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GENERAL INTRODUCTION

General Background and Objective

In this thesis, we study how lot-size producers and electric power
suppliers determine optimal prices and other critical economic
quantities (e.g., the order quantities for the lot-size producers and

.the allocation priorities for the electric power suppliers). Recently,
the traditional economic order quantity model has been extended to the
case of monopolistic and oligopolistic lot-size producers under profit
maximization (see e.g., Min (1992a)). In this thesis, we further extend
the general framework of the monopolistic and oligopolistic lot-size
models by considering various aspects of model environments (e.g.,
competitive behavioral assumptions (Cournot vs. Bertrand), reduction of
setup and inventory holding costs, purchasing and sales strategies, and
performance criteria ( profit maximization vs. ROII (return on inventory
investment) maximization). On the other hand, for electric power
suppliers, we formulate an expected total surplus (i.e., profit plus
customers’ net benefits) maximization model as a nonlinear programming
problem when the amount of electric power demanded and its valuation to
customers as well as the amount of electric power supplied are random.

In addition, under the assumption that customers are risk-averse, we



2
formulate an interruption insurance model to transfer the risk of
customers to the risk-neutral electric power supplier. The effects of
errors due to the assumptions that customers’ valuation and/or the
amount of electric power demanded are constant over time are
investigated via numerical examples. A brief introduction of background
and motivation for our study (first for the lot-size producers, then for
the electric power suppliers) is as follows.

Keeping an inventory to meet potential demand in the future is
prevalent in most businesses. Manufacturers, wholesalers, and retailers
general have a stock of goods on hand. How to determine the "inventory
policies" (i.e., when and how much to produce as well we how much to
charge per unit) becomes a critical issue for lot-size producers. A
simple model representing production- inventory situation is given by the
well-known traditional economic order quantity (E0Q) model (see e.g,
Hillier and Lieberman (1990)).

The traditional E0Q model formulates the production- inventory
system by considering only cost factors consisting of a fixed setup
cost, a variable unit production cost, and an inventory holding cost. It
should be pointed out, however, that the inventory policies of numerous
businesses may depend on its relations to other business policies
regarding pricing and sales. In this thesis, we attempt to integrate the
policies of inventory and pricing/sales so as to maximize the policy
maker’s profit. In a recent paper by Min (1992a), it is assumed that the
demand of customers depends on the price a lot-size producer charges and

a profit maximizing model of inventory and quantity discount pricing
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policies for a monopolist is presented. Also, Min (1992b) extended the
profit maximizing model to the case of a symmetric oligopoly, under
Cournot behavioral assumptions, consisting of lot-size producers of a
single homogeneous product who compete with each other for the same
potential buyers. In this thesis, we extend the general frameworks of
Min (1992a, 1992b) to different environments. First, we compare and
contrast the economic implications of equilibria under Cournot and
Bertrand behavioral assumptions and perform sensitivity analysis on the
decision variables such as market price and order quantity with respect
to the parameters such as number of competing lot-size producers and the
levels of setup and inventory holding costs. This competitive inventory
and pricing model forms the basis for an economic decision model of
setup cost and inventory holding cost reductions. The setup and
inventory holding cost reductions model demonstrates that the
competition among lot- size producers induces setup and inventory holding
cost reductions. Also, by incorporating the special structure concerning
the purchasing and sales activities of intermediary firms and by
modifying the traditional EOQ model accordingly, we will show how to
formulate the profit maximization problem for the intermediary firms.
Finally, for a single seller, we compare and contrast the optimal
inventory and pricing policies under profit maximization vs. ROII
(return on inventory investment) maximization when demand is linear in
price. By studying the optimality conditions and the corresponding
closed-form optimal solutions, several interesting economic implications

are derived.
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For an electric power supplier, we assume that the electric power
supply is stochastic and the objective of supplier is to maximize the
total surplus (i.e., profit plus costomers’ net benefits). A critical
issue of such an electric power supplier is how to allocate the scarce
electric power in case of potential shortages. In our model, we employ
an allocation scheme called the priority rationing which allocates the
scarce power to the higher valued consumption units via pricing of the
allocation priorities. Moreover, we improve this allocation scheme by
incorporating the commonly shared random factors into the customers’
valuation of electric power and the estimation uncertainty into the
total amount of electric power demanded. In addition, under the
assumption that customers are risk-averse, we formulate an interruption
insurance model to tramsfer the risk of customers to the risk-neutral

electric power supplier.

An Explanation of the Thesis Organization

This thesis is composed of five papers which may be suitable for
publication. In particular, the third paper "OPTIMAL SELLING QUANTITY
AND PURCHASING PRICE FOR INTERMEDIARY FIRMS" appears in International
Journal of Operations and Production Nenagement volume 11, number 10,
page 64-68, 1991. Some portions of the fifth paper "PRIORITY
RATIONING/PRICING OF ELECTRIC POVER UNDER CUSTOMERS’ VALUATION
UNCERTAINTY" appears in Twenty-ninth Annual Power Affiliate Repori

section 23, page 279-289, Electric Power Research Center, Iowa State



University, May, 1992.

In a recent paper by Min (1992b), he introduced a competitive EQQ
profit maximizing model under Cournot behavioral assumption. In contrast
to Cournot behavioral assumption, in the first paper "ECONOMIC ORDER
QUANTITY (E0Q) MODELS UNDER COMPETITION VITH SENSITIVITY ANALYSIS", we
present an alternative behavioral assumption called Bertrand behavioral
assumption (see e.g., Friedman (1990)). By examining the equilibrium
conditions and subsequent sensitivity analyses under these two
assumptions, we derive economic relations of critical elements of E0(Q
models (such as order quantities per cycle) as well as critical elements
of the microeconomic market theory (such as market prices).

In paper 2 "A COMPETITIVE EOQ MODEL VITH OPTIONS TO REDUCE SETUP
AND INVENTORY HOLDING COSTS", the basic model enviromnments (such as
setup and per unit production costs as well as customer demand
functions) and the assumptions on the model environments are analogous
to Cournot model in Min (1992b) with the exception that we assume the
options of investing in reducing the setup and inventory holding costs
are available. By examining the economic implications in equilibrium and
the subsequent sensitivity analysis, we present a unique insight (cf.
Porteus (1985) and Zangwill (1987))as to why several Japanese and
American producers are striving to reduce the setup costs under ever
increasing competition. Specifically, it will be shown that, for a
profit maximizing producer, as the number of competing producers
increases, his optimal strategy dictates that he reduce his setup and

inventory holding costs.
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In paper 3 "OPTIMAL SELLING QUANTITY AND PURCHASING PRICE FOR
INTERMEDIARY FIRMS", how intermediary firms can optimally determine both
selling quantity and purchasing price of a product is investigated. By
incorporating the special structure of intermediary firms’ environments
and by modifying the conventional economic order quantity (E0Q) model
accordingly, we provide optimal decision rules regarding the selling
quantity and purchasing price for intermediary firms.

In paper 4 "AN ANALYSIS OF OPTIMAL INVENTORY AND PRICING POLICIES
UNDER LINEAR DEMAND", for a single seller, we compare and contrast the
optimal inventory and pricing policies under profit maximization vs.
ROIT (return on inventory investment, see e.g., Rosenberg(1990))
maximization vhen demand is linear in price. By studying the optimality
conditions and the corresponding closed-form optimal solutions, several
interesting economic implications are derived. In particular, we show
that when a cost factor such as the setup cost, inventory holding cost
per unit per unit time, or per unit ordering cost after the setup is
sufficiently high, the choice of the objective between profit
maximization and ROII maximization is inconsequential to the seller in
so far as his optimal decisions are concerned.

In paper 5 "PRIORITY PRICING AND INTERRUPTION INSURANCE OF ELECTRIC
POVER UNDER CUSTOMERS® VALUATION UNCERTAINTY", we extend the existing
vork (see e.g., Chao et al. (1986), Chao et al. (1987), and
Wilson(1989)) on the priority rationing of electric power by
incorporating commonly shared random factors (such as temperature or

humidity) associated with customers’ valuation of electric power and the
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uncertainty associated with the estimation of the total amount of
electric pover demanded. Next, under the assumption that customers are
risk-averse, we formulate an interruption insurance model to transfer
the risk of customers to the risk-neutral electric power supplier.
Finally, via numerical examples, we attempt to investigate the effects
of errors due to the assumptions that customers’ valuation and/or the
total amount of electric power demanded are constant over time (when
they actually vary due to random factors).

The rest of my thesis is organized as follows. First, those five
papers mentioned earlier will be presented sequentially. Next, the
general conclusion about this thesis is followed by the last paper.
Finally, the literature cited in the general introduction and the

general conclusion will be made.



PAPER 1.

ECONOMIC ORDER QUANTITY (E0Q) MODEL UNDER COMPETITION
VITH SENSITIVITY ANALYSIS



ECONOMIC ORDER QUANTITY (E0Q) MODELS UNDER COMPETITION
VITH SENSITIVITY ANALYSIS

Cheng-Kang CHEN and K. Jo MIN
Towa State University

ABSTRACT
We extend the profit maximizing economic order quantity (E0Q) model with
a constant demand rate over time to the case of a symmetric oligopoly
consisting of sellers of a homogeneous product who compete with each
other for the same potential buyers. A key feature differentiating this
paper from the extant literature on the economic order quantity (E0Q) is
that the competition aspects of the inventory theory are analyzed not
only with respect to the number of competing sellers, but also with
respect to two strategic behavioral assumptions (called the Cournot and
the Bertrand behavioral assumptions) on the sellers regarding their
competitors. Under these behavioral assumptions, the formulations and
equilibrium strategies of our models explicitly depend on the number of
competing sellers. From the resulting equilibrium conditions and
subsequent analyses, we derive economic relations of critical elements
of E0Q models (such as order quantities per cycle) as well as critical

elements of the microeconomic market theory (such as market prices).
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1. INTRODUCTION

This paper extends the profit maximizing economic order quantity
(E0Q) model with a constant demand rate over time to the case of a
symmetric oligopoly consisting of sellers of a single homogeneous
product who compete with each other for the same potential buyers. The
primary goal of this study is to understand economic implications of the
resulting equilibrium in terms of critical elements of E0Q models (such
as the sales quantity per unit time, the order quantity per cycle, the
production (or order) cost and inventory holding cost) as well as
critical elements of the microeconomic market theory (such as the market
price, the demand elasticity of buyers, and the number of competing
sellers).

Specifically, we will derive and compare the sellers’ decision
variables such as optimal economic order quantities, sales quantities
per unit time, and the market prices in equilibria under a Cournot-like
behavioral assumption (i.e., each seller first predicts his competitors’
sales quantities per unit time in maximizing his own profit; see e.g.,
Oren, Smith and Wilson [16]) and under a Bertrand-like behavioral
assumption (i.e., each seller first predicts his competitors’ per unit
price in maximizing his own profit; see e.g., Friedman [5]).
Furthermore, via sensitivity analyses, we derive and compare the
directions and magnitudes of changes in the aforementioned decision

variables with respect to changes in inventory holding cost, setup cost
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and the number of competing sellers under both Cournot-like and
Bertrand- 1ike behavioral assumptions.

The idea of employing profits as a performance measure of E0( type
models has been explored as early as the 1950’s (see, e.g., Whitin [24]
or Smith [19]). Ladany and Sternlieb [10] not only uses the profit
levels as the performance measure, but also provides insights on
relations among price, cost, and demand by making the demand dependent
on the price and the price dependent on the cost and a fixed mark-up.
Brahmbhatt and Jaiswal [2] extends the previous model by incorporating
variable mark-up as a function of a capital intensity measure and by
maximizing profit over the order quantity and the capital intensity.
Arcelus and Srinivasan [1] also extends Ladany and Sternlieb [10] by
treating demand as a function of price, price as a function of a
variable mark-up rate times a unit cost under profit maximization over
the order quantity and the variable mark-up rate. Moreover, Monahan [15]
as well as Lal and Staelin [11] developed quantity discount schemes for
the seller. Lee and Rosenblatt [12] extended Monahan [15] by
incorporating more realistic features (e.g., constraints imposed on the
amount of discount that can be offered). The rationale for the quantity
discount in these papers is the cost savings resulting from coordination
of sellers’ production quantities and buyers’ order quantities under the
assumption that both buyers as well as sellers are E0Q based decision
makers. The assumption that buyers are E0Q based decision makers is
relaxed in a new quantity discount E0Q model in Min [13]. In Min [13],

the rationale for the quantity discount is the seller’s exploitation of
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the heterogeneous preferences of the buyers regarding their purchase
sizes. More recently, in Min [14], for both uniform pricing and quantity
discount pricing (under the heterogeneous buyers’ preferences
assumption) cases, how to incorporate competition aspects of sellers
into EOQ models based on Cournot- like behavioral assumption is
discussed.

Also, under the assumption of dynamic and deterministic demands,
there have been numerous studies investigating the optimal relations of
production schedules, prices, and inventories (see e.g., Gaimon [6],
Pekelman [17], Kunreuther and Schrage [9], and Thomas [21]) Thomas [22]
investigates the optimal relations of production quantities and prices
under the assumption of stochastic demands. Moreover, in Gaimon [7],
the assumption of a single firm is replaced by a duopoly, and the
optimal relations between production capacities and prices are studied
wvithin a differential game framework. Also, in Dockner and Jorgensen
[4], optimal pricing strategy under competition is examined and
non- cooperative as well as cooperative equilibria results are obtained.
In Teng and Thompson [20], an oligopoly model is analyzed and optimal
advertising policies are obtained when production costs obey a learning
curve. Ve note that the models constructed and analyzed in the last
three papers are also time dependent dynamic models.

In this paper, we will refer to the model under the Cournot-like
behavioral assumption as the Cournot model while the model under the
Bertrand- 1ike behavioral assumption as the Bertrand model. For both

models, we assume that all critical economic quantities sellers must
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determine such as the optimal economic order quantity and price schedule
are made under the framework of static decision making (cf. dynamic
decision making framework; see e.g., [6], [17], [9], and [21]). In
order to highlight the optimal relations among the critical economic
quantities that are derived under the static decision making framework,
ve will make the following assumptions. We assume: 1) the demand is
deterministic and constant over time; 2) production occurs (or orders
arrive) instantaneously; 3) there is no learning effects in setup or
production. Also we will not consider discounting prices and costs over
time and other time dependent features such as promotion and
advertising. In addition, we will assume that each seller can produce
(or order) sufficient amount of products to meet any quantity demanded
by buyers. Under these assumptions, we formulate Cournot and Bertrand
models consisting of a systematic oligopoly of n sellers (i.e., sellers
are identical in all economic respects such as production costs)
offering a homogeneous product. From these formulations, we obtain
symmetric Cournot and Bertrand equilibria. For both Cournot and
Bertrand models, the formulations and equilibrium strategies explicitly
depend on n, the number of competing sellers in the market. In
equilibria, we derive interesting economic implications regarding
prices, demand elasticities, the number of competitors, average and
marginal production costs and average inventory holding costs.

The rest of this paper is organized as follows. In section 2 and
3, we construct and analyze the Cournot model and the Bertrand model

respectively. In sections 4 and 5, we perform the sensitivity analyses
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on the Cournot model and the Bertrand model respectively. In addition,
in section 5, we compare and contrast the results from the equilibria
and sensitivity analyses of the Cournot and Bertrand models. Finally,

in section 6, we summarize and conclude.
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2. THE COURNOT MODEL AND ECONOMIC IMPLICATIONS IN EQUILIBRIUN

For the construction of the Cournot Model, we will closely follow
Min [14]. Ve assume that there are n identical sellers (producers or
distributors) offering a single product. Also we assume that buyers have
perfect information about the per unit prices n sellers charge. Hence,
in equilibrium, all sellers will charge the same per unit price, p, the
market price. For each seller i, i =1, .-+, n, as in the cases of
traditional E0Q models (see e.g., Hillier and Lieberman [8]), we assume:
1) the goods are produced (or ordered) in equal numbers, Qi at a time;
2) all Q; units arrive without delivery lag; 3) no shortage to a buyer
is permitted. We also assume that, for each seller i, the total cost per
cycle consists of a production (or order) cost and an inventory holding
cost. The production (or order) cost per cycle is represented by K +
C(Q;) vhere K is the setup cost and C(Q;) is the production (or order)
cost incurred in producing (or ordering) Qi units after the setup. On
the other hand, the inventory holding cost is characterized by h,
inventory holding cost per unit per unit time. As implied earlier, K,
C(Q) and h are identical for all sellers. We further assume that C({) is
strictly increasing and convex in §, i.e., C-(Q) > 0 and C’“(Q) > O.

The sales quantity (to buyers or customers) per unit time for the
entire market is characterized by d(p), a function of per unit market
price p. Ve assume that the sales quantity, given a price, is constant

over time. Also we assume that the sales quantity function is strictly
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decreasing in p, i.e., d’(p) < 0. Under the monotonicity assumption of
d’(p) < 0, the inverse function p(d) exists (with p’(d) < 0). The
inverse function p(d) specifies the price p that clears d units in the
market. We will assume that the inverse function p(d) is concave in d,
i.e., p’’(d) < 0. Just as in microeconomic theory (see e.g., Varian
[23]), ve can refer to p(d) as the inverse demand function while d(p) as
the demand function. Since the demand function d(p) is assumed to be
constant over time, so is the inverse demand function p(d).

Given the above definitions and assumptions, we develop a
Cournot- like framework as follows. We assume that each seller i, i =1,
-++, n will predict the total sales quantity per unit time of his n-1
competitors, d—i' Under this prediction, seller i maximizes his profit
per unit time over his sales quantity per unit time di and economic
order quantity Qi. For the total sales quantity per unit time for the
entire market, di + d-i’ the corresponding per unit market price is
given by p(di + d-i)' Hence, the total revenue per cycle for seller i is
p(di +d ;) Q;- And the corresponding total cost per cycle and the cycle
length are given by K + C(Qi) + hQ%/(2di) and Qi/di respectively. Given
these expressions for the total revenue, cost, and the cycle length, the
problem of maximizing profit per unit time for seller i, 7, can be

stated as follows.

bax ry =BG+ dd - (6 O)/0; - by/2 (1)
1771

The first order optimality conditions of the maximization problem (1)

are:
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or.
@ =P (4 d 4y e p(d - dy) - B 0@/ =0 ()
or.

;=~%@%%mi-K-N%DN?-W2=O (3)

In order to derive the corresponding second order sufficient
condition(s) for optimality, we first obtain the second order

derivatives of the profit as follows.

== prr(d; +d )d; + 2p(d) +d ) (4)

521.
L= (K +C(Qy) - QiC'(Qi))/Qf (5)
8d. 00,

oo Qo) - 2(K + 0(8;) - 0,07(8y))) /03 (6)

From our assumptions that p’(-) < 0 and p’’(-) < 0, we have

321.
i

2
dd;

< 0. Therefore, the second order sufficient condition for

optimality is simply
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2 2 2
d°r. 0°x, a°r. 2
1 i 1 ] s 0 (7)

2 2

ady d03 dd; 09,

3211 62xi 0zri

where ) , and —— are given by (4), (5) and (6).
0d%  9d00, o2

Throughout the rest of this paper, we will assume that the second order
sufficient condition is satisfied for the region of interest. In

addition, we will assume that the resulting profit level of each seller
i, i=1, ---, n, evaluated at the optimal sales quantity per unit time
and order quantity per cycle is strictly positive (i.e., no seller will

exit from the market).

So far we have examined the optimality conditions of a single
seller. We now proceed to derive an equilibrium of n sellers. Under our
assumption of identical sellers, there exists a symmetric equilibrium

(see e.g., Oren, Smith, and Wilson [16]) where

dj=dy=--r=d (8)
= Q (9)

and 4 =0

i.e., the sales quantity per unit time as well as the economic order
quantity are identical for all sellers. In this symmetric equilibrium,
the total sales quantity per unit time from all competitors of seller i,

d—i is equal to (n-1)di for i = 1, ---, n. Therefore, the corresponding
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equilibrium conditions of the optimality conditions (2) and (3) are

given by
p(nd;)d; + p(nd;) - (K + C(8;))/4; = 0 (10)
-4;(C7(8;)8; - K- €(8;))/8% - B/2 =0 (11)

Let us first examine equilibrium condition (10). The corresponding
demand elasticity e, € = p(d)/(p’(d)d) by definition (see e.g., Varian

[23]), evaluated at the symmetric equilibrium point becomes:

¢ = p(nd;)/(nd;p’ (nd;)) (12)

Hence, in the symmetric equilibrium, equation (10) can be restated as

p(nd;) = (=) (K + €(8;))/9; (13)

Equation (13) states that, given a fixed number of competitors n, as the
demand becomes more elastic (i.e., |e| gets larger), the equilibrium
price gets closer to the average production cost. Or as the demand gets
more inelastic (i.e., |e| gets smaller), the equilibrium price gets

farther away from the average production cost. If we view the term

ne

ST a5 2 markup rate, the economic implication is that the markup

rate is larger when the demand is more inelastic. On the other hand,
given a fixed level of elasticity, €, we observe that as the number of

competitors increases (i.e., as the competition gets more intense), the
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price gets closer to the average production cost. Or as the number of
competitors decreases (i.e., as the competition gets less intense), the
price gets farther away from the average production cost. We also
observe that as the number of competitors decreases, the markup rate
increases. In addition, we note that if -1 < ne < 0, the price is
negative. Furthermore if ne = -1, it can be easily verified that no
order quantity per cycle Qi satisfies equation (10). Hence, throughout
this paper, we limit our analysis to the cases where ne < -1. i.e., ne <
-1 will be assumed.

Let us nov examine equilibrium condition (11). By rearranging

terms of condition (11), we have

(K + C(Ql))/ql - C'(Qi) = hQi/(Qdi) (14)

Equilibrium condition (14) states that for each seller i, i =1, ..., n,
the average pfoduction cost is equal to the sum of the marginal
production cost and the average inventory cost per unit. The economic
implication is that the per unit production cost is strictly higher than
the per unit inventory cost at the equilibrium since the marginal
production cost is assumed to be positive. Also we note that if (K +
C(Q;))/09; < €/ (0;), it can be easily verified that no order quantity per
cycle Qi satisfies equation (11). Hence, throughout this paper, we limit
our analysis to the cases where
(K + €(0,))/Q; > €7 (Q;). i.e., (K+ C(0;))/Q; > € (Q;) will be assumed.
Ve note that the relation between the equilibrium sales quantity

per unit time di and the corresponding economic order quantity Qi for i
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=1, -+, n is implicitly determined by (13) and (14). By simultaneously
solving conditions (13) and (14) given p(-), C(-), h, K, and n, ve can

numerically determine the values of di and Qi'
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3. THE BERTRAND MODEL AND ECONOMIC IMPLICATIONS IN EQUILIBRIUM

The basic model enviromments concerning EOQ based decision making
sellers are analogous to those in section 2. Also we assume that the
sales quantity function is strictly decreasing in p, i.e., d’(p) < O.

In contrast to the Cournot-like framework presented in the previous
section, we develop a Bertrand- like framework as follows. Let us denote
the per unit price seller i charges by p;, i =1, .-+, n. We assume that
each seller i, i =1, ---, n will predict his n-1 competitors’ prices,
P> j=1, -+, n; j # i. Under our assumptions that the product is
homogeneous and that buyers have perfect information about the per unit
prices n sellers charge, the following argument holds. If seller i’s
price p; is set such that p; is strictly higher than the lowest price of
his n-1 compefitors (i.e., p; > b—i = min {le j=1, -+, n; j¢#i}),
then no buyer will purchase from seller i. On the other hand, if seller
i’s price p; is set such that P4 is strictly lower than the lowest price
of his n-1 competitors (i.e., p; < b_i), then no buyer will purchase
from any of his competitors. Finally, if seller i’s price P; is set such
that p; is equal to the lowest price of his n-1 competitors (i.e., p; =
b_i) and there are k sellers with the same minimum price (including
seller i), then each of the k sellers will equally share the total sales
quantity in the entire market. Therefore, for i = 1, ..., n, seller i’s
profit per unit time, T:s conditioned on his price Py is shown as

follows.
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3
|

i~ pid(pi) } d(pi)(K + C(Qi))/qi - hQi/2 (15)
if p; <pj =min{p;] j=1, -+, 5 # i}

1]

p_;d(p_;)/k - (d(p_;)/k) (K + C(0;))/Q; - hg;/2 (16)
if p; = p_; and there are k sellers vith the same minimum

price (the sales quantity per unit time of seller i is

d(p_;)/k)

0 (achieved by neither producing nor ordering) (17)

if p; > p_y-

Seller i will maximize his profit per unit time given in relations

(15)- (17) over his price p; and order quantity Q;. In the case of
relation (17), since seller i’s optimal policy is neither producing nor
ordering, no further analysis is warranted for. Hence, throughout the
rest of this section, we will concentrate on the analysis of relations
(15) and (16). For the analysis, we will assume that profit relations
(15) and (16) are non-negative and concave in p; and {; in the region of
interests. Under these assumptions, the optimality conditions for P; and
Qi are:

Either

Py < P_; (18)
or.
from (15), b = dlpy) + 4 (Ry) (2 - (K + Q)Y = 0 (19)
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or.

ag; = 4(py) (K + (L) - 0,°(8,))/8% - h/2 = 0 (20)
Or

P; =P ; (21)

or

i 2

are = ;) /E) (K + C(Q;) - ;07 (8;)) /05 - b/2 = 0 (22)
i

where there are k sellers with the same minimum price

Pi = b-i'

The optimal price p; and order quantity Qi are implicitly determined

from relations (18)-(20), or relations (21) and (22).

So far we have derived the optimality conditions of a single
seller. We now proceed to derive an equilibrium of n sellers. Under our
assumption that the product is homogeneous, seller i, i =1, ---, n, can
capture the entire market by slightly under- cutting the n-1 competitors’
prices. Hence, so long as the current level of profit is positive, each
seller will under-cut the n-1 competitors’ prices. This incentive to
under- cut will vanish only if the current level of profit is zero.
Therefore, under our assumption of identical sellers, the following

relations hold in an equilibrium.

P{ =Pg = =" =Dy (23)
Pid(Pi)/n - (d(pi)/n)(K + C(Qi))/qi - bl /2 =0 (24)
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The corresponding relations on the order quantity Qi’s are given by,
q1:Q2=--- :Qn (25)
(d(p;)/n) (K + C(Q;) - 0,6°(8;))/85 - h/2 = 0 (26)
or.

i.e., 3u% = 0 (from relation (22)) for i =1, .-, n.
i

A symmetric equilibrium of n sellers is implicitly determined by
equilibrium conditions (23)- (26) while seller i’s (i =1, ---, n)
equilibrium price p; and order quantity Qi are implicitly determined by
(24) and (26). By simultaneously solving conditions (24) and (26) given
d(-), C(-), h, K, and n, ve can numerically determine the values of p;
and Q;. From these values and equilibrium conditions (23) and (25), the
complete set of equilibrium prices and order quantities can be
numerically determined.

Ve examine equilibrium condition (24) first. Equilibrium condition

(24) can be rearranged to become,

p; = (K + C(1;))/4; + ha;n/(2d(p;)) (27)

Condition (27) states that for seller i, i =1, --., n, the price (= per
unit revenue) is equal to the sum of the per unit production cost plus
the per unit inventory holding cost. cf. conditions (2) and (10) in
section 2 under the Cournot-like behavioral assumption where the
conditions imply that the marginal revenue with respect to the sales
quantity per unit time is equal to the marginal cost with respect to the

sales quantity per unit time.
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Let us now examine equilibrium condition (26). By rearranging

terms of condition (26), we have

(K + G(Q;))/Q; - € (Q;) = hQ;n/(2d(p;)) (28)

The economic interpretations of equilibrium condition (28) are amalogous
to those of condition (14) in section 2. That is, for each seller i, i =
1, ---, n, the per unit production cost is equal to the sum of the
marginal production cost and the per unit inventory cost per unit. This
implies that the per unit production cost is strictly higher than the
per unit inventory cost at the equilibrium since the marginal production
cost is assumed to be positive. Also we note that if (K + €(0;))/Q; <
C'(Qi), it can be easily verified that no order quantity per cycle Qi
satisfies equation (26). Hence, throughout this section, we limit our
analysis to the cases where (K + C(0;))/Q; > C-(Q;). i.e., (K +
C(9;))/0; > C'(Qi) will be assumed. Furthermore, from conditions (27)
and (28), it can be easily seen that in equilibrium the price (per umit
revenue) is strictly greater than the marginal production cost (by two
times the per unit inventory holding cost). This result is consistent
with that in section 2 under the Cournot behavioral assumption. Finally,
ve note that since the equilibrium profit level of the Bertrand model is
always zero while the equilibrium profit level of the Cournot model may
be positive, the Cournot profit level is higher than or equal to the
Bertrand profit level. This is consistent with the microeconomic market

theory (see e.g., Varian [23]).
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4. SENSITIVITY ANALYSIS UNDER COURNOT MODEL

In this section, we investigate the sensitivity of the sales
quantity per unit time di and order quantity per cycle Qi in equilibrium
with respect to the given parameters of the Cournot model depicted in
section 2, the inventory holding cost h, the setup cost K, and the
number of competing sellers n. Our analysis of sensitivity will be based
on differential calculus (especially the implicit function theorem; see
e.g., Chiang [3]), which requires variables (or parameters) to be
continuous rather than discrete. Hence it will be necessary to treat the
number of competing sellers n (n > 1), which is hitherto assumed to be
an integer, as a continuous variable. We present the justification for
treating n as a continuous variable (to the extent possible) by slightly
rephrasing a pdrtion of section 3, " Modeling Entry ", in Seade [18] as
follows:

We will allow n to be an actual continuous variable (or parameter)
on which each economic quantity (e.g., price p) depends differentiably
according to the given relations, but we restrict our attention to
integer realization of this variable. Then, if we define x as any
economic quantity dependent on n  (e.g., economic order quantities),
its change when one additional seller enters into the market is ax =
x(n+1) - x(n). It is clear that (sign ax) = (sign x’(n)) whenever the
latter sign does not change in the relevant range [n, n+l]; otherwise

the sign of ax is ambiguous. We will assume away cases where this
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ambiguity arises and hence work with sign x’(n) directly. It is
essentially this single- signedness assumption, which one can check, that
underlies the common continuous treatment of discrete variables (or

parameters) in problems of the present sort.

At the equilibrium point (di’ Qi)’ by applying the implicit

function theorem and by allowing n to be continuous, we obtain the

gd; 4q, ad; 44
following relations for the magnitudes of changes zr=, 7=, 7x=> x>

ad. .
Hﬁi’ and 351 with respect to an infinitesimal increase in inventory

holding cost h, the setup cost K, and the number of competing sellers n.
Let F' and F2 denote the left hand sides of equilibrium conditions (10)
and (11) respectively. From the assumption that the second order
condition (7) is satisfied, the determinant of the Hessian matrix is
positive. It can be easily verified that this implies the determinant of
Jacobian of F! and F? with respect to d; and Q, (shown in the left hand
sides of (29)-(31)) is also positive, satisfying a condition necessary
for applying the implicit function theorem. Finally, for the inverse
demand and cost quantities, p(-), p’(:), p’’(-), C(-), C’(-), and
C-7(-), the arguments nd, and Q; are suppressed for more comprehensible

presentation. Then, we have:

art gl ad; g
o, oI | | 7 g
P2 gF> N | = OF2 (29)

od; a0, oh~ - oh



29

orl  ap! ad; ot

W, oy | | & g

o2 | | M| = | o (30)
o, oy | | & g

art  apt 0d; ot

W, oY | | ®@ T

R B O L N (31)
W] | @ Yy

L ) & oF2

where @ oy (= 7 )}, and a; are calculated to be np’’d; + (n+1)p’,

(K + C- 0,0)/Q%, and d,(-q%C"* - 2(K + C - 0;C))/03 respectively

1 2 1 2 1 2
wvhile gg—, g%-, gﬁ—, gﬁ—, g%-, and gg— are calculated to be 0, -1/2,

-1/8;, d,/05, ((9p’/0n)d;+(3p/0n)), and O respectively.

The inverse of the Jacobian matrix exists since its determinant is
nonzero. Hence, we solve the systems of equations (29)- (31) for the
ad; 09, ad; oQ; dd,

aq.
magnitudes of changes Eﬁl’ v EKl’ T 3ﬁl’ and Hﬁl as follows.

In the following derivations, the quantity G is defined to be the

inverse of the determinant of the Jacobian matrix in the left hand sides

1 02 142
of (29)-(31). i.e., 1/G = ggf 357 - [ gﬁ; ] . Then, we have:
i7%
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0d; S R
W LI PELN
o0, = 6| 52 gt (32)
oy S
[ (@, - K- ©)/(20%)
= @ (33)
L (np’7d; + (n+1)p’)/2
ad. 2 1
08 = 61 g2 gt 2 (34)
x Cag a |
d;(-0%7/ - (K + € - 0;))/0;
= ¢ (35)
(0,6 - K- €)/Q3 - (mprd; + (n+1)p)d; /03
ad. 2 1
e o - o || - (@ rmyage(ap/em))
1 1
o0 = G| g2 gl (36)
iy w °

- d,(-Q%C - 2(K + C- 0,07)) ((dp*/dn)d;+(dp/m))

= G 9 (37)
(K + C - Q;6°)((dp’/dn)d;+(dp/dn))/Q;

od; o9; od; 99, aa, o,

The corresponding directions of EHE’ 0 T T T and =
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are summarized in the following proposition (see Appendix A for the

proof).

Proposition 1 : Assume that the sales quantity per unit time and order
quantity per cycle (di’ Qi) satisfy the equilibrium conditions (10) and
(11) and the second order sufficient condition (7). Assume further that
for the cost and the inverse demand functions, C’(Q) > 0, C/“(Q) > 0,
p’(d) < 0 and p’’(d) < 0. Horeover, assume that the profit level at (d;,

Q,) is positive.

6di 6Qi

Then, 1) 75 < 0 and =< 0,
5di aqi

2) ar(OGﬂdm")O,
6di aq

and 3) 7 < 0 and Eﬁi < 0.

The economic implications of Proposition 1 are as follows. In the
equilibrium, if the inventory holding cost is increased by a small
amount, then the sales quantity per unit time as well as the order
quantity per cycle will decrease for seller i, i =1, .--, n. Figure 1
depicts the resulting changes in inventory levels over time after a
small increase in the inventory holding cost. We note that the change in
the frequency of ordering is indeterminate (i.e., the corresponding
cycle length may be shorter or longer than before the change). Also, in
the equilibrium, if the setup cost is increased by a small amount, then
the sales quantity per unit time will decrease while the order quantity

per cycle will increase for seller i, i =1, ..., n. Figure 2 represents
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the resulting change in inventory levels over time after a small
increase in the setup cost. We note that the change in the frequency of
ordering is decreased (i.e., the corresponding cycle length is longer
than before the change). Finally, under the aforementioned
single- signedness assumption, we conclude that if the number of
competing sellers increases by a small number, the sales quantity per
unit time as well as the order quantity per cycle will decrease in
equilibrium. Figure 3 depicts resulting changes in inventory levels over
time after a small increase in the number of competing sellers. We note
that the change in the frequency of ordering is indeterminate (i.e., the
corresponding cycle length may be longer or shorter.). The sensitivity
results shown in the proposition also implies that, insofar as the
directions of changes in equilibrium are concerned, the impacts of
competition on the equilibrium are analogous to those of inventory
holding cost on the equilibrium, but not to those of setup cost on the

equilibrium.
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5. SENSITIVITY ANALYSIS UNDER BERTRAND MODEL

In this section, we investigate the sensitivity of the price Py and
the order quantity per cycle Qi in equilibrium with respect to the given
parameters of the Bertrand model depicted in section 3, the inventory
holding cost h, the setup cost K, and the number of competing sellers n.
As discussed in section 4, we will treat the number of competing sellers
n (n > 1) as a continuous variable. (see section 4 for details)

At the equilibrium point (pi’ Qi)’ by applying the implicit

function theorem and by allowing n to be continuous, we will obtain the

. op; o; dpy OY
folloving relations for the magnitudes of changes z-=, 7r=, 7= x>

dp; a.

7 and Hﬁi with respect to an infinitesimal increase in inventory
holding cost h, the setup cost K, and the number of competing sellers n

as follows.

Let E1 and E2 denote the left hand sides of equilibrium conditions
(24) and (26) respectively. From the assumption that the profit

Jr.
expressions (15) and (16) are concave in p; and Qi’ 35% > 0 in the
i

equilibrium. For the successful application of the implicit function

or.
theorem, we will further assume that 35% > 0 in the equilibrium (see
i

e.g., Chiang [3]). Under this assumption, it can be easily verified that
the determinant of Jacobian of E! and £ with respect to Dy and Qi

(shown in the left hand sides of (38)-(40)) is strictly negative. Since
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the determinant of the Jacobian is nonzero, an inverse matrix exists.
Finally, for the demand and cost quantities, d(-), d‘(-), C(-), C(-),
and C’’(-), the arguments P; and Qi are suppressed for more

comprehensible presentation. Then, we have:

el oKl oy _ oE!
Do | | @ T
e oE: | | M| = | g (38)
dp; 0, dh- oh-
gE'  oE! op; _ gE!
B Ao | | X e
B2 a2 | | M| = | &P (39)
B W) | e
et g i g
B; O | | @ oy
N LT L B (40)
B, O] L@ e

1 1 2 2
where g%;, g%;, g%;, and g%; are calculated to be d/n + (d’/n)(p; - (K +

€)/4;), 0, (d’/n)(K + € - 9,C-)/Q%, and (d/n)(-Q3C"" - 2(K + C -
1 02 o1 .2 .1 2

QiC'))/Qg respectively while g%—, gg—, g%—, g%—, gg—, and 3

calculated to be -0,/2, -1/2, -d/(nd;), d/(x4?), - (d/2%) (p; - (K +

€)/9,), and - (d/n”) (K + © - ,07)/4% respectively.

Ve now solve the systems of equations (38)-(40) for the magnitudes of
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op; OQ; dpy AR dpy 9 .
changes T T W T T and 7 a8 follows. Let H denote the

inverse of the determinant of the Jacobian matrix in the left hand sides

. et g2 oE! o2
f - . i.e., = - . Then, we have:
o (38)6;40) e., 1/H 235; aqi 3“; 35; en, we have
i i)
w A || W
0 | = B| g2 gl (41)
® o wpll
[ (d/n) (030 - 2(K + C - 0,0))/(28))
= 1 4 () (42)
dp. - a2 1
e A A || e
a0, - R 2 1 (43)
e S B || Ve
(02077 - 2(K + C - 9,07))/(a’0)
- H (44)
-d(d + & (p; - €))/(x°0)
dp.- 2 1
& Lo ol | I IORN ROV
o0 = H| g2 gl (45)

Ay || 4K+ C- 0,')/(a%03)

!
b
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?(-03c 7 - 2(K + € - §;0))(p; - (K + 0)/0;)/ (a%0)

= | 46
a®(K + C - 0;07)/(a%0%) “o

o op; 9Q; Op; 4y dp; 9
The corresponding directions of T Th T T T and v

are summarized in the following proposition (see Appendix B for the

proof).

Proposition 2 :  4ssume thai the per unit price and order quantity per
cycle (pi, Qi) satisfy the equilibrium conditions (24) and (26). 4ssume
further that for the cost and the demand functions, C/(-) > 0, C’/(-) >

0, d’(-) < 0. Horeover, assume that the profit level is non-negative and
ari

Then, 1) gﬁi > 0 and ggi < 03
2) g;i > 0 while
ggi >0 ifd+ d'(pi - C)»>o0,
;gi =0 ifd+d(p; - C) =0,
and ggi <0ifd+ d'(pi - C) < 03

i 9
3) BH-)OG”d-aﬂ-—(O.

The economic implications of Proposition 2 are as follows. In the

equilibrium, if the inventory holding cost is increased by a small
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amount, then the per unit price will increase while the order quantity
per cycle will decrease for seller i, i =1, .-, n. The sign of the
corresponding change in the sales quantity per unit time for the entire
market (i.e., d(p;)) will be negative since d(p;) is strictly monotone
decreasing in p;. Hence, the sign of the corresponding change in the
sales quantity per unit time for seller i (i.e., d(pi)/n) will also be
negative. That is, the sales quantity per unit time for seller i will
decrease if the inventory holding cost is increased by a small amount.
In section 4, under the Cournot behavioral assumption, the sales
quantity per unit time for seller i as well as the order quantity per
cycle decrease if the inventory holding cost is increased by a small
amount. Furthermore, the sign of the corresponding change in the per
unit price (i.e., p(ndi) in section 4 where di denotes the sales
quantity per unit time for seller i) will be positive since p(nd;) is
strictly monotone decreasing in di' That is, the per unit price will
increase if the inventory holding cost is increased by a small amount.
Therefore, we conclude that the directions of changes with respect to
the inventory holding cost are identical for both Bertrand and Cournot
models.

Also, in the equilibrium, if the setup cost is increased by a small
amount, then the per unit price will increase for seller i, i =1, ...,
n. On the other hand, the order quantity per cycle will increase, remain
the same, or decrease for seller i, 1 =1, ---, n, depending upon the
conditions (in terms of d(p;), d’(p;), p;, and C"(Q;)) given in the

proposition. The sign of the corresponding change in the sales quantity
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per unit time for the entire market (i.e., d(p;)) vill be negative since
d(pi) is strictly monotone decreasing in p;. Hence, the sign of the
corresponding change in the sales quantity per unit time for seller i
(i.e., d(p;)/n) will also be negative. That is, the sales quantity per
unit time for seller i will decrease if the setup cost is increased by a
small amount. In section 4, under the Cournot behavioral assumption,
sales quantity per unit time for seller i will decrease while the order
quantity per cycle will increase if the setup cost is increased by a
small amount. Furthermore, the sign of the corresponding change in the
per unit price (i.e., p(nd;) in section 4) will be positive since p(nd;)
is strictly monotone decreasing in di' That is, the per unit price will
increase if the setup cost is increased by a small amount. Therefore, we
conclude that the directions of changes in the per unit price and the
sales quantity per unit time for seller i with respect to the setup cost
are identical for both Bertrand and Cournot models while the direction
of change in the order quantity per cycle for the Bertrand model may be
different from the direction of change for the Cournot model.

Finally, under the aforementioned single- signedness assumption, we
conclude that if the number of competing sellers increases by a small
number, the per unit price will increase while the order quantity per
cycle will decrease in equilibrium for seller i = 1, ..., n. The sign of
the corresponding change in the sales quantity per unit time for the
entire market (i.e., d(pi)) will be negative since d(pi) is strictly
monotone decreasing in p;- Let us denote the new sales quantity per unit

time for the entire market by d (& < d(pi)) and the new number of
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competing sellers by n (n > n). Then, the corresponding new sales

-~

d(p;)
quantity per unit time for seller i is given by ——. It can be easily
n
d(Pi) d(pi) . . i 43
seen that —— < . That is, the sales quantity per unit time for

n n
seller i will decrease if the number of competing sellers is increased
by a small number. In section 4, under the Cournot behavioral
assumption, sales quantity per unit time for seller i as well as the
order quantity per cycle decrease if the number of competing sellers is
increased by a small number. The sign of the corresponding change in the
per unit price (i.e., p(nd;) in section 4), hovever, is indeterminate
due to the following reason. Let &i (&i < di) denote the new sales
quantity per unit time for seller i and let 2 (; > n) denote the new
number of competing sellers. Then, the corresponding new per unit price
is given by ﬁ = p(ﬁai). Since n > n and &i < d;, the sign of p(ﬁéi) -
p(ndi) is indeterminate. i.e., the per unit price may increase, remain
the same, or decrease when the number of competing sellers increase by a
small number. Therefore, we conclude that the directions of changes in
the sales quantity per unit time for seller i and the order quantity per
cycle with respect to the setup cost are identical for both Bertrand and
Cournot models while the direction of change in the per unit price for
the Bertrand model may be different from the direction of change for the

Cournot model.

The sensitivity results shown in the proposition imply that,

insofar as the directions of changes in equilibrium are concerned, the



40
impacts of competition on the equilibrium are amalogous to those of
inventory holding cost on the equilibrium, but may not be analogous to

those of setup cost on the equilibrium. We further note that the

directions of changes except those of HKi and Fil are identical for both

Bertrand and Cournot models. i.e., the directions of changes (except

those of -y~ and -—) are insensitive to either of the two behavioral
oK dn

(Bertrand and Cournot) assumptions.
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6. CONCLUDING REMARKS

In this paper we extended the theory of competitive inventory
policies to the case of a symmetric oligopoly under a Cournot-like
behavioral assumption and a Bertrand-like behavioral assumption. First,
in section 2 and 3, we showed how a profit maximizing E0Q model can be
formulated for n identical sellers competing for the same potential
buyers. From this formulation, symmetric equilibrium conditions were
obtained. From these equilibrium conditions and the subsequent
sensitivity analysis, following economic relations are derived.

In the Cournot model symmetric equilibrium,

1) given a fixed number of competitors n, as the demand becomes more
elastic, the equilibrium price gets closer to the average production
cost;

2) given a fixed level of elasticity e, as the number of competitors
increases, the price gets closer to the average production cost;

3) the average production cost is equal to the sum of the marginal
production cost and the average inventory holding cost;

4) if the inventory holding cost is increased by a small amount, the
sales quantity per unit time and the order quantity per cycle will
decrease;

5) if the setup cost is increased by a small amount, the sales quantity
per unit time will decrease vhile the order quantity per cycle will

increase;
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6) if the number of competing seller is increased by a small number, the
sales quantity per unit time and the order quantity per cycle will
decrease.

It can be easily verified that when n = 1, the EO0Q model is analogous to

a monopolist’s profit maximizing E0Q model insofar as the equilibrium

conditions and subsequent semsitivity analysis are concerned. Moreover,

when n = 1 and the sales quantity per unit time is constant, the EQQ
model is analogous to the traditional E0{Q model insofar as the
equilibrium conditions and subsequent sensitivity analysis are
concerned.

In the Bertrand model symmetric equilibrium,

1) the price is equal to the sum of the per unit production cost and the
per unit inventory holding cost while the per unit production cost is
equal to the sum of the marginal production cost and the per unit
inventory holding cost;

2) if the inventory holding cost is increased by a small amount, the per
unit price will increase while the order quantity per cycle will
decrease;

3) if the setup cost is increased by a small amount, the per unit price
will increase while the order quantity per cycle will increase,
remain the same, or decrease, depending upon the conditions given in
the Proposition 2;

4) if the number of competing seller is increased by a small number, the
per unit price will increase while the order quantity per cycle will

decrease;
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5) insofar as the directions of changes are concerned, the impacts of
Bertrand competition on the equilibrium are analogous to those of the
inventory holding cost, but may not be analogous to those of the
setup cost;
6) the directions of changes except those of EKi and g;i are insensitive
to either of the two behavioral (Bertrand and Cournot) assumptions.
It can be easily verified that when n = 1, the ED{ model is amalogous to
a monopolist’s profit maximizing E0Q model insofar as the optimality
conditions (19) and (20) are concerned. Moreover, when n = 1 and the per
unit price is constant, the E0Q model is analogous to the traditional
E0Q model insofar as the optimality condition (20) is concerned.

The E0Q model developed in this paper is applicable for broad
classes of convex cost function C(-) and concave inverse demand function
p(+). Our models relate to general practices since numerous industries
and firms apply E0Q based decision making under competition. There are
several possible extensions that will further improve the relevance of
our model to general practices. They include incorporation of more
sophisticated features such as quantity discount price schedules, finite
production rates, shortages, delivery lags, and promotional (e.g.,
advertising) effects as well as stochastic demand rates.

From the perspective of game theory, both Cournot Model and
Bertrand model in this paper can be considered as only an initial step
toward better understanding of competitive inventory policies. It is our
hope that more sophisticated equilibrium concepts of game theory (e.g.,

subgame perfect equilibrium for sequential decisions) will be exploited
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in the future research on the competitive inventory policies.
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APPENDIX A: PROOF OF PROPOSITION 1

Ve note that the sales quantity per unit time and order quantity
per cycle (d;, ;) satisfy the equilibrium conditions (10) and (11) and
the second order sufficient condition (7) as assumed in Proposition 1.
We also note that C/(-) > 0, C’“(-) 2 0, p’(+) < 0, and p’“(-) < O while
G (defined in section 3) is strictly positive. Moreover, the profit
level at (di’ Qi) is assumed to be positive. Finally, we note that, for
p(-), p°(+), p’(+), C(+), C’(+), and C’“(-), the arguments nd; and Qi
are suppressed. Before we prove Proposition 1, we present the following

lemma.

Lemma 1. Under the assumptions of Proposition 1, the following
relations hold.

1) p- K+0/0; = -p'dy

2) (K+C- 0,0)/0; = hQ/(2d;)

3) -pd; > hQ;/(2d;)

Proof of Lemma 1. By rearranging the equilibrium conditions (10) and
(11), ve obtain the relations 1) and 2), i.e.,
p- (K+C)/ = -pdy (A.1)
(K+C- Q;€)/q; = hQ;/(2d;) (A.2)
For relation 3), we note first that the profit relation is

given by (from (1) at d; + d_; = nd;) pd; - (K + C)d,/Q; - hQ;/2. Since
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the profit is assumed to be positive in the equilibrium for seller i =

1, .-+, n, we have

p - (k+0C/q > hQ,/(2d;) (A.3)
i.e., per unit revenue - per unit production cost > per unit inventory

cost.

By substituting (A.1) into (4.3), we obtain
-p’d; > hQ;/(2d;) (A.4)

Proof of Proposition 1. Let us first consider relations 1) of

ad, Q.
Proposition 1, Eﬁl < 0 and Uﬁl < 0. From equations (33),
od; 2
a5 = 6 (0;C7 - K- C)/(247) (A.5)
From equation (14), we have QiC' - K- C<0. Since G > 0 and Qi > 0, ve
ad;
have Th < 0.
a
Also from equations (33),
6Qi
7 = 6 (ap’’d; + (n+1)p’)/2 " (A.6)
Since p’ < 0 and p’’ < O, np"di + (n+1)p’ < 0. Hence, Bﬁi < 0.
o
ad. a0

Let us now consider relations 2) of Proposition 1, EKE < 0 and x>0

From equations (35),

ad.
e = 6 d;(-03c - (K + € - 0;0))/0f (A.7)
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Since €/ » 0 and K + € - Q¢ > 0, -Q%+~ - (K + € - §,¢") <.
od;
Hence, K < 0.

Also from equations (35),

T (@0 - K- 080 - (aprd 1)p’)d./0%) (A

) ol ((Qi - A- )/Qi (np it (n+1)p’) i/Qi) (.8)
a.
ygl > 0 if

-(mp’7d; + (n+1)p’)d; > (K + C- 0,C7)/Q (A.9)

By substituting (A.2) of Lemma 1 into the right hand side of (A.9), we
obtain

-(npd; + (n+1)p)d; > hQ,/(2d;) (A.10)
As for the left hand side of (A.9) (or (A.10)), we have

- (np’7d; + (n+1)p’)d; > -p’d; (A.11)
since p’’ < 0, p’ < 0, and n > 1.
Also, by (A.4) of Lemma 1, we have

-p’d; > hQ./(2d,) (A.12)

89,
From (A.10)- (A.12), (A.9) holds. Hence, zz= > 0.

a

ad. aq.
Finally, let us consider relations 3) of Proposition 1, 355 < 0 and 353

< 0.

From equations (37),

0d; 2 3
o = -6 d;(-05C"" - 2(K + € - Q;C7))((dp’/dn)d;+(dp/dn))/ Q3

(A.13)
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Since C’ > 0, K + C - QiC' >0, p’ <0, and p’ < 0,

(-02C - 2(K + C- 0;0)) ((p*/om)d;+(3p/3m)) > 0.
ad.
Hence, Eﬁl < 0.

Also from equations (37),

aq.
o2 = 6 (K + € - 0,0)((dp’/0n)d;+(dp/n)) /03 (A.14)
aq.
Since K + C - QiC' >0, p’’ <0, and p’ < 0, Eﬁl < 0 follows.

a
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APPENDIX B: PROOF OF PROPOSITION 2

Let us first consider relations 1) of Proposition 1, Eﬁl > 0 and
aq.

Hﬁl < 0. From equations (42),

dp; 9

g = B (4/n) (050 - 2(K + € - 9;07))/(207) (8.1)
From equation (28), we have K + C - QiC' > 0. Since C’’ > 0,

dr.
-Q?C" - 2(K + C - Q;C") < 0 while H < 0 by the assumption that vﬁ% > 0.
1

op;
Therefore, ;iR 0.

a]
Also from equations (42),
BQi
3Qi
Since H < 0, we have T < 0.
a]

Let us now consider relations 2) of Proposition 1. i.e., HKl > 0 while

aq; aq a0
> 0ifd+di(p; - C)>0 p==0ifd+d'(p;- C) =05 zp=<0
if d + d'(pi - C’) < 0. From equations (44),

ap.
= B (-0%cr - 2K + € - 0,07))/(a%0)) (B.3)

1 2// ’ api
Smce-QiC ‘2(K+C-qu)<OaﬂdH<0,'aK—>0.

Also from equations (44),

89,
= B -d(d + d*(p; - €)/(°8)) ] (B.4)
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aq.

H(-d) > 0. Therefore, if d + d’(p; - C“) > 0, then EKl > 03
. Ny

if d + d'(pi - €) = 0, then & = 0;

. 9y
if d + d’(p; - C€’) < 0, then zx= < 0.

dp. aq.
Finally, let us consider relations 3) of Proposition 1, Hﬁl > 0 and Hﬁl

< 0.
From equations (46),
op.
L= B (g% - 2K + € - 0;0))(p; - (K + €)/0;)/ (%) (B.5)

dp.
Since -Q%C” - 2(K + C - Qlcl) < 0 and pl - (K + C)/Ql > 0, B-i}' > 0.

D
Also from equations (46),
aq.
2= B a2k + C- 0;0)/(a°C)) (B.6)

89.
Since K + C - 4;* > 0, == < 0 follows.
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VITH OPTIONS TO REDUCE SETUP AND INVENTORY HOLDING COSTS



55
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VITH OPTIONS TO REDUCE SETUP AND INVENTORY HOLDING COSTS

Cheng-Kang Chen and K. Jo Nin
Iova State University

ABSTRACT

In this paper, the profit maximizing economic order quantity (E0Q) model
is extended to the case of a symmetric oligopoly consisting of several
producers who compete with each other for the same potential buyers. For
each producer, we assume that the options of investing in reducing the
setup and inventory holding costs are available. A primary goal of this
paper is to understand economic implications of the resulting
equilibrium in terms of critical elements of E0Q models such as the
setup and inventory holding costs as well as critical elements of the
microeconomic market theory such as the market price and the number of
competing producers. For an example, we present a unique insight as to
why several Japanese and American producers are striving to reduce the
setup costs under ever increasing competition. Specifically, it will be
shown that, for a profit maximizing producer, as the number of competing
producers increases, his optimal strategy dictates that he reduce his

setup and inventory holding costs.
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1. INTRODUCTION

This paper extends the profit maximizing economic order quantity
(E0Q) model with a constant demand rate over time to the case of a
symmetric oligopoly consisting of producers of a single homogeneous
product who compete with each other for the same potential buyers. Ve
assume that, for each producer, the options of investing in reducing the
setup and inventory holding costs are available. A primary goal of this
study is to understand economic implications of the resulting
equilibrium in terms of critical elements of EO models such as the
sales quantity per unit time and the levels of setup and inventory
holding costs as well as critical elements of the microeconomic market
theory such as the market price and the number of competing producers.
For an example, we offer a unique insight as to why several Japanese and
American producers are striving to reduce the setup costs under ever
increasing competition. Specifically, it will be shown that, for a
profit maximizing producer, as the number of competing producers
increases (i.e., the competition gets more intense), his optimal
strategy dictates that he reduce his setup and inventory holding costs.

The idea of employing profits as a performance measure of E0Q type
models has been explored as early as the 1950’s (see, e.g., Whitin [29]
or Smith [23]). Ladany and Sternlieb [11] not only uses the profit
levels as the performance measure, but also provides insights on

relations among price, cost, and demand by making the demand dependent
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on the price and the price dependent on the cost and a fixed mark-up.
Brahmbhatt and Jaiswal [3] extends the previous model by incorporating
variable mark-up as a function of a capital intensity measure and by
maximizing profit over the order quantity and the capital intensity.
Arcelus and Srinivasan [1] also extends Ladany and Sternlieb [11] by
treating demand as a function of price, price as a function of a
variable mark-up rate times a unit cost under profit maximization over
the order quantity and the variable mark-up rate. Moreover, Monahan [16]
as well as Lal and Staelin [12] developed quantity discount schemes for
the seller. Lee and Rosenblatt [13] extended Monahan [16] by
incorporating more realistic features (e.g., constraints imposed on the
amount of discount that can be offered). The rationale for the quantity
discount in these papers is the cost savings resulting from coordination
of producers’ production quantities and buyers’ order quantities under
the assumption that both buyers as well as sellers are ED{ based
decision makers. The assumption that buyers are E0Q based decision
makers is relaxed in a new quantity discount EOQ model in Min [14]. Im
Min [14], the rationale for the quantity discount is the seller’s
exploitation of the heterogeneous preferences of the buyers regarding
their purchase sizes. More recently, in Min [15], for both uniform
pricing and quantity discount pricing (under the heterogeneous buyers’
preferences assumption) cases, how to incorporate competition aspects of
sellers into E0Q models based on Cournot-like behavioral assumptions
(see e.g., Oren, Smith, and VWilson [17] or Varian [28] or Friedman [6])

is discussed.
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Also, under the assumption of dynamic and deterministic demands,
there have been numerous studies investigating the optimal relations of
production schedules, prices, and inventories (see e.g., Gaimon [7],
Pekelman (18], Kunreuther and Schrage [10], and Thomas [26]). Thomas
[27] investigates the optimal relations of production quantities and
prices under the assumption of stochastic demands. Moreover, in Gaimon
(8], the assumption of a single firm is replaced by a duopoly, and the
optimal relations between production capacities and prices are studied
within a differential game framework. Also, in Dockner and Jorgensen
[5], optimal pricing strategy under competition is examined and
non- cooperative as well as cooperative equilibria results are obtained.
In Teng and Thompson [25], an oligopoly model is analyzed and optimal
advertising policies are obtained when production costs obey a learning
curve. We note that the models constructed and analyzed in the last
three papers are also time dependent dynamic models.

Recently, the superiority of an inventory management system called
Zero Inventory (often synonymous with Kanban and Just- in-Time; see e.g.,
Zangwill [30]) has attracted a great deal of attention not only from
industries but also from academia. The essential philosophy of Zero
Inventory management system is that the inventory results from
operational inefficiencies. Hence, the higher the level of inventory,
the greater the operational inefficiency. From this perspective, it is
well known that several Japanese and American producers strive to reduce
the level of inventory as much as possible. In order to reduce the

level of inventory, numerous experts in industries and academia find it
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essential to reduce the setup cost of production. In Porteus [19], such
efforts to reduce the setup cost are mathematically incorporated by
introducing an investment cost function of reducing the setup cost to
undiscounted EQQ models. For the cases of logarithmic investment cost
functions and power investment cost functions, his models demonstrate
decreased operational costs when the setup cost is reduced. Porteus
[20] extends Porteus [19] to the cases of discounted EOQ models.
Billington [2] formulates a model of which setup cost is a function of
capital expenses and investigates the relations among holding, setup,
and capital expenses. In Zangwill [30], however, it is argued via
numerical examples that certain efforts to reduce the setup cost will
actually increase the operational costs. We note that, in all these
papers, the performance criterion has been the minimization of
operational costs (as compared to the maximization of profits in our
model) and the competition effects on the production and inventory
policies are ignored.

In this paper, we construct a model under a Cournot-like behavioral
assumption. That is, each producer first predicts his competitors’
sales quantities per unit time in maximizing his own profit (see e.g.,
Oren, Smith, and Wilson [17]). The decision variables of our model are
the economic production quantity (in order to be consistent with the
term "producer”, we will use the term "economic production quantity" in
place of "economic order quantity"), the sales quantity per unit time,
and the desired levels of setup and inventory holding costs (i.e., the

options of investing in reducing setup and inventory holding costs are
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available to each producer). In our model, we will assume that all
critical economic quantities producers must determine such as the
optimal economic production quantity and the optimal level of the setup
cost are made under the framework of static decision making (cf. dynamic
decision making framework; see e.g. [7], [18], [10],and [26]). In order
to highlight the optimal relations among the critical economic
quantities that are derived under the static decision making framework,
wve will make the following assumptions. We assume : 1) the demand is
deterministic and constant over time; 2) production occurs
instantaneously; 3) there is no learning effects in setup or production.
Also we will not consider discounting prices and costs over time and
other time dependent features such as promotion and advertising. In
addition, we will assume that each producer can produce sufficient
amount of producté to meet any quantity demanded by buyers. Under these
assumptions, we formulate a Cournot model consisting of a symmetric
oligopoly of n producers with options to invest in reducing setup and
inventory holding costs offering a homogeneous product. By a symmetric
oligopoly, we mean producers are identical in all economic respects such
as production costs and investment costs of reducing setup and inventory
holding costs. From the formulation of the Cournot model, we obtain a
symmetric equilibrium. The formulation and equilibrium conditions under
the Cournot model explicitly depend on n, the number of competing
producers in the market. We derive interesting economic implications
regarding the market price, demand elasticity, number of competitors,

average and marginal costs of production and inventory holding as well
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as the aforementioned four decision variables. Furthermore, via
sensitivity analysis which is based on the equilibrium conditions under
the Cournot model, we derive the directions and magnitudes of changes in
the aforementioned decision variables with respect to change in the
number of competing producers. From the results of the sensitivity
analysis, we present several interesting economic implications including
a unique insight as to why several Japanese and American producers have
devoted so much energy and time to reducing setup costs.

The rest of this paper is organized as follows. In section 2, we
formulate the Cournot model and derive and interpret its equilibrium
conditions. In section 3, we perform the sensitivity analysis on the
Cournot model and interpret its economic implications. Summary and

concluding remarks are made in section 4.



62
2. THE NODEL AND ECONOMIC INPLICATIONS IN EQUILIBRIUK

Ve assume that there are n identical producers offering a single
homogeneous product. Also we assume that buyers have perfect information
about the per unit prices n producers charge. Hence, in equilibrium, all
producers will charge the same per unit price, p, the market price. For
each producer i, i = 1, ..., n, as in the cases of traditional E0Q
models (see e.g., Hillier and Lieberman [9]), we assume: 1) the goods
are produced in equal numbers, Qi at a time; 2) all Qi units arrive
wvithout delivery lag; 3) no shortage to a buyer is permitted. We also
assume that, for each producer i, the total cost per cycle includes the
production and inventory holding costs of conventional EO( models. The
production cost per cycle is represented by Ki + C(Qi) vhere Ki is the
setup cost and C(Q;) is the production cost incurred in producing @,
units after the setup. On the other hand, the inventory holding cost is
characterized by h, inventory holding cost per unit per unit time. In
this paper, the options of investing in reducing the setup cost and the
inventory holding cost are available. Specifically, we will
characterize these options by defining the following two cost functioms
(cf. Porteus [19]).

1) V(Ki;KO) : the per unit time cost of reducing the setup cost from the
current level of Kj to the level K..
2) W(h;5hy) : the per unit time cost of reducing the inventory holding

cost from the current level of h0 to the level of hi'
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As implied earlier, we assumed that all cost functions (i.e., C(Q;),
V(Ki;KO) and V(hi;ho)) are identical for all producers. Ve further
assume that C(Q) is strictly increasing and convex in Q and V(K,; Kj)
and V(hi;ho) are strictly decreasing and concave in K and h, i.e., C’/(Q)
>0, C-(Q) 2 0, ¥ (h;;5hy) <0, ¥ (h;5hg) < 0, V- (K;5K)) < 0, and
Voo (K;5Kg) < 0. The convexity of C(9) implies that the marginal cost of
production is increasing in § where as the concavity of V(Ki;KO)
(W(h;3hy)) in K, (h;) implies that the marginal per unit time cost of
reducing the setup cost (or inventory holding cost) with respect to the
setup cost (or inventory holding cost) is decreasing.

The sales quantity to buyers per unit time for the entire market is
characterized by d(p), a function of per unit market price p. We assume
that the sales quantity, given a price, is constant over time. Also we
assume that the sales quantity function is strictly decreasing in p,
i.e., d’(p) < 0. Under the monotonicity assumption of d’(p) < 0, the
inverse function p(d) exists (with p’(d) < 0). The inverse function p(d)
specifies the price p that clears d units in the market. We will assume
that the inverse function p(d) is concave in d, i.e., p’’(d) ¢ 0. Just
as in microeconomic theory (see e.g., Varian [28]), we can refer to p(d)
as the inverse demand function while d(p) as the demand function. Since
the demand function d(p) is assumed to be constant over time, so is the
inverse demand function p(d).

Given the above definitions and assumptions, we develop a
Cournot- 1ike framework as follows. We assume that each producer i, i =

1, .-+, n will predict the total sales quantity per unit time of his
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n-1 competitors, d—i' Under this prediction, producer i maximizes his
profit per unit time over his sales quantity per unit time di’ economic
production quantity per cycle Qi’ desired setup cost per cycle Ki, and
desired inventory holding cost per unit per unit time hi' For the total
sales quantity per unit time for the entire market, di + d—i’ the
corresponding per unit market price is given by p(di + d—i)' Hence, the
total revenue per cycle for producer i is p(di + d-i) Qi' And the
corresponding total cost per cycle and the cycle length are given by Ki
« (0;) + b03/(24;) + V(K;5Kg)Q3/d; + W(hy5ho)Q;/d; and G;/d;
respectively. Given these expressions for the total revenue, cost, and
the cycle length, the problem of maximizing profit per unit time for

producer i, 7,, can be stated as follows.

. ga.xhzixzp(di+d_i)di - (Bg+ €(8;))d;/8; - by8;/2 - W(bysho) - V(K Kp)
1095005584

(1)

The first order optimality conditions of the maximization problem (1)

are :
or.
Ej =p(d; +d;)d; + p(d; + d ;) - (K5+ C(Q;))/Q; =0 (2)
i
T 4 (e @0, - K- 6@/ - By/2 = 0 (3)
o, i i7% 7 4 77734 i

-Q;/2 - ¥ (h3hy) = 0 (4)
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3ri
w4/l VRgskg) = 0
i

()

In order to derive the corresponding second order sufficient conditions

for optimality, we first obtain the second order derivatives of the

profit as follows.
02ri
Bag— = p"(di + d—i)di + 2p'(di + d—i)
62ri
dd. a0,
32’1
dd, oh,

(K; + O(8) - 9,07 (8;))/02
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From our assumptions that p’(-) < 0 and p’“(-) < 0, ve have
2
.

——ﬁi < 0. Therefore, the second order sufficient conditions for

od§
optimality can be expressed by the following Hessian matrix and the

signs of principal minors.

[ 2 2 2 2
V<0 | 0%r;j0ad | o%r,/0d,00;| 0 /0d o, | o%r,/0d, 0K,

2 2
Vo 0| &Pr/ad 00, o%x o0 | 0fx /o0, | 0 /000K,

2 2 2 2
V< 0 | 0%r;/0d,0h; 0%r,/o0.0h, Or./m: | &Pr /b oK, (16)

2 2 2 I
V> 0| 0°r,/0d 0K, 5°x/oQ;0K; 9°r,/oh 0K, &°r. /oK,

( v, defines the ith principal minor)

Throughout the rest of this paper, we will assume that the second order
sufficient conditions are satisfied. In addition, we will assume that
the resulting profit level of each producer i, i =1, ..., n, evaluated
at the optimal sales quantity per unit time and production quantity per
cycle, desired setup cost per cycle, and desired inventory holding cost
per unit per unit time is non-negative (i.e., no producer will exit from
the market).

So far we have examined the optimality conditions of a single
producer. Ve now proceed to derive an equilibrium of n producers.
Under our assumptions of identical producers, there exists a symmetric

equilibrium (see e.g., Oren, Smith, and Wilson [17]) where



dy
and Ql

dy =+ = d (17)
Q2 = e = qn (18)

1}

i.e., the sales quantity per unit time as well as the economic
production quantity are idemtical for all producers. In this symmetric
equilibrium, the total sales quantity per unit time from all competitors
of producer i, d_; is equal to (n-1)di for i =1, .- n. Therefore, the
corresponding equilibrium conditions of the optimality conditions (2) -

(5) are given by

p’(nd;)d; + p(nd;) - (K; + C(Q;))/0; =0 (19)
-d; (0 (85)9; - K; - C(8;))/85 - By/2 = 0 (20)
-0;/2 - W (by5hg) = 0 (21)
-d;/Q; - V/(Ki5Kp) = 0 (22)

Let us first examine equilibrium condition (19). The corresponding
demand elasticity e, ¢ = p(d)/(p’(d)d) by definition (see e.g., Varian

[28]), evaluated at the symmetric equilibrium point becomes:

€= p(ndi)/(ndip’(ndi)) (23)

Hence, in the symmetric equilibrium, equation (19) can be restated as

P(ndi) = (—EEEE_T—)(Ki + C(Qi))/Qi (24)

Equation (24) states that, given a fixed number of competitors n, as the



68

demand becomes more elastic (i.e., |¢]| gets larger), the equilibrium
price gets closer to the average production cost. Or as the demand gets
more inelastic (i.e., |e| gets smaller), the equilibrium price gets
farther away from the average production cost. If we view the term
_EEEE'T' as a markup rate, the economic implication is that the markup
rate is larger when the demand is more inelastic. On the other hand,
given a fixed level of elasticity, ¢, we observe that as the number of
competitors increases (i.e., as the competition gets more intense), the
price gets closer to the average production cost. Or as the number of
competitors decreases (i.e., as the competition gets less intense), the
price gets farther away from the average production cost. We also
observe that as the number of competitors decreases, the markup rate
increases. In addition, we note that if -1 < ne < 0, the price is
negative. Furthermore if ne = -1, it can be easily verified that no
production quantity per cycle Q; satisfies equation (19). Hence,
throughout this paper, we limit our amalysis to the cases where ne < -1.
i.e., ne < -1 will be assumed.

Let us now examine equilibrium condition (20). By rearranging

terms of condition (20), we have

(K + 6(8;))/4; - € (8;) = hd;/(2d;) (25)

Equilibrium condition (25) states that for each producer i, i =1, ...
n, the average production cost is equal to the sum of the marginal
production cost and the average inventory cost per unit. The economic

implication is that the per unit production cost is strictly higher than
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the per unit inventory cost at the equilibrium since the marginal
production cost is assumed to be positive. Also we note that if (K +
€(9,))/q; < €-(Q;), it can be easily verified that no production
quantity per cycle {, satisfies equation (20). Hence, throughout this
paper, we limit our analysis to the cases where
(K + C(Qi))/qi > C'(Qi). i.e., (K + C(qi))/qi > C'(Qi) will be assumed.

Ve nov examine equilibrium condition (21). By rearranging terms of

condition (21), we have

- ¥ (by3hy) = Qy/2 (26)

In equation (26), ¥’(h;;h,) denotes the marginal decrease in the per
unit time cost of reducing the inventory holding cost (per unit per unit
time) with respect to a small increase in h, where as Q,/2 represents
the marginal increase in the per unit time inventory holding cost with
respect to a small increase in h;. Hence, equation (26) states that, in
equilibrium, the sum of the marginal decrease in the per unit time cost
of reducing the inventory holding cost and the marginal increase in the
per unit time inventory holding cost results in zero.

Ve now proceed to examine equilibrium condition (22). By

rearranging terms of condition (22), we have

- v (Ki;KO) = di/qi (27)

In equation (27), V/(K;;K,) denotes the marginal decrease in the per
unit time cost of reducing the setup cost with respect to a small

increase in K, where as di/Qi represents the marginal increase in the
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per unit time setup cost with respect to a small increase in Ki' Hence,
equation (27) states that, in equilibrium, the sum of the marginal
decrease in the per unit time cost of reducing the setup cost and the
marginal increase in the per unit time inventory holding cost results in
zZero.

Ve note that the relations among the equilibrium sales quantity per
unit time di’ the economic production quantity Qi, the setup cost per
cycle K; and the inventory holding cost per unit per unit time hi for i
=1, -+, n are implicitly determined by (24) to (27). By simultaneously
solving conditions (24) to (27) given p(:), C(-), V(-), W(:), hy, K, and

n, we can numerically determine the values of di’ Q;, K and h,.

i’
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3. SENSITIVITY ANALYSIS

In this section, we investigate the sensitivity of the sales
quantity per unit time di’ production quantity per cycle Qi, setup cost
per cycle Ki, and the inventory holding cost per unit per unit time hi
in equilibrium with respect to the given parameter of our model, the
number of competing producers n. Our analysis of sensitivity will be
based on differential calculus (especially the implicit function
theorem; see e.g., Chiang [4]), which requires variables (or parameters)
to be continuous, rather than discrete. Hence, it will be necessary to
treat the number of competing producer n (n 2> 1), which is hitherto
assumed to be an integer, as a continuous variable. The justification
for treating n as a continuous variable (to the extent possible) can be
found in Seade [21]. The justification in Seade [21] is based on an
essential assumption called the "single- signedness" assumption. That
is, let us define x(n) to be any relevant function of n (e.g., price p)
and let Vx = x(n+1) - x(n). Then (sigh Vx) = (sigh x’(n)) is assumed
(see e.g., Seade [21] for further details).

At the equilibrium point (di’ Qi, hi’ Ki), by applying the implicit

function theorem and by allowing n to be continuous, we obtain the

adi aqi 3hi BKi
following relations for magnitudes of changes T T T and e with

respect to an infinitesimal increase in the number of competing

producers n.
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Let Fl, F2, Fand r denote the left hand sides of equilibrium
conditions (19) to (22) respectively. From the assumptions that the
second order conditions (16) are satisfied, the determinant of the
Hessian matrix is positive. It can be easily verified that this implies
the determinant of Jacobian of Fl, F2, S and F4 with respect to di’ Qi,
h; and K; (shown in the left hand side of equation (28)) is also
positive, satisfying a condition necessary for applying the implicit
function theorem. Finally, for the inverse demand and cost quantities,
p(), P*(-)s p*(-), C(-), €(-), and C'*(-), the arguments nd;, Q;, by

and Ki are suppressed for more comprehensible presentation. Then, we

have :

gt ort opt apt ][ %3] [ apt]

W, o, h; oK ||@m iy

o e | | W oF2 28
81, oy, oh, K | |7 T (28)
ot o s ||| a8

W, O, o 0K ||%@ T

ot ot ot wt| | % ot

W, W, M oK ||7m iy

where the elements of equation (28) are as follows.

arl
v ndip" + (n + 1)p’ (29)
1
1 2 K.+ C- Q.C
dF ar i i
= = (30)
aq; - 94y 0
oL apd

= =0 31
m; ” o @)
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1
= - - 32
®, T A T (32)
2 3
oF°  OF 1
o T A T T (33)
2 Yoy 4 rs
a; " e
d 1
2 4 .
dF ar i
o, ~ @ —Ef (35)
3
=V (hyshy) (36)
3 4
oF
) ol gﬁ? =0 (37)
1 1
4
= VKK (38)
2 3 4
oF%  OF°  GF
B c@m @ 0 (39)
1
oF /
o= o (40)

The inverse of the Jacobian matrix exists since its determinant is

nonzero. Hence, we solve the equation (28) for the magnitudes of

gd; aq; oK oh;
changes o=, »—=, 7=, and 7= as follows.

In the following derivations, the quantity I is defined to be the
inverse of the determinant of the Jacobian matrix in the left hand side

of equation (28). After some matrix operations, we have :

ad. ,
== -1(a gg)[w"(hi;ho)v"(xi;xo)di(-qfc"-z(xi+c-qic'))/qg
+ a2 (hy5ho) /0 + Voo (5K ) /4 ] (41)
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aq. ,
g = 1R + ) Wy sh) Ve (By5k) (B;+6-056)) /85 -

¥ (b;30)d; /03] (42)

dh. , I
= UG BV @t (e 40/ () - ay/eR)] (1)

0K .
L= 1(a, 22 + ) LV"(hi;ho)di(Ki+C-QiC')/Q%
© W0 (g sho)dy (020 - 2K, 0,00) /08 + 1/40p)]  (49)

0di ﬁQi 3hi 6Ki
The corresponding directions of T T and 7 are

summarized in the following proposition (see Appendix for the proof).

Proposition 1 :  4ssume that the sales quantity per unit time
,production quaniity per cycle and the levels of setup and inveniory
holding costs (di’ Qi, h., Ki) satisfy the equilibrium conditions (19)
to (22) and the second order sufficient condition (16). Assume further
that for the production cost, the investiment cost and the inverse demand
functions, C/(Q) > 0, C-“(Q) 2 0, V/(K) <0, W (h) <O, V//(K) <O,
W/(h) <0, p’(d) <0, and p’“(d) < 0 . HNoreover, assume that the
profit level at (d;, Q;, by, Ki) i8 non-negative.

Then, we have :

o, a0, 9K

dh. .
H—(O,#(O,#(O(lndﬁ:(().

The economic implications of Proposition 1 are as follows. In the

equilibrium, under the aforementioned single- signedness assumption, we
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conclude that if the number of competing producers increases by a
smaller number, the sales quantity per unit time, the production
quantity per cycle, the inventory holding cost per unit per unit time
and the setup cost per cycle will decrease in equilibrium. Ve note that
the change in the frequency of production is indeterminate (i.e., the
corresponding cycle may be longer or shorter). The sign of the
corresponding change in the per unit price (i.e., p(ndi)), however, is
also indeterminate due to the following reason. Let &i (&i < di) denote
the new sales quantity per unit time for producer i and let n (; > n)
denote the new number of competing producers. Then, the corresponding
new per unit price is given by 5 = p(ﬁai). Since n > n and &i < dy, the
sign of p(ﬁéi) - p(ndi) is indeterminate. i.e., the per unit price may
increase, remain the same, or decrease when thé number of competing
producers increased by a small number.

From the perspective of investing in setup and inventory holding

oK. dh,

costs, the fact that —aﬁl— < 0 and —aﬁl— < 0 in the equilibrium implies
the following. For a profit maximizing producer, as the number of
competing producers increases (i.e., the competition gets more intense),
his optimal strategy dictates that he reduce his setup and inventory

holding costs.
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4. CONCLUDING REMARKS

In this paper, we extended the profit maximizing EOQ model by
introducing competition aspects under a Cournot-1like behavioral
assumption and by treating the setup cost and inventory holding cost as
decision variables. First we showed how a profit maximizing E0Q model
can be formulated for n identical producers competing for the same
potential buyers. From this formulation, we obtained symmetric
equilibrium conditions. From these equilibrium conditions and the
subsequent sensitivity analysis, interesting economic relations are
obtained.

From the perspective of Zero Inventory Philosophy, this paper
provided an additional insight as to why several Japanese and American
producers strive to reduce the setup cost. That is, as the number of
competing producers increases (i.e., the competition gets more intenmse),
the optimal strategy of a profit maximizing producer dictates that he
invest in reducing setup and inventory holding costs.

The E0Q model developed in this paper is applicable for broad
classes of convex C(-) function, concave V(-) and W(.) functions, and
concave p(-) function. Our model relates gemeral practices since
numerous industries and firms apply EOQ based decision making under
competition. There are several possible extensions that will further
improve the relevance of our model to general practices. They include

incorporation of more sophisticated features such as quantity discount
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price schedules, finite production rates, shortages, delivery lags, and
promotional (e.g., advertising) effects as well as stochastic demand
rates. From the perspective of Zero Inventory Philosophy, it would be
of interest to study the effects of competition on process quality
improvement and effective capacity in conjunction with the setup cost
reduction (see e.g., Porteus [21] and Spence and Porteus [24]).

From the perspective of game theory, Cournot Model in this paper
can be considered as only an initial step toward better understanding of
competitive inventory policies. It is our hope that more sophisticated
equilibrium concepts of game theory (e.g., subgame perfect equilibrium
for sequential decisions) will be exploited in the future research on

the competitive inventory policies.
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APPENDIX: PROOF OF PROPOSITION 1

From equation (41), we have

ad. ,
g = (3R [V (bysh) ¥ (K 3K ) (- 030 - 2R +C- 0,6)) /03 +

2y, 4 v

&% (b3h0) /03 + v (xi,xo)/4] (A.1)
From equation (25), we have Ki + C - QiC' > 0. Since C’’ > 0,
-2%0-7 - 2(K; + € - 0,67) < 0, W (h;) <0 and V/*(K,) < 0, we have

[ . ] is less than zero. Since (digg— + gg Yy <0 and I > 0,

6di
wve obtain T < 0. 0

From (42), we have

BQ' ’
= LT (1 (yshg) V' (85Ko) (8340030 /6 -
¥ (b;5h)d; /03] (A-2)
From equation (25), we have K, + C - Q;C* > 0. Since ¥(hy) <0

and V"(Ki) < 0, we have [ . ] is less than zero.

, aq.
Since (digg— + gg ) <0 and I > 0, ve obtain Eﬁl < 0. 0

From (43), we have

dh, ,
g = 1T Iy v R 80) (Rpae-0,0)/(2d) - dy/and)] (a.9)
From equation (25), ve have K, + C - Q;C’ > 0. Since V"(Ki) <0,

we have [ . ] is less than zero.

’ ah'
Since (digg— + gg ) <0and I>O0, wve obtain ?ﬁl < 0. o
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From (44), ve have

2 4
g = 1038 + ) ¥ hyshg)d; - Qe - (By+0-0,0)) /45 + 1/(40;)]
(A.4)
From equation (25), we have K; + C - Q;C* > 0. Since C-* 2 0,
92077 - 2(R; + C- Q,67) <0, W7 (h) <O, we have[ : ] is greater

than zero.

, oK.
since (d,22° + %) <0 and I >0, we obtain z2 < 0. @
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OPTIMAL SELLING QUANTITY AND PURCHASING PRICE FOR INTERMEDIARY FIRMS
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OPTIMAL SELLING QUANTITY AND PURCHASING PRICE FOR INTERMEDIARY FIRNS

Cheng-Kang Chen and K. Jo Min

Iova State University

ABSTRACT

Intermediary firms are economic agents that purchase from mostly small
and numerous independent producers and sell to other firms or to the
public. In this paper, how intermediary firms can optimally determine
both selling quantity and purchasing price of a product is investigated.
By incorporating the special structure of intermediary firms’
environments and by modifying the conventional economic order quantity
(E0Q) model accordingly, we provide optimal decision rules regarding the
selling quantity and purchasing price for intermediary firms.

(Economic Order Quantity, Pricing)
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INTRODUCTION

The conventional economic order quantity (E0Q) and economic
production quantity (EPQ) have been extensively studied and continually
modified in order to accommodate specific business needs and
environments1’2. In this paper, ve extend the conventional EQQ/EPQ
models so as to determine the optimal selling quantity and purchasing
price for an intermediary firm. We define an intermediary firm to be an
economic agent that purchases products from numerous independent
producers and sells those purchased products to other firms that process
or utilize the products (or to the public) at a given market price. Such
firms can be found in numerous industries. For examples, there are 1)
garment and apparel industry firms that purchase piece works
("homework") from independent sewers, and 2) agricultural industry firms
that purchase dairy and other agricultural products from independent
farmers.

The objective function employed in this paper is that of profit
maximization. The idea of employing profits as a performance measure of
E0Q type models has been explored as early as in the 1950°s3. Ladany and
Sternlieb? not only uses the profit levels as the performance measure,
but also provides insights on relations among price, cost, and demand by
making the demand dependent on the price and the price dependent on the

5

cost. Arcelus and Srinivasan“ extend Ladany and Sternlieb’s work by

exploring alternative investment oriented performance measures such as
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return on investment and residual income. Also, we employ the inspection
cost feature of conventional E0{/EPQ models6 in order to account for
possible defective products from independent producers.

The rest of this paper is organized as follows. We first define the
special structure of intermediary firms’ environments and formulate the
basic profit maximization model over the selling quantity, givem a fixed
purchasing price. Next we extend the basic model by making the fixed
purchasing price as a variable. Also, we add to the basic model an
inspection cost component, which is a realistic feature for an
intermediary firm. Finally, an illustrative example is provided and

concluding marks are made.
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DESCRIPTION OF INTERMEDIARY FIRMS’ ENVIRONMENTS

Let us denote the unit price an intermediary firm pays to
independent producers by r for a single type of product (e.g., eggs or
milk). The annual supply rate of the product to the intermediary firm
from the independent producers at price r is denoted by s(r). In the
traditional economic production quantity (EP{) perspective, s(r) can be
vieved as the production rate. In this paper, we will assume that the
annual rate is constant over time and there is a linear relation between
r and s(r). That is, s(r) = gr, where g is a positive proportionality
constant. Given a supply proportionality constant g, a higher price r
implies a higher supply rate s(r). Also given a fixed price r, a higher
supply proportionality constant g implies a higher supply rate s(r). In
the basic model, we will assume that the price r is fixed and relax this
assumption later. The purchased units are stored in the firm at a cost
of rF per unit per annum where F is the annual holding cost as a
fraction of unit purchasing cost to the intermediary firms (see e.g.,
Hax and Candea’ for the various components of the inventory holding cost
and the role of holding cost F). Once an amount of ( units accumulates,
all Q units are sold to another firm that processes or utilizes the
products (or to the public) at a given market price of p per unit. The
cost incurred to the intermediary firm in selling the accumulated
products is represented by a fixed selling cost K (for arranging
transportation, etc.) and a variable selling cost c¢ per unit (for actual

transportation, etc.).
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BASIC MODEL

Under our definitions and assumptions, the revenue per cycle is
given by pQ while the payment to the independent producers per cycle is
given by rQ. The total selling cost per cycle is K + c and the
inventory holding cost per cycle is rFQ2/(2s(r)). Therefore, the profit

per cycle, PRC, which is the revenue less the cost, is given by
PRC = pQ - £Q - K - c§ - rFQ%/(25(x)) (1)

The corresponding annual profit, PRA, can be obtained from equation (1)

by dividing PRC by Q/s(r), the cycle length (period). Namely,
PRA = ps(r)- rs(r) - Ks(r)/Q - cs(r) - rFQ/2 (2)

*
In order to obtain the profit maximizing selling quantity § , PRA is

differentiated with respect to { and set equal to zero. Hence,

Kgr/Q% - rF/2 = 0 (3)
given s(r) = gr.

*
From equation (3), the optimal selling quantity ( is given by

Q" = (2kg/F)0-5 (4)
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From equation (4), the optimal selling quantity Q* decreases as the
annual holding cost F increases. On the other hand, the optimal selling
quantity Q* increases as the fixed selling cost K or the supply

proportionality constant g increases.
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OPTIMAL SELLING QUANTITY AND PURCHASING PRICE UNDER BASIC MODEL

Let us now relax the assumption that the purchasing price r is
fixed. Instead, in this subsection, we will assume that the intermediary
firm can choose the unit price to the independent producers (i.e., r is
a variable). Hence, we are maximizing PRA with respect to both r and {
simultaneously. By differentiating (2) with respect to Q and r and by
setting the differentiated quantities equal to zero, we obtain two
equations relating Q and r with other parameters ( P, K, F, g, and c).
Solving these two equations for the optimal selling quantity Q* and
purchasing price r*. ve find that Q* is identical to that of the basic
problem shown in equation (4). Moreover, the corresponding optimal

*
purchasing price r is given by

r o= p/2- (KF/(2)"° - c/2 (5)

From equation (5), we obtain intuitive results that the optimal

*
purchasing price r increases as the selling price p or supply

proportionality constant g increases. On the other hand, the optimal
*
purchasing price r decreases as the fixed selling cost K, variable

selling cost ¢, or annual holding cost F increases.
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BASIC MODEL VITH INSPECTION COST

In this subsection, we make the following assumption : Prior to
purchase by the intermediary firm, each unit of products is inspected
for possible defectiveness at a cost of i per unit. We will assume that
a fraction b (defect-rate) of s(r) is defective and the intermediary
firm pays only for non-defective units. We will also assume that the
intermediary firm determines both the selling quantity Q and the
purchasing price r simultaneously. Under this additional assumption, the
revenue per cycle is given by p{ while the payment to the independent
producers per cycle is given by r. Also the total amount of supply
including defective items per cycle is given by Q/(1-b). Hence, the
total inspection cost per cycle is if/(1-b). The total selling cost per
cycle is K + c and the inventory holding cost per cycle is
rFQ2/(2(1-b)s(r)). Therefore, the profit per cycle, PRC, which is the

revenue less the cost, is given by
PRC = pQ - rQ - iQ/(1-b) - K- ¢ - rFQZ/(2(1-b)s(r)) (6)
The cycle length (period) is given by §/((1-b)s(r)). Dividing PRC by

this cycle length, we obtain the corresponding annual profit, PRA, as

below.
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PRA = p(1-b)s(r) - r(1-b)s(r) - is(r)
- (1-b)Ks(r)/Q - c(1-b)s(r) - rFQ/2 (7)

*
In order to obtain the profit maximizing selling quantity @ and
*
purchasing price r from (7), we perform a sequence of operations
*
analogous to the one shown in the previous subsection. The resulting (

*
and r are given by

O
I

(2(1-b)Kg/F) 0+ 8)

p/2 - (KF/(2(1-b)g)%° - i/(2(1-b)) - c/2 9)

o]
"

From equation (8), the optimal selling quantity Q* decreases as the
annual holding cost F or defect-rate b increases. On the other hand, the
optimal selling quantity Q* increases as the fixed selling cost K or the
supply proportionality constant g increases. From equation (9), we
obtain intuitive results that the optimal purchasing price r* increases
as the selling price p or supply proportionality constant g increases.
On the other hand, the optimal purchasing price r* decreases as the
fixed selling cost K, variable selling cost c, per unit inspection cost

i, defect-rate b, or annual holding cost F increases.



94

AN TLLUSTRATIVE EXANPLE

We solve a profit maximization problem over the selling quantity Q
and purchasing price r to illustrate some of the features discussed. Let
us assume the following values are provided either by estimations from

free market or by regulatory rules.

K=1

p =10
F=0.05
g =0.5
c=0.5
i=0.1
b =0.05

From equation (8) and (9), the optimal selling quantity and purchasing
price are given by

*

@ =4.359

*

r = 4.468
It can be easily verified that the corresponding annual profit and the

optimal cycle length are 9.482 and 2.054 respectively.
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CONCLUDING REMARKS

Ve have shown how to formulate the profit maximization problem for
intermediary firms utilizing the special structure of the firms’
environments. The optimal selling quantity and purchasing price are
derived in terms of fixed and variable selling costs, supply
proportionality constant, annual holding cost, selling price, inspection
cost, and defect-rate.

The observation that the supply rate s(r) depends on the purchasing
price r is a prevalent feature in numerous other kinds of firms. For
example, in order to operate efficiently, various types of processing
and manufacturing firms (i.e., firms that process supplied inputs into
different outputs as opposed to intermediary firms that accumulate
supplied inputs and sell them to other firms) must take this relation
between the supply rate of inputs and their corresponding prices into
account. For such firms, the model in this paper can be a basis for

further research.
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UNDER LINEAR DEMAND

Cheng- Kang Chen and K. Jo Nin

Iowa State University
ABSTRACT

In this paper, for a single seller, we compare and contrast the optimal
inventory and pricing policies under profit maximization vs. ROII
(return on inventory investment) maximization ;Len demand is linear in
price. By studying the optimality conditions and the corresponding
closed- form optimal solutions, several interesting economic implications
are derived. In particular, we show that vhen a cost factor such as the
setup cost, inventory holding cost per unit per unit time, or per unit
ordering cost after the setup is sufficiently high, the choice of the
objective between profit maximization and ROII maximization is

inconsequential to the seller in so far as his optimal decisions are

concerned.
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INTRODUCTION

In a recent paper by Rosenberg [5], for a single seller, optimal
price- inventory decisions in the face of alternative criteria are
studied for logarithmic concave demand functions (which include linear
demand functions). The alternative models studied are a profit
maximizing E0Q type model (the profit maximization model), an ROII
(return on inventory investment) maximizing E0Q type model (the ROII
maximization model), and an Economic Theory of the Firm model (the ETF
model; a profit maximizing model without setup and inventory holding
costs). In particular, under the linear demand assumption, these three
models are analyzed in detail and numerical examples are presented. In
the analysis, closed-form optimal solutions are employed for the ROII
maximization model and the ETF model while an examination of optimality
conditions and an iterative procedure (e.g., the Newton-Raphson method)
are employed for the profit maximization model.

In this paper, however, for the profit maximization model, the
closed-form optimal solution is employed for the analysis, which is
attainable directly from the optimality conditions. The closed-form
optimal solution for the profit maximization model enables us to perform
more comprehensive and tangible analysis than the analysis shown in [5]
under the assumption of linear demand in so far as the profit
maximization model and ROII maximization model are concerned.

Specifically, in this paper, we compare and contrast the optimal
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inventory and pricing policies for a single seller under profit
maximization vs. ROII maximization when demand is linear. First, we
formulate the profit maximization model and the ROII maximization model
and derive the corresponding closed- form optimal solutions from the
optimality conditions of the two models. Next, we obtain the relative
bounds of the optimal decisions of the two models by examining the
magnitudes of the closed-form optimal solutions. In addition, by
studying the optimality conditions of the two models, we derive
interesting relations among the price, average ordering cost, price
elasticity of demand, and markup rate. Finally, we investigate the
sensitivity of the optimal decisions with'respect to the choice of the
objective. In particular, ve show that when a cost factor (e.g., the
setup cost) is sufficiently high, the choice of the objective between
profit maximization and ROII maximization is inconsequential to the
seller in so far as his optimal decisions are concerned.

Throughout this paper, we assume that the seller will not operate
(i.e., the seller will exit from the market) if his optimal profit
(ROII) level is strictly negative under profit (ROII) maximization.
Hence, we will consider only the cases where the optimal profit (ROII)
level under profit (ROII) maximization is non-negative. i.e., a
non-negative optimal profit (ROII) level under profit (ROII)

maximization is assumed for the amalysis.
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BASIC MODELS

Ve define the following variables and parameters for our models.

: the order quantity.
: the demand per unit time.

: the per unit price that clears d units in the market;

p(d) = e - Ad, de[0, a/f].

: the set up cost.
: the per unit ordering cost after the setup.
: the inventory holding cost per unit per unit time.

: the inventory holding cost per unit per unit time excluding any

opportunity cost; h’ < h (i.e., a positive opportunity cost is

assumed).

: the cycle length.

. . . . .. _dd

: the price elasticity of demand; € = -H%El 5.
: the profit per unit time.

: the return on inventory investment (ROII).

In addition, throughout this paper, as in the conventional E0Q models

(see e.g., Hillier and Lieberman [2]), we will assume that 1) the demand

is constant over time given a price p; 2) the goods are ordered in equal

quantities, Q at a time; 3) all Q units arrive without delivery lag; 4)

no shortage is allowed. We now derive the optimal solutions for the

profit maximization model under linear demand.
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The Profit Nazimization Nodel
Under our definitions and assumptions, the total revenue per cycle,
the total cost per cycle, and the cycle length are given by p(d)q, K +
c + hQ2/(2d), and Q/d, respectively. Hence, the corresponding profit
per cycle and the profit per unit time are given by p(d)Q - K - c{ -
ng?/(2d) and p(d)d - Kd/q - cd - hQ/2, respectively. Since p(d) = a -
pd, the profit per unit time (denoted by r) maximization problem is

formulated as follows.

Max 7 = d(a - Ad - c) - Kd/Q - hQ/2 (1)

’

The corresponding first order necessary conditions are given by
or

m=a-c-26d-KQ=0 (2)
%:xd/qz- h/2 = 0 (3)

By substituting and rearranging the relation = (2Kd/h)0'5 from (3)

into (2), we obtain the optimality condition for d as follows:

0.5
qi-5 , (c-a) 0.5 (ggg) =0 (4)

By employing the trigonometric methods (see e.g., Chapter 3 of Mishina
and Proskuyakov [3], Chapter 2 of Griffiths [1], or appendix of Porteus

[4]), ve obtain the optimal demand per unit time, d_, as follows.
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a = Zigﬁ—cl cos? (%) (5)
where cosf = (—Zéhg—g) , and 7/2 < @ ¢ 37/4.
a-

Ve note that the upper bound of 3r/4 on the critical angle # is obtained
from the assumption that the resulting profit per unit time is
non-negative. On the other hand, the lower bound of 7/2 on the critical
angle 6 implies that parameters f, h, and K should all be strictly
positive in order for the profit maximization EO{ model to be

non- degenerate. From (5), the corresponding order quantity QT is

0.5
0, = (5E) “cos(g) (6)
for /2 < 0 < 37/4 and cosf = —(i%éhggg)o.s
a-Cc

For 7/2 < 0 < 37/4, it can be easily verified that the second order
sufficient conditions for the profit maximization are satisfied at (dr’
Q,) given by expressions (5) and (6).

From (5) and (6), ve obtain the corresponding optimal price p_ and

cycle length Tf as follows.

0.
For 7/2 < 6 < 37/4 and cosf = -(i%ghggg) 5,
a-¢
a - 213——1 cos2(0) (7)

0.5
T = () (cos(d) ! (8)

P

Given the optimal quantities (5)- (8), the corresponding profit and ROII
levels evaluated at the optimal quantities (5)-(8), 7 and R (see the

next subsection for the derivation of ROII), are obtained as below.

0.5
For 7/2 < 0 < 37/4 and cosf = -(i%éhgsg) )
e-¢



104

2
r = iﬂbﬁl- (Geos (D) - Zeos?(dy) 9)
B, = 5 (cos®())/(3 - 4cos’(g)) - & (10)

The ROIT Nazimization Nodel

Analogous to the case of the profit maximization model, the total
revenue per cycle, the total cost per cycle excluding any opportunity
cost in the inventory holding cost h (i.e., h is now replaced by h’),
and the cycle length are given by p(d)q, K + cQ + h'Q2/(2d), and Q/d,
respectively. Hence, the corresponding profit per cycle excluding any
opportunity cost in the inventory holding cost h and the profit per unit
time excluding any opportunity cost in the inventory holding cost h are
given by p(d)Q - K - ¢Q - h’q%/(2d) and p(d)d - Kd/Q - cd - h’Q/2,
respectively. The value of inventory investment per unit time is given
by cQ/2 because the amount of inventory per unit time is (/2 and the per
unit cost of ordering after the setup is c¢. The return on inventory
investment (ROII) is defined to be the ratio of profit per unit time
excluding any opportunity cost in the inventory holding cost h to the
value of inventory investment per unit time, cQ/2. Hence, the ROII for
the seller can be obtained by dividing p(d)d - Kd/Q - cd - h’Q/2 by
cQ/2. Given the relation p(d) = a - fd, the resulting ROII maximization

problem can be stated as follows.

Max R = 2d(a - d - c)/(cq) - 2Kd/(c@?) - h’/c (11)

b

The corresponding first order necessary conditions are given by
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B - 2(a- 264 - )/(ch) - 2K/(ct?) = 0 | (12)
B 24(a- fd- c)/(ct?) + 453/ (ct?) = 0 (13)

By solving equations (12) and (13) for the optimal demand per unit time
dR and the optimal order quantity QR, wve obtain the following

expressions.
dy = (a- ¢)/(36) (14)
0 = 3K/(a - c) (15)
vhere 21%7%KEIE > h.

The condition g£%7bxgli > h’ implies that the return on inventory
investment is non-negative. Also, it can be easily verified that the
second order sufficient conditions for the ROII maximization are
satisfied at (dp, Qp) given by expressions (14) and (15). Given optimal
quantities (14) and (15), ve can obtain the corresponding optimal price

PR and cycle length TR as below.

pg = (¢ + 2a)/3 (16)
T, = 96K/ (a - c)? (17)

Given the optimal quantities (14)- (17), the corresponding profit and
ROII levels evaluated at the optimal quantities (14)-(17), R and RR’
are obtained as below.
1p = (a-¢)%/(96) - 3nK/(2(e-c)) (18)
Ry = 2(0-c)°/(276cK) - h'/c (19)
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COMPARATIVE ANALYSIS OF OPTIMAL POLICIES: PROFIT VS. ROIX

Relative Bounds of the Bptimal Solxtions
In this subsection, let us first compare the relative magnitudes of

the optimal order quantities {, and Qp. From equations (6) and (15), the

q
ratio of ug is given by

] ’ 4 0.5
u§=(3x/(a- 0))/ (&Ll cos(d)) (20)
vhere cosf = —(§%§¥§53)0‘5 for /2 < 0 < 31/4.

The right hand side of equation (20) can be rearranged such that
% ommk (05 ¢
= (—ﬂg) /cos(3)
U; 4(a-c) 3
-cosﬂ/cos(g) (21)

By employing the identity relatiom, cosf = 4cos3(g) - 3cos(§), we
simplify equation (23) to become

gﬂ =3 - 46082(§) (22)
T

Since the range of #/3 is such that 7/6 < 0/3 < 7/4, the range of cos(g)

is such that (1/2)0'5 < cos(g) < (3/4)0'5. Hence, the range of UE is
T

given by

q
0 < U% <1 (23)

The above inequalities imply that the optimal QT under profit

maximization is always greater than or equal to the optimal QR under

ROITI maximization.
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Analogous to the above analysis, we can obtain the relative bounds
of the optimal demands, prices, and cycle lengths. The results, which

can be easily verified, are summarized in the following proposition.

Proposition 1. Given the optimal order quantities, demands, prices, and
cycle lengths shown in equations (5) - (8) and (14) - (17), the

following relative bounds hold.
U
a) 0 < <1
i,

d
b) % < HE <1
T

P a-c
Ty
T

Part b) of Proposition 1 states that dr is greater than or equal to dp,
but dx is strictly less than %dR' Part c) states that P, is less than or
equal to Py but Dy is strictly less than (1 + 3%%§Ef)pr' Finally, Part
d) states that Tp is less than or equal to T . cf. the analysis in [5]
wvhich focuses more on the relative ordering of the optimal decisions and
less on the relative bounds of the optimal decisions for logarithmic

concave demand functions (which include linear demand functions).

Elasticity Analysis
Let us first investigate the relationship among price, average

ordering cost, and price elasticity of demand under profit maximization.
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From equation (2),
p,- pd =p (1-p6d/p)
K/Q, +c (24)
The price elasticity of demand at the optimality, e = 'pr/(ﬂdx) =1-

(3a/(2(a—c)cos2(g))) vhere cosf = _(i%ébgsg)o's for 7/2 < 0 < 37/4.
e-C

Hence, equation (24) becomes p (1 + 1/e.) = K/Q + ¢c; i.e.,

p, = (e /(e + 1)) (/A + ) (25)

t

Equation (25) states that the optimal price gets close to the average
ordering cost as the demand becomes more elastic with respect to the
price. On the other hand, the optimal price gets farther away from the
average ordering cost as the demand becomes more inelastic with respect
to the price. If we view the term ‘x/(er + 1) as the markup rate, we can
clearly see that as the demand becomes more inelastic (elastic), the
markup rate increases (decreases).

Analogous to the profit maximization case above, from equation
(12), ve obtain the relationship among price, average ordering cost, and

price elasticity of demand under ROII maximization as follows.

pp = (eg/(ep + 1)) (K/Bg + ©) (26)

The economic interpretations of equation (26) are similar to those of
equation (25) vhere e = (c + 2e)/(c - a). The relative bounds on the

magnitudes of €, and €g can be shown to be:

a+ C ET

i (27)
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Equation (27) states that the demand at the maximum ROII is more elastic
than the demand at the maximum profit. This implies that the optimal
markup rate for the ROII maximization will be lower than the optimal
markup rate for the profit maximization. It can be easily verified that
the relative bounds of the magnitudes of the markup rate under ROII
maximization, MR’ and the markup rate under profit maximization, HT, are

as follows.
M

T a+c) (a+2c
15:{?“2?3(&%71 (28)

The fact that the optimal markup rate under profit maximization is
greater than or equal to the optimal markup rate under ROII maximization
does not contradict the fact that the optimal price under profit
maximization is less than or equal to the optimal price under ROII
maximization (See Part c) of Proposition 1). The reason is that the
corresponding average ordering cost at the maximum profit is less than
or equal to the corresponding average ordering cost at the maximum ROII

(See equations (25) and (26)).

Sensitivity Analysis with respect to the Choice of the Objective

In this subsection, we will first analyze the impact on the
difference between the optimal order quantities QT and QR vhen the
inventory holding cost per unit per unit time h changes. From equations
(6) and (15), the difference between Qr and QR, aQ = QT - QR, is given
by
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ag = (4K a-C )0.5cos(g) - 3K/(a - c) (29)
for r/2 < 0 < 37/4 and cosé = -(3%5?553)0'5

It can be shown that when h = 2(a—c)3/(27ﬂK) (the highest inventory
holding cost per unit per unit time under which the seller is willing to
operate; when h is equal to this upper bound, the corresponding optimal
profit is zero), aQ = 0. It also can be shown that gﬁg <0for 0 <h(
2(a-c)3/(27ﬂK). i.e., aQ is a monotone decreasing function in h and Q]
_ 2(a-c)3/(27ﬂK) = 0. These imply that as h increases, the difference
between the optimal order quantity under profit maximization and the
optimal order quantity under ROII maximization gets smaller.
Furthermore, when h = 2(a-c)3/(27ﬂK), the optimal order quantity under
profit maximization is identical to the optimal order quantity under
ROITI maximization.

Analogous to the above analysis, we can analyze the impact on the
difference between the optimal demands df and dR’ prices P, and Pp> and
cycle lengths T and Tp when the inventory holding cost per unit per
unit time h changes. The results, which can be easily verified, are

summarized in the following proposition.

Proposition 2.

Given the optimal order quantities, demands, prices, and cycle
lengths shown in equations (5) - (8) and (14) - (17), for 0 < h ¢
2(a~c)3/(27ﬂK), the following statements hold.

a) The differences between Qr and QR, dr and dR’ P, and Pps and Tr
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and 'l‘R all monotonically decrease as h increases.

b) When h = 2(a—c)3/(27ﬂK), the optimal decisions under profit
maximization and the optimal decisions under ROII maximization are
identical.

The above proposition implies that as h approaches its upper bound
of h = 2(a—c)3/(27ﬂK), the optimal decisions on the order quantity,
demand, price, and cycle length become less sensitive to the seller’s
choice of the objective between profit maximization and ROII
maximization.

Ve now proceed to analyze the impact on the difference between the
optimal order quantities QI and QR when the set up cost K changes. Once
again, aQ (= Qx - QR) is given by equation (29). It can be shown that
when K = 2(a—c)3/(27ﬂh) (the highest setup cost under which the seller
is willing to operate; when K is equal to this upper bound, the
corresponding optimal profit is zero), af = 0. It also can be shown that
as K approaches zero, so do QT and QR (i.e., aQ also approaches zero).
Finally, it can be shown that, for 0 < K ¢ 2(a-c)3/(27ﬂh), A is a
concave function in K and has its maximum value with respect to K when K
N 0.1298(4(a~c)3)/(27ﬂh). These imply that as K increases or decreases
from the critical value of K & 0.1298(4(a—c)3)/(27ﬂh), the difference
between the optimal order quantity under profit maximization and the
optimal order quantity under ROII maximization gets smaller.
Furthermore, the optimal order quantity under profit maximization
approaches the optimal order quantity under ROII maximization when K

approaches zero. Finally, when K = 2(a-c)3/(27ﬂh), the optimal order
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quantity under profit maximization is identical to the optimal order
quantity under ROII maximizationm.

Analogous to the above analysis, we can analyze the impact on the
difference between the optimal demands dr and dR’ prices P, and Pp> and
cycle lengths Tr and TR vhen the setup cost K changes. The results,
vhich can be easily verified, are summarized in the following

proposition.

Proposition 3.

Given the optimal order quantities, demands, prices, and cycle
lengths shown in equations (5) - (8) and (14) - (17), for 0 < K ¢
2(a~c)3/(27ﬂh), the following statements hold.

a) The differences between dr and dR as well as D, and Pq
monotonically decrease as K increases.

b) The difference between Q_and {p monotonically decreases as K
increases or decreases from the critical value of K &
0.1208(4(a-c)3)/ (274h) .

c) The difference between T _and Tp monotonically decreases as K
increases or decreases from the critical value of K &
0.1151(4(a-¢)3) /(276h) .

d) When K = 2(a-c)3/(27ﬂh), the optimal decisions under profit
maximization and the optimal decisions under ROII maximization are
identical.

e) Vhen K approaches zero, the optimal order quantity and the cycle

length under profit maximization approaches the optimal order quantity
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and the cycle length under ROII maximization.

The above proposition implies that as K approaches its upper bound
of K = 2(a—c)3/(27ﬂh), the optimal demand and price become less
sensitive to the seller’s choice of the objective between profit
maximization and ROII maximization. In addition, as K approaches its
upper bound of K = 2(a—c)3/(27ﬂh) from the critical value of K o
0.1298(4(a-c)3)/(276h) (K & 0.1151(4(e-c)%)/(276h)), the optimal order
quantity (cycle length) becomes less sensitive to the the seller’s
choice of the objective between profit maximization and ROII
maximization. Also, as K approaches its lower bound of K = 0 from the
critical value of K v 0.1298(4(a—c)3)/(27ﬂh) (K v
0.1151(4(a-c)3)/(27ﬂh)), the optimal order quantity (cycle length)
becomes less sensitive to the the seller’s choice of the objective
between profit maximization and ROII maximization.

Finally, by employing similar amalysis techniques shown in the
cases of changes in h and K, we can analyze the impact on the difference
between the optimal order quantity QT and QR, demands dr and dR’ prices
P, and Pp> and cycle lengths T1r and TR vhen the per unit ordering cost ¢
changes. The results, which can be easily verified, are summarized in

the following proposition.

Proposition 4.

Given the optimal order quantities, demands, prices, and cycle
lengths shown in equations (5) - (8) and (14) - (17), for 0 < c < a -
(27ﬂhK/2)1/3, the following statements hold.
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a) The differences between QT and QR, dr and dR’ and P, and Pp
monotonically decrease as ¢ increases.

b) The difference between T, and Ty monotonically decreases as ¢
increases or decreases from the critical value of ¢ ¥ a -
(245.637pnK) 1/3.

c) Vhen ¢ = a - (27ﬂhK/2)1/3, the optimal decisions under profit
maximization and the optimal decisions under ROII maximization are
identical.

The above proposition implies that as ¢ approaches its upper bound
of c=a- (27ﬁhK/2)1/3, the optimal order quantity, demand, and price
become less sensitive to the seller’s choice of the objective between
profit maximization and ROII maximization. In addition, as c approaches

its upper bound ¢ = a - (2719}11(/2)1/3

from the critical value of c » o -
(245.637ﬁhK)1/3, the optimal cycle length becomes less sensitive to the
the seller’s choice of the objective between profit maximization and
ROIT maximization.

From Propositions 2 through 4, we summarize that when any of the
cost factors among h, K, and ¢ is sufficiently high, the differences
between the optimal decisions under profit maximization and the optimal
decisions under ROII maximization are negligible. In addition, we note .
that as a cost factor such as h, K, or ¢ approaches its upper bound, the
profit levels T, and Y given by equations (9) and (18) approach zero.
On the other hand, since h’ < h (i.e., there is a positive opportunity

cost; an assumption made in the Basic Models section), the ROII levels

R_and Ry given by equations (10) and (19) approach h/c - h’/c, which is
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a strictly positive quantity. Finally, we note that Part b) of
Proposition 2, Part d) of Proposition 3, and Part c) of Proposition 4
are consistent with the observation in [5] that, in the case of zero
profit, "the profit and ROII models are in agreement on the optimal

price- inventory decisions."
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ABSTRACT

In this paper, we extend the existing work on the priority
rationing of electric power by incorporating commonly shared random
factors (such as temperature or humidity) associated with customers’
valuation of electric power and the uncertainty associated with the
estimation of the total amount of electric power demanded. Next, under
the assumption that customers are risk-averse, we formulate an
interruption insurance model to transfer the risk of customers to the
risk-neutral electric power supplier. Finally, via numerical examples,
ve attempt to investigate the effects of errors due to the assumptions
that customers’ valuation and/or the total amount of electric power
demanded are constant over time (when they actually vary due to random

factors).
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INTRODUCTION

The classical theory of electric power priority rationing (see
e.g., Vilson [5]) assumes that electric power customers can choose a
level of service for each unit of load that will determine its rationing
priority in case of shortage. The menu of service options presented to
all (potential) customers may be characterized in terms of reliability
levels or interruption compensation levels and the corresponding price
levels. In either case, however, it is assumed that customers are aware
of the power curtailment probability associated with each level of
service and self-select the level of service that will maximize their
expected net benefits.

In classical priority rationing models (see e.g., Chao and Oren et
al. [1]), in case of shortage, the supplier always curtail power in
ascending order of interruption loss. In this way, the social loss due
to power shortages is minimized and an economically efficient allocation
of electric power is achieved. The main task of the supplier is to
determine the socially optimal level of reliability for each priority
class and the corresponding level of price to be charged, taking the
customers’ expected net benefit maximizing behavior into considerationm.

The cause of electric power shortages in the classical priority
rationing models is assumed to be power generation or transmission
failures. That is, the interruption losses occur due to physical failure

on the supplier side. A more recent priority rationing model by Chao and
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Wilson (2], however, incorporates an additional uncertainty on the
supplier side. Namely, they mathematically characterize the uncertainty
associated with the supplier’s spot price of electric power and the
corresponding amount of electric power demanded.

In all these previous models of priority rationing, customers’
valuation of a unit load of electric power is assumed to be constant
over time. However, it is more reasonable to assume that random factors
commonly shared by the customers such as temperature or humidity do
affect the customers’ valuation of a unit load. In addition, the total
amount of electric power demanded can be viewed as stochastic because
the supplier may not be able to accurately estimate it. In this project,
ve extend the existing work on the priority rationing by incorporating
commonly shared random factors into the customers’ valuation of electric
power. Also, under the assumption that customers are risk-averse, we
formulate an interruption insurance model to transfer the risk of
customers to the risk-neutral electric power supplier. Finally, via
numerical examples, we investigate the effects of estimation errors due
to the assumptions that customers’ valuation and/or the total amount of
electric power demanded are constant (when they actually vary due to

random factors).
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PRIORITY RATIONING/PRICING MODEL

Ve characterize the customer heterogeneity in terms of a customer’s
valuation index t ¢ [0,1]. This index serves as the preference ranking
of a customer relative to other customers in terms of preference for
higher reliability of delivering electric power. In this report, larger
t corresponds to higher reliability of delivering electric power; and
vice versa. Hence, t=0 defines the lowest ranked customer valuation and
t=1 the highest. The contingency demand function is characterized by
D(t,F), the total amount of electric power demanded in a given period
with customer valuation t or higher under contingency F . The vector F =

(Fy, Fy, Fg,---,F,) denotes a random vector whose elements correspond to

12
estimation factors that affect the customers’ valuation distribution of
demand. According to our definition of the customer valuation index t,
ve assume that there is a corresponding utility function U(t,A) for all
customer valuation index t under contingency A. The vector A = (Al’ A2,
A3,---, Ah) denotes a random vector whose elements corresponding to
factors that affect the customers’ valuation of utility. Moreover, the
contingency supply function is characterized by S(B), the total amount
of electric power supplied in a given period under contingency B. The
vector B = (Bl’ By, B3,---,Bj) denotes a random vector whose elements
correspond to factors that affect the total amount of electric power

supplied in a given period. We assume that the sample space 7 for F (a

for A, B for B) and the corresponding joint probability distributions



122
Prob{f} (Prob{a}, Prob{b}) over all possible realizations f ¢ 7 (3 € a,
b ¢ f respectively) are known to the electric power supplier. Ve
generally assume that random factors A, F, and B are independent (cf.
the second numerical example in the illustrative numerical example
section). Also the electric power supplier is assumed to have complete
knowledge of customers’ valuation distribution D(t, F) and the form of
the utility function U(t,A), but he can not identify the particular type
of a customer. Just as in the classical theory of priority rationing of
electric power, we will assume that only one interruption may occur per
period and the duration of an interruption is constant.

In order to implement this allocation mechanism, discretization
schemes for the continuous customer ranks are necessary. For the
discretization of customer valuation index t, we employ the concept of
customer blocks, or classes. Specifically, we will assume there are M
customer blocks and customer block i consists of customer valuation
index t ¢ [ti, ti-l] vhere i =1, 2, 3,---, M and tg = 1. The customers
of type t;, i =0, 1, 2,---M will be referred to as boundary customers.
The corresponding quantity demanded for customer block i is given by
D(t;,F) - D(t;_{,F) under contingency F vhile the boundary customer t;’s
utility under contingency A will be U(t., A). Throughout the rest of
this report, for notational simplification, we will denote F as F, A as
A, and B as B.

We start the priority rationing for electric power as follows :
under all possible contingencies, the electric power supplier will

deliver electric power to the highest customer block first, until the
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demand for the first class is met. Only then does the delivery to the
second class customers start, and only after the second class, the
delivery for the third class, and son on. This rationing scheme
terminates when either the supply of electric power is exhausted or when
all demands are satisfied.

Vhile the priority rationing rule determines ex-post (i.e., after
the electric power generation) the relationship between the priority
class and the quantity supplied and demanded, customers’ ex-ante (i.e.,
before the electric power generation) purchase decision will be based on
a reliability forecast of that relation. Such a forecast will specify
T, the delivery reliability of electric power to a customer in priority
class i averaged over all possible contingencies. This forecast must
take into consideration both the rationing rule and the anticipated
response by customers. Such response will obviously depend on the price
corresponding to each class, which is controlled by the electric power
supplier.

We will now proceed to express the priority rationing rules and
reliability level r, under the priority scheme. For this purpose, we
introduce variables denoting the amount of electric power available and
the amount of shortage/surplus under each contingency f ¢ y and b ¢ f
as follows :

Sb : electric power supply given B = b
Q;¢p : remaining demand in class i after using up supply Sy,

given F=f and B =D
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Rifb : remaining supply after delivering class i, given F = f and
B=">D
Cip = (D(t;,f) - D(t;_4,f)) - Q;g : actual amount of electric
power delivered to class i, given F = f and B = b
The demand for each priority class, given F = f, is given by
D(ti’f) - D(ti_l,f) = Dif - Di'lf fOI’ i = 1, 2, 3,"', M Vhere DOf = 0-
Consequently, we can express the supply and demand relations with

respect to each class under the priority pricing recursively as follows

Oigp = Hax[(Dge - Dy 4¢) - Ry ygp0 O]
Rith = Ri1ep - [D3f - Diogp) - Qigp)
i=1,2,3,.--, M, for all b ¢ f and £ ¢ 7 vhere Rosp = Spo tg =
1, a.nd DOf = Oo
According to the priority pricing rule described above, under any
given contingency b, the conditional reliability r;p is ¢
Cifb

Y Prob{f}
fer { Jjjif - D;

Tib =

From averaging r,, over all possible contingencies, we have

C.

£

r, = Zhwb}[ZPmMﬂ i ]
17 peg t feq "Dig - Dy g

Under the proposed scheme, the producer’s price schedule will
consist of priority prices and the corresponding forecast of delivery
reliability for the electric power as shown in Table 1.

Ve now turn to modeling the customers decisions. We assume that
customers are expected value decision makers and the identical price

table is provided to all potential customers. Then, each customer t’s
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expected utility and net expected utility when he orders a unit of

priority class i are given by,

EU.(t) = r. X Prob{a} U(t.,A)
1 1 aed 1’
and NEU,(t) =r1; X% Prob{a} U(t;,4) - p;-
aed
Class Price Delivery Reliability of Electric Power
1 P1 ry
2 P2 T,
. PM T

Table 1. Price Table of Priority Pricing for Electric Power

The optimal customers’ behavior or self-selection is simple to choose

priority level i, vhere NEU. = Max NEUi(t). Ve represent the market
i i

segmentation of all customers in terms of the following boundary
customers relations, given appropriate prices, p,, P, Pg>°*5 Py-

Fori=1, 2, 3,--+, ¥-1

T afAPrOb{a} UCt3oh) - Py =Ty aEAPrOb{a} U(tsh) - iy
ry I Prob{a} U(ty,A) - py = 0.
acA

The above relations state that the boundary customer t., i =1, 2,
3,---, M-1, is indifferent between purchasing priority class i and i+l

and the last boundary customer ty is indifferent between subscribing to
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priority level M or withdrawing from the market. Also it can be easily
verified that all non-boundary customers of customer valuation index t e
[ti, ti_l] will purchase priority class i, i =1, 2, 3,---, M.

For the basic model described thus far, the corresponding formulae
for the expected profit, expected customer surplus, and expected total
surplus are obtained as follows.

Expected Profit :
Er = fE PrOb{f}[iglpi(D(ti’f) - D(t;_4,1))]

€7
Expected Customer Surplus :

Mt
ECS = % Prob{f}[ % Prob{a}{ & j i riU(t,A)dD(t,F)]] -
feq aeld i=1"t, 4

Expected Total Surplus :

M ti
IS = f§7 prob{f}[a§ Prob{a}[ifljt._lriU(t,A)dD(t,F)]]

So far, the entire formulation for the electric power expected

total surplus maximization problem is shown as follows.

The Formulation for the Flectric Power

Expected Total Surplus Maximization Problem

Mt
Maximize EIS = EPmMﬂ[EhwhHEJI thMwﬁﬁﬂ]
feq aeA i=1 t. 4

subject to :
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all variables > 0
Boundary Customers Relations :

T, ai}AProb{a} U(t;,4) - p; =14

1+1

i aEAProb{a} U(t;54) - Py

0.

Ty 2 Prob{a} U(ty,A) - p
| aeh M’ |
Priority Rationing Relatioms :
Yirp = Max[(Dyg - Dy 15) - By g5 O

Risp = Rioggp - [(@g8 - Dy_14) - Qygp)
1, 2, 3,---, M, for all b e fand f ¢ v

i
vhere ROfb = Sb, tg = 1, and DOf = 0.

Reliability of Delivery Relations :
Cifh

r. = % Probfb [ 5 Prob{f} ]
1 pef 0} feq " Dis - Dy gf
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INTERRUPTION INSURANCE MODEL

In the literature of electric power demand management, there have
been numerous articles on insurance for power interruption. In this
section, we will explore a way to implement the insurance under the
assumptions of random factors (e.g., temperature or humidity) in
customers’ valuation and the uncertainty of the total amount of electric
pover demanded. Customers are assumed to be risk averse expected utility
maximizers (see e.g., Varian [4] or Oren and Doucet [3]) and the
electric power supplier is assumed to be risk-neutral. To quote from
Wilson [5], "If customers are risk averse, then full efficiency requires
that risks are shared efficiently among the customers and the firm. In
important application such as power, a state enterprise or public
utility is much less risk averse than each customer. Consequently, we
investigate the case that the firm or a private underwriter offers
compensatory insurance against the risk of loss from service
interruptions, and does so at actuarially fair rates". An identical
premium price schedule is offered to all potential customers. The
proposed premium price schedule consists of a service charge s paid only
vhen electric power is delivered, an insurance premium G, a
compensation level Ki and the corresponding forecast of delivery
reliability r, of electric power. The proposed tariff is shown as table
2.

Under this premium price schedule, a consumer t selecting class i
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vill receive a net benefit of EU;(t) - s - G, with probability r; and K,
- Gi vith probability 1 - r,. To quote from Varian [4], "if the customer
is a risk averse expected utility maximizer, and if he is offered fair
insurance against a loss, then he will optimally choose to fully
insure". Therefore, for a risk-averse customer, he will gladly choose
full insurance to avoid risk. The full insurance relation is shown as
follows.

EUi(t) -s- 6, =K, - G, for i = 1,2,3,.---M.

Price
Class |[Reliability Service charge| Premium Compensation
1 Ty s Gy Ky
2 Iy for all G2 KM
priority
classes
M Ty GM KM

Table 2. Tariff for interruption insurance model

Under the proposed interruption insurance scheme, the boundary
customer relations should be modified as follows.

ri[afAProb{a} U(t;,A) - s] + (1 - r;) K, - G

= ri+1[a§AProb{a} U(t;A) - s] + (1 - g G.

1+1) Ki+1 IR TS |

ru[afAProb{a} U(tM,A) -s ]+ (1- ry) Ky - Gy = 0.
The corresponding formulae for the expected profit, expected

customer surplus, and expected total surplus are obtained as follows.
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Expected Profit :

Er = fz Prob{f}[ z (r s+6;) (D(t,f) - D(t; ,))]
€7
- f§7 Prob{f}[ z (1 r;)K; (D(t;,f) - D(t;_4,f))]
Expected Customer Surplus :

ECS = f§7Prob{f}[ 3 Probfa} [ 3 Jtl-EriU(t,A)+(1-ri)Ki]dD(t,F)]]
- 3 peob{f)[, § (F55465) O(8,8) - D(ty 1,9))]
€7

Expected Total Surplus :

EIS = f§7 Prob{f}[afAProb{a}[ EIJ: —lr U(t,A)dD(t,F)]]

So far, the entire formulation for the interruption insurance model

is shown as follows.

The Formulation for the Interruption Insurance Model

Mt
Maxinize ETS = % Prob{f}[ B Probfa} [ 3 j riU(t,A)dD(t,F)]]
feqr ae 't 4

subject to :

6, 2 6y 2 Gy reeeens > Gy
K 2Ky 2 By 2 eoveens > Ky

all variables > 0
Full Insurance Relations :

EUi(t) - S - Gi = Ki - Gi fOI' i = 1,2,3,""M.
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Boundary Customers Relations :

ri[afAProb{a} U(t;»4) - s] + (1-r;) K; - G

G,

= Tiq [aEAPrOb{a} U(ti,A) - 8] + (1- 1‘i+1) K- i+l

Priority Rationing Relations :

Qi¢p = Max[(Dyg - Dy 9¢) - By 440 O]
Rieb = Bioan - [(P3f - Diqg) - Qygp)

i=1,2, 3,---, M, forallbe fand f e 7

Reliability of Delivery Relations :

C.
r; = I Probb) [ Z Prob{f}—id ]

bef feq if - Di-1f

By comparing the interruption insurance model in this section and
the priority rationing/pricing model in the previous section, we have
the following observations.

1) If we set the compensation levels for all classes equal to zero
(e.g., the electric power supplier will not offer the interruption
insurance service), then the interruption insurance model will be
reduced to the priority rationing/pricing model and the relation of the
price in the priority rationing/pricing model and service charge and
insurance premium in the interruption insurance is Pi =T;S + Gi'

2) If the service charge and the compensation level is restricted to be
zero, then there is no difference between priority/pricing model and
interruption insurance model, and the price P. of priority/pricing model

equals to the insurance premium Gi of interruption insurance model.
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ILLUSTRATIVE NUMERICAL EXAMPLES

In this section, we will discuss three numerical examples. In the
first (second) example, we will investigate the effects of erroneously
assuming that the demand (the customers’ valuation) for the electric
pover is constant over time when it actually is not. Finally, in the
third example, we illustrate how the interruption insurance scheme can
be implemented under the assumptions of random factors (e.g.,
temperature or humidity) in customers’ valuation and the uncertainty of

the total amount of electric power demanded.

Different demand function assumptions

In this subsection, we discuss two numerical examples under
different demand function assumptions. For the first model, we assume
that the demand function D(t,F) contains random factors E. For the
second model, we assume that the demand function is constant.
Specifically, in order to investigate the effects of erroneously
assuming that the demand for the electric power is constant over time,
ve will assume that the demand function of the second model is the

expected value of the first model.i.e., ED(t) =f2 Prob{f} D(t,F). The
€7
relevant utility, demand, and supply functions are assumed to be as

follows:

0.25

U(t,A) = t1/A if A=1 with probability

if A=2 with probability = 0.75
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F

D(t,F) = 1-t if F=1 with probability = 0.25
if F=2 with probability = 0.75
S(B) = 0.9 - 0.1B> if B=1 with probability = 0.5
if B=2 with probability = 0.5

where t ¢ [0,1].
Ve also assume that the number of priority class M = 2. We solve this
problem employing the formulation shown in the priority
rationing/pricing model section. The resulting optimal solution is given
by Table 3.

The resulting expected market share (i.e., expected demand of
electric power), expected profit, expected consumer surplus, and
expected total surplus from classes 1 and 2 are summarized in table 4.

Let us now suppose that the demand for electric power is assumed to

be constant over time and the corresponding demand function is given by

D) = 1o du- o0

(i.e., the expected demand function of the
first model). Under this assumption, the resulting optimal solution is
given by Table 5.

The corresponding expected market share, expected profit, expected
consumer surplus, and expected total surplus from classes 1 and 2 are

summarized in table 6.



134

Class Price Reliability of Delivering Electric Power
1 P, = 0.516 r, = 0.875
2 P, = 0.083 ro = 0.214

Table 3. Price Table under demand function with random factors

Class EMS Ex ECS ETS
1 0.687 0.354 0.157 0.511
2 0.232 0.019 0.008 0.027

Table 4. Velfare outcomes with demand uncertainty

(EMS denotes the expected market share)

Class Price Reliability of Delivering Electric Power
1 P1 = 0.666 ry = 1.000
2 P, = 0.277 r, = 0.500

Table 5. Price Table under expected demand function

Class EMS Ex ECS ETS
1 0.500 0.333 0.116 0.449
2 0.300 0.083 0.019 0.102

Table 6. Welfare outcomes with constant demand function
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From Tables 3-6, we observe the followings :

1) The corresponding levels of expected total surplus under these two
models are 0.538 and 0.551 respectively. Hence, the second model
overestimates the level of expected total surplus by 2.417.

2) The prices as well as the corresponding reliability levels for
priority classes 1 and 2 have increased in the second model.

3) The expected market shares, the expected profit levels, the expected
customer surplus levels as well as the expected total surplus levels
for priority class 1 (priority class 2) in the first model are larger
(smaller) than those in the second model.

As shown by 1), 2), and 3), the constant demand function assumption
may substantially distort the critical economic quantities such as the
levels of reliability, the corresponding prices, and the total surplus

levels.

Different utility function assumptions

In this subsection, we investigate two numerical examples under
different utility function assumptions. In this particular case, we will
assume that F is a function of A. Specifically, F = A. For the first
model, we assume that the utility function U(t,A) contains commonly
shared random factors A. For the second model, in order to investigate
the effects of erroneously assuming that the customers’ valuation is
constant over time, we will take the expectation of utility function of

the first model over all contingency A, i.e., EU(t) = I Prob{a} U(t,4),
ae
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as the (constant) utility function. The relevant utility, demand, and

supply functions are assumed to be as follows :

U(t,A) = t x exp(A) if A=1 with probability = 0.25
if A=10 with probability = 0.75

D(t,A) = 1-tA if A=1 with probability = 0.25
if A=10 with probability = 0.75

S(B) = 0.9 - 0.18% if B=1 with probability = 0.5
if B=2 with probability = 0.5

vhere t ¢ [0,1].
Ve also assume that the number of priority class M = 2. We solve this
problem employing the formulation shown in the priority
rationing/pricing model section. The resulting optimal solution is given
by Table 7.

The resulting expected market share (i.e., expected demand of
electric powver), expected profit, expected consumer surplus, and
expected total surplus from classes 1 and 2 are summarized in table 8.

Let us now suppose that the customers’ valuation is assumed to be
constant over time and the corresponding utility function is given by
U(t) = —%— t x exp(1) + —%— t x exp(10) (i.e., the expected utility
function of the first model). Under this assumption, the resulting
optimal solution is given by Table 9.

The corresponding expected market share, expected profit, expected
consumer surplus, and expected total surplus from classes 1 and 2 are

summarized in table 10.
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Class Price Reliability of Delivering Electric Power
1 P1 = 10635.2 ry = 0.859
2 P2 = 2065.07 Ty = 0.250
Table 7. Price Table under utility function with random factors
Class EMS Exr ECS ETS
1 0.637 6776.68 | 3932.03 10708.71
2 0.237 489.632 | 147.848 637.48
Table 8. Welfare outcomes with customers’ valuation uncertainty
(EMS denotes the expected market share)
Class Price Reliability of Delivering Electric Power
1 P1 = 5476.36 ry = 0.738
2 P2 = 413.013 Ty = 0.125
Table 9. Price Table under expected utility function
Class EMS Er ECS ETS
1 0.874 4786.34 | 4665.445 | 9451.78
2 0.076 31.389 | 23.50645 | 54.895
Table 10. Welfare outcomes with constant customers’ valuation
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From Tables 7-10, we observe the following:

1) The corresponding levels of expected total surplus under these two
models are 11346.192 and 9506.4 respectively. Hence, the second model
underestimates the level of expected total surplus by 19.35%.

2) The prices as well as the corresponding reliability levels for
priority classes 1 and 2 have decreased in the second model.

3) The expected market shares as well as the expected customers’ surplus
for priority class 1 (priority class 2) in the first model are
smaller (larger) than those in the second model.

4) The expected profit levels as well as the expected total surplus
levels for priority class 1 and 2 have decreased in the second model.

As shown by 1), 2), 3), and 4), the constant customers’ valuation
assumption may substantially distort the critical economic quantities
such as the levels of reliability, the corresponding prices, and the

total surplus levels.

4 Numerical Ezample for Interrupiion Insurance Nodel

In this subsection, we employ the relevant utility, demand, and
supply functions from the first set of numerical examples and consider
both demand function and utility function with randomness. We solve this
problem by employing the formulation shown in the interruption insurance
model. The resulting optimal solution is given by Table 11.

The corresponding expected market share, expected profit, expected
consumer surplus, and expected total surplus from classes 1 and 2 are

summarized in table 12 .
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Price
Class |Reliability Service charge| Premium Compensation
1 ry= 0.875 Gl= 0.297 K = 0.355
s = 0.300
2 ry= 0.214 G,= 0.085 K,= 0.085
Table 11. Price table for interruption insurance model
Class EMS Er ECS ETS
1 0.687 0.354 0.157 0.511
2 0.232 0.019 0.008 0.027
Table 12. VWelfare outcomes for interruption insurance model
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CONCLUDING REMARKS

In this paper, we extended the existing work on the priority
rationing by incorporating the commonly shared random factors into the
customers’ valuation of electric power and the estimation uncertainty
into the total amount of electric power demanded. Moreover,under the
assumption that customers are risk-averse, we formulate an interruption
insurance model to transfer the risk of customers to the risk-neutral
electric power supplier. We also attempted to investigate the effects of
errors due to the assumptions that customers’ valuation and/ or the
total amount of electric power demanded are constant over time (when
they actually vary due to random factors) via numerical examples.

The model presented in this paper as well as the previous models of
priority rationing can be further improved by considering uncertainty
associated with customers’ quantity demanded. In contrast to the demand
uncertainty due to the supplier’s inability to estimate the correct
quantity demanded, there is additional variations in the total quantity
demanded due to customers’ changes in the optimal quantity of electric
power to consume. How these additional variations will affect the levels
of reliability, the corresponding prices, and the level of total surplus

is an important issue for further research.
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GENERAL CONCLUSION

In this study, we first extended Min (1992b) by designing an
alternative model under the Bertrand behavioral assumption and by
performing sensitivity analysis on both the Cournot and Bertrand models.
Interesting economic implications regarding critical elements of E0Q
models such as the setup and inventory holding costs as well as the
critical elements of microeconomic market theory such as the market
price and the number of competing producers have been derived from the
equilibrium conditions and subsequent sensitivity analyses. Next, we
allowed the options of investing in reducing the setup and inventory
holding costs are available to the producers and presented a unique
insight as to why several Japanese and American producers are striving
to reduce the setup costs under ever increasing competition.
Specifically, it has shown that, for a profit maximizing producer, as
the number of competing producers increases, his optimal strategy
dictates that he reduce his setup and inventory holding costs.

The E0Q model developed in the first two papers are applicable for
broad classes of convex cost function and concave inverse demand
function. Our models relate to general practices since numerous
industries and firms apply E0Q based decision making under competition.

There are several possible extensions that will further improve the
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relevance of our models to genmeral practices. They include incorporation
of more sophisticated features such as quantity discount price
schedules, finite production rates, shortages, delivery lags, and
promotional (e.g., advertising) effects as well as stochastic demand
rates. From the perspective of Zero Inventory Philosophy, it would be of
interest to study the effects of competition on process quality
improvement and effective capacity in conjunction with the setup cost
reduction (see e.g., Porteus(1986) and Spence and Porteus(1987)).

From the perspective of game theory, both Cournot model shown in
the first two papers and Bertrand model shown in the first paper can be
considered as only an initial step toward better understanding of
competitive inventory policies. It is our hope that more sophisticated
equilibrium concepts of game theory (e.g., subgame perfect equilibrium
for sequential decisions) will be exploited in the future research on
the competitive inventory policies.

In the third paper, we have shown how to formulate the profit
maximization problem for intermediary firms utilizing the special
structure of the firms’ environments. The optimal selling quantity and
purchasing price are derived in terms of fixed and variable selling
costs, supply proportionality constant, annual holding cost, selling
price, inspection cost, and defect-rate.

The observation that the price between producers and intermediary
firms is determined by intermediary firms. From the aspects of
producers, in order to operate efficiently, they must take the relation

between the supply rate of inputs and their corresponding prices into
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account. For such firms, the model in the third paper can be a basis for
further research.

In the fourth paper, for a single seller, we compared and
contrasted the optimal inventory and pricing policies under profit
maximization vs. ROII maximization when demand is linear in price.
Specifically, we have shown that when a cost factor such as the setup
cost, inventory holding cost per unit per unit time, or per unit
ordering cost after the setup is sufficiently high, the choice of the
objective between profit maximization and ROII maximization is
inconsequential to the seller in so far as his optimal decisions are
concerned.

In the fifth paper, we extended the existing work on the priority
rationing by incorporating the commonly shared random factors into the
customers’ valuation of electric power and the estimation uncertainty
into the total amount of electric power demanded. Moreover, under the
assumption that customers are risk-averse, we formulate an interruption
insurance model to transfer the risk of customers to the risk-neutral

electric power supplier.
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