this paper, we construct a model under a Cournot-like behavioral 

assumption. That is, each producer first predicts his competitors' 

sales quantities per unit time in maximizing his own profit (see e.g., 

Oren, Smith, and Wilson [17]). The decision variables of our model are 

the economic production quantity (in order to be consistent with the 

term "producer", we will use the term "economic production quantity" in 

place of "economic order quantity"), the sales quantity per unit time, 

and the desired levels of setup and inventory holding costs (i.e., the 

options of investing in reducing setup and inventory holding costs are 



60 

available to each producer). In our model, we will assume that all 

critical economic quantities producers must determine such as the 

optimal economic production quantity and the optimal level of the setup 

cost are made under the framework of static decision making (cf. dynamic 

decision making framework; see e.g. [7], [18], [10],and [26]). In order 

to highlight the optimal relations among the critical economic 

quantities that are derived under the static decision making framework, 

we will make the following assumptions. Ve assume : 1) the demand is 

deterministic and constant over time; 2) production occurs 

instantaneously; 3) there is no learning effects in setup or production. 

Also we will not consider discounting prices and costs over time and 

other time dependent features such as promotion and advertising. In 

addition, we will assume that each producer can produce sufficient 

amount of products to meet any quantity demanded by buyers. Under these 

assumptions, we formulate a Cournot model consisting of a symmetric 

oligopoly of n producers with options to invest in reducing setup and 

inventory holding costs offering a homogeneous product. By a symmetric 

oligopoly, we mean producers are identical in all economic respects such 

as production costs and investment costs of reducing setup and inventory 

holding costs. From the formulation of the Cournot model, we obtain a 

symmetric equilibrium. The formulation and equilibrium conditions under 

the Cournot model explicitly depend on n, the number of competing 

producers in the market. Ve derive interesting economic implications 

regarding the market price, demand elasticity, number of competitors, 

average and marginal costs of production and inventory holding as well 
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as the aforementioned four decision variables. Furthermore, via 

sensitivity analysis ~hich is based on the equilibrium conditions under 

the Cournot model, ~e derive the directions and magnitudes of changes in 

the aforementioned decision variables ~ith respect to change in the 

number of competing producers. From the results of the sensitivity 

analysis, we present several interesting economic implications including 

a unique insight as to ~hy several Japanese and American producers have 

devoted so much energy and time to reducing setup costs. 

The rest of this paper is organized as follows. In section 2, ~e 

formulate the Cournot model and derive and interpret its equilibrium 

conditions. In section 3, ~e perform the sensitivity analysis on the 

Cournot model and interpret its economic implications. Summary and 

concluding remarks are made in section 4. 
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2. THE .UDIt AND ECUNUIIC IIPLICATIONS IN EqUILIBlIUI 

Ve assume that there are n identical producers offering a single 

homogeneous product. Also we assume that buyers have perfect information 

about the per unit prices n producers charge. Hence, in equilibrium, all 

producers will charge the same per unit price, p, the market price. For 

each producer i, i = 1, .•• , n, as in the cases of traditional EOQ 

models (see e.g., Hillier and Lieberman [9]), we assume: 1) the goods 

are produced in equal numbers, Qi at a time; 2) all Qi units arrive 

without delivery lag; 3) no shortage to a buyer is permitted. Ve also 

assume that, for each producer i, the total cost per cycle includes the 

production and inventory holding costs of conventional EOQ models. The 

production cost per cycle is represented by Ki + C(Qi) where Ki is the 

setup cost and C(Q.) is the production cost incurred in producing Q. 
1 1 

units after the setup. On the other hand, the inventory holding cost is 

characterized by h, inventory holding cost per unit per unit time. In 

this paper, the options of investing in reducing the setup cost and the 

inventory holding cost are available. Specifically, we will 

characterize these options by defining the following two cost functions 

(cf. Porteus [19]). 

1) V(KiiKO) : the per unit time cost of reducing the setup cost from the 

current level of KO to the level Ki . 

2) V(hiihO) the per unit time cost of reducing the inventory holding 

cost from the current level of hO to the level of hi. 
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As implied earlier, ~e assumed that all cost functions (i.e., C(Qi)' 

V(Ki;KO) and V(hi;hO» are identical for all producers. Ve further 

assume that C(Q) is strictly increasing and convex in Q and V(Ki; KO) 

and V(hi;hO) are strictly decreasing and concave in K and h, i.e., C'(Q) 

> 0, C"(Q) ~ 0, V'(hi;hO) < 0, V"(hi;hO) ~ 0, V'(Ki;KO) < 0, and 

V"(Ki;KO) ~ O. The convexity of C(Q) implies that the marginal cost of 

production is increasing in Q where as the concavity of V(Ki;KO) 

(V(hi;hO» in Ki (hi) implies that the marginal per unit time cost of 

reducing the setup cost (or inventory holding cost) with respect to the 

setup cost (or inventory holding cost) is decreasing. 

The sales quantity to buyers per unit time for the entire market is 

characterized by d(p), a function of per unit market price p. ie assume 

that the sales quantity, given a price, is constant over time. Also ~e 

assume that the sales quantity function is strictly decreasing in p, 

i.e., d'(p) < 0. Under the monotonicity assumption of d'(p) < 0, the 

inverse function p(d) exists (with p'(d) < 0). The inverse function p(d) 

specifies the price p that clears d units in the market. Ve will assume 

that the inverse function p(d) is concave in d, i.e., p"(d) ~ O. Just 

as in microeconomic theory (see e.g., Varian [28]), we can refer to p(d) 

as the inverse demand function while d(p) as the demand function. Since 

the demand function d(p) is assumed to be constant over time, so is the 

inverse demand function p(d). 

Given the above definitions and assumptions, we develop a 

Cournot-like framework as follows. Ve assume that each producer i, 1 = 
1, '.', n will predict the total sales quantity per unit time of his 
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n-1 competitors, d_ i • Under this prediction, producer i maximizes his 

profit per unit time over his sales quantity per unit time di , economic 

production quantity per cycle Qi , desired setup cost per cycle Ii' and 

desired inventory holding cost per unit per unit time hi. For the total 

sales quantity per unit time for the entire market, d. + d ., the 
1 -1 

corresponding per unit market price is given by p(di + d_ i ). Hence, the 

total revenue per cycle for producer i is p(di + d_ i ) Qi. And the 

corresponding total cost per cycle and the cycle length are given by I. 
1 

+ C(Q.) + h.Q~/(2d.) + V(I.;KO)Q·/d. + V(h.;hO)Q·/d. and Q./d. III 1 III III 1 1 

respectively. Given these expressions for the total revenue, cost, and 

the cycle length, the problem of maximizing profit per unit time for 

producer i, r i , can be stated as follo~s. 

(1) 

The first order optimality conditions of the maximization problem (1) 

are 

ar. 
___ 1 = p'(d. + d .)d. + p(d. + d .) - (1.+ C(Q.»)/Q. = 0 (2) ad. 1 - 1 1 1 - 1 1 1 1 

1 

ari 2 
--- = -d.(C'(Q.)Q. - K.- C(Q.»/Q. - h./2 = 0 (3) aQ. 1 1 1 1 1 1 1 

1 

ar. 
___ 1 = -Q.f2 - V' (h. ;ho) = 0 (4) 
ab. 1 1 

1 
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a'C. 
_1 = -d.jQ. - V'(K.;KO) = 0 
aK. 1 1 1 

1 

(5) 

In order to derive the corresponding second order sufficient conditions 

for optimality, we first obtain the second order derivatives of the 

profit as follows. 
2 

a 'C. 
~ = p" ( d. + d .) d. + 2p' (d. + d .) 
ad~ I-I I 1-1 

1 
2 a 'C. 

1 = (Ki + C(Qi) - QiC'(Qi»/Q~ 
ad.aQ. 

1 1 

2 a 'C. 
__ 1_ = 0 
ad.ah. 

1 1 
2 a 'C. 

__ 1_ = -l/Qi 
ad.aK. 

I 1 
2 a 'Ci 1 

= - 2 
ah.aQ. 

1 1 

2 a 'C. 2 3 
~ = d.(-Q.C"(Q.) - 2(K. + C(Q.) - Q.C'(Q.»)/Q. 
aQ~ 1 III III 1 

1 

2 a 'C. d. 
1 1 

-- = --::2" 
aQ.aK. Q. 

1 1 1 

2 a 'C. 
_~l_ = _ V" (hI' ;ho) 
ah~ 

1 

2 a 'C. 
__ 1_ = 0 
ah.aK. 

1 1 

2 a 'C. 

~ = - V" (K. ;Ko) 
aK~ 1 

1 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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From our assumptions that p,(.) < 0 and p,,(.) ~ 0, we have 
2 a 1". 
~ < O. Therefore, the second order sufficient conditions for 
ad. 

1 

optimality can be expressed by the following Hessian matrix and the 

signs of principal minors. 

V1< 0 221 2 a2 'I . / ad . {)h • 2 a 'li/adi a 'l.j ad . aQ . a 1".f ad . aK . 
111 111 111 

V2> 0 2 2 2 a2 'I . / aQ . h . 2 a 'l.f ad . aQ . a 'l.j aQ . a 'l./aQ.aK. 
111 1 1 111 111 

V3< 0 2 2 a2'l. / {)h~ 2 a 1". / ad . {)h • a 'I. /OQ . {)h • a 1".j{)h.OK. 
111 111 1 1 111 

V4> 0 2 2 2 2 2 a 'l.f ad. aK . a 'l./OQ.aK. a 'l.f {)h • aK . a 'l.jaK. 
111 111 III 1 1 

( Vi defines the ith principal minor) 

(16) 

Throughout the rest of this paper, we will assume that the second order 

sufficient conditions are satisfied. In addition, we will assume that 

the resulting profit level of each producer i, i = 1, •.. , n, evaluated 

at the optimal sales quantity per unit time and production quantity per 

cycle, desired setup cost per cycle, and desired inventory holding cost 

per unit per unit time is non-negative (i.e., no producer will exit from 

the market). 

So far we have examined the optimality conditions of a single 

producer. Ve now proceed to derive an equilibrium of n producers. 

Under our assumptions of identical producers, there exists a symmetric 

equilibrium (see e.g., Oren, Smith, and Vilson [17]) where 
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d1 = d2 = 
Q1 = Q2 = 

67 

= dn 

= Q n 

(17) 

(18) 

i.e., the sales quantity per unit time as well as the economic 

production quantity are identical for all producers. In this symmetric 

equilibrium, the total sales quantity per unit time from all competitors 

of producer i, d_ i is equal to (n-1)di for i = 1, ••• n. Therefore, the 

corresponding equilibrium conditions of the optimality conditions (2) -

(5) are given by 

p'(nd.)d. + p(nd.) - (K. + C(Q.»jQ. = 0 
1 1 1 1 1 1 

-d.(C'(Q.)Q. - K. - C(Q.»jQ~ - h.j2 = 0 
1 11 1 111 

- Qi/2 - V, (hi ;hO) = 0 

- dijQi - V, (Ki ;KO) = 0 

(19) 

(20) 

(21) 

(22) 

Let us first examine equilibrium condition (19). The corresponding 

demand elasticity E, E = p(d)j(p'(d)d) by definition (see e.g., Varian 

[28]), evaluated at the symmetric equilibrium point becomes: 

(23) 

Hence, in the symmetric equilibrium, equation (19) can be restated as 

p(nd.) = ( nE 1 )(K. + C(Q.»jQ. 
1 nE + 1 1 1 

(24) 

Equation (24) states that, given a fixed number of competitors n, as the 
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demand becomes more elastic (i.e., If I gets larger), the equilibrium 

price gets closer to the average production cost. Or as the demand gets 

more inelastic (i.e., lEI gets smaller), the equilibrium price gets 

farther a~ay from the average production cost. If ve vie~ the term 

nEn! 1 as a markup rate, the economic implication is that the markup 

rate is larger when the demand is more inelastic. On the other hand, 

given a fixed level of elasticity, E, we observe that as the number of 

competitors increases (i.e., as the competition gets more intense), the 

price gets closer to the average production cost. Or as the number of 

competitors decreases (i.e., as the competition gets less intense), the 

price gets farther away from the average production cost. Ve also 

observe that as the number of competitors decreases, the markup rate 

increases. In addition, we note that if -1 < nE < 0, the price is 

negative. Furthermore if nE = -1, it can be easily verified that no 

production quantity per cycle Qi satisfies equation (19). Hence, 

throughout this paper, we limit our analysis to the cases where nE < -1. 

i.e., nE < -1 ~ill be assumed. 

Let us nov examine equilibrium condition (20). By rearranging 

terms of condition (20), ~e have 

(1 + C(Qi»/Qi - C'(Qi) = hQi/(2di) (25) 

Equilibrium condition (25) states that for each producer i, i = 1, ... , 

n, the average production cost is equal to the sum of the marginal 

production cost and the average inventory cost per unit. The economic 

implication is that the per unit production cost is strictly higher than 
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the per unit inventory cost at the equilibrium since the marginal 

production cost is assumed to be positive. Also we note that if (K + 

C(Qi»/Qi ~ C'(Qi)' it can be easily verified that no production 

quantity per cycle Qi satisfies equation (20). Hence, throughout this 

paper, we limit our analysis to the cases where 

(I + C(Qi»/Qi > C'(Qi)' i.e., (K + C(Qi»/Qi > C'(Qi) will be assumed. 

We now examine equilibrium condition (21). By rearranging terms of 

condition (21), we have 

(26) 

In equation (26), W'(hi;hO) denotes the marginal decrease in the per 

unit time cost of reducing the inventory holding cost (per unit per unit 

time) with respect to a small increase in hi where as Qi/2 represents 

the marginal increase in the per unit time inventory holding cost with 

respect to a small increase in hi. Hence, equation (26) states that, in 

equilibrium, the sum of the marginal decrease in the per unit time cost 

of reducing the inventory holding cost and the marginal increase in the 

per unit time inventory holding cost results in zero. 

We now proceed to examine equilibrium condition (22). By 

rearranging terms of condition (22), we have 

(27) 

In equation (27), V'(Ki;KO) denotes the marginal decrease in the per 

unit time cost of reducing the setup cost with respect to a small 

increase in K. where as d./Q. represents the marginal increase in the 
111 
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per unit time setup cost with respect to a small increase in Ii' Hence, 

equation (27) states that, in equilibrium, the sum of the marginal 

decrease in the per unit time cost of reducing the setup cost and the 

marginal increase in the per unit time inventory holding cost results in 

zero. 

Ve note that the relations among the equilibrium sales quantity per 

unit time di , the economic production quantity Qi , the setup cost per 

cycle Ki and the inventory holding cost per unit per unit time hi for i 

= 1, "', n are implicitly determined by (24) to (27). By simultaneously 

solving conditions (24) to (27) given p(o), C(o), V(o), V(o), ho' Ko and 

n, we can numerically determine the values of di , Qi , Ki' and hio 
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3. SENSITIVITY ANALYSIS 

In this section, we investigate the sensitivity of the sales 

quantity per unit time di , production quantity per cycle Qi , setup cost 

per cycle Ii' and the inventory holding cost per unit per unit time hi 

in equilibrium with respect to the given parameter of our model, the 

number of competing producers n. Our analysis of sensitivity will be 

based on differential calculus (especially the implicit function 

theorem; see e.g., Chiang [4]), which requires variables (or parameters) 

to be continuous, rather than discrete. Hence, it will be necessary to 

treat the number of competing producer n (n ~ 1), which is hitherto 

assumed to be an integer, as a continuous variable. The justification 

for treating n as a continuous variable (to the extent possible) can be 

found in Seade [21]. The justification in Seade [21] is based on an 

essential assumption called the "single-signedness" assumption. That 

is, let us define x(n) to be any relevant function of n (e.g., price p) 

and let Vx = x(n+1) - x(n). Then (sigh Vx) = (sigh x/en»~ is assumed 

(see e.g., Seade [21] for further details). 

At the equilibrium point (di , Qi , hi' Ii)' by applying the implicit 

function theorem and by allowing n to be continuous, we obtain the 
ad. DQ. Oh. aI. 

following relations for magnitudes of changes ~, ~,~, and ~ with 

respect to an infinitesimal increase in the number of competing 

producers n. 
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Let Fl, F2, F3and F4 denote the left hand sides of equilibrium 

conditions (19) to (22) respectively. From the assumptions that the 

second order conditions (16) are satisfied, the determinant of the 

Hessian matrix is positive. It can be easily verified that this implies 

the determinant of Jacobian of Fl, F2, F3 and F4 with respect to di , Qi , 

hi and Ii (shovn in the left hand side of equation (28» is also 

positive, satisfying a condition necessary for applying the implicit 

function theorem. Finally, for the inverse demand and cost quantities, 

p(.), p'(')' p"(')' C(·), C'('), and C"('), the arguments ndi , Qi , hi 

and Ii are suppressed for more comprehensible presentation. Then, we 

have : 

oFl oF1 oF1 OF1 

on; 
1 

(J[[;" 
1 

OIl." 
1 

or. 
1 

oF2 oF2 oF2 OF2 

on. 
1 

(J[[;" 
1 

OIl." 
1 

or. 
1 

oF3 oF3 oF3 OF3 

on. 
1 

Ol[ 
1 

OIl." 
1 

or. 
1 

oF4 oF4 oF4 OF4 

on. 
1 

(J[[;" 
1 

OIl." 
1 

or. 
1 

where the elements of equation 
1 !- = nd.p" uu. 1 
1 

oF1 oF2 
01[= oa. = 

1 1 

oF1 oF3 
OIl." = E = 0 

1 1 

+ (n + l)p' 

I. + C - Q.C' 
1 1 

Q~ 
1 

ad. 
1 oF1 

7fil - 7fil 

oQ. oF2 1 (28) 7fil - 7fil 

Oh. = 
oF3 

1 

7fil - 7fil 

01. 
1 aF4 

on - 7fil 

(28) are as follows. 

(29) 

(30) 

(31) 
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The inverse of the Jacobian matrix exists since its determinant is 

nonzero. Hence, we solve the equation (28) for the magnitudes of 
ad. OQ. OK. alt. 

changes m!-, m!-, m/, and m/ as follows. 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

In the following derivations, the quantity I is defined to be the 

inverse of the determinant of the Jacobian matrix in the left hand side 

of equation (28). After some matrix operations, we have: 

~ = - I(di~' + ~) [V" (hi ;hO)V" (Ki ;KO)di (- Q~C"- 2 (Ki+C- QiC'» /Q~ 
+ d~V"(hi;hO)/Qt + V"(Ki ;KO)/4 ] (41) 
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~ = I(di~' + ~) (VII (hi;hO)V" (Ii;IO)(Ii+C- QiC'»/Q~ -
V"(hi;hO)di/Q~] (42) 

~ = I(di~ +~) (V"(hi;hO)di(Ii+C-QiC')/Qi 

+ V" (hi ;hO)di (- Q~C"- 2 (Ii +C- Qi C')) /Qi + 1/ (4Qi)] (44) 

ad. aQ. Oh. al. 
Th d· d· . f I I I d I e correspon lng lrectlons 0 on-' on-'on-' an on- are 

summarized in the folloving proposition (see Appendix for the proof). 

Proposition 1: Assume that the saLes quantity per unit time 

,production quantity per cycLe and the levels of setup and inventory 

holding costs (di , Qi , hi' Ii) satisfy the equilibrium conditions (19) 

to (22) and the second order sufficient condition (16). Assume further 

that for the production cost, the investment cost and the inverse demand 

functions, C'(Q) > 0, C"(Q) ~ 0, V'(I) < 0, V'(h) < 0, V"(I) ~ 0, 

V"(h) ~ 0, p'(d) < 0, and p"(d) ~ 0. loreover, assume that the 

profit level at (d., Q., h., I.) is non-negative. 
III 1 

Then, we have : 
ad. aQ. Oh. OK. 

I I I d I on- < 0, on- < 0, on- < ° an on- < 0. 

The economic implications of Proposition 1 are as follows. In the 

equilibrium, under the aforementioned single-signedness assumption, we 
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conclude that if the number of competing producers increases by a 

smaller number, the sales quantity per unit time, the production 

quantity per cycle, the inventory holding cost per unit per unit time 

and the setup cost per cycle will decrease in equilibrium. We note that 

the change in the frequency of production is indeterminate (i.e., the 

corresponding cycle may be longer or shorter). The sign of the 

corresponding change in the per unit price (i.e., p(ndi )), however, is 
A A 

also indeterminate due to the following reason. Let di (di < di ) denote 
A A 

the new sales quantity per unit time for producer i and let n (n > n) 

denote the new number of competing producers. Then, the corresponding 
A 

new per unit price is given by p = p(ndi ). Since n > n and di < di , the 
AA 

sign of p(ndi ) - p(ndi ) is indeterminate. i.e., the per unit price may 

increase, remain the same, or decrease when the number of competing 

producers increased by a small number. 

From the perspective of 
oK. 

costs, the fact that an1 < 

investing in setup and inventory holding 
~. 

o and ~ < 0 in the equilibrium implies 

the following. For a profit maximizing producer, as the number of 

competing producers increases (i.e., the competition gets more intense), 

his optimal strategy dictates that he reduce his setup and inventory 

holding costs. 
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4. CONCLUDING BKlAns 

In this paper, we extended the profit maximizing EOQ model by 

introducing competition aspects under a Cournot-like behavioral 

assumption and by treating the setup cost and inventory holding cost as 

decision variables. First we showed how a profit maximizing EOQ model 

can be formulated for n identical producers competing for the same 

potential buyers. From this formulation, we obtained symmetric 

equilibrium conditions. From these equilibrium conditions and the 

subsequent sensitivity analysis, interesting economic relations are 

obtained. 

From the perspective of Zero Inventory Philosophy, this paper 

provided an additional insight as to why several Japanese and American 

producers strive to reduce the setup cost. That is, as the number of 

competing producers increases (i.e., the competition gets more intense), 

the optimal strategy of a profit maximizing producer dictates that he 

invest in reducing setup and inventory holding costs. 

The EOQ model developed in this paper is applicable for broad 

classes of convex C(.) function, concave V(·) and V(.) functions, and 

concave p(.) function. Our model relates general practices since 

numerous industries and firms apply EOQ based decision making under 

competition. There are several possible extensions that will further 

improve the relevance of our model to general practices. They include 

incorporation of more sophisticated features such as quantity discount 
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price schedules, finite production rates, shortages, delivery lags, and 

promotional (e.g., advertising) effects as well as stochastic demand 

rates. From the perspective of Zero Inventory Philosophy, it would be 

of interest to study the effects of competition on process quality 

improvement and effective capacity in conjunction with the setup cost 

reduction (see e.g., Porteus [21] and Spence and Porteus [24]). 

From the perspective of game theory, Cournot lodel in this paper 

can be considered as only an initial step toward better understanding of 

competitive inventory policies. It is our hope that more sophisticated 

equilibrium concepts of game theory (e.g., subgame perfect equilibrium 

for sequential decisions) will be exploited in the future research on 

the competitive inventory policies. 
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APPENDIX: PlODI' 01' PlOPOSITION 1 

From equation (41), ~e have 

~ =-I(di~)(V"(hi;ho)V"(Ki;Ko)di(-Q~C"-2(Ki+C-QiC'»/Q~ + 

d~V"(hi;hO)/Q1 + V" (Ki;KO)/4 ] (A.1) 

From equation (25), ~e have Ki + C - QiC' ) O. Since C" ~ 0, 

-QiC" - 2(Ki + C - QiC') < 0, V"(hi) < 0 and V"(Ki ) < 0, ~e have 

[ . ] is less than zero. Since (di~ + ~ ) < 0 and I ) 0, 
ad. 

~e obtain ~ < O. 0 

From (42), ~e have 

~ = I(di~~)[V"(hi;ho)V"(KiKO)(Ki+C-QiC'»/Qi -

V"(hi;ho)di/Q~] (A.2) 

From equation (25), ~e have Ki + C - QiC' ) O. Since V"(hi) < 0 

and V/(Ki ) < 0, ~e have [ . ] is less than zero. 

/}p' /Jp aQ. 
Since (di~ + on ) < 0 and I ) 0, we obtain ~ < O. 0 

From (43), we have 

~ = -I(di~'+ ~)[V"(Ki;KO)(Ki+C-QiC')/(2Q~) - di/(2Q~)] 
From equation (25), we have Ki + C - QiC' ) O. Since V"(Ki ) < 0, 

we have [ . ] is less than zero. 

Since (di~ + ~ ) < 0 and I > 0, we obtain ~ < O. o 

(A.3) 
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From (44), we have 

~ = I (di~ + ~) [ V" (hi ;hO)di (- QIC"- (Ki+C- QiC'» /Qi + 1/( 4Qi )] 

(A.4) 

From equation (25), we have Ki + C - QiC' ) O. Since C" ~ 0, 

-QIC" - 2(Ki + C - QiC') < 0, V"(hi ) < 0 , we have[ . ] is greater 

than zero. 

1Jp' IJp OK. 
Since (di~ + on ) < 0 and I > 0, we obtain ~ < O. 0 
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oPTIIAL SELLING QUANTITY AND PURCHASING PRICE FOR INTERlEDIARY FIIlIS 
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OPTIDL SELLING qUANTITY AND PUlC1IA.SING PUCE FOR INTEllIEDIAB.Y FlUS 

Cheng-lang Chen and I. Jo .in 

lava State University 

ABSTRACT 

Intermediary firms are economic agents that purchase from mostly small 

and numerous independent producers and sell to other firms or to the 

public. In this paper, how intermediary firms can optimally determine 

both selling quantity and purchasing price of a product is investigated. 

By incorporating the special structure of intermediary firms' 

environments and by modifying the conventional economic order quantity 

(EOQ) model accordingly, we provide optimal decision rules regarding the 

selling quantity and purchasing price for intermediary firms. 

(Economic Order Quantity, Pricing) 
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INTRODUCTION 

The conventional economic order quantity (EOQ) and economic 

production quantity (EPQ) have been extensively studied and continually 

modified in order to accommodate specific business needs and 

environments1,2. In this paper, we extend the conventional EOQ/EPQ 

models so as to determine the optimal selling quantity and purchasing 

price for an intermediary firm. Ve define an intermediary firm to be an 

economic agent that purchases products from numerous independent 

producers and sells those purchased products to other firms that process 

or utilize the products (or to the public) at a given market price. Such 

firms can be found in numerous industries. For examples, there are 1) 

garment and apparel industry firms that purchase piece works 

("homework") from independent sewers, and 2) agricultural industry firms 

that purchase dairy and other agricultural products from independent 

farmers. 

The objective function employed in this paper is that of profit 

maximization. The idea of employing profits as a performance measure of 

EOQ type models has been explored as early as in the 1950's3. Ladanyand 

Sternlieb4 not only uses the profit levels as the performance measure, 

but also provides insights on relations among price, cost, and demand by 

making the demand dependent on the price and the price dependent on the 

cost. Arcelus and Srinivasan5 extend Ladany and Sternlieb's vork by 

exploring alternative investment oriented performance measures such as 
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return on investment and residual income. Also, we employ the inspection 

cost feature of conventional EOQ/EPQ models6 in order to account for 

possible defective products from independent producers. 

The rest of this paper is organized as follows. We first define the 

special structure of intermediary firms' environments and formulate the 

basic profit maximization model over the selling quantity, given a fixed 

purchasing price. Next we extend the basic model by making the fixed 

purchasing price as a variable. Also, we add to the basic model an 

inspection cost component, which is a realistic feature for an 

intermediary firm. Finally, an illustrative example is provided and 

concluding marks are made. 
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DESCRIPTION OF INTEBIEDillY FIDS' ENVIRONIENTS 

Let us denote the unit price an intermediary firm pays to 

independent producers by r for a single type of product (e.g., eggs or 

milk). The annual supply rate of the product to the intermediary firm 

from the independent producers at price r is denoted by s(r). In the 

traditional economic production quantity (EPQ) perspective, s(r) can be 

viewed as the production rate. In this paper, we will assume that the 

annual rate is constant over time and there is a linear relation between 

r and s(r). That is, s(r) = gr, where g is a positive proportionality 

constant. Given a supply proportionality constant g, a higher price r 

implies a higher supply rate s(r). Also given a fixed price r, a higher 

supply proportionality constant g implies a higher supply rate s(r). In 

the basic model, we will assume that the price r is fixed and relax this 

assumption later. The purchased units are stored in the firm at a cost 

of rF per unit per annum where F is the annual holding cost as a 

fraction of unit purchasing cost to the intermediary firms (see e.g., 

Hax and Candea7 for the various components of the inventory holding cost 

and the role of holding cost F). Once an amount of Q units accumulates, 

all Q units are sold to another firm that processes or utilizes the 

products (or to the public) at a given market price of p per unit. The 

cost incurred to the intermediary firm in selling the accumulated 

products is represented by a fixed selling cost K (for arranging 

transportation, etc.) and a variable selling cost c per unit (for actual 

transportation, etc.). 
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BASIC IODEL 

Under our definitions and assumptions, the revenue per cycle is 

given by pQ while the payment to the independent producers per cycle is 

given by rQ. The total selling cost per cycle is K + cQ and the 

inventory holding cost per cycle is rFQ2/(2s(r». Therefore, the profit 

per cycle, PRC, which is the revenue less the cost, is given by 

PRC = pQ - rQ - K - cQ - rFQ2/(2s(r» (1) 

The corresponding annual profit, PHA, can be obtained from equation (1) 

by dividing PRC by Q/s(r), the cycle length (period). Namely, 

PHA = ps(r)- rs(r) - Ks(r)/Q - cs(r) - rFQ/2 

* In order to obtain the profit maximizing selling quantity Q , PHA is 

differentiated with respect to Q and set equal to zero. Hence, 

Kgr/Q2 - rF/2 = ° 
given s(r) = gr. 

* From equation (3), the optimal selling quantity Q is given by 

Q* = (2Kg/F)O.5 

(2) 

(3) 

(4) 
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* From equation (4), the optimal selling quantity Q decreases as the 

annual holding cost F increases. On the other hand, the optimal selling 

* quantity Q increases as the fixed selling cost K or the supply 

proportionality constant g increases. 
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OPTIIAL SELLING qUANTITY AND PlJICBASING PRICE UNDER BASIC IODEL 

Let us now relax the assumption that the purchasing price r is 

fixed. Instead, in this subsection, we will assume that the intermediary 

firm can choose the unit price to the independent producers (i.e., r is 

a variable). Hence, we are maximizing PHA with respect to both r and Q 

simultaneously. By differentiating (2) with respect to Q and r and by 

setting the differentiated quantities equal to zero, we obtain two 

equations relating Q and r with other parameters ( P, K, F, g, and c). 

* Solving these two equations for the optimal selling quantity Q and 

* * purchasing price r . we find that Q is identical to that of the basic 

problem shown in equation (4). Moreover, the corresponding optimal 

* purchasing price r is given by 

r* = p/2 - (KF/(2g))O.5 - c/2 

From equation (5), we obtain intuitive results that the optimal 

* purchasing price r increases as the selling price p or supply 

proportionality constant g increases. On the other hand, the optimal 

* purchasing price r decreases as the fixed selling cost K, variable 

selling cost c, or annual holding cost F increases. 

(5) 
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BASIC IODEL VITR INSPECTION COST 

In this subsection, we make the following assumption : Prior to 

purchase by the intermediary firm, each unit of products is inspected 

for possible defectiveness at a cost of i per unit. Ve will assume that 

a fraction b (defect-rate) of s(r) is defective and the intermediary 

firm pays only for non-defective units. Ve will also assume that the 

intermediary firm determines both the selling quantity Q and the 

purchasing price r simultaneously. Under this additional assumption, the 

revenue per cycle is given by pQ while the payment to the independent 

producers per cycle is given by rQ. Also the total amount of supply 

including defective items per cycle is given by Q/(l-b). Hence, the 

total inspection cost per cycle is iQ/(l-b). The total selling cost per 

cycle is K + cQ and the inventory holding cost per cycle is 

rFQ2/(2(1-b)s(r». Therefore, the profit per cycle, PRC, which is the 

revenue less the cost, is given by 

PRC = pQ - rQ - iQ/(l-b) - K - cQ - rFQ2/(2(1-b)s(r» (6) 

The cycle length (period) is given by Q/((l-b)s(r». Dividing PRC by 

this cycle length, we obtain the corresponding annual profit, PRA, as 

below. 
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PRA = p(l-b)s(r) - r(l-b)s(r) - is(r) 

- (l-b)Ks(r)/Q - c(l-b)s(r) - rFQ/2 (7) 

* In order to obtain the profit maximizing selling quantity Q and 

* purchasing price r from (7), we perform a sequence of operations 

* analogous to the one shown in the previous subsection. The resulting Q 

* and r are given by 

Q* = (2(1-b)Kg/F)O.5 (8) 

r* = p/2 - (KF/(2(1-b)g)O.5 - i/(2(1-b» - c/2 (9) 

* From equation (8), the optimal selling quantity Q decreases as the 

annual holding cost F or defect-rate b increases. On the other hand, the 
* optimal selling quantity Q increases as the fixed selling cost K or the 

supply proportionality constant g increases. From equation (9), we 

* obtain intuitive results that the optimal purchasing price r increases 

as the selling price p or supply proportionality constant g increases. 
* On the other hand, the optimal purchasing price r decreases as the 

fixed selling cost K, variable selling cost c, per unit inspection cost 

i, defect-rate b, or annual holding cost F increases. 
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AN ILLUSTRATIVE IDIPLE 

ie solve a profit maximization problem over the selling quantity Q 

and purchasing price r to illustrate some of the features discussed. Let 

us assume the following values are provided either by estimations from 

free market or by regulatory rules. 

K = 1 

P = 10 

F = 0.05 

g = 0.5 

c = 0.5 

i = 0.1 

b = 0.05 

From equation (8) and (9), the optimal selling quantity and purchasing 

price are given by 

* Q = 4.359 

* r = 4.468 

It can be easily verified that the corresponding annual profit and the 

optimal cycle length are 9.482 and 2.054 respectively. 
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CONCLUDING lUAUS 

Ve have shown how to formulate the profit maximization problem for 

intermediary firms utilizing the special structure of the firms' 

environments. The optimal selling quantity and purchasing price are 

derived in terms of fixed and variable selling costs, supply 

proportionality constant, annual holding cost, selling price, inspection 

cost, and defect-rate. 

The observation that the supply rate s(r) depends on the purchasing 

price r is a prevalent feature in numerous other kinds of firms. For 

example, in order to operate efficiently, various types of processing 

and manufacturing firms (i.e., firms that process supplied inputs into 

different outputs as opposed to intermediary firms that accumulate 

supplied inputs and sell them to other firms) must take this relation 

between the supply rate of inputs and their corresponding prices into 

account. For such firms, the model in this paper can be a basis for 

further research. 
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An ANALYSIS 01' OPTIIlL IBVENTOIY AND PHCING POLICIES 

UNDm LINEAl DElAND 

Cheng-lang Chen and I. Jo .in 

Io~a State Univer3ity 

ABSTRACT 

In this paper, for a single seller, we compare and contrast the optimal 

inventory and pricing policies under profit maximization vs. ROIl . 
(return on inventory investment) maximization when demand is linear in 

price. By studying the optimality conditions and the corresponding 

closed-form optimal solutions, several interesting economic implications 

are derived. In particular, we show that when a cost factor such as the 

setup cost, inventory holding cost per unit per unit time, or per unit 

ordering cost after the setup is sufficiently high, the choice of the 

objective between profit maximization and ROIl maximization is 

inconsequential to the seller in so far as his optimal decisions are 

concerned. 
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INTBDDUCTION 

In a recent paper by Rosenberg [5], for a single seller, optimal 

price-inventory decisions in the face of alternative criteria are 

studied for logarithmic concave demand functions (which include linear 

demand functions). The alternative models studied are a profit 

maximizing EOQ type model (the profit maximization model), an ROIl 

(return on inventory investment) maximizing EOQ type model (the ROIl 

maximization model), and an Economic Theory of the Firm model (the ETF 

model; a profit maximizing model without setup and inventory holding 

costs). In particular, under the linear demand assumption, these three 

models are analyzed in detail and numerical examples are presented. In 

the analysis, closed-form optimal solutions are employed for the ROIl 

maximization model and the ETF model while an examination of optimality 

conditions and an iterative procedure (e.g., the Newton-Raphson method) 

are employed for the profit maximization model. 

In this paper, however, for the profit maximization model, the 

closed-form optimal solution is employed for the analysis, which is 

attainable directly from the optimality conditions. The closed-form 

optimal solution for the profit maximization model enables us to perform 

more comprehensive and tangible analysis than the analysis shown in [5] 

under the assumption of linear demand in so far as the profit 

maximization model and ROIl maximization model are concerned. 

Specifically, in this paper, we compare and contrast the optimal 
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inventory and pricing policies for a single seller under profit 

maximization vs. ROIl maximization when demand is linear. First, we 

formulate the profit maximization model and the ROIl maximization model 

and derive the corresponding closed-form optimal solutions from the 

optimality conditions of the two models. Next, we obtain the relative 

bounds of the optimal decisions of the two models by examining the 

magnitudes of the closed-form optimal solutions. In addition, by 

studying the optimality conditions of the two models, we derive 

interesting relations among the price, average ordering cost, price 

elasticity of demand, and markup rate. Finally, we investigate the 

sensitivity of the optimal decisions with respect to the choice of the 

objective. In particular, we show that when a cost factor (e.g., the 

setup cost) is sufficiently high, the choice of the objective between 

profit maximization and ROIl maximization is inconsequential to the 

seller in so far as his optimal decisions are concerned. 

Throughout this paper, we assume that the seller will not operate 

(i.e., the seller will exit from the market) if his optimal profit 

(ROIl) level is strictly negative under profit (ROIl) maximization. 

Hence, we will consider only the cases where the optimal profit (ROIl) 

level under profit (ROIl) maximization is non-negative. i.e., a 

non-negative optimal profit (ROIl) level under profit (ROIl) 

maximization is assumed for the analysis. 
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BASIC IODELS 

We define the folloving variables and parameters for our models. 

Q the order quantity. 

d the demand per unit time. 

p the per unit price that clears d units in the market; 

p(d) = a - Pd, de[O, alP]. 

K the set up cost. 

c the per unit ordering cost after the setup. 

h the inventory holding cost per unit per unit time. 

hi: the inventory holding cost per unit per unit time excluding any 

opportunity cost; hi < h (i.e., a positive opportunity cost is 

assumed). 

T the cycle length. 

f the price elasticity of demand; f = d~~p) a. 
~ the profit per unit time. 

R the return on inventory investment (ROIl). 

In addition, throughout this paper, as in the conventional EOQ models 

(see e.g., Hillier and Lieberman [2]), ve viII assume that 1) the demand 

is constant over time given a price p; 2) the goods are ordered in equal 

quantities, Q at a time; 3) all Q units arrive vithout delivery lag; 4) 

no shortage is alloved. We nov derive the optimal solutions for the 

profit maximization model under linear demand. 
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rhe Profit lazi.ization lodel 

Under our definitions and assumptions, the total revenue per cycle, 

the total cost per cycle, and the cycle length are given by p(d)Q, K + 

cQ + hQ2/(2d), and Q/d, respectively. Hence, the corresponding profit 

per cycle and the profit per unit time are given by p(d)Q - K - cQ -

hQ2/(2d) and p(d)d - Kd/Q - cd - hQ/2, respectively. Since p(d) = a -

Pd, the profit per unit time (denoted by r) maximization problem is 

formulated as follows. 

Max r = d(a - pd - c) - Kd/Q - hQ/2 (1) 
d,Q 

The corresponding first order necessary conditions are given by 

~ = a - c - 2Pd - K/Q = 0 (2) 

~ = Kd/Q2 - h/2 = ° (3) 

By substituting and rearranging the relation Q = (2Kd/h)O.5 from (3) 

into (2), we obtain the optimality condition for d as follows: 

d1.5 + ~ dO.5 + (~)O.5 = ° (4) 
Sp 

By employing the trigonometric methods (see e.g., Chapter 3 of Mishina 

and Proskuyakov [3], Chapter 2 of Griffiths [1], or appendix of Porteus 

[4]), we obtain the optimal demand per unit time, dr' as follows. 
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d
r 

= 2(3pC) cos2(~) 

where cosO = _(~)0.5, and r/2 < 0 ~ 3r/4. 
4(0- c) 

(5) 

We note that the upper bound of 3r/4 on the critical angle 0 is obtained 

from the assumption that the resulting profit per unit time is 

non-negative. On the other hand, the lower bound of r/2 on the critical 

angle 0 implies that parameters p, h, and K should all be strictly 

positive in order for the profit maximization EOQ model to be 

non-degenerate. From (5), the corresponding order quantity Qr is: 

Qr = (4~frh-C))0.5cOS(~) (6) 

for r/2 < 0 ~ 3r/4 and cosO = _(27PhK 3)°·5 
4(0- c) 

For r/2 < 0 ~ 3r/4, it can be easily verified that the second order 

sufficient conditions for the profit maximization are satisfied at (dr' 

Qr) given by expressions (5) and (6). 

From (5) and (6), we obtain the corresponding optimal price p and 
r 

cycle length Tr as follows. 

27PbK 0.5 
For r/2 < 0 ~ 3r/4 and cosO = -(~) , 

4(0- c) 

Pr = 0 - 2(3- c) cos2(~) 

T = (~)0.5(cos(O))-1 
r Il(ll-CJ g 

(7) 

(8) 

Given the optimal quantities (5)-(8), the corresponding profit and ROIl 

levels evaluated at the optimal quantities (5)-(8), r and R (see the 
r r 

next subsection for the derivation of ROIl), are obtained as below. 

27PhK 0.5 
For r/2 < 0 ~ 3r/4 and cosO = -(~) , 

4(0- c) 
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2 
rr = ~ (~OS4(:) - ~OS2(:» 
Rr = 2~ (COS2(:»/(3 - 4cos2(:» - ~' 

The J.II la~i.ization lodel 

(9) 

(10) 

Analogous to the case of the profit maximization model, the total 

revenue per cycle, the total cost per cycle excluding any opportunity 

cost in the inventory holding cost h (i.e., h is nov replaced by h'), 

and the cycle length are given by p(d)Q, K + cQ + h'Q2/(2d), and Q/d, 

respectively. Hence, the corresponding profit per cycle excluding any 

opportunity cost in the inventory holding cost h and the profit per unit 

time excluding any opportunity cost in the inventory holding cost hare 

given by p(d)Q - K - cQ - h'Q2/(2d) and p(d)d - Kd/Q - cd - h'Q/2, 

respectively. The value of inventory investment per unit time is given 

by cQ/2 because the amount of inventory per unit time is Q/2 and the per 

unit cost of ordering after the setup is c. The return on inventory 

investment (ROIl) is defined to be the ratio of profit per unit time 

excluding any opportunity cost in the inventory holding cost h to the 

value of inventory investment per unit time, cQ/2. Hence, the ROIl for 

the seller can be obtained by dividing p(d)d - Kd/Q - cd - h'Q/2 by 

cQ/2. Given the relation p(d) = a - Pd, the resulting ROIl maximization 

problem can be stated as follovs. 

lax R = 2d(a - pd - c)/(cQ) - 2Kd/(cQ2) - h'/c 
d,Q 

The corresponding first order necessary conditions are given by 

(11) 



105 

~ = 2(0 - 2Pd - c)/(cQ) - 2K/( cQ2) = 0 

~ = - 2d(0 - pd - C)/(CQ2) + 4Kd/(cQ3) = 0 

(12) 

(13) 

By solving equations (12) and (13) for the optimal demand per unit time 

dR and the optimal order quantity QR' ve obtain the following 

expressions. 

dR = (0 - c)/(3P) (14) 

QR = 3K/(0 - c) (15) 
3 

vhere 2(0 - c) > hi 2tpK - . 
3 

The condition 2(27PKc) ~ hi implies that the return on inventory 

investment is non-negative. Also, it can be easily verified that the 

second order sufficient conditions for the ROIl maximization are 

satisfied at (dR' QR) given by expressions (14) and (15). Given optimal 

quantities (14) and (15), ve can obtain the corresponding optimal price 

PR and cycle length TR as belovo 

PR = (c + 20)/3 

TR = 9PK/(a - c)2 

(16) 

(17) 

Given the optimal quantities (14)-(17), the corresponding profit and 

ROIl levels evaluated at the optimal quantities (14)-(17), xR and RR' 

are obtained as belovo 

XR = (a-c)2/(9P) - 3hK/(2(a-c» 

RR = 2(a-c)3/(27PcK) - h'/c 

(18) 

(19) 
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COlPillTIVE ANALYSIS OF OPTIIAL POLICIES: PIOFIT VS. 1011 

Jelative Boands of the 'pti.al Solations 

In this subsection, let us first compare the relative magnitudes of 

the optimal order quantities Qr and QR. From equations (6) and (15), the 
Q 

ratio of ~ is given by 
r 

~ = (3K/(a - c»/ ((4Ibli-C)0.5cOS(:» (20) 
r 

where cosO = _(~)0.5 for r/2 < 0 ~ 3r/4. 
4(a- c) 

The right hand side of equation (20) can be rearranged such that 

QR = (27PbK )0.5/cos(0) 
tr; ~ !J 

= -cosO/cos(:) (21) 

By employing the identity relation, cosO = 4cos3(:) - 3COS(:), we 

simplify equation (23) to become 

Q 
~ = 3 - 4cos2(~) 

r 
(22) 

Since the range of 0/3 is such that r/6 < 0/3 ~ r/4, the range of cos(~) 
Q 

is such that (1/2)°·5 ~ cos(g) < (3/4)°·5. Hence, the range of ~ is 
r 

given by 

Q ° < ~ ~ 1 
r 

The above inequalities imply that the optimal Qr under profit 

(23) 

maximization is always greater than or equal to the optimal QR under 

ROIl maximization. 
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Analogous to the above analysis, we can obtain the relative bounds 

of the optimal demands, prices, and cycle lengths. The results, which 

can be easily verified, are summarized in the following proposition. 

Proposition 1. Given the optimal order quantities, demands, prices, and 

cycle lengths shovn in equations (5) - (8) and (14) - (17), the 

following relative bounds hold. 

Q 
a) 0 < R < 1 lC-,. 

d 
b) ~ < ! ~ 1 ,. 

) 1 < PR < 1 a- c 
c - P,. + 3(a+c) 

T 
d) 0 < I- ~ 1 ,. 

Part b) of Proposition 1 states that dr is greater than or equal to dR' 

but d,. is strictly less than ~R' Part c) states that Pr is less than or 

equal to PR' but PR is strictly less than (1 + 3(~~c)P,.. Finally, Part 

d) states that TR is less than or equal to T,.. cf. the analysis in [5] 

which focuses more on the relative ordering of the optimal decisions and 

less on the relative bounds of the optimal decisions for logarithmic 

concave demand functions (which include linear demand functions). 

Elasticity inalysis 

Let us first investigate the relationship among price, average 

ordering cost, and price elasticity of demand under profit maximization. 



From equation (2), 

Pr - Pdr = Pr(l - Pdr/Pr) 

= K/Q r + C 
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(24) 

The price elasticity of demand at the optimality, fr = -Pr/(Pdr ) = 1 -

(3a/(2(a-c)cos2(~») vhere cosO = _(~)0.5 for r/2 < 9 ~ 3r/4. 
4(a-c) 

Hence, equation (24) becomes Pr (l + l/f r) = K/Qr + c; i.e., 

Pr = (fr/(fr + l»(K/Qr + c) (25) 

Equation (25) states that the optimal price gets close to the average 

ordering cost as the demand becomes more elastic vith respect to the 

price. On the other hand, the optimal price gets farther avay from the 

average ordering cost as the demand becomes more inelastic vith respect 

to the price. If ve viev the term fr/(fr + 1) as the markup rate, we can 

clearly see that as the demand becomes more inelastic (elastic), the 

markup rate increases (decreases). 

Analogous to the profit maximization case above, from equation 

(12), we obtain the relationship among price, average ordering cost, and 

price elasticity of demand under ROIl maximization as follows. 

(26) 

The economic interpretations of equation (26) are similar to those of 

equation (25) where fR = (c + 2a)/(c - a). The relative bounds on the 

magnitudes of fr and fR can be shown to be: 

(27) 
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Equation (27) states that the demand at the maximum ROIl is more elastic 

than the demand at the maximum profit. This implies that the optimal 

markup rate for the ROIl maximization will be lower than the optimal 

markup rate for the profit maximization. It can be easily verified that 

the relative bounds of the magnitudes of the markup rate under ROIl 

maximization, HR, and the markup rate under profit maximization, 

as follows. 
H 

1 < r < (a+cl~a+2c) - Hi 2c a+c) 

M , are 
r 

(28) 

The fact that the optimal markup rate under profit maximization is 

greater than or equal to the optimal markup rate under ROIl maximization 

does not contradict the fact that the optimal price under profit 

maximization is less than or equal to the optimal price under ROIl 

maximization (See Part c) of Proposition 1). The reason is that the 

corresponding average ordering cost at the maximum profit is less than 

or equal to the corresponding average ordering cost at the maximum ROIl 

(See equations (25) and (26». 

Sensitivity Analysis ~ith respect to the Choice of the Objective 

In this subsection, we will first analyze the impact on the 

difference between the optimal order quantities Qr and QR when the 

inventory holding cost per unit per unit time h changes. From equations 

(6) and (15), the difference between Qr and QR' ~Q = Qr - QR' is given 

by 
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~Q = (4~M-C)0.5cOS(~) - 3K/(a - c) (29) 

for ~/2 < 0 ~ 3~/4 and cosO = _(27PhK 3)°·5 
4(a- c) 

It can be shown that when h = 2(a-c)3/(27P!) (the highest inventory 

holding cost per unit per unit time under which the seller is willing to 

operate; when h is equal to this upper bound, the corresponding optimal 

profit is zero), ~Q = 0. It also can be shown that ~Q < ° for ° < h ~ 
2(a-c)3/(27PK). i.e., 6Q is a monotone decreasing function in h and 6Ql h 

= 2(a-c)3/(27PK) = 0. These imply that as h increases, the difference 

between the optimal order quantity under profit maximization and the 

optimal order quantity under ROIl maximization gets smaller. 

Furthermore, when h = 2(a-c)3/(27P!) , the optimal order quantity under 

profit maximization is identical to the optimal order quantity under 

ROIl maximization. 

Analogous to the above analysis, we can analyze the impact on the 

difference between the optimal demands d~ and dR' prices p~ and PR' and 

cycle lengths T~ and TR when the inventory holding cost per unit per 

unit time h changes. The results, which can be easily verified, are 

summarized in the following proposition. 

Proposition 2. 

Given the optimal order quantities, demands, prices, and cycle 

lengths shown in equations (5) - (8) and (14) - (17), for ° < h ~ 

2(a-c)3/(27PK) , the following statements hold. 

a) The differences between Q~ and QR' d~ and dR' p~ and PR' and T~ 
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and TR all monotonically decrease as h increases. 

b) When h = 2(a-c)3/(27PK), the optimal decisions under profit 

maximization and the optimal decisions under ROIl maximization are 

identical. 

The above proposition implies that as h approaches its upper bound 

of h = 2(a-c)3/(27PK), the optimal decisions on the order quantity, 

demand, price, and cycle length become less sensitive to the seller's 

choice of the objective between profit maximization and ROIl 

maximization. 

We now proceed to analyze the impact on the difference between the 

optimal order quantities Qr and QR when the set up cost K changes. Once 

again, 6Q (= Qr - QR) is given by equation (29). It can be shown that 

when K = 2(a-c)3/(27Ph) (the highest setup cost under which the seller 

is willing to operate; when K is equal to this upper bound, the 

corresponding optimal profit is zero), 6Q = O. It also can be shown that 

as K approaches zero, so do Qr and QR (i.e., 6Q also approaches zero). 

Finally, it can be shown that, for 0 < K ~ 2(a-c)3/(27Ph), 6Q is a 

concave function in K and has its maximum value with respect to K when K 

~ O.1298(4(a-c)3)/(27Ph). These imply that as K increases or decreases 

from the critical value of K ~ O.1298(4(a-c)3)/(27Ph), the difference 

between the optimal order quantity under profit maximization and the 

optimal order quantity under ROIl maximization gets smaller. 

Furthermore, the optimal order quantity under profit maximization 

approaches the optimal order quantity under ROIl maximization when K 

approaches zero. Finally, when K = 2(a-c)3/(27Ph), the optimal order 
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quantity under profit maximization is identical to the optimal order 

quantity under ROIl maximization. 

Analogous to the above analysis, we can analyze the impact on the 

difference between the optimal demands dr and dR' prices Pr and PR' and 

cycle lengths Tr and Ta when the setup cost K changes. The results, 

which can be easily verified, are summarized in the following 

proposition. 

Proposition 3. 

Given the optimal order quantities, demands, prices, and cycle 

lengths shown in equations (5) - (8) and (14) - (17), for 0 < K ~ 

2(a-c)3/(27pb), the following statements hold. 

a) The differences between dr and da as well as Pr and PR 

monotonically decrease as K increases. 

b) The difference between Qr and Qa monotonically decreases as K 

increases or decreases from the critical value of K ~ 

O.1298(4(a-c)3)/(27pb). 

c) The difference between Tr and TR monotonically decreases as K 

increases or decreases from the critical value of K ~ 

O.1151(4(a-c)3)/(27pb). 

d) When K = 2(a-c)3/(27pb) , the optimal decisions under profit 

maximization and the optimal decisions under ROIl maximization are 

identical. 

e) When K approaches zero, the optimal order quantity and the cycle 

length under profit maximization approaches the optimal order quantity 
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and the cycle length under ROIl maximization. 

The above proposition implies that as K approaches its upper bound 

of K = 2(a-c)3/(27Ph), the optimal demand and price become less 

sensitive to the seller's choice of the objective between profit 

maximization and ROIl maximization. In addition, as K approaches its 

upper bound of K = 2(a-c)3/(27Ph) from the critical value of K ~ 

O.1298(4(a-c)3)/(27Ph) (K ~ O.1151(4(a-c)3)/(27Ph», the optimal order 

quantity (cycle length) becomes less sensitive to the the seller's 

choice of the objective between profit maximization and ROIl 

maximization. Also, as K approaches its lower bound of K = 0 from the 

critical value of K ~ O.1298(4(a-c)3)/(27Ph) (K ~ 

O.1151(4(a-c)3)/(27Ph», the optimal order quantity (cycle length) 

becomes less sensitive to the the seller's choice of the objective 

between profit maximization and ROIl maximization. 

Finally, by employing similar analysis techniques shown in the 

cases of changes in h and K, we can analyze the impact on the difference 

between the optimal order quantity Qr and QR, demands dr and dR' prices 

Pr and PR' and cycle lengths Tr and TR when the per unit ordering cost c 

changes. The results, which can be easily verified, are summarized in 

the following proposition. 

Proposition 4. 

Given the optimal order quantities, demands, prices, and cycle 

lengths shown in equations (5) - (8) and (14) - (17), for 0 < c ~ a -

(27PbK/2)1/3, the following statements hold. 
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a) The differences between Qr and QR' dr and dR' and Pr and PR 

monotonically decrease as c increases. 

b) The difference between Tr and TR monotonically decreases as c 

increases or decreases from the critical value of c ~ a -

(245.637PhK)1/3. 

c) Vhen c = a - (27PhK/2)1/3, the optimal decisions under profit 

maximization and the optimal decisions under ROIl maximization are 

identical. 

The above proposition implies that as c approaches its upper bound 

of c = a - (27PbK/2) 1/3 , the optimal order quantity, demand, and price 

become less sensitive to the seller's choice of the objective between 

profit maximization and ROIl maximization. In addition, as c approaches 

its upper bound c = a - (27PbK/2)1/3 from the critical value of c ~ a -

(245.637PhK)1/3, the optimal cycle length becomes less sensitive to the 

the seller's choice of the objective between profit maximization and 

ROIl maximization. 

From Propositions 2 through 4, we summarize that when any of the 

cost factors among h, K, and c is sufficiently high, the differences 

between the optimal decisions under profit maximization and the optimal 

decisions under ROIl maximization are negligible. In addition, we note, 

that as a cost factor such as h, K, or c approaches its upper bound, the 

profit levels rr and rR given by equations (9) and (18) approach zero. 

On the other hand, since hi < h (i.e., there is a positive opportunity 

cost; an assumption made in the Basic Models section), the ROIl levels 

Rr and Ra given by equations (10) and (19) approach h/c - h'/c, which is 
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a strictly positive quantity. Finally, we note that Part b) of 

Proposition 2, Part d) of Proposition 3, and Part c) of Proposition 4 

are consistent with the observation in [5] that, in the case of zero 

profit, "the profit and ROIl models are in agreement on the optimal 

price-inventory decisions." 
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ABSTRACT 

In this paper, we extend the existing work on the priority 

rationing of electric power by incorporating commonly shared random 

factors (such as temperature or humidity) associated with customers' 

valuation of electric power and the uncertainty associated with the 

estimation of the total amount of electric power demanded. Next, under 

the assumption that customers are risk-averse, we formulate an 

interruption insurance model to transfer the risk of customers to the 

risk-neutral electric power supplier. Finally, via numerical examples, 

we attempt to investigate the effects of errors due to the assumptions 

that customers' valuation and/or the total amount of electric power 

demanded are constant over time (when they actually vary due to random 

factors). 
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INTlODUCTION 

The classical theory of electric power priority rationing (see 

e.g., Vilson [5]) assumes that electric power customers can choose a 

level of service for each unit of load that will determine its rationing 

priority in case of shortage. The menu of service options presented to 

all (potential) customers may be characterized in terms of reliability 

levels or interruption compensation levels and the corresponding price 

levels. In either case, however, it is assumed that customers are aware 

of the power curtailment probability associated with each level of 

service and self-select the level of service that will maximize their 

expected net benefits. 

In classical priority rationing models (see e.g., Chao and Oren et 

ale [1]), in case of shortage, the supplier always curtail power in 

ascending order of interruption loss. In this way, the social loss due 

to power shortages is minimized and an economically efficient allocation 

of electric power is achieved. The main task of the supplier is to 

determine the socially optimal level of reliability for each priority 

class and the corresponding level of price to be charged, taking the 

customers' expected net benefit maximizing behavior into consideration. 

The cause of electric power shortages in the classical priority 

rationing models is assumed to be power generation or transmission 

failures. That is, the interruption losses occur due to physical failure 

on the supplier side. A more recent priority rationing model by Chao and 
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Wilson [2], however, incorporates an additional uncertainty on the 

supplier side. Namely, they mathematically characterize the uncertainty 

associated with the supplier's spot price of electric power and the 

corresponding amount of electric power demanded. 

In all these previous models of priority rationing, customers' 

valuation of a unit load of electric power is assumed to be constant 

over time. However, it is more reasonable to assume that random factors 

commonly shared by the customers such as temperature or humidity do 

affect the customers' valuation of a unit load. In addition, the total 

amount of electric power demanded can be viewed as stochastic because 

the supplier may not be able to accurately estimate it. In this project, 

we extend the existing work on the priority rationing by incorporating 

commonly shared random factors into the customers' valuation of electric 

power. Also, under the assumption that customers are risk-averse, we 

formulate an interruption insurance model to transfer the risk of 

customers to the risk-neutral electric power supplier. Finally, via 

numerical examples, we investigate the effects of estimation errors due 

to the assumptions that customers' valuation and/or the total amount of 

electric power demanded are constant (when they actually vary due to 

random factors). 
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PBlOBlTY BATIONINGjPBlCING IODEL 

Ve characterize the customer heterogeneity in terms of a customer's 

valuation index t E [0,1]. This index serves as the preference ranking 

of a customer relative to other customers in terms of preference for 

higher reliability of delivering electric power. In this report, larger 

t corresponds to higher reliability of delivering electric power; and 

vice versa. Hence, t=O defines the lowest ranked customer valuation and 

t=l the highest. The contingency demand function is characterized by 

D(t,[), the total amount of electric power demanded in a given period 

with customer valuation t or higher under contingency F . The vector F = 
N N 

(F1, F2, F3,···,Fk) denotes a random vector whose elements correspond to 

estimation factors that affect the customers' valuation distribution of 

demand. According to our definition of the customer valuation index t, 

we assume that there is a corresponding utility function U(t,!) for all 

customer valuation index t under contingency!. The vector! = (A1, A2, 

A3'···' Ah) denotes a random vector whose elements corresponding to 

factors that affect the customers' valuation of utility. Moreover, the 

contingency supply function is characterized by S(~), the total amount 

of electric power supplied in a given period under contingency B. The 
N 

vector ~ = (B1, B2, B3,···,Bj ) denotes a random vector whose elements 

correspond to factors that affect the total amount of electric power 

supplied in a given period. Ve assume that the sample space 1 for [ (a 

for !, ~ for ~) and the corresponding joint probability distributions 
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Prob{!} (Prob{~}, Prob{b}) over all possible realizations! f 7 (~ f a, 

b f P respectively) are known to the electric power supplier. Ve 

generally assume that random factors A, F, and B are independent (cf. 

the second numerical example in the illustrative numerical example 

section). Also the electric power supplier is assumed to have complete 

knowledge of customers' valuation distribution D(t, [) and the form of 

the utility function U(t,!), but he can not identify the particular type 

of a customer. Just as in the classical theory of priority rationing of 

electric power, we will assume that only one interruption may occur per 

period and the duration of an interruption is constant. 

In order to implement this allocation mechanism, discretization 

schemes for the continuous customer ranks are necessary. For the 

discretization of customer valuation index t, we employ the concept of 

customer blocks, or classes. Specifically, we will assume there are M 

customer blocks and customer block i consists of customer valuation 

index t f [t i , t i- 1] where i = 1,2,3,···, I and to = 1. The customers 

of type t., i = 0, 1,2,···1 will be referred to as boundary customers. 
1 

The corresponding quantity demanded for customer block i is given by 

D(t.,F) - D(t. 1,F) under contingency F while the boundary customer t.'s 
1 N 1- N N 1 

utility under contingency! will be U(t i , !). Throughout the rest of 

this report, for notational simplification, we will denote F as F, A as 
N N 

A, and B as B. 
N 

Ve start the priority rationing for electric power as follows 

under all possible contingencies, the electric power supplier will 

deliver electric power to the highest customer block first, until the 
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demand for the first class is met. Only then does the delivery to the 

second class customers start, and only after the second class, the 

delivery for the third class, and son on. This rationing scheme 

terminates when either the supply of electric power is exhausted or when 

all demands are satisfied. 

While the priority rationing rule determines ex-post (i.e., after 

the electric power generation) the relationship between the priority 

class and the quantity supplied and demanded, customers' ex-ante (i.e., 

before the electric power generation) purchase decision will be based on 

a reliability forecast of that relation. Such a forecast will specify 

r., the delivery reliability of electric power to a customer in priority 
1 

class i averaged over all possible contingencies. This forecast must 

take into consideration both the rationing rule and the anticipated 

response by customers. Such response will obviously depend on the price 

corresponding to each class, which is controlled by the electric power 

supplier. 

Ve will now proceed to express the priority rationing rules and 

reliability level r. under the priority scheme. For this purpose, we 
1 

introduce variables denoting the amount of electric power available and 

the amount of shortage/surplus under each contingency f E 7 and b E P 
as follows 

Sb electric power supply given B = b 

Qifb remaining demand in class i after using up supply Sb' 

given F = f and B = b 
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Rifb remaining supply after delivering class 1, given F = f and 

B = b 

cifb = (D(ti,f) - D(ti_1,f)) - Qifb : actual amount of electric 

power delivered to class i, given F = f and B = b 

The demand for each priority class, given F = f, is given by 

D(ti,f) - D(t i_1,f) = Dif - Di-1f for i = 1,2, 3,"', M where DOf = O. 

Consequently, we can express the supply and demand relations with 

respect to each class under the priority pricing recursively as follows 

Qifb = Max[(Dif - Di- tf ) - Ri- ifb , 0] 

Rifb = Ri- tfb - [(Dif - Di_tf) - Qifb] 

i = 1, 2, 3"", M, for all b f P and f f 7 where ROfb = Sb' to = 
1, and D Of = O. 

According to the priority pricing rule described above, under any 

given contingency b, the conditional reliability rib is : 

cifb 
r· b = E Prob{f} D D 

1 ff7 if - i-if 

From averaging rib over all possible contingencies, we have 

[ 
C· f b ] r. = E Prob{b} E Prob{f} DID 

1 bfP ff7 if - i-lf 
Under the proposed scheme, the producer's price schedule will 

consist of priority prices and the corresponding forecast of delivery 

reliability for the electric power as shown in Table 1. 

ie now turn to modeling the customers decisions. We assume that 

customers are expected value decision makers and the identical price 

table is provided to all potential customers. Then, each customer t's 
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expected utility and net expected utility when he orders a unit of 

priority class i are given by, 

EUi(t) = r· ~ Prob{a} U(t.,A) 
1 afA 1 

and NEUi(t) = r. ~ Prob{a} U(t.,A) - p .. 
1 afA 1 1 

Class Price Delivery Reliability of Electric Power 

1 P1 r1 
2 P2 r2 

· · · · · · · · · · · · 
M PM r m 

Table 1. Price Table of Priority Pricing for Electric Power 

The optimal customers' behavior or self-selection is simple to choose 
A 

priority level i, where NEU: = M~ NEUi(t). Ve represent the market 
1 1 

segmentation of all customers in terms of the following boundary 

customers relations, given appropriate prices, P1' P2' P3'···' PM· 

For i = 1, 2, 3,···, M-1 

r. ~ Prob{a} U(t1·,A) -
1 afA 

rM ~ Prob{a} U(tM,A) -
afA 

Pl· = r. 1 ~ Prob{a} U(t.,A) - p. 1 1+ afA 1 1+ 

PM = o. 

The above relations state that the boundary customer t., i = 1,2, 
1 

3,···, M-1, is indifferent between purchasing priority class i and i+l 

and the last boundary customer tM is indifferent between subscribing to 
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priority level M or withdrawing from the market. Also it can be easily 

verified that all non-boundary customers of customer valuation index t E 

[ti' t i_1] will purchase priority class i, i = 1,2,3"", M. 

For the basic model described thus far, the corresponding formulae 

for the expected profit, expected customer surplus, and expected total 

surplus are obtained as follows. 

Expected Profit : 
I 

E7 = ~ Prob{f}[.~ Pi(D(ti,f) - D(ti_1,f))] 
ff7 1=1 

Expected Customer Surplus : 

ECS = ~ prob{f}[ ~ prob{a}[.~ Jti riU(t,A)dD(t,F)]] 
ff7 afA 1=1 t i_1 

- T 

Expected Total Surplus : 

ETS = ~ prob{f}[ ~ prOb{a}[.~ Jti riU(t,A)dD(t,F)]] 
ff7 aEA 1=1 t i_1 

So far, the entire formulation for the electric power expected 

total surplus maximization problem is shown as follows. 

The Formulation for the Electric Power 

Expected Total Surplus Maximization Problem 

Maximize ETS = E prOb{f}[ E prob{a}[.~ Jti riU(t,A)dD(t,F)l] 
ff7 afA 1=1 t. 1 

1-

subject to : 

1 = to ~ t1 ~ t2 ~ ... ~ tl 

P1 ~ P2 ~ P3 ~ ....... ~ PI 
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all variables ~ 0 

Boundary Customers Relations 

r i ~ Prob{a} U(t.,A) -
afA 1 

Pi = ri+l ~ Prob{a} U(t.,A) - P1·+l 
afA 1 

rM ~ Prob{a} U(t.,A) -
afA 

PI = O. 

Priority Rationing Relations : 

Qifb = lax[(Dif - Di - lf) - Ri - lfb , 0] 

Rifb = Ri- lfb - [(Dif - Di - lf ) - Qifb] 

i = 1,2, 3"", I, for all b f P and f f 7 

where ROfb = Sb' to = 1, and DOf = O. 

Reliability of Delivery Relations : 

r. = ~ Prob{b} [~ Prob{f} D Cif~ ] 
1 bfP ff7 if - i-lf 
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INTEIIUPTIOlf IlfSWlfCE IODEL 

In the literature of electric power demand management, there have 

been numerous articles on insurance for power interruption. In this 

section, we will explore a way to implement the insurance under the 

assumptions of random factors (e.g., temperature or humidity) in 

customers' valuation and the uncertainty of the total amount of electric 

power demanded. Customers are assumed to be risk averse expected utility 

maximizers (see e.g., Varian [4] or Oren and Doucet [3]) and the 

electric power supplier is assumed to be risk-neutral. To quote from 

Vilson [5], "If customers are risk averse, then full efficiency requires 

that risks are shared efficiently among the customers and the firm. In 

important application such as power, a state enterprise or public 

utility is much less risk averse than each customer. Consequently, we 

investigate the case that the firm or a private underwriter offers 

compensatory insurance against the risk of loss from service 

interruptions, and does so at actuarially fair rates". An identical 

premium price schedule is offered to all potential customers. The 

proposed premium price schedule consists of a service charge s paid only 

when electric power is delivered, an insurance premium Gi , a 

compensation level K. and the corresponding forecast of delivery 
l. 

reliability r i of electric power. The proposed tariff is shown as table 

2. 

Under this premium price schedule, a consumer t selecting class i 
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will receive a net benefit of EUi(t) - s - Gi with probability r i and Ki 

- Gi with probability 1 - rio To quote from Varian [4], "if the customer 

is a risk averse expected utility maximizer, and if he is offered fair 

insurance against a loss, then he will optimally choose to fully 

insure". Therefore, for a risk-averse customer, he will gladly choose 

full insurance to avoid risk. The full insurance relation is shown as 

follows. 

EU.(t) - s - G. = I. - G
1
· for 1 = 1,2,3,····1. 

111 

PrIce 
Class Reliability ServIce charge PremIum 

1 r1 s G1 
2 r2 for all G2 

· · priority · · · · · · classes · · · · 
I rl GI 

Compensation 

II 

II 

II 

Table 2. Tariff for interruption insurance model 

Under the proposed interruption insurance scheme, the boundary 

customer relations should be modified as follows. 

r. [~Prob{a} U(t.,A) - s] + (1 - r.) I. - G. 
1 A 1 111 af 

= r· 1[ ~ Prob{a} U(t.,A) - s] + (1 - r. 1) I. 1 - G. 1 
1+ A 1 1+ 1+ 1+ af 

rl [ ~ Prob{a} U(tl,A) - s ] + (1 - rl ) II - GI = O. 
afA 

The corresponding formulae for the expected profit, expected 

customer surplus, and expected total surplus are obtained as follows. 
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Expected Profit : 
I 

Er = E Prob{f}[ E (r.s+G.)(D(t.,f) - D(t. 1,f»] 
f . 1 1 1 1 1-q 1= 

I 
- E Prob{f}E.E (l-ri)li(D(ti'f) - D(t·_ 1,f»] 

fE1 1=1 1 

Expected Customer Surplus : 

ECS = E prob{f}[ E prob{a}[.~ Jti [riU(t,A)+(l-ri)KildD(t,F)l] 
fE1 at! 1=1 t. 1 I-

I 
- E Prob{f}[.E (ris+Gi)(D(ti'f) - D(t i_1,f»] 

fq 1=1 
Expected Total Surplus : 

ETS = E prob{f}[ E prob{a}[.~ Jti riU(t,!)dD(t,F)]] 
ff1 at! 1=1 t. 1 I-

SO far, the entire formulation for the interruption insurance model 

is shown as follows. 

The Formulation for the Interruption Insurance Model 

Maximize ETS = E Prob{f}[ E prob{a}[.~ Jti riU(t,A)dD(t,F)l] 
ff1 at! 1=1 t. 1 

subject to : 

1 = to ~ tl ~ t2 ~ .•. ~ tl 

G1 ~ G2 ~ G3 ~ ....... ~ G1 

all variables ~ 0 

Full Insurance Relations : 

1-

EUi(t) - s - Gi = Ii - Gi for i = 1,2,3,·· ··M. 
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Boundary Customers Relations 

r.[ ~ Prob{a} U(t.,A) - s] + (1 - r.) I. - G. 
1 afA 1 1 1 1 

= r i +1[ ~ Prob{a} U(ti,A) - s] + (1 - r i +1) li+l - Gi+1 aEA 
rl [ ~ Prob{a} U(tl,A) - s ] + (1 - r.) II - GI = o. 

afA 
Priority Rationing Relations : 

Qifb = lax[(Dif - Di- 1f) - Ri- 1fb , 0] 

Rifb = Ri- 1fb - [(Dif - Di- 1f) - Qifb] 

i = 1, 2, 3,···, I, for all b f P and f f 7 

where ROfb = Sb' to = 1, and DOf = o. 

Reliability of Delivery Relations : 

r. = ~ Prob{b} [~ Prob{f} D cifg ] 
1 bfP fE7 if - i-1f 

By comparing the interruption insurance model in this section and 

the priority rationing/pricing model in the previous section, we have 

the following observations. 

1) If we set the compensation levels for all classes equal to zero 

(e.g., the electric power supplier will not offer the interruption 

insurance service), then the interruption insurance model will be 

reduced to the priority rationing/pricing model and the relation of the 

price in the priority rationing/pricing model and service charge and 

insurance premium in the interruption insurance is p. = r·s + G .. 
1 1 1 

2) If the service charge and the compensation level is restricted to be 

zero, then there is no difference between priority/pricing model and 

interruption insurance model, and the price Pi of priority/pricing model 

equals to the insurance premium Gi of interruption insurance model. 
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ILLUSTUTIVE N1JIElICAL EImLES 

In this section, we will discuss three numerical examples. In the 

first (second) example, we will investigate the effects of erroneously 

assuming that the demand (the customers' valuation) for the electric 

power is constant over time when it actually is not. Finally, in the 

third example, we illustrate how the interruption insurance scheme can 

be implemented under the assumptions of random factors (e.g., 

temperature or humidity) in customers' valuation and the uncertainty of 

the total amount of electric power demanded. 

Different demand function assumptions 

In this subsection, we discuss two numerical examples under 

different demand function assumptions. For the first model, we assume 

that the demand function D(t,E) contains random factors E. For the 

second model, we assume that the demand function is constant. 

Specifically, in order to investigate the effects of erroneously 

assuming that the demand for the electric power is constant over time, 

we will assume that the demand function of the second model is the 

expected value of the first model.i.e., ED(t) = ~ Prob{f} D(t,E). The 
fq 

relevant utility, demand, and supply functions are assumed to be as 

follows: 

U(t,A) = t 1/A if A=l with probability = 0.25 

if A=2 with probability = 0.75 
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F D(t,F) = 1-t if F=1 with probability = 0.25 

if F=2 with probability = 0.75 

S(B) = 0.9 - 0.lB2 if B=l with probability = 0.5 

if B=2 with probability = 0.5 

where t E [0,1]. 

Ve also assume that the number of priority class. = 2. Ve solve this 

problem employing the formulation shown in the priority 

rationing/pricing model section. The resulting optimal solution is given 

by Table 3. 

The resulting expected market share (i.e., expected demand of 

electric power), expected profit, expected consumer surplus, and 

expected total surplus from classes 1 and 2 are summarized in table 4. 

Let us now suppose that the demand for electric power is assumed to 

be constant over time and the corresponding demand function is given by 

D(t) = 1 - -i- t - -i- to. 5 (i.e., the expected demand function of the 

first model). Under this assumption, the resulting optimal solution is 

given by Table 5. 

The corresponding expected market share, expected profit, expected 

consumer surplus, and expected total surplus from classes 1 and 2 are 

summarized in table 6. 
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Class Price Reliability of Delivering Electric Power 

1 P1 == 0.516 r1 == 0.875 

2 P2 == 0.083 r2 == 0.214 

Table 3. Price Table under demand function with random factors 

Class EMS Er ECS ETS 

1 0.687 0.354 0.157 0.511 

2 0.232 0.019 0.008 0.027 

Table 4. Welfare outcomes with demand uncertainty 

(EMS denotes the expected market share) 

Class Price Reliability of Delivering Electric Power 

1 P1 == 0.666 r1 == 1.000 

2 P2 == 0.277 r2 == 0.500 

Table 5. Price Table under expected demand function 

Class EMS Er ECS ETS 

1 0.500 0.333 0.116 0.449 

2 0.300 0.083 0.019 0.102 

Table 6. Welfare outcomes with constant demand function 
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From Tables 3-6, we observe the followings: 

1) The corresponding levels of expected total surplus under these two 

models are 0.538 and 0.551 respectively. Hence, the second model 

overestimates the level of expected total surplus by 2.417.. 

2) The prices as well as the corresponding reliability levels for 

priority classes 1 and 2 have increased in the second model. 

3) The expected market shares, the expected profit levels, the expected 

customer surplus levels as well as the expected total surplus levels 

for priority class 1 (priority class 2) in the first model are larger 

(smaller) than those in the second model. 

As shown by 1), 2), and 3), the constant demand function assumption 

may substantially distort the critical economic quantities such as the 

levels of reliability, the corresponding prices, and the total surplus 

levels. 

Different utility function assumptions 

In this subsection, we investigate two numerical examples under 

different utility function assumptions. In this particular case, we will 

assume that F is a function of A. Specifically, F = A. For the first 

model, we assume that the utility function U(t,!) contains commonly 

shared random factors A. For the second model, in order to investigate 
N 

the effects of erroneously assuming that the customers' valuation is 

constant over time, we will take the expectation of utility function of 

the first model over all contingency!, i.e., EU(t) = ~AProb{a} U(t,!), 
aE 
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as the (constant) utility function. The relevant utility, demand, and 

supply functions are assumed to be as follows : 

U(t,A) = t x exp(A) if A=l with probability = 0.25 

if A=10 with probability = 0.75 
A D(t,A) = 1-t if A=l with probability = 0.25 

if A=10 with probability = 0.75 
2 S(B) = 0.9 - O.lB if B=l with probability = 0.5 

if B=2 with probability = 0.5 

where t E [0,1]. 

Ve also assume that the number of priority class H = 2. Ve solve this 

problem employing the formulation shown in the priority 

rationing/pricing model section. The resulting optimal solution is given 

by Table 7. 

The resulting expected market share (i.e., expected demand of 

electric power), expected profit, expected consumer surplus, and 

expected total surplus from classes 1 and 2 are summarized in table 8. 

Let us now suppose that the customers' valuation is assumed to be 

constant over time and the corresponding utility function is given by 

U(t) = ~ t x exp(l) + -l- t x exp(10) (i.e., the expected utility 

function of the first model). Under this assumption, the resulting 

optimal solution is given by Table 9. 

The corresponding expected market share, expected profit, expected 

consumer surplus, and expected total surplus from classes 1 and 2 are 

summarized in table 10. 
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Class Price Reliability of Delivering Electric Power 

1 P1 = 10635.2 r1 = 0.859 

2 P2 = 2065.07 r2 = 0.250 

Table 7. Price Table under utility function with random factors 

Class EMS Er ECS ETS 

1 0.637 6776.68 3932.03 10708.71 

2 0.237 489.632 147.848 637.48 

Table 8. Velfare outcomes with customers' valuation uncertainty 

(EMS denotes the expected market share) 

Class Price Reliability of Delivering Electric Power 

1 P1 = 5476.36 r1 = 0.738 

2 P2 = 413.013 r2 = 0.125 

Table 9. Price Table under expected utility function 

Class EMS Er ECS ETS 

1 0.874 4786.34 4665.445 9451. 78 

2 0.076 31.389 23.50645 54.895 

Table 10. Velfare outcomes with constant customers' valuation 
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From Tables 7-10, ~e observe the follo~ing: 

1) The corresponding levels of expected total surplus under these t~o 

models are 11346.192 and 9506.4 respectively. Hence, the second model 

underestimates the level of expected total surplus by 19.357.. 

2) The prices as ~ell as the corresponding reliability levels for 

priority classes 1 and 2 have decreased in the second model. 

3) The expected market shares as ~ell as the expected customers' surplus 

for priority class 1 (priority class 2) in the first model are 

smaller (larger) than those in the second model. 

4) The expected profit levels as ~ell as the expected total surplus 

levels for priority class 1 and 2 have decreased in the second model. 

As sho~ by 1),2),3), and 4), the constant customers' valuation 

assumption may substantially distort the critical economic quantities 

such as the levels of reliability, the corresponding prices, and the 

total surplus levels. 

1 Numerical Example for Interruption Insurance lodel 

In this subsection, ~e employ the relevant utility, demand, and 

supply functions from the first set of numerical examples and consider 

both demand function and utility function ~ith randomness. Ve solve this 

problem by employing the formulation sho~n in the interruption insurance 

model. The resulting optimal solution is given by Table 11. 

The corresponding expected market share, expected profit, expected 

consumer surplus, and expected total surplus from classes 1 and 2 are 

summarized in table 12 . 
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Prlce 
Class Reliability :SerVIce charge PremIum Compensation 

1 r1= 0.875 G1= 0.297 11= 0.355 
s = 0.300 

2 r2= 0.214 G2= 0.085 12= 0.085 

Table 11. Price table for interruption insurance model 

Class EMS Er ECS ETS 

1 0.687 0.354 0.157 0.511 

2 0.232 0.019 0.008 0.027 

Table 12. Welfare outcomes for interruption insurance model 
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CONCLUDING BEIABIS 

In this paper, we extended the existing work on the priority 

rationing by incorporating the commonly shared random factors into the 

customers' valuation of electric power and the estimation uncertainty 

into the total amount of electric power demanded. loreover,under the 

assumption that customers are risk-averse, we formulate an interruption 

insurance model to transfer the risk of customers to the risk-neutral 

electric power supplier. We also attempted to investigate the effects of 

errors due to the assumptions that customers' valuation and/ or the 

total amount of electric power demanded are constant over time (when 

they actually vary due to random factors) via numerical examples. 

The model presented in this paper as well as the previous models of 

priority rationing can be further improved by considering uncertainty 

associated with customers' quantity demanded. In contrast to the demand 

uncertainty due to the supplier's inability to estimate the correct 

quantity demanded, there is additional variations in the total quantity 

demanded due to customers' changes in the optimal quantity of electric 

power to consume. How these additional variations will affect the levels 

of reliability, the corresponding prices, and the level of total surplus 

is an important issue for further research. 
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GENERAL CONCLUSION 

In this study, we first extended lin (1992b) by designing an 

alternative model under the Bertrand behavioral assumption and by 

performing sensitivity analysis on both the Cournot and Bertrand models. 

Interesting economic implications regarding critical elements of EOQ 

models such as the setup and inventory holding costs as well as the 

critical elements of microeconomic market theory such as the market 

price and the number of competing producers have been derived from the 

equilibrium conditions and subsequent sensitivity analyses. Next, we 

allowed the options of investing in reducing the setup and inventory 

holding costs are available to the producers and presented a unique 

insight as to why several Japanese and American producers are striving 

to reduce the setup costs under ever increasing competition. 

Specifically, it has shown that, for a profit maximizing producer, as 

the number of competing producers increases, his optimal strategy 

dictates that he reduce his setup and inventory holding costs. 

The EOQ model developed in the first two papers are applicable for 

broad classes of convex cost function and concave inverse demand 

function. Our models relate to general practices since numerous 

industries and firms apply EOQ based decision making under competition. 

There are several possible extensions that will further improve the 
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relevance of our models to general practices. They include incorporation 

of more sophisticated features such as quantity discount price 

schedules, finite production rates, shortages, delivery lags, and 

promotional (e.g., advertising) effects as well as stochastic demand 

rates. From the perspective of Zero Inventory Philosophy, it would be of 

interest to study the effects of competition on process quality 

improvement and effective capacity in conjunction with the setup cost 

reduction (see e.g., Porteus(1986) and Spence and Porteus(1987)). 

From the perspective of game theory, both Cournot model shown in 

the first two papers and Bertrand model shown in the first paper can be 

considered as only an initial step toward better understanding of 

competitive inventory policies. It is our hope that more sophisticated 

equilibrium concepts of game theory (e.g., subgame perfect equilibrium 

for sequential decisions) will be exploited in the future research on 

the competitive inventory policies. 

In the third paper, we have shown how to formulate the profit 

maximization problem for intermediary firms utilizing the special 

structure of the firms' environments. The optimal selling quantity and 

purchasing price are derived in terms of fixed and variable selling 

costs, supply proportionality constant, annual holding cost, selling 

price, inspection cost, and defect-rate. 

The observation that the price between producers and intermediary 

firms is determined by intermediary firms. From the aspects of 

producers, in order to operate efficiently, they must take the relation 

between the supply rate of inputs and their corresponding prices into 
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account. For such firms, the model in the third paper can be a basis for 

further research. 

In the fourth paper, for a single seller, we compared and 

contrasted the optimal inventory and pricing policies under profit 

maximization vs. ROIl maximization when demand is linear in price. 

Specifically, we have shown that when a cost factor such as the setup 

cost, inventory holding cost per unit per unit time, or per unit 

ordering cost after the setup is sufficiently high, the choice of the 

objective between profit maximization and ROIl maximization is 

inconsequential to the seller in so far as his optimal decisions are 

concerned. 

In the fifth paper, we extended the existing work on the priority 

rationing by incorporating the commonly shared random factors into the 

customers' valuation of electric power and the estimation uncertainty 

into the total amount of electric power demanded. Moreover, under the 

assumption that customers are risk-averse, we formulate an interruption 

insurance model to transfer the risk of customers to the risk-neutral 

electric power supplier. 
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