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INTRODUCTION 

Electromyography has been growing in importance since the beginning of the 

twentieth century. Electromyography has proven to be a useful tool in the analysis and 

evaluation of muscular fatigue for more than thirty years. Using surface electrodes, 

electromyography offers a non-invasive method of tracking a muscle group's electrical 

activity throughout a fatiguing contraction or exercise. 

The need to study the causes and effects of muscular fatigue has been realized for 

years. The ability to reliably predict and monitor muscular fatigue has great implications 

in ergonomics, as well as other health sciences. The study of muscular fatigue in the 

forearm could lead to an understanding of cumulative trauma disorders in the wrist and 

hand, such as carpal tunnel syndrome. 

The majority of muscular fatigue research done to date has primarily focused on 

fatigue induced by maintaining an isometric contraction. Although the results generated 

from this type of study are crucial, a maintained isometric exercise can not be realistically 

applied to everyday occurrences. A pulsed isometric exercise which involves contracting 

to a high force level and holding for a short time period, then reducing to a low force 

level, and repeating until fatigue, is perhaps much more realistic than a maintained 

isometric contraction. To date, no studies have been reported in which repetitions of 

variable isometric contractions have been used to induce muscular fatigue. Therefore, it 

would appear that there is a need to veri fy the results of maintained isometric excercise 

determined by other investigators, as well as to evaluate fatigue due to pulsed isometric 

excerc1se. 
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LITERATURE REVIEW 

Theory of Electromyography 

The theory behind electromyography is fairly straight forward. Electrical variations 

of a muscle or individual muscle fibers are picked up with a set of electrodes, amplified, 

and then presented on a display medium. 

There are two types of electrodes in common use, needle and surface. For use in 

non-invasive studies, the latter is of primary interest. Surface electrodes consist of small 

circular discs or cups which are paired and placed on the skin surface. They are most 

commonly made of silver and coated with AgCl to improve surface characteristics. Skin 

surface preparation is often required prior to the application of surface electrodes. This 

usually involves a thorough cleansing of the skin and the application of an electrode paste 

or gel to reduce the electrode-skin impedance. 

Action potentials which were picked up from muscles are transmitted from the 

electrodes through shielded wires to an amplifier. The amplifier magnifies the minute 

potentials to dimensions large enough for recording and study. Voltages available at the 

electrodes are of the order of tens to hundreds of microvolts (Webster, 1992). The use of 

differential amplifiers allows these minute muscular potentials to be boosted even in the 

presence of large amounts of background voltages (noise). Normally, amplifiers amplify 

input voltages appearing between an input terminal and a ground terminal. The 

differential amplifier may be considered as a combination of two such amplifiers arranged 

so that the voltage to be amplified appears between the two input terminals. This allows 
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signals (noise) common to both inputs to be eliminated. High and low band pass filters 

are also often incorporated to eliminate undesired frequencies. A common filtering 

scheme allows potentials in a frequency range of 20Hz to 1 OKHz; although, it has been 

shown that the usable frequency band of the EMG varies dramatically, depending on the 

muscle under study (Kwatny et al., 1970). By minimizing the recorded frequency range, 

it is possible to filter out much of the undesired noise associated with electrical signal 

amplification and recording. The unavoidable presence of instrumentation noise explains 

the necessity of the high frequency cutoff. The situation at low frequencies is quite 

different. Undoubtedly, there is a useful EMG signal at the very low frequencies which 

reflects the transition of the muscle from one state to another. However, there also exists 

low frequency noise due to polarization potentials and motion-induced potentials between 

the skin and electrode (Kwatny et al., 1970). Consequently, very low frequencies must 

also be eliminated. 

Some systems and situations may require shielding. Shielding requirements 

depend upon the presence or possibility of electrical and electromagnetic interference in 

the vicinity of the test area. Such interference may be airborne or may be transmitted 

through the lab wiring. In any instance, the input leads from the electrodes and the leads 

from the alternating current source must be effectively shielded and grounded (Light, 

1971). 

The display medium of a myoelectric (ME) signal is most commonly an 

oscilloscope; however, to analyze a signal it needs to be permanently recorded. There are 

numerous methods to accomplish this, but recent developments in computer technology 
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have made signal acquisition fast and efficient. Once an image is digitized, it can easily 

be manipulated and redisplayed. 

The resulting electromyograph (EMG) is a complex wave form, typically 

represented by a spectrum of sinusoidal wave forms of different amplitudes and 

frequencies. A complex wave form having a rapid rise and a long duration has frequency 

components extending from the very low to the very high. EMGs are such wave forms; 

their significant frequency content extends from approximately 20 Hz to nearly 8,000 Hz 

(Light, 1971). Some investigators (Braakhekke et al ., 1989) place the upper limit of this 

range around 10,000 Hz, but others (Bigland-Ritchie et al ., 1981) believe it to be closer to 

5,000 HZ. Electromyography relies heavily on interpretation which may produce varying 

conclusions. It is important to note that although an EMG is a complex wave form, it can 

be analyzed with precision by using Fourier analysis. With today's computer systems, it is 

not difficult to apply Fourier analysis to a properly digitized EMG. 

Electrode Positioning 

Proper and consistent positioning of surface EMG electrodes is crucial in the 

acquisition and replication of any signal. Significance of surface electrode placement has 

been specifically studied by several investigative teams. Zuniga and co-workers (1970) 

compared transverse and longitudinal orientations of the electrodes to the muscle's central 

axis. They found that the relationship between EMG and force decreases proportionally to 

the electrode's distance from the center of the muscle. Kramer and Kuchler (1971), in two 

studies which compared middle and peripheral surface electrode positions on the biceps 
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and triceps, confirmed that the greatest level of electrical activity was obtained at the 

muscle's center. Vredenbregt and Rau (1973) also found that the EMG amplitude was 

smaller with transverse orientation of the electrodes than when they were aligned 

longitudinally over the muscle. Perry and Bekey (1981) reported that the peak height of 

the motor unit potential decreases inversely with the distance of the electrode from the 

muscle. 

Reliability of electrode placement for repeated testing has been studied from 

several viewpoints. It has been observed that EMG and tension varies considerably 

between experiments unless particular care is taken to reproduce both the position of the 

electrodes and limb position. The relationship of limb position and EMG, as well as 

fatigue, has been investigated by a number of teams (Fransson and Winkel, 1991; 

Fothergill et al ., 1991 ; Wiker et al., 1989; Schoenmarklin and Marras, 1989; Kroemer, 

1986; Adams, 1988; Edwards and Lippold, 1956). It is clear that for repeatable 

measurements, accurate limb position and reposition are critical. Komi and Buskirk 

(1972), using the biceps brachii , did repeated testing on the same day without removing 

the electrodes. Their mean reliability coefficient for surface recording was a respectable 

0.88, and for indwelling wire it was 0.62. When the electrodes were removed and then 

reapplied another day, reproducability predictably dropped; it was 0.22 for wire electrodes 

and 0.69 for the surface technique. 

When locating surface electrodes, there are three important considerations: (1) 

signal-to-noise ratio, (2) signal stability (reliability), and (3) cross-talk from adjacent 

muscles. Basmajian and Deluca (1985) suggest that the preferred location of an electrode 
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is in the region halfway between the center of the innervation zone and the further tendon. 

Zipp (1982) offers a standardizing procedure for surface electrode placement. The 

procedure involves six steps and encompasses the usage of anatomical landmarks, lead 

points and lead lines. For the flexor digitorum superficialis muscle group, Zipp suggests a 

sitting posture with the forearm on a table, the elbow turned inward slightly, and the palm 

up. The lead line extends from the medial epicondyle of the humerus to the skin folds at 

the wrist. The central lead point (location of the recording electrode) is then positioned 

1/4 of the lead line length from the epicondyle (Figure 1). It is noted that there will be 

cross-talk from the other forearm muscles and that different portions of the muscle 

attached to the different fingers can be selected by shifting the orientation of the lead line 

either to the thenar or the hypothenar eminence. The final position should then be 

confirmed by palpation while moving the finger or fingers under study. 

\ 
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Figure 1. Electrode placement scheme, after Zipp ( 1982). 
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Physiology of Muscle 

Striated skeletal muscle is composed of hundreds of muscle fibers; groups of which 

are innervated by single ex. motoneurons. Branches of the motoneuron axon terminate at 

the motor endplate of each muscle fiber. The motoneuron and all of the fibers it 

innervates is termed a motor unit. After a stimulus propagates through the ex. fiber, all of 

the muscle fibers of that motor unit contract. For this reason, the motor unit is deemed 

the biological unit of muscular function (Podolsky, 1971 ). The number of muscle fibers 

per motor unit varies greatly from muscle to muscle. The extraocular muscles, requiring 

great control, have as few as six fibers per unit, but the large muscles of the leg may have 

several thousand (Perry and Bekey, 1981 ). 

The muscle fibers of a motor unit are not all clumped into one group, but rather 

the fibers of different units are interlaced. Especially in large human muscles, a certain 

functional subdivision of the muscle exists through the grouping of motor units (Light, 

1971 ). Often, the organization of the central nervous system permits maximal activation 

of one group of motor units only, without any overflow of excitation to other motor unit 

groups in the same muscle. 

In theory, a normal muscle at rest will have no potentials, although this is difficult 

to see experimentally due to spontaneous excitation, cross-talk from other muscles, and 

noise. With progressively increasing activity, one motor unit will become active and 

produce single, discrete, repetitive potentials at the frequency of discharge of the 

corresponding anterior horn cell (spinal cord). On further exertion, this frequency will 

increase, and a second motor unit will come into action at a frequency unrelated to the 
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first. As volitional contraction increases, more and more units come into action, each at 

its own frequency. This results in potential overlapping, and some potentials summate and 

others cancel, producing a resultant interference pattern characteristic of full voluntary 

contraction (Basmajian, 1978). It is for this reason that surface electrodes are said to 

record surnmated electrical activity; they are seeing the potentials of many different fibers 

and motor units. 

All motor units do not appear to produce similar potentials. The first units to be 

recruited seem to give rise to relatively low potentials. Subsequent units then appear to 

contribute progressively larger potentials (Light, 1971 ). This may be explained by 

assuming that motor units with a small muscle fiber component are introduced when 

precision without strength is required and large units interact when more strength is 

needed. 

Muscles of higher-order mammals (including humans) consist of muscle fibers 

which vary widely in their physiological, morphological, and biochemical properties 

(Basmajian and DeLuca, 1985). Within any one animal, different muscles contain varying 

amounts of the different fiber types. There are two typical categories of muscle type: red 

and white; slow and fast, respectively. Numerous investigators have shown that when the 

motoneuron of a motor unit consisting of red fibers is stimulated, the resulting force 

twitch is slower rising and longer lasting than the force twitch of a motor unit consisting 

of white fibers. Engel (1964, 1974) proposed that the fiber types be distinguished by their 

myosin A TPase affinity, an indicator of the fiber's contractile speed. Histochemical 

testing led to categorization by enzyme types and amounts. Specific enzymes of the 

·. 
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glycogenolytic and glycolytic pathways are an indication of the fiber's capacity to perform 

work in the absence of oxygen (anaerobic activity). Oxidative enzymes offer information 

concerning the ability of the contractile mechanism to use oxygen as its fuel (aerobic 

activity). It is of significance that a highly aerobic capacity indicates that a muscle fiber 

is resistant to fatigue as long as oxygen can be supplied by its vascularization. 

To best understand the physiology of a contracting skeletal muscle, it is necessary 

to gain insight into the microscopic anatomy of the muscle. Skeletal muscle has a very 

hierarchical structure. Each muscle is divided into fascicles, or discrete bundles of 

individual muscle fibers, segregated from the rest of the muscle by a connective tissue 

sheath. Each muscle fiber, an elongated multinucleated cell, is then made up of hundreds 

of myofibrils. Myofibrils or fibrils are complex organelles composed of bundles of 

myofilaments. It is the myofibril that gives skeletal muscle its banded (striated) 

appearance. Myofibrils occupy most of the muscle cell volume. They are segmented into 

units termed "sarcomere". The sarcomere is the contractile unit of the organ. It is 

composed of myofilaments made up of contractile proteins. The myofilaments are of two 

types, thick and thin. The thick filaments contain bundled myosin molecules; the thin 

filaments contain actin molecules, plus other proteins (Podolsky, 1971 ). 

The molecular composition of the myofilaments may also be useful to know. Each 

myosin molecule has a distinct structure; it has a rod-like tail, or axis, terminating in two 

globular heads, sometimes called cross bridges. Each thick filament within a sarcomere 

contains about 200 myosin molecules bundled in such a way that their tails form the 

center of the filament with their heads outward and in opposite directions at each end. 
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The heads of the myosin molecules contain A TPases that have the ability to hydrolyze 

ATP. The thin filaments are chiefly composed of actin. The polypeptide subunits of actin 

are called G actin (globular). These are polymerized into long linear strands called F 

actin (fibrous) (Marieb, 1989). The backbone of the thin filament is two strands of actin 

twisted around each other forming a helical structure. A rod-shaped protein, tropomyosin, 

accompanies the F actin as it twists. The other main protein of the thin filament is 

troponin, a complex of three polypeptides. One of these polypeptides binds to actin; 

another binds to tropomyosin; the third binds calcium ions. 

Other structures important to the contraction of skeletal muscle would include the 

sarcoplasmic reticulum (SR), and the T-tubules. The SR inside each muscle cell is an 

elaborate form of smooth endoplasmic reticulum (Martini, 1989). The SR surrounds the 

individual fibrils, and is intricately weaved among them. The T-tubules, continuous with 

the extracellular space, protrude deep into the cell. The role of the SR is to regulate the 

intracellular levels of ionic calcium: "It sequesters calcium and releases it 'on demand' 

when the muscle fiber is stimulated to contract" (Marieb, 1989 p. 248). Since the T-

tubules are literal ly a continuation of the sarcolemma, which receives the nerve stimulus, 

they can conduct the stimulus deep into the cell to virtually every sarcomere. 

Additionally, the T-tubules provide inlets through which extracellular fluid can be brought 

into close contact with deeper parts of the muscle cell. This could be critical to the 

concept of muscular fatigue, since it is the extracellular fluid that contains glucose, 

oxygen, and various other ions, and flushes the cells of waste products. 

The mechanism of contraction is thought to be fairly well understood. Neural 
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stimulation from the central nervous system via motoneurons causes action potentials in 

the muscle fibers. These in tum initiate a chain of biochemical events resulting in the 

energy required for muscular contraction (Kuroda et al ., 1970). Contraction reflects the 

activity of individual sarcomeres. When a muscle cell contracts, its sarcomeres shorten. 

As the lengths of their sarcomeres decrease, the myofibrils shorten as well, resulting in 

shortening of the cell as a whole. According to the sliding filament theory, first proposed 

by Hugh Huxely in 1954, the contraction mechanism involves the sliding of the thin 

filaments past the thick ones so that the extent of myofilament overlap increases (Marieb, 

1989). In the resting muscle, the myofilaments overlap only slightly, but, during 

contraction, the amount of overlap is considerably greater. 

When muscle fibers are stimulated by the nervous system, the cross bridges attach 

to active sites on the actin subunits on the thin filaments. Each cross bridge attaches and 

detaches several times during a contraction, acting like a ratchet to generate tension and 

pull the thin filaments toward the center of the sarcomere. Since this event occurs 

simultaneously in sarcomeres throughout the cell, the muscle fiber shortens. The 

contraction process requires calcium ions. The muscle action potential leading to the 

contraction causes an increase in calcium ions within the cell . It appears that in the 

absence of calcium the myosin-binding sites on actin are physically blocked by 

tropomyosin molecules, and the muscle cell is relaxed (Grover and Daniel, 1985). When 

calcium ions become available, they bond to troponin, and the calcium-troponin complex 

undergoes a change in its conformation. This change physical ly moves tropomyosin into 

the center of the helical groove, uncovering the myosin-binding sites. 
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Once the binding-sites are exposed, filament sliding occurs in the follows steps: (1) 

cross bridge attachment, (2) power stroke, (3) cross bridge detachment, and ( 4) "cocking" 

of the myosin head (Marieb, 1989). It is during the power stroke that the myosin head 

changes from its high-energy configuration to its bent, low-energy shape. This causes the 

head to pull on the thin filament to which it is bound. Simultaneously, ADP and 

inorganic phosphate (P;) generated during the prior contraction cycle are released from the 

myosin head. The cross bridge is released when a new ATP molecule binds to the 

myosin head. To this point in the cycle no energy has been required; however, to "cock" 

the myosin head back to its high-energy state for the next attachment-power stroke 

sequence, energy is required. This energy is provided by the hydrolysis of ATP to ADP 

and P, by A TPase (Grover and Daniel, 1985). The cycle is now back to the first step 

where the cross bridge is ready to attach to the next open site. Sliding continues as long 

as the calcium signal is present. Removal of calcium ions from the sarcoplasm by the SR, 

restores the tropomyosin blockades, contraction ends, and the muscle relaxes. 

The regulation of muscular contraction, however, is somewhat controversial . In the 

laboratory, a muscle twitch (response of a muscle to a single brief threshold stimulus) is 

simple to produce and study (in-vitro). However, in-vivo, muscle contractions do not 

appear as twitches. They are long and smooth, varying in strength as different demands 

are placed on them. Variations in the degree of muscle contraction are referred to as 

graded responses. In general, there are two theories offered to explain how muscle 

contraction can be graded: (I) by increasing the rapidity of stimulation to produce wave 

summation, and (2) by recruitment of larger and larger numbers of motor units to produce 
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multiple motor unit summation (Clarke, 1966). 

It has been shown that ATP provides the energy for contraction and the calcium 

pumps. As long as ATP synthesis is as great as ATP use, muscles can continue to 

respond to low-frequency stimuli for long periods of time. Surprisingly, muscles store 

very limited reserves of ATP. When contraction begins, ATP reserves are quickly 

exhausted, and ATP must be generated continuously for contraction to continue. There 

are three pathways by which ATP is regenerated during muscular contraction: (1) by 

interaction of ADP with creatine phosphate, (2) by aerobic respiration, and (3) by 

anaerobic respiration (Davson, 1959). This could be important in the physiology of 

muscular fatigue. As long as it gets enough oxygen and glucose, a muscle cell will form 

ATP by aerobic reactions. But when the circulatory system begins to fall behind in 

oxygen and glucose delivery, and the aerobic pathways can not function fast enough to 

keep pace with muscle demands, most of the pyruvic acid produced during glycosis is 

converted to lactic acid. Thus, during oxygen deficit, lactic acid, rather than carbon 

dioxide and water, is the end product of cellular respiration. 

Definition of Muscular Fatigue 

As could be expected, the definition of muscular fatigue varies among different 

disciplines. Health specialist and life scientists accept the concept of fatigue as being 

demonstrated or represented by an event occurring at an identifiable period of time 

(Deluca, 1981 ). On the other hand, engineers and physical scientists consider the concept 

of fatigue as a time-dependent process. Deluca (p. 251) offers the example of a steel 
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girder that supports the main structure of a bridge. "It may well remain in place with no 

apparent, externally visible structural modification for many tens of years~ then suddenly, 

in one instant a fracture develops, the girder fails and the bridge collapses. If one, 

observing from a distance, were to look at the bridge for signs of fatigue, none would be 

noted, until a point in time termed the failure point. All the while, however, the 

crystalline structure of the steel girder was continuously undergoing transformation caused 

by physical and chemical processes". To properly monitor the progression of fatigue, it 

would be necessary to examine samples from within the girder or to examine some 

external measure representative of the internal properties. 

An analogy in terms of muscular fatigue in the human body would be maintaining 

a muscular contraction constant for as long as possible (isometric fatigue) . Throughout 

the task, the involved muscles are continuously fatiguing, but at some instant in time the 

failure point will occur when the desired force output can no longer be maintained and 

contractile fatigue becomes observable (Deluca, 1981 ). 

The definition of human muscular fatigue also varies considerably among 

researchers and clinicians. Fatigue is usually defined as a decrease (reversible during rest) 

in the force developed during contraction, while the level of excitation remains constant 

(Boulange et al ., 1979). Stephens and Taylor (1972) simply define fatigue as the failure 

to maintain force. Another investigator, studying the fatigue mechanisms in isolated intact 

fibers of frog and mouse, defines fatigue as any decline in force output during prolonged 

stimulation (Marconnet et al ., 1992). More generally, fatigue has been defined as a 

transient decrease in the capacity to perform work due to prior physical activity (Sahlin, 

1990). 
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Mechanisms of Muscular Fatigue 

Many factors change during muscular fatigue; these range from a loss of force-

generating capacity to biochemical changes such as a decline in the concentrations of 

creatine phosphate and adensine triphosphate (ATP} and an increase in the concentrations 

of inorganic phosphate and protons. When ATP production fails to keep up with ATP 

use, (metabolic) muscle fatigue sets in and muscle activity ceases, even though the muscle 

may still be receiving stimuli . Muscle fatigue is the state of physiological inability to 

contract due to various metabolic changes. It is important to note that this is a 

phenomenon of each individual muscle fiber; and not all fibers in a particular muscle 

fatigue at the same rate. The fatigue point (where the output force level can not be 

maintained) is seen as a late result of the majority of the fibers of a muscle fatiguing 

simultaneously, and the remaining contractile units are unable to produce the desired 

force. 

Muscle fatigue results from a relative deficit of ATP, not its total absence (Marieb, 

1989). When no ATP is available, contractures, or states of continuous contraction, result 

because of the inability of the cross bridges to detach. A familiar example of temporary 

contractures is "writer's cramp". Other factors contributing to muscle fatigue include 

excessive accumulation of lactic acid and ion imbalances. Lactic acid, which causes a 

decrease in the muscle pH, causes extreme fatigue, and limits the usefulness of the 

anaerobic mechanism for ATP production. It is also this drop in pH that causes the 

muscle to ache. The Ca2
+ release rate is strongly dependent on pH (Herrmann-Frank and 

Meissner, 1990). It has been demonstrated that in intact skinned skeletal muscle fiber 
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preparations, acidosis depresses maximum tension and ATPase activity. 

As long as ATP is available to supply energy to the Na+ -K+ pump, any slight ionic 

imbalances are readily corrected. However, in the absence of ATP, the pump is inactive, 

and severe ionic imbalances cause the cell to become unresponsive to stimulation. This is 

because the propagation and maintainance of the muscle action potential is a direct 

function of the transmembral movement of intracellular and extracellular ions; specifically, 

K+, Na+, ct·, and others. Davies (1990) states that an accumulation of extracellular K+, 

which accompanies exercise, is solely a consequence of increased K+ efflux from the 

muscle cell. Furthermore, during intensive activity the conductance properties of 

individual muscle fibers change, with the most noticeable effect being an increase in the 

resting K+ conductance. It is hypothesized that there is a mechanism by which the 

increase in K+ conductance is linked to the fall in intracellular pH. 

Another team of investigators (Stulen and DeLuca, 1982) point out that the 

decrease in conduction velocity, correlated to fatigue (Lindstrom, 1977), has been 

attributed to the accumulation of metabolic by-products such as lactic acid. They note 

that the accumulation could be due to an increase in production and/or a· decrease in 

removal due to diminished blood flow during a forceful contraction. 

The recovery from muscular fatigue is dependent on several factors. The time 

course of force recovery depends on the type of fatiguing exercise, muscle fiber type, 

composition of extracellular fluid, and temperature (Marconnet et al ., 1990). It has been 

shown that the majority of recovery is due to: (1) the removal of metabolic byproducts 

and wastes (i.e. , lactic acid), and (2) the replenishment of oxygen and other nutrients to 
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the muscle cells. These functions primarily occur when the flow of blood is restored to 

the muscle via relaxation. 

Use of EMG to Evaluate Muscular Fatigue 

The use of EMG to evaluate and describe muscle fatigue has long been a focus of 

research. Although there is a tremendous amount of information contained in the normal 

ME signal, there have been a limited number of ways in which researchers have chosen to 

look at the signal; EMG amplitude, the integrated EMG, and EMG frequency analysis. 

The RMS (Root-Mean-Square) of the ME signal is the primary method used to investigate 

EMG amplitude. The RMS is usually a fairy simple parameter to acquire. As is implied, 

the signal is squared, making all values positive since the average of the raw EMG signal 

is zero, then the arithmetic mean is found, and the square root of the mean is then taken. 

The final value is the average voltage of the absolute, or rectified signal (Equation 1). 

( 
1 f t+T )l/2 RMS{m(t)}= T , m2(t)dt 

where: m is the voltage of the ME signal 
T is the total integration time 

The most commonly used, and abused, data reduction procedure in 

electromyography is the concept of integration (Basmajian and DeLuca, 1985). One of 

the earliest uses of this parameter was by Inman et al. (1952), in which the term was 

erroneously applied. Their procedure used a linear envelope detector to follow the 

envelope of the ME signal as the force output of the muscle was varied. The term 

(11 
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"integration" has a defined meaning expressed in a mathematical sense when applied to 

the processing of a signal. It applies to the calculation that obtains the area under the 

signal. It is apparent that a signal such as an EMG which has an average value of zero, 

will also have a total area of zero. Therefore, the concept of integration must be applied 

to the rectified value of the EMG. The operation is expressed as: 

J{lm(t) ll= J
0

1
lm(t) ldt [2] 

It is important to note that the only difference between the integrated rectified value and 

the average rectified value (RMS) is that in the latter case the value is divided by the time 

over which the average is calculated. It follows, then, that no additional information is 

contained in the integrated rectified value. Basmajian and DeLuca (1985) state that they 

suspect that two principle reasons account for the wide spread use of this operation: (1) 

historical precedent, and (2) that the integrated rectified value will provide a smooth 

measure of the signal as a function of time, if a significantly long integration time is 

chosen. 

EMG frequency analysis typically involves the use of the power density spectrum 

(PDS) of the ME signal. Spectral analysis is becoming an increasingly important tool for 

the study of EMG signals. Early work in this field was based on the use of octave band 

filters. Fast Fourier transform (FFT) methods for power spectral analysis are being used 

increasingly to avoid the restrictions of octave band filters to a small number of frequency 

bands (Perry and Bekey, 1981 ). 

Three parameters of the PDS may be conveniently used to provide useful measures 
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of the spectrum. They are: the median frequency (Equation 3 ), the mean frequency 

(Equation 4), and the bandwidth of the spectrum. Other parameters such as the mode 

frequency and ratio of segments of the PDS have been used by some researchers but are 

not considered reliable due to the inevitable noisy nature of the spectrum (Basmajian and 

DeLuca, 1985). 

f1-'S,,/J)df=f, .. S,,/J)df Jo I.-
[3] 

[4] 

where : Sm(f) is the PDS of the ME signal 

Past Studies 

The majority of the research performed to date using EMG parameters to study 

muscle fatigue has been isolated to the study of fatigue due to a maintained isometric 

contraction. These studies have concentrated on the changes over time of the EMG 

parameters of interest as a subject applies, and holds, a given force against an external 

resistance as long as possible. Several investigators have focused on the correlation 

between the amount of force produced by the muscle under study and these EMG 

parameters, while others have looked at shifts in these parameters for varying percentages 

of the subject's maximum voluntary contraction (%MVC). Studies have also investigated 
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the dependency of the muscle group under study, the effects of muscle temperature, as 

well as the composition of fiber type. 

A study of fatigue of the first dorsal interosseous muscle of the hand under 

maintained maximal voluntary contraction (100% MVC) by Stephens and Taylor (1972), 

stated that fatigue occurs in two phases. During the first, force falls to about 50%. The 

smoothed rectified EMG (SRE) falls with the same time course, and the normal linear 

relation between it and the force of unfatigued muscle is preserved. In the second phase, 

force falls relatively faster than the SRE. Their data showed that, in maximal contractions, 

force starts to fall within a few seconds, reaching 50% MVC in one minute and 25% 

MVC in 2 minutes. They also state that in submaximal efforts ( < 100% MVC) the force 

could be maintained at a constant level for a longer period of time, but then fell in the 

same fashion. 

Much of the research in the area of muscle fatigue has presented similar 

conclusions in reference to EMG parameters. Two of the more prominent results, for a 

variety of fatigue studies, are a relative increase in EMG amplitude, whether measured by 

RMS or any other data reduction method, and the relative shift of the PDS to lower 

frequencies (Viitasalo and Komi, 1977; Komi and Viitasalo, 1976; Petrofsky et al ., 1975; 

Bigland-Ritchie et al. , 1981 ). Bigland-Ritchie et al. ( 198 l) report that as the contraction 

progresses, the action potentials recorded intramuscularly from a small sample of motor 

units become grouped. Such synchronization of motor neuron firing results in large, low 

frequency EMG oscillations and must increase the relative power in the low frequency 

bands of the PDS. It follows, that since the power of the EMG is a multiple of its 
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amplitude, this also serves as an explanation for the rise in EMG amplitude over the time 

of contraction. Synchronization of the activities of the motor units has been one of the 

most favored explanations of these phenomena (Bigland-Ritchie et al ., 1981 ; Deluca, 

1981 ; Kuroda et al , 1970; Basmajian and Deluca, 1985). 

It has been shown that the spectral changes of the ME signal produced by forceful 

contractions are due mainly to a decrease in the action potential conduction velocity 

(Viitasalo and Komi, 1977; Lindstrom et al ., 1977). This velocity change has been 

attributed to alt~rations in the energy metabolism of the muscle. Since the intracellular 

and extracellular ion concentrations have been shown to change with fatigue, it is 

reasonable to assume that conduction velocity would consequently be affected. The drop 

in pH and deficit of ATP would presumably also lead to a decrease in conduction 

velocity . 

Petrofsky et al . (1975) found that in an investigation of the extrinsic flexor 

muscles, the median frequency decreased linearly with time throughout the duration of a 

fatiguing isometric contraction. This linear relation has also been substantiated by several 

other investigators (Kwatny et al ., 1970; Viitasalo and Komi , 1977; Petrofsky et al., 1975). 

Kuroda et al. (1970) have demonstrated that EMG activity increases almost linearly with 

the force output in the submaximal force range but increases more sharply near the 

maximal force ( 100% MVC). 

Viitasalo and Komi (1977) studied maintained isometric knee extension at 60% 

MVC by analyzing the EMG activity of the medial rectus femoris muscle. Their results 

showed that the PDS was easily affected by fatigue such that the total power density curve 
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was shifted towards lower frequencies with a higher frequency decay. They also reported 

a slight, but continuous, rise of the integrated EMG during the fatigue period. More 

importantly, they showed that the changes in these parameters varied from the upper 

portion to the lower portion of the muscle. This supports the notion that muscles are not 

homogeneous in their structure. 

From animal experiments, it is known that muscles composed of slow twitch (ST) 

fibers possess a greater resistance to fatigue than muscles containing predominantly fast 

twitch (FT) fibers (Edstrom and Kugelberg, 1968; Baldwin and Tipton, 1972). Komi and 

Tesch (1979) have correlated the rise in amplitude and frequency shift during isometric 

contraction with the fiber type composition of the muscle. Their results show a mean 

power frequency decrease (p < 0.01) in individuals with a high percentage of slow twitch 

fibers, while those individuals with a high percentage of fast twitch fibers demonstrated 

only a slight decrease (non-significant) . Data also showed an integrated EMG (IEMG) 

decline (p < 0.01) during 100 contractions in those subjects rich in fast twitch fibers, but 

only a slight reduction in IEMG in those with a high percentage of slow twitch fibers . It 

should be noted that this study involved dynamic contractions (repeated knee extensions) 

of the vastus lateralis muscle. If these observations are substantiated, the technique could 

provide a noninvasive alternative to muscle biopsy. 

Surprisingly, in an experiment studying fatigue and EMG of repeated fast voluntary 

contractions of the quadriceps muscle, it was found that the RMS decreases with the 

number of contractions (Nilsson et al ., 1977). A study of the EMG pattern of dynamic 

diaphragmatic fatigue resulted in the anticipated increase in EMG amplitude (Gross et al., 
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1979). The authors of the first study offered no explanation or theory for the deviation of 

their results. 

The concept of heat production during muscle activity has also been investigated. 

If muscle contracted with 100% efficiency, no heat would be produced and all of the 

energy provided by ATP would be used in the mechanical sliding of the filaments. But, 

only 20% to 25% of the energy is actually converted into useful work (Marieb, 1989), 

with the rest given off as heat. An investigator tracking frequency and amplitude 

parameters during exercise on a bicycle ergonometer reports the same general trends in 

EMG amplitude and frequency , but not to the same extent (Petrofsky, 1979). It was noted 

that exercise of this "dynamic" type may produce more internal heat at the muscle. 

Therefore, although muscular fatigue caused an increase in RMS and decrease in the 

center frequency, the increase in muscle temperature associated with the work opposed 

these changes by causing a reduction in RMS and an increase in the center frequency. 

It is interesting to note that in the majority of past research male subjects were 

used, with no references to possible gender differences. It seems that although the 

understanding of male and female muscle is the same, there might be variations in the 

amounts and ratios of metabolites, fiber types, and other factors influencing contraction 

and fatigue. It is known that, in other areas of physiology, there are distinct differences in 

hormonal and biochemical concentrations and their effects across the genders. 
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Applications of Quantitative Measures of Fatigue 

Monitoring of the ME signal for the purpose of measuring muscle fatigue has 

several advantages: it is non-invasive; it may by performed on muscle in situ; it may be 

performed in real-time; and it provides information relating to events which occur inside 

the muscle. In addition, Lindstrom et al. (1977) have shown that the changes in the 

observed EMG parameters are directly related to increased subject sensation of perceived 

exertion during sustained muscle contraction performed at moderate levels. Many 

applications of this approach of measuring muscle fatigue are· envisioned; some are only 

concepts and require experimental verification, whereas others have already been put into 

practice. Some of these applications include athletic training, physical therapy, industrial 

applications (ergonomics), and the diagnosis and prognosis of neuromuscular disorders. 

The effects of athletic training and exercise on muscle fiber metabolism and 

architecture have been an issue of considerable discussion (DeLuca, 1981 ). Numerous 

studies have been reported with a variety of conflicting results. For a review of these 

details refer to Salmons and Henriksson ( 1981 ). As discussed previously in this chapter, 

these modifications within the muscle are theoretically accompanied by corresponding, 

observable changes in the parameters of the ME signal. 

In rehabilitation programs involving muscle re-education and exercise, it is often 

necessary to assess the effectiveness of a prescribed physical therapy program. Manual 

muscle tests are currently the primary procedure for determining muscular strength and the 

progression or regression of strength. It has been noted that these tests are subjective and 

their accuracy depends on the training, skill and experience of the clinician performing the 
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examination. During a physical therapy session, it is foreseeable that it may be possible 

to assess the response of the impaired muscle to treatment by measuring the changes in 

EMG parameters. 

The use of ME signal analysis, specifically the phenomenon of frequency shift, as 

an indicator of muscle fatigue has been applied in the field of ergonomics (Broman et al., 

1973; Schoenmarklin and Marras, 1989; Kroemer, 1986; Gomer et al., 1987). Studies 

have concluded that changes in the ME signal power density spectrum are useful for 

measuring the progression of fatigue as a function of limb position, orientation, and 

direction of motion (Adams, 1988; Asfour and Tri tar, 1991; Franssen and Winkle, 1991 ; 

Kroemer, 1986). In fact, several of these investigators suggest preferred positions to 

minimize the "sensation" of fatigue. The technique may conceivably be used to 

distinguish between psychological fatigue derived from boredom and physiological fatigue 

derived from sustained effort in a work station. 

Schoenmarklin and Marras (1989) state that muscle fatigue in the extrinsic muscles 

of the forearm is an important dependent measure because it is an indicator of the status 

of the internal components of the wrist and forearm. The study of muscle fatigue could 

facilitate an understanding of cumulative trauma disorders (CTDs) in the wrist, such as 

carpal tunnel syndrome (CTS) and tenosynovitis, in the substitutional patterns of muscular 

fatigue. It has also been suggested that the ability to predict hand grip forces is important 

in investigating occupational hand and wrist injuries (Li et al ., 1989). And, as presented 

in an earlier section, EMG is proving to be a potentially sound procedure for this task. 

For specifics of CTD and CTS refer to Moore et al . (1991), Armstrong et al . (1986), and 

Konz and Mital (1990). 
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Present Study 

It is evident that the use of EMG parameters in the previously discussed 

applications and in research holds a myriad of possibilities and potentials. The processes 

of muscular fatigue are numerous, and apparently complex, requiring a host of techniques 

for their study and analysis. Until the early 1980s, little work had been done using EMG 

frequency shifts. The frequency shift, as well as the shift in RMS, are prime candidates 

for the study and analysis of muscle fatigue, due to their non-invasive nature and direct 

(and non-direct) relationship to physiological, anatomical, and biochemical events and 

modifications within the muscle (Deluca, 1981 ). For this reason, among others, the 

present study will analyze muscular fatigue using the ME parameters of RMS and mean 

power frequency (MPF). Based on the research of Stulen and DeLuca (1982), the power 

density spectrum width will also be monitored via a high to low frequency ratio and 

difference. 

The goal of the present study is to evaluate and analyze muscular fatigue in the 

digital flexor group of the right forearm under two conditions; sustained constant isometric 

contraction, and pulsed isometric contraction. The results of previous studies have shown 

specific trends in EMG parameters for various muscle groups, but it is evident that these 

trends are not stable from group to group. Little work has been published to date 

involving the digital flexors, and it is felt that this could be one of the more important 

muscle groups to understand, because of the strong implications it has for ergonomics and 

cumulative trauma disorders. The purposes behind the two phases of this study are that; 

a) it is necessary to substantiate past sustained isometric research for this particular muscle 
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group, and b) no work has been published looking at pulsed isometric contractions. It 

would seem that although past results (nearly exclusively sustained isometric) have strong 

implications in the work place, tasks are not typically sustained until failure. Rather, tasks 

are dynamic, mixed with short intervals of isometric contraction. The hypothesis that 

the fatiguing parameters of the two contraction types may differ is based on the possible 

influences of the recovery mechanisms discussed earlier. 
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MATERIALS AND METHODS 

The intent of this study was to induce voluntary muscular fatigue in the digital 

flexor muscle group and to acquire and analyze several myoelectric parameters. The 

experimental procedures were designed to offer the best approximation of true life, 

exercise or work induced fatigue for this muscle group, and so provide valid parallels to 

occupational hazards. Muscular fatigue was reached by the gripping and squeezing of a 

hand held dynamometer which also documented force output. EMG activity was acquired 

from surface electrodes places over the inner forearm. The signal was amplified and sent 

to a data acquisition system and a subject feedback display. Following acquisition, the 

EMG data and force data were reduced via computer algorithms. Great care was taken to 

guarantee subject safety and to ensure that there was no aliasing or other detriments to the 

acquired signals. 

Subjects 

The subject pool consisted of eight volunteers ranging in age from 24 to 29 years; 

four female and four male. The use of human subjects was approved by the University 

Human Subjects Review Committee (Appendix A). Subjects received no incentive and 

participated with complete knowledge of the study. Subjects were all of good health and 

showed no signs of difficulty, such as premature or severe cramping, intolerable pain, or 

inability to function. Subject 04 was unable to complete the pulsed isometric portion of 

the study due to an injury unrelated to the experiment; therefore, the data for that portion 
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was exempted. Individual subject demographics are presented in Table 1. Muscle type 

and composition were unknown, but it was assumed that the subject pool, pseudo-

randomly selected, was representative of a larger group. 

Table I. Subject Data 

Subject SOl S02 SOJ S04 sos S06 S07 sos 
Sex F M M F M M F F 
Age 23 25 23 22 28 24 28 23 
Weight 135 190 210 130 250 195 120 110 
Exercise 1 1 2ab 2ab 3a 3ab 2a 1 
MVC Day 1 24 40 57 31 83 41 31 25 

Day 2 26 40 55 31 76 53 32 25 
Exercise: 1 = Average activity, 2 = Weekly, 3 = Daily 

a = weight lifting, b = aerobic 

Equipment 

Refer to Figure 4 for a bock diagram of the equipment setup, Figure 5 for a 

representation of the lab setup, and Figure 6 for a flow chart of the signal reduction 

processes. 

Dynamo meter 

The fatiguing exercise and force output signal was obtained by a model 76618 

hand held dynamometer (Lafayette Instrument Co.). The device provided external 

resistance to the digital flexors by the compression of a spring. The unit had a force 

output dial which related the amount of spring compression to the amount of force 
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producing that compression. It also provided an enclosed potentiometer (pot) that was 

positioned to rotate with the linear displacement of the spring. By passing a de current 

through the pot, a voltage representative of the force was available. The unit was received 

with a pot installed; this was replaced by an extremely high quality, beringed, I Ok ohm 

potentiometer which offered better low end sensitivity and negligible resistance to rotation. 

Voltage was supplied to the dynamometer via an Archer~ AC Adapter step-down wall 

transformer, with an output of approximately 3 volts de at 200mA. A 2.5 volt reference 

diode (LM336) was installed in-line prior to the dynamometer's potentiometer to ensure a 

steady, reliable input voltage. The dynamometer output was experimentally calibrated, 

and there was a strong linear relationship between the apparent voltage and force. This 

relationship was represented by y=0.290 + 0.018x, with R2=0.9974; Figure 2. 

VOLTS vs. FORCE w/ FITTED REGRESSION LINE 
Y=.290 ..• +.018 ..• X 

0.9 
0.8 
0.7 
0.6 

~ 05 
0 > 0.4 

0.3 
0.2 
0.1 

0 
0 5 10 15 20 25 30 

force (kg) 

:K VOLTS - • - REGRESSION LINE 

Figure 2. Calibration curve for the dynamometer 
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Digital Multimeter 

Force output feedback for the subject came from a large display digital multimeter 

(Weston 11240) which displayed the de voltage output of the dynamometer. Target 

voltages were calculated, and the subject concentrated on the multimeter display to 

produce the required force output. 

Electrodes. Amplifier. and Shielding 

The myoelectric signal was captured by a pair of Grass~ lcm, cup style, Ag-AgCI 

bipolar surface electrodes. The signal was then amplified through a homemade differential 

amplifier with bandpass filtering from 3 to 10,000 Hz. The amplifier was driven by two 

nine volt batteries and had an effective gain of 1 OOx. A large 4 cm x 6 cm, Ag-AgCI 

surface electrode was used to ground the subject to the common ground pole of the 

amplifier. A wire cage enclosed the amplifier, all signal carrying leads, the electrodes, 

and the subject's lower arm. The cage, serving as shielding from 60 Hz noise and other 

electromagnetic interference, was then grounded to the amplifier. In addition, the table 

surface on which the amplifier rested was also grounded and connected to the common 

ground node (Figure 3d). 

Contraction Pacer 

A pacer/timer was built to tell the subject when to contract and when to relax 

during the pulsed isometric portion of the study. The pacer consisted of a LED display 

which counted from I to 10 seconds, an audible tone at ten seconds, and a "+" or "-" LED 

display depending on whether the subject was to be in a state of contraction or relaxation. 

Refer to circuit diagram in Appendix B. 
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Osei I loscopes 

A Tektronix 511 lA oscilloscope was used to display the EMG in real time. A 

second device, a Heath 4802 computer oscilloscope, was used to display, digitize, and 

record the force and EMG signals simultaneously. Operation the Heath scope was 

dependent on its software package. The program (Appendix C) was significantly altered 

for the purpose of this study. The majority of the changes occurred in the algorithms 

responsible for the storage of the displayed signals. The Heath scope and the computer 

had two-way communication via the RS-232 port. 

Computer 

The computer used to acquire, store, and manipulate the signal data was an IBM 

PC compatible (ACC Advanced Computer Systems). The computer was a 486DX running 

at 33 MHz which ensured adequate speed for acquisition, storage, and processing. All 

initial signal storage was to the hard disc drive to optimize speed. 

Experimental Procedure 

Subject Preparation 

Prior to electrode attachment, both of the subject's inner forearms were shaved, 

scrubbed with a clean abrasive sponge, dried, and rubbed clean with 91 % isopropyl 

alcohol. The electrode placement positions were located on the right forearm in 

accordance with the guidelines set forth by Zipp ( 1982) for surface EMG recording of the 

digital flexor muscle group. The positions were marked with a small dot of USDA blue 

meat dye applied to the skin with a cotton swab. Proper position was verified by 
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palpation of the digital flexors as the subject contracted the muscle group (made a fist and 

squeezed). 

The electrodes were then secured to the subject directly over the dye marks. Good 

attachment and surface interface conditions were achieved by first applying Signa Gel~ 

(Parker Laboratories, Inc.), a highly conductive electrolyte electrode gel, to the electrode, 

then placing it on the skin surface, and adding a small circular slice of cork over the top. 

A 2" x 2" piece of Transpore~ medical tape (3M) was then used to hold the cork and 

electrode to the skin surface. Finally an elastic strap was placed over the assembly, 

stretched around the forearm and secured (Figures 3a, 3b). The ground electrode was 

attached in a similar fashion, approximately in the middle of the inner left forearm (Figure 

3c). The electrode leads were then connected to the amplifier and electrode positioning 

and attachment were checked by subjective visual interpretation of the EMG displayed on 

the Tektronix oscilloscope. 

The subject was then positioned for the experiment, seated with back straight and 

right arm resting on the lab bench. The arm was positioned palm up and bent slightly at 

the elbow. The left arm was relaxed with the left hand resting on the left knee. 

Determine MVC and Target Level 

Prior to the EMG and force data acquisition, the subject's maximum voluntary 

contraction (MVC) level was obtained. This was done by having the subject grasp the 

dynamometer and squeeze it as strongly as possible. The voltage output of the contraction 

was then recorded from the digital multimeter. The subject's target level was then 
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(a) 

(b) 

Figure 3. (a) Recording electrode positioning; interelectrode distance - 4cm (b) electrode 
attachment and limb position 
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(c) 

(d) 

Figure 3. (continued) (c) Ground electrode, (d) shielding 
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calculated as 30% of their MVC. The subject's MVC was attained independently prior to 

exercise on each day. 

Isometric Exercise (Day l) 

The subject was instructed to grasp the dynamometer, but not to contract. At this 

time, a pre-fatigue resting EMG was recorded. Then, when ready, the subject squeezed 

the dynamometer to their predetermined target level and held at this level for as long as 

possible. The subject was given all instructions before the exercise began and was not 

coached or motivated during the exercise. The instructions given were simply a verbal 

explanation of the consent form that each subject had read and signed (Appendix A). 

Immediately following the exercise the subject again relaxed and a post-fatigue resting 

EMG was recorded. 

The subjects initiated the contraction on their own; EMG and force recording 

began once force output reached the target level. Recordings were then taken every l 0 

seconds from l second until the subject absolutely could no longer hold the contraction. 

It should be noted that recording continued even as the subject's force output level fell 

below the target level, and each subject stopped contracting for a variety of reasons to be 

discussed in a later section. 

Pulsed Isometric Exercise (Day 2) 

Only the male subjects took part in the pulsed isometric portion of the study, while 

the females repeated the isometric (Day l) routine for Day 2. This phase of the 

experiment was significantly more complex and demanding than the previous exercise. 

The exercise again began with the recording of a pre-fatigue resting EMG. Then, 
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when ready, the subjects squeezed the dynamometer up to the 30% (high) target level and 

held for ten seconds. At ten seconds the subjects then reduced their force output to a 

predetermined I 0% (low) target level. The low level was also held for ten seconds and 

then the subjects contracted back up to the high level for another ten seconds. This cycle 

continued for as long as the subjects could attain the high level , but not necessarily 

maintain it for the entire ten second period. EMG and force recordings were taken only 

during the high level, at approximately 3 and 7 seconds. Again, immediately following 

the exercise a post-fatigue resting EMG was recorded. 

Following this exercise bout, the subject relaxed for fifteen minutes with the 

electrodes remaining in place. During the rest period the subjects were allowed to loosen 

their hands and arms by shaking out or massaging any stiffness or cramps. 

After the rest period, the subjects repeated the pulsed isometric exercise exactly as 

before, using the same target levels. The subjects completed a total of three pulsed 

isometric trials again with a resting period between the second and third. Following the 

third trial the electrodes were removed from the subjects. 

Data Reduction 

Data was recorded at a rate of I 024 samples per second with 512 points captured 

in each acquisition period. Four computer algorithms were written to reduce and organize 

the force and EMG signal data (Appendix C). The first routine reduced the force data by 

finding the arithmetic average for the sampled period (approximately 0.5 seconds). The 

next three programs reduced the EMG signal to the three parameters of interest~ the 



38 

root mean square (RMS). the mean power frequency (MPF), and the high/low frequency 

ratio. 

The RMS was calculated by using equation 1. The MPF, perhaps more accurately 

described as the power weighted average frequency, was calculated by equation 4. The 

high/low frequency ratio, a measure of the EMG power density spectrum width, was 

calculated by locating the frequencies that corresponded to the power level P. that was 

-3dB from the mean power (equations 5 & 6). 

condition: p _, = 10(-3{20) 

Pav 
[5] 

where: p - EP,(d.f), 
[6] av Edf, 

The algorithm then retained the first and last frequency that met these conditions and 

termed them the low and high frequencies, respectively. 

DADISP~. a digital signal processing package, was used to graphically display the 

EMG signals and to derive the power density spectrum (PDS). Several command files 

(Appendix C) were written to bring the raw data into DADISP and output the PDS data to 

disc. DAD ISP was also used to calculate a I 0 point moving average of the PDS; the 

smoothed PDS was used in the high/low frequency ratio algorithm. 
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Figure 4. Block diagram of equipment set-up. 
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RESULTS 

The results of this study complement those of past research (Petrofsky et al., 1975; 

Kwatny et al., 1970; Viitasalo and Komi, l 977;and Basmajian and Deluca, 1985). 

Individual subject/trial data tables are located in Appendix D along with correlation and 

regression tables and any resulting graphs not presented in the text. Limited statistical 

analysis was used in the evaluation and preparation of the results. Due to the extreme 

variability of subject performance and results, it would be improper to attempt any 

statistical analysis between groups, or even amongst subjects and between trials. It was 

decided that the best way to present the results of this study was to report individual 

results based on the subject and trial. Where applicable, similarities and differences were 

alluded to and presented graphically. The extent of the statistics used was to perform 

individual regression analysis on each parameter of interest for each subject/trial level. 

From the regressions, best fit lines (predicted lines) were obtained and their slopes 

reported, along with their p-values and R2 values, giving the goodness of fit and accuracy 

of the regression and its output. Correlations between all of the measured EMG 

parameters and time were also calculated for each subject/trial, and only those of 

outstanding value were reported. The results are presented in two parts; those of the 

maintained isometric study, and those of the pulsed isometric study. 
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Isometric 

There was good consistency in the results of the maintained isometric portion of 

the study for male and female subjects. It was found that the mean power frequency 

(MPF) decreased over the time of contraction. The degree of this decrease, reported as 

the slope of the predicted line, varied from subject to subject but was fairly consistent 

among subject trials, for most subjects. The root mean square (RMS) of the EMG was 

found to increase over the time of contraction. Again, the slopes of the predicted lines 

varied among subjects. It should be noted that the slopes were based on calculations 

using the % time of contraction to standardize time to allow comparisons to be made 

between subjects and between subject trials. The subjects' total times of contraction 

varied considerably. Individual subject's results are presented in Table 2. 

Although all of the predicted MPF slopes show a decrease, with some considerably 

greater than others, it is crucial to note that not all of the values are significant, i.e., 

p < 0.01. It can be seen in Table 2 and Figure 7 that there was a nearly linear, and 

significant, decrease in MPF for S06, p < 0.001. Any R2 value greater than 0.6 is 

considered good for this type of data~ SOI, S03 , S04, and S08 also show linearity in their 

results. The predicted MPF slope for S06 is atypical because it is nearly twice as large as 

any of the others. The average slope for the maintained isometric trials was -0.167. 
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Table 2. Maintained isometric MPF and RMS regression data; slopes are in y-units/%time. 

Subject!frial 

SOI 

S04 

S07 

S08 

S02 

S03 

sos 
S06 

140 
120 

'N 100 
~ 80 
lt 60 
~ 40 

20 

Day 1 
Day 2 

Day 1 
Day 2 

Day 1 
Day 2 

Day 1 
Day 2 

Day 1 

Day 1 

Day 1 

Day 1 

Time Slope 

190s -0.161 
200s -0.177 

250s -0.094 
260s -0.137 

300s -0.116 
220s -0.127 

400s -0.279 
260s -0.052 

180s -0.168 

210s -0.192 

220s -0.150 

210s -0.493 

MPF 

R1 p-value Slope (IOt5 

0.604 < 0.001 1.60 
0.726 < 0.001 9.63 

0.203 < 0.05 -1 .20 
0.563 < 0.001 0.62 

0.258 < 0.005 2.22 
0.281 < 0.01 0.87 

0.661 < 0.001 9.74 
0.031 < 0.5 7.60 

0.483 < 0.001 6.14 

0.747 < 0.001 16.90 

0.154 < 0.05 6.40 

0.837 < 0.001 7.50 

!sos ISOMETRIC J 

RMS 

R1 p-value 

0.012 < 0.5 
0.361 < 0.005 

0.067 < 0.5 
0.026 < 0.5 

0.187 < 0.01 
0.034 < 0.5 

0.708 < 0.001 
0.738 < 0.001 

0.353 < 0.01 

0.775 < 0.001 

0.357 < 0.005 

0.170 < 0.05 

14.00 
12.00 

t-~~t~- ;I( ;I( 10.00 ~ 
..• - ~~;I( ,.._ 8.00 ~ 

6.00 
4.00 
2.00 

(.) a:: 
0 u.. 
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Figure 7. S06 MPF data for isometric trial; slope = -0.493, R2 = 0.837, p < 0.001. 



45 

The RMS data varied more from subject to subject, and trial to trial, than did the 

MPF data. From Table 2 and Figure 8, it can be seen that the predicted RMS of S03 was 

the best, because it was the most linear and increased by 16.9(10)"5 (volts/%time), p < 

0.001. Again, this example is atypical of the RMS results; the average predicted slope for 

all subject/trials was 5.67(10)"5 (volts/% time of contraction). 

0.03 

0.025 en s 0.02 

~ 0.015 

~ 0.01 
a:: 0.005 

jso3 ISOMETRIC' 

20.00 
18.00 
16.00 -
14.00 ~ 
12.00 ....... 
10.00 ~ 
8.00 a:: 
6.00 ~ 
4.00 
2.00 

0 -1------+---+->---+----+---<-+--+----+--+---<-+--+----+--+---<-------< 0.00 
CX) <O N CJ) I.() ..... ...... 
""" 

...... I.() N ~ CX) I.() 

ci ..j. a> ..j. CJ) <") CX) ...... ..... N N 

- ..... •,_- Predicted RMS 
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""" ~ 
I.() 
O> 

0 
0 
0 
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Figure 8. S03 RMS data for isometric trial; slope= 16.9(10)"5
, R2 = 0.775, p < 0.001. 

Figures 9 through 12 present the predicted MPF and RMS curves based on the data 

in Table 2 for males and females. The results are fairly consistent, with the exception of 

magnitude. It can be seen that the starting, pre-fatigue, MPF ranged from about 60 Hz to 

120 Hz, and RMS ranged from 5 to 15 millivolts. Figures 10 and 12 illustrate the 

consistency of the MPF and RMS between repetitions for the female subjects. The 

variations in the duration of contraction between subjects and between trials is also seen. 
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TIME (SECONDS) 
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Figure 9. Predicted .MPF curves for male isometric trials. 
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Figure 10. Predicted .MPF curves for female isometric trials. 
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IMALE SUBJECTS ISOMETRIC' 

TIME (SECONDS) 

----,1,;.k--- S02 --o-- S03 -~•-- SOS ------0--- S06 

Figure 11 . Predicted RMS curves for male isometric trials. 
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Figure 12. Predicted RMS curves for female isometric trials. 
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The third EMG parameter analyzed was the power density spectrum (PDS) band 

width. Two methods were originally used to evaluate this parameter; the ratio of the high 

frequency to the low frequency, and the difference between the high and low frequencies. 

It was quickly found that the latter was the better way to report this parameter because 

one of the frequencies must be stable for the ratio method to be accurate. Results showed 

that the entire PDS, as well as the MPF, shifts toward the lower end of the spectrum 

during a fatiguing contraction; therefore, only the difference of the high and low 

frequencies gives the true bandwidth. Figure 13 is an example of this parameter for an 

individual subject/trial, showing the shifts in the high and low frequency points and 

contrasting the "ratio" and "difference" methods. For this particular case, it appears that 

the majority of the MPF shift comes from a decrease in the high frequency, with less of a 

decrease in the low frequency. 

jso6 ISOMETRIC PDS BAND WIDTH' 

TIME (SECONDS) 

- ---- LF - 9-HF -o- HF-LF --<>-- HF/LF 

Figure 13. PDS bandwidth curves for S06 isometric trial. 
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Results for the isometric trials show that the PDS bandwidth decreases over the 

time period of the fatiguing contraction. However, there is little constancy in the slopes 

of the predicted curves and their magnitudes. From the data in Table 3 it would appear 

that no significant conclusions can be made. There was a trend for the majority of the 

predicted slopes to be negative, but the p-values are very poor and the R2 values tend 

toward absolutely no linearity in the data. In a few cases, there was not even subject 

repeatability. 

Table 3. PDS band width regression results; day 1 over day 2 for female subjects. 

Subject SOI S02 S03 S04 sos S06 S07 S08 

Slope -0.154 -0.129 -0.138 0.066 -0.084 -0.343 -0.138 -0.149 
-0.158 0.062 -0.080 0.054 

R2 0.176 0.158 0.247 0.021 0.054 0.258 0.085 0.158 
0.368 0.024 0.052 0.015 

p-value < 0.1 < 0.1 < 0.05 < 0.5 < 0.5 < 0.05 < 0.5 < 0.05 
< 0.005 < 0.9 < 0.5 < 0.1 

Correlation tables for all subjects and trials are in Appendix D, where it can be 

seen that EMG parameter correlations vary considerably between subjects and trials. 

Table 4 is an example of a typical subject correlation table. It shows a strong negative 

correlation, inverse relationship, between time of contraction (% time) and MPF; time and 

the high frequency point; time and the low frequency point; and a positive relationship 

between time and RMS. Other relatively strong correlations are also evident in Table 4, 
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such as, between force and MPF, and perhaps of most interest, between MPF and high 

frequency . The latter presents evidence that the shift in the MPF is primarily due to a 

corresponding shift of the high frequency point of the PDS. These correlations are 

supported by, and representative of, the regression results reported above and any resulting 

plots. 

Table 4. Correlation data for S06 , isometric trial . 

·soe.,tSOMElRlC:.COt{R.ErEATioNS@tMilW@HI 
% TIME FORCE MPF RMS LF HF HFll..F HF-LF 

%TIME 1 
FORCE -0.53102 1 
MPF -0.91473 0.616459 1 
RMS 0.412817 0.303136 -0.12929 1 
LF -0.6919 0.524177 0.678335 -0.10701 1 
HF -0.75497 0.617711 0.887703 0.095186 0.513035 1 
HF/LF 0.321027 -0.25005 -0 .24883 0.100202 -0.82401 -0.05772 1 
HF-LF -0.5081 0.438128 0 .669682 0.16786 0.062141 0.888589 0 .373227 1 

Pulsed Isometric 

The results of the pulsed isometric study were considerably consistent with those 

of the maintained isometric study reported above. The major trends and conclusions that 

resulted from the maintained isometric study apply to this study as well. Table 5 shows 

the consistency among subjects and significant repeatab ility between trials. 
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Table 5. Pulsed isometric MPF and RMS regression data; slopes are in y-units/O/otime. 

MPF RMS 

Subj ect!f rial #of Cycles Slope Ri p-value Slope(10)"5 Ri p-value 

S02 #1 12 -0.097 0.235 < 0.05 5.084 0.596 < 0.001 
#2 11 -0.103 0.165 < 0.05 6.867 0.549 < 0.001 
#3 10 -0.052 0.045 < 0.5 7.311 0.789 < 0.001 

sos #1 21 -0.036 0.038 < 0.5 6.091 0.296 < 0.001 
#2 18 -0.008 0.003 < 0.5 9.116 0.650 < 0.001 
#3 16 -0.057 0.066 < 0.5 6.504 0.412 < 0.001 

S06 #1 21 -0.065 0.156 < 0.01 7.071 0.197 < 0.005 
#2 17 -0.104 0.384 < 0.001 15.706 0.542 < 0.001 
#3 15 -0.198 0.614 < 0.001 20.931 0.748 < 0.001 

Although less prominent, the results of the pulsed isometric trials consistently show 

the decreasing trend of the MPF and the increasing trend of the RMS previously seen in 

the maintained isometric trials. Again, with S06 as an example, several elements of these 

results become evident (Figure 14). 

First, for the pulsed isometric study, trials 1 through 3, the slopes of the predicted 

MPF lines were all negative, decreasing from trial 1 to trial 3. S06 was the only subject 

to show this trend significantly. Secondly, Figure 14 illustrates how well the three pulsed 

isometric trials fell within a small magnitude range. This result was representative of all 

subjects. What stands out the most about the S06 curves is the tremendous difference 

between the pulsed and maintain isometric trials. It was typical for all of the subjects, in 

the sense that the maintained isometric trial had a steeper slope, but the large offset is 

definitely not representative of the other subjects. 
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Figure 14. MPF predicted curves for S06, all trials. 

Figure 15 illustrates the RMS data from Table 5 for S06. Again, a trend of 

increasing slope can be seen from trial l to trial 3, a result again not typical to all other 

subject~. No other subject showed any significant trends in trial ordering. Similar to the 

maintained isometric results, the results of the pulsed isometric study show a wide range 

of RMS magnitudes among subjects, yet the range between individual subject's trials in 

fairly tight. 

The PDS bandwidth results for the pulsed isometric study also were in agreement 

with those of the maintained isometric study. Figure 16 illustrates that there was some 

consistency between trials, except for trial 2 where there was an unexplainable change in 

the direction of the curve from negative to positive. Overall, no substantial evidence was 

found to indicate a significant narrowing of the PDS bandwidth. Refer to regression 

tables in Appendix D for specific results. 
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Figure 15. RMS predicted curves for S06, all trials. 
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Figure 16. PDS bandwidth curves for SOS, all trials. 
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DISCUSSION 

The results of this study strongly support the findings of other researchers, 

substantiating past results for different muscle groups. Primarily, it was found that the 

MPF does shift toward the lower frequencies and that the RMS does increase throughout a 

fatiguing isometric contraction for the digital flexor muscle group. Also, this study found 

no gender based differences in these trends. The present study did not strongly support 

the idea that the PDS bandwidth narrows over the time of contraction (Stulen and DeLuca, 

1982; Basmajian and DeLuca, 1985); although the tendency was seen, it was far from 

statistically reliable or significant. 

This study is the first to focus on pulsed isometric fatiguing, as well as the 

traditional maintained isometric exercises. It was thought that fatigue brought on by a 

non-maintained isometric exercise was more realistic and applicable to the work place. 

Perhaps not surprisingly, there was little to no difference between the results of the pulsed 

and maintained studies. This suggests that conclusions made from maintained isometric 

fatigue studies may well apply to pulsed isometric fatigue. There is a dynamic component 

to the pulsed isometric exercise that is not present in the maintained isometric trials. The 

major difference seen between the two exercise types was that the slopes of the results 

from the pulsed trials were generally not as steep as their counterparts. This could be 

explained by the brief periods of recovery throughout the exercise. Obviously, this was 

why the subjects were able to hold the pulsed trials for longer periods of time; however, 

the resulting parameter shifts were usually the same. Petrofsky (1979), tracking frequency 
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and amplitude parameters during dynamic exercise, reported the same general trends in 

EMG amplitude and frequency as those found in isometric studies, but not to the same 

extent. He attributed this to the possibility that dynamic exercise produces more internal 

heat in the muscle, which counteracts the parameter shifts due to fatigue. 

Several past investigators made claims that the decrease in MPF and increase in 

RMS were linear (Petrofsky et al ., 1975; Kwatny et al ., 1970; Viitasalo and Komi, 1977; 

Kuroda et al ., 1970). This study was not able to support that conclusion. Many of the 

studies performed by others used only one subject and, therefore, could be classified as 

single case studies. If only one of the subjects of this study were reported, for example 

S06, strong support of linearity could be made, but only about half of the subjects studied 

reflected strong linearity, and even fewer showed reliability of this linearity. 

It should also be pointed out that the conclusions made in this study are based on 

EMG data assumed to be from a time period prior to the contractile failure point. As 

discussed earlier, muscular fatigue is an ongoing process which begins at the onset of 

contraction and culminates at, or slightly after, the failure point. Stephens and Taylor 

(1972) stated that only during the period prior to failure were the assumptions of linearity 

accurate; however, in the present study only one subject was able to continue past the 

failure point. Figure 17 shows S06 reaching the failure point (arrow) and continuing for a 

short period of time. It is interesting to note that by excluding the last three data points, 

the slope of the RMS regression line would be steeper and most likely would have a 

larger R2 value. It can also be seen that it would appear that the RMS values drop off 

completely in a negative direction upon reaching the failure point. This conclusion, 

though, was not substantiated by any other subjects or trials. 
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Figure 17. Predicted RMS curve for S06; arrow indicates contractile failure. 

One of the major obstacles that makes results like those obtained in the present 

study difficult to interpret is the subject's perception of fatigue. That is, the subject may 

feel the symptoms that they are conditioned to recognizing as fatigue, but, in actuality, 

physically they are capable of continuing. For example, during the data acquisition phase 

of this study, subjects would hold the desired force level for a period of time and then 

suddenly report that they could go no longer, even though no steady decrease in force 

output was recorded. It is believed that this represents the subject's perception of fatigue 

and not their physical capability. 

Some possible explanations for the dramatic inconsistencies found between subjects 

and trials can be advanced. First of all , and perhaps most crucial , was the inability to 
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position the recording electrodes accurately and consistently from subject to subject. With 

out post-mortem or exploratory verification, it is not possible to know exactly where on 

the muscle group the recordings originate from. Anatomically, it is known muscle 

structure and location are not identical for all individuals. Therefore, it is conceivable that 

even with a well structured and standardized method, electrodes placed exactly over the 

belly of a muscle for one subject could be off by several millimeters for another. This 

does not account for the additional effects of the inability to ensure that the inter-electrode 

line was parallel with the muscle fibers from subject to subject. However, this study did 

support the findings of Komi and Buskirk (1972) that the replacement of surface 

electrodes after their removal was fairly reliable, as can be seen in the female subject 

trials between days 1 and 2. Another explanation for subject to subject variations could 

be differences in muscle fiber type and composition. Komi and Tesch (1979) reported 

that subjects with a higher percentage of slow twitch fibers showed a significant decrease 

in IVIPF, while those with a higher percentage of fast twitch fibers demonstrated only a 

slight, non-significant increase. Finally, biochemical concentration variations among 

subjects might also provide for some of the observed discrepancies in the EMG parameter 

shifts. 

In conclusion, this study has substantiated the major findings of past isometric 

research and demonstrated that these conclusions may also hold for a more realistic type 

of exercise in which isometric contraction force levels may vary. It has been verified that 

the use of EMG to study, and possibly predict, muscular fatigue has excellent potential as 

a research and clinical tool. However, much work is still needed to: (a) further verify 
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many of the conclusions made and (b) study subject differences and their causes. To 

improve the results of this type of study in the future, it may be necessary to very 

specifically group subjects by gender, muscle type and structure, biochemical 

concentrations and availability, and other physiological variables. 

·. 
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APPENDIX A 

HUMAN SUBJECT APPROVAL AND CONSENT FORMS 



Information for Review of Research Involving Human Subjects 
Iowa State ''";,,erslty 

(Please type and use the attached ir.§?.ictions for completing this form) 

I. Title of Project "Study of T?ynam.i.c Fatigue in Lower Ann" 

2. I agree to provide the proper surveillance of this project to insure that the rights and welfare of the human subjects are 
protected. I will report any adverse reactions to the committee. Additions to or changes in research procedures after the 
project has been approved will be submitted to the committee for review. I agree to request renewal ofapproval for any project 
continuing more than one year. 

[Byjd D Chappell 
Typed Name of Principal Investigator 

Bianedical Engineering 1130 Vet Med 294-6520 
Department Campus Address Campus Telephone 

~teL , /r,_ Relationship to Principal Investigator 

~ Maj or Professor 

4. Principal Investigator(s) (check all that apply) 
0 Faculty 0 Staff ~ Graduate Student 0 Undergraduate Student 

5. Project (check all that apply) 
D Research [XJ Thesis or dissertation 0 Class project 0 Independent Study (490, 590, Honors project) 

6. Number of subjects (complete all that apply) 
_ # Adults, non-students 1.S.. # ISU student # minors under 14 

_#minors 14. 17 
_ other (explain) 

7. Brief description of proposed research involving human subjects: (See instructions, Item 7. Use an additional page if 
needed.) 

8. Informed Consent 

Please ref er to attached page A. 

(Please do not send research, thesis, or dissertation proposals.) 

00 Signed informed consent will be obtained. (Attach a copy of your form.) 
0 Modified informed consent will be obtained. (See instructions, item 8.) 
0 Not applicable to this project 



Las t Name of Principal Invest i gator~_Ch==:a~p~pe==l~l=-~~~~~~~ 

list for Attachments and Time Schedule 

ollowing are attached ( pie~ check): 

Letter or written s tatement to subjects indi~ting clearly: 
a) purpose of lhe research 
b) the use of any identifier codes (names, #'s), how !hey will be used. and when !hey will be 

removed (see Item 17) 
c) an estimate of time needed for panicipation in the research and the place 
d) if applicable. location of the research activity 
e) how you will ensure confidentiality 
f) in a longitudinal s tudy, note when and how you will contact subjects later 
g) participation is voluntary; nonpanicipation will not affect evaluations of lhe subject 

Consent form (if applicable) 

Letter of approval for research from cooperating organizations or instirutions (if applicable) 

Data-gathering instruments 

.nticipated dates for contact with subjects: 
irst Contact 

11/15/92 
Monlh I Day I Year 

Last Contact 

01 /OJ /93 
Mon ch I Day I Year 

: applicable: anticipated date lhat identifiers will be removed from completed survey instruments and/or audio or visual 
ipes will be erased= 

08/01/93 
Monlh I Day I Year 

:ignarure of Department.al Executive Officer Date Deparonent or Administrative Unit 

)ecision of lhe Universicy Human Subjects Review Committee: 

i_ Project Approved _Project Not Approved _ No Action Required 

Patricia M. Keith C\ \.:'{\\~°)__ ;2n1 /(.( /Ch~ 
Dar.e \ Signarure of Commmee Chairperson ~ame of Commiu.ee Chairperson 

l/90 
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Page A. 

7) This project will involve the recording and evaluation of 
EMG data prior to, during, and immediately following " l ocal ized " 
muscle fatigue of the digital flexor groups. 
A unipolar EMG electrode will be secured to the subjects inner 
fore - arm, over the muscle group of interest. A ground elect r ode 
will be placed at the wrist or elbow. The electrodes will be 
secured with velcro/ elastic straps, and conductive gel . The EMG 
signal will be amplified and sent to an oscilloscope and a 
computer based data acquisition system. The EMG amplifier will 
be driven by batteries , and has proven to be save with over ten 
years of use in this department . 

To fatigue the muscle group, the subject will grip and 
squeeze a hand held ergonometer (dynamometer ) . Approximately ten 
subjects will go through a specified regimen of squeezing 
exercises per trial, and each subject will participate in a total 
of three trials on separate days, within a five day period. Each 
subjects specific exercise period will be dependent on his or her 
own abilities and can not be predetermined. The exercise periods 
will consist of systematic squeezing and resting intervals, the 
length and number of intervals will also be subject dependent . 
They are expected to fatigue within 10 minutes at an approximate 
50% MVC ( maximum voluntary contraction). 

Subjects to be used will have average strength and body 
type, and will include males and females. They will range in age 
from 18 to 45 years. 

9) Subjects will be designated by a project number which will 
be used from the onset of the study when ever referring t o any 
subject data . The primary investigator will maintain subject 
identity on a floppy disc in a locked laboratory. Access to 
subject identity will be closely guarded and highly restrictive. 

10) The attachment and operation of the equipment should cause 
no discomfort or injury. However, the subject may experience 
some normal discomfort as their muscles fatigue. The experience 
should be nothing that the subject hasn't felt before , and should 
subside upon release of the hand-grip . A subject could 
f oreseeably also incur a ~uscular cramp due to extended fatigue , 
which may require more time, or minor massage , to alleviate. No 
permanent or lasting injury is expected. 

llD) The exercise involved will be repeated flexing of the 
fingers against a moderate force. The subject will be in 
complete control and can release at their own discretion. If 
cramping were to occur, research staff will be present to assist 
in relaxing the muscle. 
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Signed informed consent for 
study of muscular fatigue in lower arm 

1. The intent of this study is to analy3e the effects o f fatigue 
on the electrical activity of the muscles in the lower arm. We 
are interested in the electrical activity of a particular muscle 
group in the lower arm prior to, during, and immediately 
following voluntary subject induced muscular fatigue. The tests 
will consist of you (the subject) voluntarily gripping and 
squeezing a hand held force measuring device. You will squeeze 
and hold ·at a certain force level for about 10-30 seconds, and 
then release and relax for about 10 seconds; repeating this cycle 
until the muscle group of interest reaches the desired fatigued 
state. Fatiguing will be monitored by two parameters; the 
electrical activity of the muscle group, and your ability to 
maintain the p rescribed force output level. 

The electrical activity of the muscles will be monitored by 
placing three small surface recording electrodes on the skin over 
the muscle group of interest ( inner forearm). The surface 
electrodes will be secured to the skin with elastic straps, and 
the skin may need to be precleaned with isopropyl alcohol and 
light scrubbing. A commercial conducting gel may also be used to 
ensure good skin to electrode contact. The signal from the 
recording electrodes will go to a computer based oscil loscope f or 
viewing and further analysis . All electrical equipment in 
contact with you will be purely recording equipment, and all 
effects will be voluntarily self induced . 

2. The exact length of time required for the squeezing and 
resting periods of the test cycles will be determined prior to 
testing based on your individual abilities. The number of cycles 
needed to reach the fatigued state will also be dependent on your 
abilities . 

3. You will be in complete control of all exercising, and should 
feel free to stop at any time during the testing should you 
experience any pain or serious discomfort. It should be 
expected, though, to experience the usual effects of muscle 
fatigue; heat, tingling, tiredness, slight burning deep in the 
~uscle , etc. Anything that is out of the o r dinary or alarming 
should p r ompt you to stop the testing immediately. 

4. You should feel free to ask any questions about the procedure 
or the research in general . 

5. You will not bound in any way to complete the testing and 
may withdraw consent at any time. 

6. All data and personal information will be kept confidential. 
Your name will not appear in any publication or thesis work. 
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7 . The time required of you will be approximately 1 hour per 
trial, and a total of two trials within a three to five day 
period will be needed. A trial will consist o f one series o f 
squeezing cycles till fatigue is reached o r you wish to stop f or 
any other reason. 

8. Emergency treatment of any injury that may occur as a direct 
result of participation in the research will be treated at the 
Iowa State University Student Health Services, Student Services 
Building, and/ or referred to Mary Greeley Hospital or . another 
physician . Compensation for treatment of any injuries that may 
occur as a res ult of par ticipation in the research ma y or may not 
be pa id by Iowa State University depending on the Iowa Tort 
Claims Act . Claims for c ompensation will be handled by the I owa 
State University Vice Pr esident f o r Business and Finance . 

By signing below you state that you have read this consent 
f o rm, understand it, have had your questions pertaining t o it 
satisfactorily answered, and voluntarily agree to participate in 
the study accepting the risks entailed by i t . You also 
understand that you may discontinue participat ion at any time f or 
any reason without objection by the researchers o r anyone 
involved with the study. 

Date=~~~~ 
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APPENDIX B 

PULSED ISO.METRIC EXERCISE PACER CIRCUIT DIAGRAM 
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Schematic for "Pulsed Isometric Fatiging Pacer". 
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APPENDIX C 

"SCOPE" PROGRAM AND DAT A REDUCTION ALGORITHMS 
"QUICK BASIC" CODE 

"DADISP" COMMAND FILES 
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"SCOPE" PROGRAM 

1 'VER SION 2.0 
2 'CO:MPUTER OSCILLOSCOPE - HEATH/ZENITH COMPUTER BASED INSTRUMENTS GROUP 
3 'MA y 19 , 1987 
4 'WRITTEN BY KIM MC CA VIT 
5 'REVISED BY BARB ERWIN 
10 'CLEAR MEMORY ABOVE 45000 FOR ASSEMBLY LANGUAGE ROUTINES 
20 'TURN KEY DISPLAY OFF AND DISABLE THE FUNCTION KEYS 
30 'SWITCH TO HIGH RESOLUTION GRAPHICS 

50 CLEAR , 45000! : KEY OFF: FOR I= 1 TO 10: KEY I, "": NEXT I: SCREEN 2 
60 CLS : LOCATE 15, 10: PRINT "LOADING ....... ." 
70 OUT &H3D9, &HA 'TURN SCREEN LIGHT GREEN 
80' 
90 'DEFINE CONST ANTS • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
100 I 

110 DEFINT A-Z: DIM Y1(51 l), Y2(51 l), YISUM(5 1 l ), Y2SUM(5 11), M1(5 1 l ), M2(51 l ) 
120 FOR I= 0 TO 51 1: Y l (D = 128: Y2(I) = 128 : YlSUM(I) = 0 : Y2SUM(I) = 0: NEXT I 
130 OFF SETYl = 0: OFFSET Y2 = 0 : HOFFSET = 0: FALSE = 0: TRUE= NOT FALSE: FRTCHG = 255 
140 LYNE= TRUE: INVERTY l =FALSE: INVERTY2 =FALSE: EROR =FALSE: MEMl = FALSE: 
MEM2 =FALSE 
150 COMAND = 0: GRATON =TRUE: SCOPE= TRUE: MENU= 1: SAVMEM =FALSE 
160 YlSEN = 0: Y2SEN = 0: YlCOUP = 0: Y2COUP = 0: SLOPE= 0: MODE= 0: SOURCE= 0: 
LEVEL= 0: RATE= 15 
170 TRIG= 0: CURSOR= 1: C !Y = 3 : C2Y = 3: MENU= 1: PNT = 0: COMAND = 0 
180 XI= -1 : X2 = - 1: X3 = -1: X4 = -! : AVGNUM = 1: AVGCNT = -1 : AVGYI =FALSE: AVGY2 = 
FALSE 
190 ' 
200 'DEFINE COMMANDS•••••••••••••••• • •••••••••••••••••••••••••••• •••••••••• 
210 I 

220 YlSENUP = 65: Y l SENDN = 66 : Y2SENUP = 67: Y2SENDN = 68: YlCOUPLG = 69: Y2COUPLG 
= 70 
230 TBASEUP = 7 1: TBASEDN = 72: TRIGSLP = 73: TRIGMDE = 74 : TRIGRST = 75 : MANTRG = 75 
240 TRIGSCR = 76: TRGL VL = 97 : TRGZERO = 86: REQMEM = 87: REQSA V = 88 
250 RSTREQ = 93: REQFRT = 89 : RST = 94: REZERO = 95 : SCOPEON = 92 : TSA VE= 77 
260 SCOPEOFF = 9 1: Y l POS = 98 : Y2POS = 99: Y lZERO = 84: Y2ZERO = 85 
270' 
280 'DEFINE STRING ARRAYS AND FUNCTION POINTER LOCATIONS•••••••••••••••• 
290' 
300 DIM SEN$(9): FOR I = 0 TO 9: READ SENS(I): NEXT I 
310 DATA "5 .0 mV","10. mV" ,"20. mV","50. mV" ,"100 mV","200 mV" 
320 DATA "500 mV" ,"1.0 V" ,"2.0 V","5 .0 V" 
330 ' 
340 DIM RA TE$(28): FOR I = 0 TO 28: READ RA TES(I): NEXT I 
350 DATA "10. nS" ,"20. nS" ,"50. nS" ,".100 nS","200 nS","500 nS" ," 1.0 uS","2.0 uS" 
360 DATA "5 .0 uS" ,"10. uS" ," 20. uS" ,"50. uS" ,"100 uS" ,"200 uS" ,"500 uS","1.0 mS" 
370 DATA "2.0 mS","5.0 mS","10. mS" ,"20. mS" ,"50. mS" ,"1 00 mS","200 mS" ,"500 mS " 
380DATA"l.O S" ,"2.0 S","5 .0 s·.· 10 . S","20. s· 
390' 
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400 DIM COUPLNGS(4): FOR I= 0 TO 4 : READ COUPLNGS(I): NEXT I 
410 DATA "OFF","AC ","GND"," ","DC• 
420 I 

430 DIM MODES(4): FOR I = 0 TO 4: READ MODES(!): NEXT I 
440 DATA•·: auto" ,"normal" ," ","single" 
450 I 

460 DIM POINTER(l3 , 2) I X,Y,# OF CHARACTERS 
470 FOR I= 0 TO 13: FOR J = 0 TO 2: READ POINTER(!, J): NEXT J: NEXT I 
4SO DATA 550,0,3, 5S2,0,6, 550,S,6, 574,16,S, 550,32,3, 5S2,32,6, 550,40,6 
490 DATA 574,4S,S, 597,64,3 ,550,72,6, 6 14,SS,2, 622,104,1, 550,12S,S, 590,144,6 
500 I 

510 'BRING IN ASSEMBLY LANGUAGE ROUTINES•• ••••••••••••••••••••••••••• 
520 I 

530 BLOAD "MAP.BIN", 47050! : BLOAD "UARTINl.BIN" , 47570! : UARTINII = 47570! 
540 BLOAD "PLOT.BIN" , 47600! : PLOT!= 476001 : BLOAD "GRAT.BIN", 4S2751: GRAT! = 48275! 
550 BLOAD "REQ.BIN", 4S860!: REQ! = 488601 : BLOAD "REQFRT.BIN" , 491201: REQFRT! = 49120! 
560 BLOAD "SEND.BIN", 49500!: SEND! = 49500!: BLOAD "CKUART.BIN", 49540!: CKUARTI = 
495401 
570 BLOAD "A VG.BIN", 49605! : A VG! = 49605! 
580 I 

590 'MAKE REVERSE VIDEO BLOCKS AND MESSAGES••••••••••••••••••••••••• 
600 I 

610 LOCATE 20, 2: PRINT "SAMPLING": DIM S(34) : GET (7, 152)-(72, 158), S 
620 LOCATE 20, 2: PRINT "TRANSFER" : DIM T(34): GET (7, 152)-(72, 158), T 
630 LOCATE 20, l: PRINT • ": DIM BLANK.8(34), BLANK.6(27), BLANK5(23) 
640 DIM BLANK4(20), BLANK3( 16), BLANK2( 13), BLANK.1(9): GET (0, 152) -(65, 158), BLANKS 
650 PUT (0, 152), BLANKS, PRESET: GET (0, 152)-(65, 158), BLANK.8 
660 GET (0, 152)-(49, 15S), BLANK6: GET (0, 152)-(41, 158), BLANK.5 
670 GET (0, 152)-(33, 158), BLANK4: GET (0, 152)-(25, 15S), BLANK.3 
680 GET (0, 152)-( 17, 15S), BLANK2: GET (0, 152)-(9, 158), BLANK. I 
690 PUT (0, 152), BLANKS, XOR: LOCATE 2, 1 
700 PRINT SPC(9); : FOR I= 10 TO 22 STEP 2: FOR J = 10 TO 12: PSET (I, J): NEXT J: NEXT I 
710 PSET (S, 11 ): PSET ( 12, 9): PSET ( 14, 8) : PSET ( 14, 14): PSET (12, 13) 
720 DIM ARROWL( 13): GET (8, 8)-(28, 14), ARROWL: LOCATE 2, 1 
730 PRINT SPC(9)i : FOR I = 10 TO 22 STEP 2: FOR J = 10 TO 12: PSET (I, J): NEXT J: NEXT I 
740 PSET (24, 11 ): PSET (20, 9) : PSET (20, 13): PSET ( 18, 8) : PSET ( 18, 14) 
750 DIM ARROWR( l3) : GET (4, 8)-(24, 14), ARROWR: FOR I = 10 TO 20: PSET (I, 10) : NEXT I 
760 DIM TMARK(3): GET ( 10, 10)-( 19, 10), TMARK 
770 I 

7SO 'SHOW INTRO SCREEN, HELP MESSAGE.SET BAUD RATE AND COM: CHANNEL-•••••••• 
790 I 

800 CLS : DEF SEO= &HBSOO: BLOAD "BANNER.SAY", 0 : DEF SEO : ON ERROR GOTO 1090 
810 OPEN "I" , I , "BAUD.SAY": INPUT #1 , BAUD, COMM, SCOPE: CLOSE #1 : ON ERROR GOTO 0 
S20 IF SCOPE = TRUE THEN COMAND = SCOPEON ELSE COMAND = SCOPEOFF 
830 LOCATE 2 1, 19: PRINT "COMMUNICATION STATUS: "; 
840 IF COMM= 0 THEN PRINT" COM! :"; ELSE PRINT" COM2:"; 
S50 PRINT SPC(2); : IF BAUD = 0 THEN PRINT" 110"; ELSE IF BAUD = I THEN PRINT" 150" ; 
S60 IF BAUD = 2 THEN PRINT " 300" ; ELSE IF BAUD = 3 THEN PRINT " 600"; 
870 IF BAUD = 4 THEN PRINT "1200" ; ELSE IF BAUD = 5 THEN PRINT "2400"; 
880 IF BAUD = 6 THEN PRINT "4SOO"; ELSE IF BAUD = 7 T HEN PRINT "9600"; 



890 PRINT " BAUD" 
900 XS = INKEYS: IF XS = "" THEN GOTO 900 
910 IF XS= ·c· OR XS = "c" THEN GOTO 960 
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920 IF XS="?" OR XS="/" THEN GOTO 930 ELSE GOTO 1130 
930 CLS : DEF SEG = &HB800: BLOAD "HELP.SA V", 0: DEF SEG 
940 XS = INKEYS: IF XS = •• THEN GOTO 940 
950 GOTO 800 
960 CLS 'SELECT THE BAUD RATE 
970 LOCATE 10, 1: PRINT "SELECT BAUD RATE FOR COMMUNICATIONS CHANNEL:" 
980 PRINT" I) 110" : PRINT" 2) 150": PRINT" 3) 300" 
990 PRINT " 4) 600" : PRINT " 5) 1200" : PRINT " 6) 2400" 
1000 PRINT" 7) 4800" : PRINT" 8) 9600" : PRINT: PRINT "SELECTION"; 
1010 XS= INKEYS: IF XS="" THEN GOTO 1010 
1020 X = VAL(XS): IF X <I OR X > 8 THEN GOTO 960 
1030 BAUD= X - 1: CLS : PRINT "SELECT COMMUNICATIONS CHANNEL:" 
1040 PRINT" 1) COMl :": PRINT" 2) COM2:": PRINT : PRINT "SELECTION"; 
1050 XS = INKEYS: IF XS = "" THEN GOTO 1050 
1060 X = V AL(XS): IF X = 1 THEN COMM = 0 : GOTO 1080 
1070 IF X = 2 THEN COMM= 1: GOTO 1080: ELSE LOCATE 2, 1: GOTO 1040 
1080 CLOSE : OPEN "0", 1, "BAUD.SAY": PRINT #1 , BAUD, COMM, SCOPE: CLOSE #1 : GOTO 800 
1090 RESUME 960 
1100' 
1110 'INITIALIZE UART•••••••••••••••••••••••••••••••••••••••••••••••••••• 
1120 ' 
1130 CALL UARTINI!(COMM,BAUD):ON ERROR GOTO 0 
1140 FOR I= 1 TO 25: LOCATE I, 1: PRINT SPC(79); : NEXT I 
1150 'INITIALIZE SCREEN••••••••••••••••••••••••••••••••••••••••••••••••••• 
1160 GOSUB 2230: GOSUB 5060: GOSUB 5430 
1170 I 

1180 '•••••ERROR ENTRY POINT•••••••••••••••••••••••••••• 
1190 ' 
1200 CALL GRAT!(GRATON):COMAND=l:CALL SENDl(COMAND,COMM):GOSUB 4740:GOSUB 
4830 
1210 LOCATE 22, 10: PRINT SPC(44); : LOCATE 23, 10: PRINT SPC(44);: LOCATE 24, 10: PRINT 
SPC(44); 
1220 ON POINTER(PNT, 2) GOSUB 221 0, 2220, 2230, 2230, 2240, 2250, 2250, 2260, 2260, 2260 
1230 GOSUB 3750 
1240 ON POINTER(PNT, 2) GOSUB 2210, 2220, 2230, 2230, 2240, 2250, 2250, 2260, 2260, 2260 
1250 I= FRE(""): LOCATE 20, 66: IF MODE< 4 THEN PRINT" no trigger ": GOTO 1300 
1260 PRINT" armed ":CALL SEND!(RSTREQ,COMM):WATE=TRUE:GOTO 1400 
1270 ' 
1280 '•••••DON'T BLANK ENTRY POINT•••••••••••••••••••••• 
1290' 
1300 WATE =FALSE 
1310 IF AVGCNT >= AVGNUM THEN WATE =TRUE 
1320 GOSUB 4740:COMAND=l :CALL SEND!(COMAND,COMM):COMAND=O 
1330 FOR I= 0 TO 10 I (BAUD+ 1): GOSUB 3270: NEXT I 
1340 CALL CKUART! (COMAND,COMM,EROR):IF COMAND=FRTCHG THEN 
COMAND=O:EROR=O:GOTO 1200 
1350 IF COMAND <> 0 OR EROR <> 0 THEN COMAND = 0: EROR = 0: GOTO 1330 



1360 IF XS<> ""THEN GOTO 1530 
1370' 
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13SO '•••••START OF MAIN LOOP••••••••••••••••••••••••••• 
1390' 
1400 COUNT= 0: COMAND = 0: EROR = 0: FAST= FALSE: I= FRE("") : IF WATE =TRUE THEN 
GOTO 1420 
1410 IF YlY2>0 AND MODE<4 THEN CALL SEND!(REQMEM,COMM):WATE=TRUE 
1420 CALL CKUART!(COMAND,COMM,EROR) 
1430 IF COMAND = 114 AND WATE =TRUE THEN GOTO 1460 
1440 IF COMAND = 115 AND WATE =TRUE THEN COMAND = 0: PUT (0, 16 1), S, PRESET 
1450 IF COMAND <> 0 OR EROR <> 0 THEN COMAND = 0: GOTO 1200 ELSE XS="": GOTO 1530 
1460 WATE =FALSE: PUT (0, 161), T, PRESET 
14 70 CALL REQI (Y 1 (0), Y2(0), Y 1 Y2,TRIG ,COMM,BAUD,EROR):PUT(O, 161 ),BLANKS.PRESET 
14SO IF EROR =FALSE THEN GOTO 1490 ELSE GOTO 1530 
1490 IF TRIG = 1 THEN MODE =MODE AND 7 
1500 PUT (0, 161), BLANKS, PRESET: IF AVGYl =TRUE OR AVGY2 =TRUE THEN GOTO 1690 
1510 XS="": GOSUB 3270: GOSUB 1790 . 
1520 'CHECK FOR COMMANDS AND CLEAR KEYBOARD BUFFER 
1530 GOSUB 3270: IF XS = "" THEN GOTO 1630 
1535 IF XS= "S" THEN GOSUB 5600 
1540 IF LEN(XS) <> 2 THEN GOTO 1610 
1550 X = ASC(RIGHTS(XS, 1)) - 5S 
1555 IF XS= "S" THEN GOSUB 5600 
1560 ON X GOSUB 4400, 7040, 52 10, 5250, 49SO, 4465, 4535, 4900, 2170, 2170, 7040, 7040, 7040, 
2350, 7040, 7040, 3330, 7040, 3320, 7040, 7040, 2360 
1570 IF X = 13 AND PNT = 3 THEN OFFSETYl = 0: GOSUB 1790: COMAND = YlZERO: GOTO 
1620 
15SO IF X = 13 AND PNT = 7 THEN OFFSETY2 = 0: GOSUB 1790: COMAND = Y2ZERO: GOTO 
1620 
1590 IF X = 13 AND PNT = S THEN HOFFSET = 0: GOSUB 1790: XS="": GOTO 1220 
1600 IF X = 13 AND PNT = 12 THEN COMAND = TRGZERO: GOTO 1620: ELSE XS = "" : GOTO 
1530 
1610 IF XS ="?" OR XS="/" THEN GOTO SOO ELSE XS="" : GOTO 1530 
1620 CALL SEND!(COMAND,COMM):EROR=FALSE:COMAND=O:XS="" :GOTO 1220 
1630 IF YlY2 = 0 THEN GOSUB 1790: YlY2 = -1 
1640 IF YIY2 = -1 THEN GOSUB IS60 
1650 IF EROR =TRUE THEN EROR =FALSE: GOTO 1200: ELSE GOTO 1400 
1660 ' 
1670 ••••••END OF MAIN LOOP••••••••••••••••••••••••••••• 
1680 ' 
1690 AVGCNT = AVGCNT +I : IF AVGCNT <= AVGNUM THEN GOTO 1710 
1700 WATE =TRUE: GOTO 1530 
1710 LOCATE 21, 20: PRINT "average#"; AVGCNT, "press F3 to restart averaging" 
1720 IF AVGYl=TRUE THEN CALL AVG!(Yl(O),YISUM(O),AVGCNT) 
1730 IF AVGY2=TRUE THEN CALL AVG!(Y2(0),Y2SUM(O),AVGCNT) 
1740 IF AVGCNT = AVGNUM THEN WATE =TRUE 
1750 GOTO 1510 
1760' 
1770 ••••••PLOT SCREEN SUBROUTINE••••••••••••••••••••••• 
1780' 
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1790 LOCATE 20, 66: IF TRIG= I THEN PRINT• triggered ": GOTO 1820 
1800 IF MODE = 12 THEN GOTO 1820 
18 10 IF MODE> I THEN PRINT" manual trigger" ELSE PRINT" no trigger • 
1820 IF MEMI =TRUE THEN LOCATE 22, 55: PRINT MEMlS; SPC(l 1 - LEN(MEMlS)); "=" : 
LOCATE 22, 67: PRINT SEN$(MISEN); ";"; RATES(MlRATE) 
1830 IF MEM2 =TRUE THEN LOCATE 23, 55: PRINT MEM2$; SPC(l l - LEN(MEM2$)); "=" : 
LOCATE 23 , 67: PRINT SEN$(M2SEN); ";"; RATE$(M2RATE) 
1840 CALL GRATl(GRATON) 
1850 GOSUB 3270 
1860 IF Yl COUP<>O THEN CALL PLOTl(Yl(O),LYNE,INVERTYl,OFFSETYl,HOFFSET)(l)(2) 
1870 IF Y2COUP<>O THEN CALL PLOT!(Y2(0),L YNE,INVERTY2,0FFSETY2,HOFFSET )(3)(4) 
1880 IF MEMl=TRUE THEN CALL 
PLOT!(Ml (O),L YNE,INVERTMl ,OFFSETMl,HOFFSETMl,TRUE,TRUE) 
1890 IF MEM2=TRUE THEN CALL 
PLOT!(M2(0),L YNE,INVERTM2,0FFSETM2,HOFFSETM2,TRUE,TRUE) 
1900 IF TRIG= 0 AND RATE < 14 THEN LOCATE 2, 20: PRINT "ERROR ..... No Trigger" 
1910 IF FAST= TRUE THEN RETURN 
1920 IF C lY = 3 AND C2Y = 3 THEN RETURN ELSE LOCATE 22, 10 
1930 IF Cl =XI THEN YCl! = (Y l (C I) - 128) • Y l SCALEl : GOTO 1950 
1940 IF Cl= X3 THEN YC I! = (Y2(C I) - 128) • Y2SCALE! ELSE GOTO 1960 
1950 YCl = YCll : C = Cl: GOSUB 2100: GOTO 1970 
1960 PRINT SPC(25); : LOCATE 24, 10: PRINT SPC(25); 
1970 LOCATE 23, 10: IF C2 = X2 THEN YC2! = (Yl (C2) - 128) • YISCALE! : GOTO 1990 
1980 IF C2 = X4 THEN YC2! = (Y2(C2) - 128) • Y2SCALEI ELSE GOTO 2000 
1990 YC! = YC2! : C = C2: GOSUB 2100: GOTO 2010 
2000 PRINT SPC(25); : LOCATE 24, 10: PRINT SPC(25); : RETURN 
2010 IF XI = -1 AND X3 = -1 THEN RETURN 
2020 LOCATE 24, 10: YC! = YCl! - YC2! : C =Cl - C2: GOSUB 2100 
2030 LOCATE 24, 35: IF C = 0 THEN PRINT " "; : RETURN 
2040 PRINT"(" ; : LOCATE 24, 36 
2050 F! = 1 I (ABS(C) • FSCALE! • RSCALE!) 'CONVERT TO MHz 
2060 IF F! > 999.999 THEN PRINT USING "#.####" ; Fl I 1000; : PRINT " GHz )"; : RETURN 
2070 IF Fl < .001 THEN PRINT USING"### .###" ; Fl • 10000001; : PRINT" Hz )"; : RETURN 
2080 IF F! < I THEN PRINT USING "### .###" ; F! • 1000; : PRINT " KHz )"; : RETURN 
2090 PRINT USING"###.###" ; Fl ;: PRINT" MHz )"; : RETURN 
2100 IF ABS(YC!) < 1000 THEN PRINT USING"+### .#" ; YCl; : PRINT " mV";: GOTO 2120 
2110 PRINT USING "+## .##"; YCl I 1000; : PRINT" V "; 
2120 PRINT SPC(3); : PRINT USING "+####.##" ; C • RSCALEl; 
2130 PRINT RS; : GOSUB 3270: RETURN 
2140 I 

2150 '••••• F9/F IO SELECT SUBROUTINES• • .. • .. •••••••••••• 
2160' 
2170 EROR = FALSE: COUNT= 0 
2180 X$ = INKEY$: fF X$ <>""THEN GOTO 2180 
2190 ON POINTER(PNT. 2) GOSUB 2210, 2220, 2230, 2230, 2240, 2250, 2250, 2260, 2260, 2260 
2200 GOTO 2270 
22 10 PUT (POINTER(PNT, 0), POINTER(PNT, I)), BLANK! , XOR: RETURN 
2220 PUT (POINTER(PNT, 0), POINTER(PNT, I)), BLANK2, XOR: RETURN 
2230 PUT (POINTER(PNT, 0), POINTER(PNT, I)), BLANK3, XOR: RETURN 
2240 PUT (POINTER(PNT, 0), POINTER(PNT, I)), BLANK5, XOR: RETURN 
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2250 PUT (POINTER(PNT, 0), POINTER(PNT, 1)), BLANK.6, XOR: RETURN 
2260 PUT (POINTER(PNT, 0), POINTER(PNT, 1)), BLANK.8, XOR: RETURN 
2270 IF X = 10 THEN PNT = PNT + 1: IF PNT > 13 THEN PNT = 0 
2280 IF X = 9 THEN PNT = PNT - 1: IF PNT < 0 THEN PNT = 13 
2290 ON POINTER(PNT, 2) GOSUB 2210, 2220, 2230, 2230, 2240, 2250, 2250, 2260, 2260, 2260 
2300 XS="": GOSUB 3270: IF XS=•• THEN RETURN 1280 
2310 IF ASC(RIGHTS(XS, 1)) - 58 = X THEN GOTO 2170 ELSE RETURN 1280 
2320 . 
2330 '•••••UP/DOWN ARROW SUBROUTINES••••••••••••••••••• 
2340 I 

2350 ARROW= 1: GOTO 2370 
2360 ARROW = -1 
2370 PUT (0, 161), BLANK.8, PRESET: XS="": IF MODE< 5 THEN GOSUB 1840 
2380 ClvIDCNT = 0 : COUNT= 1: EROR =FALSE: Tl= .3: RETURN 2390 
2390 ON POINTER(PNT. 2) GOSUB 2210, 2220, 2230, 2230, 2240, 2250, 2250, 2260, 2260, 2260 
2400 GOSUB 3270 
2410 ON PNT + 1 GOTO 2420, 2440, 2460, 2510, 2570, 2590, 2610, 2660, 2940, 2720, 2770, 2790, 2810, 
2900 
2420 COMAND = YlCOUPLG: YlCOUP = YlCOUP + 1: YlCOUP = YICOUP MOD 5: IF YlCOUP = 
3 THEN YICOUP = 4 
2430 ClvIDCNT = ClvIDCNT + 1: GOTO 3030 
2440 INVERTYl =NOT INVERTYl : IF MODE< 5 THEN GOSUB 1840 
2450 ClvIDCNT = 0 : GOTO 3030 
2460 IF ARROW = -1 THEN COMAND = Y 1 SENDN ELSE CO MAND = Y 1 SENUP 
2470 Yl SEN = YlSEN - ARROW: IF YlSEN > 9 THEN YlSEN = 9 
2480 IF YlSEN < 0 THEN YlSEN = 0 
2490 ClvIDCNT = ClvIDCNT + 1: IF ClvIDCNT > 9 THEN CMDCNT = 9 
2500 GOTO 3030 
25 10 COMAND = YlPOS: IF COUNT> 15 THEN COUNT= 15 
2520 OFFSETY l = OFFSETYl +ARROW • COUNT 
2530 IF OFFSETYl >= 127 THEN OFFSETYl = 127: GOTO 2550 
2540 IF OFFSETYl <= -128 THEN OFFSETYI = -128 
2550 Y = OFFSETYI : IF MODE< 5 THEN GOSUB 1840 
2560 GOTO 3030 
2570 COMAND = Y2COUPLG: Y2COUP = Y2COUP + 1: Y2COUP = Y2COUP MOD 5: IF Y2COUP = 
3 THEN Y2COUP = 4 
2580 CMDCNT = CMDCNT + 1: GOTO 3030 
2590 INVERTY2 =NOT INVERTY2: IF MODE < 5 THEN GOSUB 1840 
2600 CMDCNT = 0: GOTO 3030 
2610 IF ARROW= -1 THEN COMAND = Y2SENDN ELSE COMAND = Y2SENUP 
2620 Y2SEN = Y2SEN - ARROW: IF Y2SEN > 9 THEN Y2SEN = 9 
2630 IF Y2SEN < 0 THEN Y2SEN = 0 
2640 CMDCNT = CMDCNT + 1: IF CMDCNT > 9 THEN CMDCNT = 9 
2650 GOTO 3030 
2660 COMAND = Y2POS: IF COUNT > 15 THEN COUNT= 15 
2670 OFFSETY2 = OFFSETY2 + ARROW • COUNT 
2680 IF OFFSETY2 >= 127 THEN OFFSETY2 = 127: GOTO 2700 
2690 IF OFFSETY2 <= -128 THEN OFFSETY2 = -128 
2700 Y = OFFSETY2 : IF MODE < 5 THEN GOSUB 1840 
2710 GOTO 3030 
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2720 IF ARROW = -1 THEN COMAND = TBASEDN ELSE COMAND = TBASEUP 
2730 RATE= RATE - ARROW: IF RATE> 28 THEN RATE= 28 
2740 IF RATE< 0 THEN RATE= 0 
2750 CMDCNT = CMDCNT + 1: IF CMDCNT > 28 THEN CMDCNT = 28 
2760 GOTO 3030 
2770 COMAND = TRIGSCR: SOURCE = SOURCE + 1: SOURCE = SOURCE MOD 2 
2780 CMDCNT = CMDCNT + 1: GOTO 3030 
2790 COMAND = TRIGSLP: SLOPE = SLOPE + 1: SLOPE = SLOPE MOD 2 
2800 CMDCNT = CMDCNT + 1: GOTO 3030 
2810 COMAND = TRGLVL: IF COUNT> 10 THEN COUNT= 10 
2820 IF SOURCE = 1 THEN LOFF = OFFSETY 1 ELSE LOFF = OFFSETY2 
2830 Y = 182.4 - (LEVEL+ LOFF) • 4 I 5: IF Y > 0 ANDY< 160 AND CMDCNT <> 0 THEN PlIT (1, 
Y), TMARK, XOR 
2840 LEVEL = LEVEL + ARROW • COUNT 
2850 IF LEVEL < 1 THEN LEVEL = l 
2860 IF LEVEL > 255 THEN LEVEL = 255 
2870 CMDCNT = 1: Tl = .6 
2880 Y = 182.4 - (LEVEL+ LOFF) • 4 I 5: IF Y > 0 ANDY< 160 THEN PlIT (1, Y), TMARK, XOR 
2890 Y = LEVEL: GOTO 3030 
2900 COMAND = TRIGMDE: IF MODE > 4 THEN Y = 8 ELSE Y = 0 
2910 MODE= MODE+ 1: MODE= MODE MOD 5: IF MODE = 0 THEN MODE= l 
2920 IF MODE = 3 THEN MODE = 4 
2930 MODE= MODE+ Y: CMDCNT = CMDCNT + 1: GOTO 3030 
2940 IF COUNT > 25 THEN COUNT = 25 
2950 HOFFSET = HOFFSET + ARROW • COUNT 
2960 IF HOFFSET < -500 THEN HOFFSET = -500 
2970 IF HOFFSET > 500 THEN HOFFSET = 500 
2980 IF MODE< 5 THEN GOSUB 1840 
2990 IF HOFFSET < 0 THEN PlIT (600, 64), ARROWL, PSET ELSE PITT (600, 64), ARROWR, PSET 
3000 IF HOFFSET = 0 THEN PlIT (600, 64), ARROWL, OR 
3010 CMDCNT = 0 
3020 GOTO 3040 
3030 ON PNT + l GOSUB 3830, 3830, 3830, 3830, 3920, 3920, 3920, 3920, 3830, 4000, 4030, 4030, 
4060, 4030 
3040 TO! = TIMER 
3050 GOSUB 3270: IF XS <> "" THEN GOTO 3070 
3060 IF TO! + Tl > TIMER THEN GOTO 3050 ELSE FAST = FALSE: GOTO 3130 
3070 IF ASC(RIGHTS(XS, l)) - 58 <> X THEN GOTO 3130 
3080 GOSUB 3270: XS = "" : TO! = TIMER: KBD = 0 
3090 GOSUB 3280: IF KBD > l THEN GOTO 3110 ELSE IF TO! + .18 > TUv1ER THEN GOTO 3090 
3100 COUNT= 1: FAST= FALSE: GOTO 2410 
3110 COUNT= COUNT • 3: IF COUNT> 50 THEN COUNT= 50 
3120 FAST= TRUE: GOTO 2410 
3130 ON POINTER(PNT, 2) GOSUB 22 10, 2220, 2230, 2230, 2240, 2250, 2250, 2260, 2260, 2260 
3140 IF PNT = 3 OR PNT = 7 OR PNT = 12 THEN GOTO 3170 
3150 FOR I=l TO CMDCNT:X!=TIMER:CALL SEND!(COMAND,COMM) 
3160 IF X! + .1 >TIMER THEN GOTO 3160 ELSE NEXT I: GOTO 3200 
3170 X!=TIMER:CALL SEND!(COMAND,COMM) 
3180 IF X!+.l>TIMER THEN GOTO 3180 ELSE CALL SEND!(Y,COMM) 
3190 IF X! + .2 > TIMER THEN GOTO 3190 
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3200 COMAND = 0: COUNT= 0: CMDCNT = 0 
32 JO IF PNT = 1 OR PNT = 3 OR PNT = 5 OR PNT = 7 OR PNT = 8 THEN GOTO 3230 
3220 WATE =FALSE: AVGCNT = 0 
3230 IF PNT = 8 OR PNT = I OR PNT = 5 THEN GOTO 1280 
3240 IF PNT <> 3 AND PNT <> 7 THEN GOTO 1200 ELSE X = OFFSETYI : Y = OFFSETY2 
3250 CALL 
REQFRTI (Y I SEN, Y2SEN, YI COUP, Y2COUP,SLOPE,MODE,SOURCE,LEVEL,RA TE,SA VMEM,SCOPE, 
OFFSETY I ,OFFSETY2,COMM,EROR) 
3260 IF X <> OFFSETYl ORY<> OFFSETY2 THEN GOTO 1200 ELSE GOTO 1280 
3270 YS = INKEYS: IF YS = •• THEN RETURN ELSE XS = YS : GOTO 3270 
3280 YS = INKEYS: IF YS = •• THEN RETURN ELSE XS = YS: KBD = KBD + 1: GOTO 3280 
3290. 
3300 ••• •••LEFT/RlGHT ARROW SUBROUTINES•••••••••••••••• 
3310' 
3320 ARROW = 1: GOTO 3340 
3330 ARROW= -1 
3340 PUT (0, 161), BLANKS, PRESET 
3350 COUNT= 1: EROR =FALSE: IF PNT = 8 THEN GOSUB 2230: RETURN 3360 ELSE RETURN 
3360 
3360 IF PNT <> 8 THEN GOTO 3440 
3370 IF COUNT > 25 THEN COUNT = 25 
3380 HOFFSET = HOFFSET + ARROW • COUNT 
3390 IF HOFFSET < -500 THEN HOFFSET = -500 
3400 IF HOFFSET > 500 THEN HOFFSET = 500 
3410 IF HOFFSET < 0 THEN PUT (600, 64), ARROWL, PSET ELSE PUT (600, 64), ARROWR, PSET 
3420 IF HOFFSET = 0 THEN PUT (600, 64), ARROWL, OR 
3430 GOTO 3580 
3440 IF COUNT > 25 THEN COUNT = 25 
3450 IF CURSOR<> 2 AND CIY = 3 THEN LOCATE 24, 10: PRINT "CURSOR #1 IS OFF";: GOTO 
3710 
3460 IF CURSOR<> 1 AND C2Y = 3 THEN LOCATE 24, 10: PRINT "CURSOR #2 IS OFF";: GOTO 
3710 
3470 IF CURSOR<> 2 THEN Cl =Cl +COUNT• ARROW ELSE GOTO 3500 
3480 IF Cl < 0 THEN Cl = 500 
3490 IF C l > 500 THEN Cl = 0 
3500 IF CURSOR <> 1 THEN C2 = C2 + COUNT • ARROW ELSE GOTO 3530 
3510 IF C2 < 0 THEN C2 = 500 
3520 IF C2 > 500 THEN C2 = 0 
3530 XI = -1 : X2 = -1 : X3 = -1 : X4 = -1 
3540 IF CIY = 1 AND YlCOUP <> 0 THEN XI= Cl 
3550 IF C2Y = 1 AND YlCOUP <> 0 THEN X2 = C2 
3560 IF ClY = 2 AND Y2COUP <> 0 THEN X3 =Cl 
3570 IF C2Y = 2 AND Y2COUP <> 0 THEN X4 = C2 
3580 XS="": IF MODE< 5 THEN GOSUB 1840 
3590 TOI = TIMER 
3600 GOSUB 3270: IF XS <> "" THEN GOTO 3620 
3610 IF TO! + .3 > TIMER THEN GOTO 3600 ELSE FAST = FALSE: GOTO 3690 
3620 IF ASC(RIGHTS(XS, 1)) - 58 <> X THEN GOTO 3690 
3630 GOSUB 3270: XS="" : TO! =TIMER: KBD = 0 
3640 GOSUB 3280: IF KBD > 1 THEN GOTO 3660 ELSE IF TO! + .18 >TIMER THEN GOTO 3640 



3650 COUNT = 1: FAST = FALSE: GOTO 3670 
3660 COUNT = COUNT • 3 
3670 IF PNT = 8 THEN FAST = TRUE 
3680 GOTO 3360 
3690 IF PNT = 8 THEN GOSUB 2230 
3700 COUNT= 0: FAST= FALSE: GOTO 1280 
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3710 LOCATE 24, 10: MT! =TIMER+ 1: GOSUB 7830: PRINT SPC(l7); : XS=•• : GOSUB 3270: 
GOTO 3690 
3720 I 

3730 ••••••REQUEST FRONT PANEL SUBROUTINE*••••••••••••• 
3740 I 

3750 PUT (0, 161), BLANKS, PRESET: COUNT= 0: GOSUB 3270 
3760 CALL 
REQFRTI (YI SEN, Y2SEN, Y 1 COUP, Y2COUP,SLOPE,MODE,SOURCE,LEVEL,RA TE,SA VMEM,SCOPE, 
OFFSETY l ,OFFSETY2,COMM,EROR) 
3770 COMAND=l :CALL SEND! (COMAND,COMM):COMAND=O:IF EROR=FALSE THEN GOTO 3790 
3780 IF EROR =TRUE THEN GOTO 3760 ELSE RETURN 
3790 CALL CKUART!(COMAND,COMM,EROR) 
3800 IF EROR <> 0 OR COMAND <> 0 THEN COMAND = 0: EROR =FALSE: GOTO 3760 
3810 ON ERROR GOTO 4290 
3820 GOSUB 3270 
3830 LOCATE I , 70: PRINT COUPLNGS(YICOUP) 
3840 LOCATE I, 74: IF INVERTYI =TRUE THEN PRINT "invert" ELSE PRINT "normal" 
3850 LOCATE 2, 70: PRINT SENS(Y I SEN) 
3860 LOCATE 3, 73: X! = VAL(SENS(YISEN)) I 25 • OFFSETY I 
3870 IF YISEN = 5 OR YISEN = 6 THEN X! = X! I 1000 
3880 IF YISEN < 5 THEN PRINT USING"+###.#"; XI; : PRINT "mV" 
3890 IF YISEN > 5 THEN PRINT USING"+##.##"; XI; : PRINT" V" 
3900 IF YlSEN = 5 THEN PRINT USING"+#.###" ; X!;: PRINT" V" 
39 JO IF COUNT > 0 THEN RETURN 
3920 LOCATE 5, 70: PRINT COUPLNGS(Y2COUP) 
3930 LOCATE 5, 74: IF INVERTY2 =TRUE THEN PRINT "invert" ELSE PRINT "normal" 
3940 LOCATE 6, 70: PRINT SENS(Y2SEN) 
3950 LOCATE 7, 73: XI= VAL(SENS(Y2SEN)) I 25 • OFFSETY2 
3960 IF Y2SEN = 5 OR Y2SEN = 6 THEN Xl = XI I 1000 
3970 IF Y2SEN < 5 THEN PRINT USING "+###.#" ; Xl; : PRINT "mV" 
3980 IF Y2SEN > 5 THEN PRINT USING "+##.##" ; X! ; : PRINT" V" 
3990 IF Y2SEN = 5 THEN PRlNT USING "+#.###" ; XI; : PRINT" V" 
4000 LOCATE 10, 70: PRINT RATES(RATE) : IF COUNT> 0 THEN RETURN 
4010 IF HOFFSET < 0 THEN PUT (600, 64), ARROWL, PSET ELSE PUT (600, 64), ARROWR, PSET 
4020 IF HOFFSET = 0 THEN PUT (600, 64) , ARROWL, OR 
4030 LOCATE 12, 78: IF SOURCE= I THEN PRINT "YI" ELSE PRINT "Y2" 
4040 LOCATE 14, 79: IF SLOPE = 1 THEN PRINT"+" ELSE PRINT"-" 
4050 LOCATE 19, 75: PRINT MODES(MODE MOD 8): IF COUNT> 0 THEN RETURN 
4060 LOCATE 17, 70: GOSUB 3270 
4070 IF SOURCE= I THEN TLVL! = VAL(SENS(YlSEN)) I 25 • (LEVEL - 128) ELSE GOTO 4120 
4080 IF YISEN = 5 OR YISEN = 6 THEN TLVL! = TLVL! I 1000 
4090 TF YlSEN < 5 THEN PRINT USING "+###.#" ; TLVL! ; : PRINT "mV" 
4100 IF YlSEN > 5 THEN PRINT USING "+##.##" ; TLVL! ; : PRINT" V" 
4110 IF YISEN = 5 THEN PRINT USING "+#.###" ; TLVL!;: PRINT " V" 
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4120 IF SOURCE= 0 THEN TLVL! = VAL(SENS(Y2SEN)) I 25 • (LEVEL - 128) ELSE GOTO 4180 
4130 IF Y2SEN = 5 OR Y2SEN = 6 THEN TL VL! = TL VLI I 1000 
4140 IF Y2SEN < 5 THEN PRINT USING"+###.#"; TLVLI;: PRINT "mV" 
4150 IF Y2SEN > 5 THEN PRINT USING"+##.##"; TLVLI; : PRINT" V" 
4160 IF Y2SEN = 5 THEN PRINT USING"+# .###"; TLVL!; : PRINT" V" 
4170 IF COUNT > 0 THEN RETURN 
4180 IF YlCOUP = 0 AND Y2COUP = 0 THEN YlY2 = 0 
4190 IF Yl COUP <> 0 AND Y2COUP = 0 THEN Yl Y2 = I 
4200 IF Yl COUP = 0 AND Y2COUP <> 0 THEN YlY2 = 2 
4210 IF YICOUP <> 0 AND Y2COUP <> 0 THEN YlY2 = 3 
4220 YISCALE! = VAL(SENS(YlSEN)) I 25: IF YlSEN > 6 THEN YI SCALE! = 1000 • YlSCALE! 
4230 Y2SCALE! = V AL(SEN$(Y2SEN)) I 25: IF Y2SEN > 6 THEN Y2SCALEI = 1000 • Y2SCALE! 
4240 RSCALE! = VAL(RATES(RATE)) I 50: RS= RIGHTS(RATES(RATE). 3) 
4250 FSCALE! = I : IF RATE< 6 THEN FSCALE I = .001 
4260 IF RATE> 14 THEN FSCALE! = 1000 
4270 TF RATE> 23 THEN FSCALEI = 1000000! 
4280 ON ERROR GOTO 0 : RETURN 
4290 RESUME 3760 
4300' 
4310 '•••••LINE/DOT GRAT ON/OFF SUBROUTINES•••••••• •• 
4320' 
4340 PUT (0, 161), BLANK.8, PRESET 
4350 GRATON =NOT GRATON: GOTO 4420 
4360 IF MENU <> 3 THEN GOTO 4410 ELSE RETURN 4400 
4400 OPEN "O", I, "BAUD.SAY" : PRINT #1, BAUD, COMM, SCOPE: CLOSE #1 : SYSTEM 
4410 LYNE= NOT LYNE 
4420 GOSUB 5070: EROR =FALSE: IF MODE< 5 THEN GOSUB 1790 
4430 XS = INKEYS: IF LEN(XS) <> 0 THEN GOTO 4430 ELSE RETURN 1280 
4440 ' 
4450 '•••••CURSOR CONTROL SUBROUTINE••••••• •••••••• •••• 
4460' 
4465 ON MENU GOTO 4470, 4340, 5620 
4470 IF PNT = 8 THEN GOSUB 2230: PNT = 9: GOSUB 2250 
4480 PUT (0, 161), BLANK.8, PRESET 
4490 CURSOR= CURSOR+ I: CURSOR= CURSOR MOD 3: GOSUB 5060: EROR =FALSE 
4500 XS= INKEYS: IF LEN(XS) <> 0 THEN GOTO 4500 ELSE RETURN 1280 
4510' 
4520 ••••••CURSOR SETUP SUBROUTINE••••••••••••••••••••• 
4530' 
4535 ON MENU GOTO 4540, 44 JO, 6740 
4540 IF PNT = 8 THEN GOSUB 2230: PNT = 9: GOSUB 2250 
4550 PUT (0, 161), BLANK.8, PRESET 
4560 LOCATE 22, I : PRINT SPC(54); : LOCATE 23 , I : PRINT SPC(54); : LOCATE 24, 1: PRINT 
SPC(54); 
4570 LOCATE 22, I : PRINT "CHOOSE CHANNEL FOR CURSOR Cl : 1) YI 2) Y2 3) OFF" 
4580 ON C I Y GOSUB 4800, 4810, 4820 
4590 XS = INKEYS: IF XS = "" THEN GOTO 4590 
4600 X = ASC(XS): IF X = 13 THEN GOTO 4630 
4610 X = VAL(X$): IF X < I OR X > 3 THEN BEEP: GOSUB 3270: GOTO 4570 
4620 ON C 1 Y GOSUB 4800, 4810, 4820: C I Y = X: ON C I Y GOSUB 4800, 481 0, 4820 
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4630 MT! = TIMER + l : GOSUB 7830 
4640 LOCATE 22, I: PRINT "CHOOSE CHANNEL FOR CURSOR C2: l) Yl 2) Y2 3) OFF " 
4650 ON C2Y GOSUB 4800, 4810, 4820 
4660 XS= INKEYS: IF XS=•• THEN GOTO 4660 
4670 X = ASC(XS): IF X = 13 THEN GOTO 4 700 
4680 X = V AL(XS): IF X < l OR X > 3 THEN BEEP: GOSUB 3270: GOTO 4640 
4690 ON C2Y GOSUB 4800, 4810, 4820: C2Y = X: ON C2Y GOSUB 4800, 4810, 4820 
4700 MT!= TIMER+ I: GOSUB 7830: LOCATE 22, 1: PRINT SPC(54); 
4710 GOSUB 4830 
4720 GOSUB 4740: EROR =FALSE: X = 4: IF MODE< 5 THEN GOSUB 1790 
4730 XS= INKEYS: IF LEN(XS) <> 0 THEN GOTO 4730 ELSE RETURN 1280 
4740 Xl = -1 : X2 = -1 : X3 = -1 : X4 = -1 
4750 IF CIY = 1 AND YICOUP <> 0 THEN XI= Cl 
4760 IF C2Y = l AND YlCOUP <> 0 THEN X2 = C2 
4770 IF ClY = 2 AND Y2COUP <> 0 THEN X3 =Cl 
4780 IF C2Y = 2 AND Y2COUP <> 0 THEN X4 = C2 
4790 RETURN 
4800 PUT (271, 168), BLANK.2, XOR: RETURN 
4810 PUT (335, 168), BLANK.2, XOR: RETURN 
4820 PUT (399, 168), BLANK.3 , XOR: RETURN 
4830 IF ClY <> 3 THEN LOCATE 22, 6: PRINT "Cl :" 
4840 IF C2Y <> 3 THEN LOCATE 23 , 6: PRINT "C2:" 
4850 IF Cl Y <> 3 AND C2Y <> 3 THEN LOCATE 24, l : PRINT "[Cl-C2] :"; 
4860 RETURN 
4870. 
4880 '• ••••CHANGE MENU SUBROUTINE•• • •••• ••• •••••••••••• 
4890 I 

4900 PUT (0, 161), BLANK.8, PRESET 
4910 MENU = MENU+ l : IF MENU= 4 THEN MENU= l 
4920 LOCATE 25 , l : GOSUB 5060 
4930 XS= INKEYS: IF XS<>•• THEN GOTO 4930 ELSE RETURN 1280 
4940 I 

4950 ······scOPE ON/OFF SUBROUTINE 
4960 I 

4980 PUT (0, 161), BLANK.8, PRESET 
4990 SCOPE = NOT SCOPE: IF SCOPE = TRUE THEN COMAND = SCOPEON 
5000 IF SCOPE = FALSE THEN COMAND = SCOPEOFF 
5010 CALL SEND!(COMAND,COMM):COMAND=O:GOSUB 5070 
5020 XS= INKEYS: IF LEN(XS) <> 0 THEN GOTO 5020 ELSE RETURN 1280 
5030 I 

5040 ·••• ••PRINT MENU SUBROUTINE•••• • •••••••••••••••••• 
5050' 
5060 LOCATE 25, I: PRINT SPC(79); 
5070 LOCATE 25, I : PRINT "Fl :EXIT F3 :ZCAL F4:RST/MAN F5:SCOPE "; SPC(24); 
"F8:NEXT"; 
5080 LOCATE 25, 49 : IF MENU = I THEN PRINT "F6:C l /C2 F7:DEF CURSOR "; 
5090 IF MENU = 2 THEN PRINT "F6:GRA T F7:LINE/DOT "; 
5100 IF SCOPE = TRUE THEN PUT (328, 192) , BLANK.5 , XOR 
5105 IF MENU= 3 THEN PRINT "F6:MEMORY F7:AVERAGE ";: RETURN 
5110 IF MENU = I AND CURSOR = l THEN PUT (408, 192), BLANK.2 , XOR: RETURN 



85 

5120 IF MENU= 1 AND CURSOR= 2 THEN PUT (432, 192), BLANK2, XOR: RETURN 
5130 IF MENU= 1 THEN PUT (40S, 192), BLANKS, XOR: RETURN 
5150 IF GRATON =TRUE THEN PUT (40S, 192), BLANK4, XOR 
5160 IF LYNE= TRUE THEN PUT (496, 192), BLANK4, XOR ELSE PUT (536, 192), BLANK3, XOR 
5170 RETURN 
51SO I 

5190 '• • •••RE-ZERO MANUAL TRIGGER/RESET SUBROUTINES••••• • •••••• 
5200 I 

5210 AVGCNT = 0 : WATE =FALSE 
5220 PUT (0, 161), BLANKS, PRESET 
5230 CALL SEND!(REZERO,COMM):GOSUB 5430 
5240 XS = INKEYS: IF LEN(XS) <> 0 THEN GOTO 5240 ELSE RETURN 1200 
5250 PUT (0, 161), BLANKS, PRESET 
5260 IF MODE<4 THEN CALL SEND!(MANTRG,COMM):RETURN 
5270 ON POINTER(PNT. 2) GOSUB 2210, 2220, 2230, 2230, 2240, 2250, 2250, 2260, 2260, 2260 
52SO GOSUB 3750 
5290 ON POINTER(PNT. 2) GOSUB 2210, 2220, 2230, 2230, 2240, 2250, 2250, 2260, 2260, 2260 
5300 IF MODE= 12 THEN GOTO 5370 
5310 IF A VGCNT >= A VGNUM THEN RETURN 
5320 X!=TIMER:CALL SEND!(REZERO,COMM):MODE=12 
5330 IF X! + .1 >TIMER THEN GOTO 5330 
5340 CALL SEND!(RSTREQ,COMM):WATE=TRUE:LOCATE 20,66:PRINT" armed 
5350 CALL GRAT!(GRATON) 
5360 XS = INKEYS: IF LEN(XS) <> 0 THEN GOTO 5360 ELSE RETURN 1400 
5370 X!=TIMER:CALL SEND!(RSTREQ,COMM) 
53SO IF XI + .1 > TIMER THEN GOTO 53SO 
5390 CALL SEND!(MANTRG,COMM):MODE=4:GOTO 5350 
5400 I 

5410 '•••••RIGHT SIDE SUBROUTINE .. ••••• • ••••••••••••••• 
5420 I 

5430 ON POINTER(PNT, 2) GOSUB 2210, 2220, 2230, 2230, 2240, 2250, 2250, 2260, 2260, 2260 
5440 LOCATE 1, 65 : PRINT "YI :": LOCATE 1, 73 : PRINT"(" : LOCATE 1, SO: PRINT")" 
5450 LOCATE 2, 77: PRINT "/div" : LOCATE 3, 66: PRINT "Offset:" 
5460 LOCATE 5, 65: PRINT "Y2:": LOCATE 5, 73 : PRINT"(" : LOCATE 5, SO: PRINT")" 
5470 LOCATE 6, 77: PRINT "/div" : LOCATE 7, 66: PRINT "Offset:" : LOCATE 9, 65: PRINT 
"TIMEBASE:" 
54SO PUT (600, 64), ARROWL, OR: PUT (600, 64), ARROWR, OR: LOCATE 10, 77: PRINT "/div" 
5490 LOCATE 12, 65: PRINT "TRIG SOURCE:" 
5500 LOCATE 14, 65: PRINT "TRIG SLOPE: (" : LOCATE 14, SO: PRINT")" 
5510 LOCATE 16, 65: PRINT "TRIG LEVEL:" : LOCATE 19, 65 : PRINT "TRIG MODE:" 
5520 LOCATE 20, 65: PRINT SPC( l6); 
5530 ON POINTER(PNT. 2) GOSUB 2210, 2220, 2230, 2230, 2240, 2250, 2250, 2260, 2260, 2260 
5540 IF AVGYl <>TRUE AND AVGY2 <> TRUE THEN RETURN 
5550 LOCATE 21 , 20: PRINT "average#"; AVGCNT, "press F3 to restart averaging" 
5560 IF AVGYI = TRUE THEN LOCATE 2, 64: PRINT "avg" ELSE PRINT" " 
5570 IF AVGY2 =TRUE THEN LOCATE 6, 64: PRINT "avg" ELSE PRINT" " 
55SO RETURN 
5590 I 

5600 '••• ••MEMORY SUBROUTINE• •••• •• •••••• ••••• • ••••• • • • 
5610 I 
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5620 LOCATE 25, I: PRINT SPC(79); : XI= -1: X2 = -1 : X3 = -1: X4 =-I 
5630 PUT (0, 161), BLANK.8, PRESET 
5640 RETURN 5650 
5650 'LOCATE 22, I: PRINT "SELECTION: I) SAVE WAVEFORM ON DISK"; : PRINT SPC(J6); 
5660 'LOCATE 23, I: PRINT SPC( l 3); "2) RECALL WAVEFORM FROM DISK"; : PRINT SPC(l2); 
5670 'LOCATE 24, I: PRINT SPC(l3); "3) MEMORY ON/OFF";: PRINT SPC(24); 
5680 GOSUB 6680 
5690 'XS = INKEYS: IF XS = •• THEN GOTO 5690 
5700 IF ASC(RJGHTS(XS, 1)) = 64 THEN GOSUB 6650 
5710 X = I: LOCATE 22, I: PRINT SPC(54);: PRINT : PRINT SPC(54); : PRINT : PRINT SPC(54); 
5720 ON X GOTO 6000, 6000, 5740 
5730 BEEP: GOSUB 3270: GOTO 5650 
5740 LOCATE 22, I: PRINT "MEMI: I) ON": LOCATE 23 , 8: PRINT "2) OFF": GOSUB 5830 
5750 XS = INKEYS: IF XS = •• THEN GOTO 5750 
5760 IF ASC(RJGHTS(XS, I))= 64 THEN GOSUB 6650 
5770 X = ASC(XS): IF X = 13 THEN GOTO 5850 
5780 X = V AL(XS): IF X < I OR X > 2 THEN BEEP: GOSUB 3270: GOTO 5740 
5790 GOSUB 5830: IF X = 1 AND MEMIS =••THEN MEMI =FALSE: LOCATE 24, 1: PRINT 
"ERROR. ... Data bas not been loaded into MEMl "; : MT! =TIMER+ 3: GOSUB 7830: LOCATE 24, 1: 
PRINT SPC(54); 
5800 GOSUB 6680 
5810 IF X = 1 AND MEMIS <>""THEN MEMI =TRUE ELSE MEMI =FALSE 
5820 GOSUB 5830: MT! = TIMER + I: GOSUB 7830: GOTO 5850 
5830 IF MEMI =TRUE THEN PUT (79, 168), BLANK.2, XOR ELSE PUT (79, 176), BLANK.3, XOR 
5840 RETURN 
5850 LOCATE 22, I : PRINT "MEM2: 1) ON": LOCATE 23, 8: PRINT "2) OFF" : GOSUB 5980 
5860 XS = INKEYS: IF XS = •• THEN GOTO 5860 
5870 IF ASC(RJGHTS(XS, I))= 64 THEN GOSUB 6650 
5880 X = ASC(XS) : IF X = 13 THEN GOTO 5930 
5890 X = V AL(XS): IF X < I OR X > 2 THEN BEEP: GOSUB 3270: GOTO 5850 
5900 GOSUB 5980: IF X = I AND MEM2S =••THEN MEM2 =FALSE: LOCATE 24, I : PRINT 
"ERROR .... Data has not been loaded into MEM2";: MT!= TIMER+ 3: GOSUB 7830: LOCATE 24, I: 
PRINT SPC(54); 
5910 IF X = 1 AND MEM2S <>••THEN MEM2 =TRUE ELSE MEM2 =FALSE 
5920 GOSUB 5980: MT! = TIMER + I : GOSUB 7830 
5930 GOSUB 5060 
5940 LOCATE 22, I: PRINT SPC(54);: PRINT : PRINT SPC(54); 
5950 IF MEMl =FALSE THEN LOCATE 22, 55: PRINT SPC(25); 
5960 IF MEM2 =FALSE THEN LOCATE 23, 55: PRINT SPC(25); 
5970 GOSUB 4710 
5980 IF MEM2 =TRUE THEN PUT (79, 168), BLANK.2 , XOR ELSE PUT (79, 176), BLANK.3, XOR 
5990 RETURN 
6000 GOTO 6190: 'LOCATE 22, I: PRINT "Do you wish to see the directory <Y or N>? 
60 I 0 ON ERROR GOTO 6620 
6020 XS = INKEYS: IF XS = "" THEN GOTO 6020 
6030 fF ASC(RIGHTS(XS, I))= 64 THEN GOSUB 6650 
6040 IF XS = "N" OR XS = "n" THEN GOTO 6 190 
6050 IF XS = "Y" OR XS = "y" THEN GOTO 6070 
6060 BEEP: GOSUB 3270: GOTO 6000 
6070 LOCATE 25, I: PRINT SPC(54); 

"· . 
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6080 LOCATE 22, 1: PRINT "Drive name <Type 'RETURN' for default drive> ? ": LINE INPUT XS 
6090 PRINT"";: LOCATE 23 , 1: IF XS="" THEN FILES ELSE FILES XS 
6100 PRINT : PRINT "Press any key to continue."; 
6110 XS= INKEYS: IF XS="" THEN GOTO 6110 
6120 GOSUB 6680 
6130 FOR I= 1 TO 24: LOCATE I, I : PRINT SPC(40); SPC(40); : NEXT I 
6140 GOSUB 5440: GOSUB 1790 
6150 ON POINTER(PNT, 2) GOSUB 2210, 2220, 2230, 2230, 2240, 2250, 2250, 2260, 2260, 2260 
6160 GOSUB 3830 
6170 ON POINTER(PNT, 2) GOSUB 2210, 2220, 2230, 2230, 2240, 2250, 2250, 2260, 2260, 2260 
6180 ON ERROR GOTO 6620 
6190 GOTO 6200 
6200 'LOCATE 22, I: PRINT "Which channel do you want to save? 1) Y 1 
6210 'LOCATE 23, 40: PRINT "2) Y2 " 
6220 'XS = INK.EYS: IF XS = "" THEN GOTO 6220 
6230 'IF ASC(RIGHTS(XS, 1)) = 64 THEN GOSUB 6650 
6240 'X = V AL(XS): IF X < 1 OR X > 2 THEN BEEP: GOSUB 3270: GOTO 6200 ·. 
6250 LOCATE 25, 1: PRINT SPC(54); 
6255 IF CNTR > 0 THEN 6273 
6257 CNTR = 64 
6260 LOCATE 22, 1: PRINT SPC(54);: PRINT : PRINT SPC(54);: LOCATE 22, 1: PRINT "PATH TO 
SAVE AND SUBJECT NUMBER (C:\EMGDATA\SO l\DYNAl )"; 
6270 LINE INPUT SNS: LOCATE 23, I : PRINT • • 
6271 LOCATE 22, 1: PRINT SPC(54); : PRINT : PRINT SPC(54); 
6272 EMGSENI = .01 : LOCATE 23, 1: PRINT•• 
6273 CNTR = CNTR + 1 
6274 IF CNTR > 90 THEN SIGS = "A" + CHRS(CNTR - 26): GOTO 6278 
6277 SIGS = CHRS(CNTR) 
6278 PS = SNS + "EMO" + "." + SIGS 
6279 OPEN "0", 1, PS 
6280 'PRINT #1 , YlSEN; RATE; INVERTYl ; OFFSETYl; HOFFSET; 
6285 FOR I= 0 TO 511 : EMO!= ((Yl (I) - 128) • EMGSENI) I 25 
6290 WRITE #1 , EMG! : NEXT I 
6300 'PRINT #1 , Y2SEN; RATE; INVERTY2; OFFSETY2; HOFFSET; 
6302 CLOSE # I 
6303 FSEN! = .5 
6305 FS = SNS + "F" + • ." + SIGS 
6306 OPEN "O". 1, FS 
6308 FOR I = 0 TO 511 : V! = ((Y2(I) - 128) • FSEN!) I 25 
6309 F! = (V! - .290357) I l.807143E-02 
6310 WRITE #1 , F!: NEXT I 
6320 CLOSE # 1: ON ERROR GOTO 0 
6330 'LOCATE 22, 1: PRINT "Would you like to save another waveform <Y or N>?" 
6340 x = 1 
6350 'XS = INK.EYS: IF XS = •• THEN GOTO 6350 
6355 XS= "N" 
6360 IF ASC(RIGHTS(XS, 1)) = 64 THEN GOSUB 6650 
6370 IF XS = "Y" OR XS= "y" THEN GOTO 6000 
6380 LOCATE 22, I: PRINT SPC(54); : PRINT : PRINT SPC(54); : PRINT : PRINT SPC(54); 
6390 GOSUB 5060: GOSUB 4710 
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6400 LOCATE 22, I: PRINT "Which memory do you want to use? 1) MEM I 
6410 LOCATE 23, 36: PRINT "2) MEM2" 
6420 XS= INKEYS: IF XS=•• THEN GOTO 6420 
6430 IF ASC(RIGHTS(XS, I)) = 64 THEN GOSUB 6650 
6440 X = V AL(XS): IF X < l OR X > 2 THEN BEEP: GOSUB 3270: GOTO 6400 
6450 LOCATE 25, 1: PRINT SPC(54); 
6460 LOCATE 22, I: PRINT SPC(54);: PRINT : PRINT SPC(54); : LOCATE 22 , I: PRINT 
"FILENAME? "; 
6470 LINE INPUT XS: LOCATE 23, 1: PRINT • ": OPEN "I", I, XS: GOSUB 66SO: ON X GOTO 64SO, 
6510 
64SO INPUT #1 , MISEN, MlRATE, INVERTMI, OFFSETMI , HOFFSETMl 
6490 FOR I= 0 TO 511 : INPUT #1, Ml(I) : NEXT I 
6500 MEMI =TRUE: MEMlS = LEFTS(XS, 11): GOTO 6540 
6510 INPUT #1 , M2SEN, M2RATE, INVERTM2, OFFSETM2, HOFFSETM2 
6520 FOR I = 0 TO 511 : INPUT #I, M2(1): NEXT I 
6530 MEM2 = TRUE: MEM2S = LEFTS(XS, 11) 
6540 CLOSE #I : ON ERROR GOTO 0: GOSUB 1790 
6550 LOCATE 22, I: PRINT "Would you like to recall another waveform <Y or N>?" 
6560 x = 2 
6570 XS = INKEYS: IF XS = •• THEN GOTO 6570 
65SO IF ASC(RIGHTS(XS, 1)) = 64 THEN GOSUB 6650 
6590 IF XS = "Y" OR XS = "y" THEN GOTO 6000 
6600 LOCATE 22, I: PRINT SPC(54); : PRINT : PRINT SPC(54); : PRINT : PRINT SPC(54); 
6610 GOSUB 5060: GOSUB 4710 
6620 LOCATE 22, I : PRINT SPC(54); : PRINT : PRINT SPC(54); : PRINT : PRINT SPC(54); 
6630 LOCATE 22, I: PRINT "DISK ERROR. ..... Error Code: "; ERR 
6640 FOR I = 0 TO 3000: NEXT I: CLOSE #I : RESUME 5650 
6650 LOCATE 22, I: PRINT SPC(54);: PRINT : PRINT SPC(54); : PRINT : PRINT SPC(54); 
6660 GOSUB 5060: RETURN 6670 
6670 CLOSE #1 : ON ERROR GOTO 0: GOSUB 4710 
66SO LOCATE 25, 15: PRINT. "Press F6 again to exit this function" ; 
6690 PUT (110, 192), BLANKS, XOR: PUT (176, 192), BLANKS, XOR: PUT (242, 192), BLANKS, XOR 
6700 PUT (30S, 192), BLANKS, XOR: PUT (374, 192), BLANK6, XOR: RETURN 
6710 I 

6720 '••••••••••••AVERAGING SUBROUTINE• •••••••••••••••• 
6730 I 

6740 PUT (0, 161), BLANKS, PRESET 
6750 LOCATE 21, 10: PRINT SPC(65);: GOSUB 1790: AVGCNT = 0: WATE =FALSE 
6760 LOCATE 22, I: PRINT SPC(54); : PRINT : PRINT SPC(54); : PRINT : PRINT SPC(54); 
6770 LOCATE 22, I: PRINT "Select channel to be averaged:" 
67SO PRINT" I) YI 3) YI and Y2" 
6790 PRINT • 2) Y2 4) AVERAGING OFF"; 
6SOO GOSUB 6970 
6810 XS = INKEY$: IF XS = "" THEN GOTO 6810 
6820 IF ASC(X$) = 13 THEN GOTO 6880 
6S30. X = V AL(X$): IF X < I OR X > 4 THEN BEEP: GOSUB 3270: GOTO 6770 
6S40 GOSUB 6970: IF X = 1 THEN A VG YI = TRUE: A VG Y2 = FALSE: GOTO 6SSO 
6850 IF X = 2 THEN AVGYl =FALSE: AVGY2 =TRUE: GOTO 6SSO 
6860 IF X = 3 THEN AVGYI =TRUE: AVGY2 =TRUE: GOTO 6SSO 
6870 IF X = 4 THEN AVGYI =FALSE: AVGY2 =FALSE: AVGCNT = -1 
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6880 GOSUB 6970: LOCATE 22, I: PRINT SPC(54);: PRINT : PRINT SPC(54); : PRINT 
6890 LOCATE 24, I : PRINT SPC(54); : IF AVGYI =FALSE AND AVGY2 =FALSE THEN WATE = 
FALSE: GOTO 4710 
6900 LOCATE 22, I : PRINT "Select number of averages<"; : ON ERROR GOTO 7030 
6910 PRINT USING"###"; AVGNUM; : PRINT">"; : PUT (215, 168), BLANK3, XOR 
6920 INPUT " • , XS : IF XS = •• THEN GOTO 6960 
6930 X = V AL(X$): IF X > 0 AND X < 251 THEN A VGNUM = X: GOTO 6960 
6940 BEEP: GOSUB 3270: LOCATE 24, I: PRINT "Number of averages must be between I and 250" ; 
6950 FOR I = 0 TO 3000: NEXT I: LOCATE 24, I: PRINT SPC(54); : GOTO 6880 
6960 ON ERROR GOTO 0: LOCATE 22, I: PRINT SPC(54);: WATE =FALSE: GOSUB 5430: GOTO 
471 0 
6970 LOCATE 2, 64: IF AVG YI =TRUE THEN PRINT "avg• ELSE PRINT " " 
6980 LOCATE 6, 64: IF AVGY2 =TRUE THEN PRINT "avg" ELSE PRINT" • 
6990 IF AVGYI =TRUE AND AVGY2 =TRUE THEN PUT (2 15, 176), BLANK6, XOR: PUT (265, 
176), BLANK3, XOR: RETURN 
7000 IF AVGYI = FALSE AND AVGY2 =FALSE THEN PUT (215, 184), BLANKS, XOR: PUT (281 , 
184), BLANKS, XOR: RETURN 
7010 IF AVGYI =TRUE THEN PUT (103, 176), BLANK2, XOR: RETURN 
7020 PUT (103, 184), BLANK2, XOR: RETURN 
7030 RESUME 6940 
7040 RETURN 
7800 I 

7810 '• • • TIMER ROUTINE 
7820 LOCATE 25, I: PRINT "<press any key to continue>" ; 
7830 XTX$ = INKEYS: T! = TIMER: IF (T! < MT!) AND (XTX$ = "") THEN 7830 
7840 RETURN 
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'CALCULATE RMS FOR EACH EMG RECORD 
•••••••••••••••••••••••••••••••••••••••••••••••••• 
DIM V!(5 12), NAME$(78), AVGV!(78), VSl(512), RMS!(78) 
'CLS : LOCATE 10, 10 
'PRINT "VERIFY THAT PRINTER IS ON LINE ................... ." : INPUT Z 
'CLS: LOCATE 10, 10 : PRINT "ENTER SUBJECT NUMBER:": LINE INPUT SUBNS 
'LPRINT SUBNS, SUBNS, SUBNS, SUBNS, SUBNS 
'LPRINT 
5 CLS : LOCATE 10, 1 
NS= 0 
PRINT "ENTER PATH TO FORCE FILES (B:\BOB\BOB l) :": LINE INPUT PATHS 
10 PRINT "ENTER NUMBER OF FILES TO CALCULATE, (MAX. NUMBER IS 78) :": INPUT NS 
IF NS > 78 THEN GOTO 10 
NSA = 64 +NS 
FILElS =PATHS+ "\EMG.A" : FILE2$ =PATHS+ "\EMG." + CHRS(NSA) 
LOCATE 17, 1 
PRINT "IS THIS CORRECT (Y,N):" 
PRINT " READ FILES "; FILE 1 S; " - •; FILE2S 
LINE INPUT XS: IF XS = "N" THEN GOTO 5 
CLS 
'••••••••••••••••••••MAIN LOOP••••••••••••••••••••••• 
FOR J = 65 TO NSA 
L=J-64 
IF J > 90 THEN SIG$ = "A" + CHRS(J - 26): GOTO 20 
IF J > 116 THEN SIG$ = "B" + CHRS(J - 52): GOTO 20 
SIG$ = CHR.$(J) 
20 NAMES(L) =PATHS+ "\EMG." + SIGS 
OPEN "I" , 1, NAMES(L) 
'• • • • • • • • • • • • ••••••••READ IN DAT A• •••••••••••••••••••• 
VSTOT! = 0: A VGV! = 0: VS! = 0: RMS! = 0 
FOR I = 1 TO 512 
INPUT #1 , Vl(l) 
VS!(l) = (V!(l)) A 2 
VSTOT! = VSTOT! + VS!(l) 
NEXT I 
CLOSE #I 
'• • • • • • • • • • • • • •••••••CALCULATE MEAN VOLTAGE•••••• • ••• 
AVGV!(L) = VSTOT! I 512 
RMS!(L) = SQR(AVGV!(L)) 
'••••••••••••••••••• •PRINT MEAN• • •••••••••• •••••••••• • 
PRINT "RMS FOR"; NAME$(L); " = "; RMS!(L) 
'LPRINT "RMS FOR "; NAMES(L); " = "; RMS!(L) 
NEXT J 
OUTFILES =PATHS+ "\RMS.CSV" 
OPEN "O", 1, OUTFILES 
WRITE #1, "PATH", "RMS" 
FORK= 1 TO NS 
WRITE #1 , NAMES(K), RMS!(K) 
NEXT K 
CLOSE #I 
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'CALCULATE MEAN FORCE DURING EACH EMG RECORD 
•••••••••••••••••••••••••••••••••••••••••••••••••• 
DIM F!(512), AVGF!(78) 
CLS : LOCATE 10, 10 
NSA = 64 +NS 
FILElS =PATHS+ "\F.A" : FILE2$ =PATHS+ "\F." + CHRS(NSA) 
LOCATE 17, I 
CLS 
•••••••••••••••••••••MAIN LOOP••••••••••••••••••••••• 
FOR J = 65 TO NSA 
L = J - 64 
IF J > 90 THEN SIG$ = "A" + CHRS(J - 26): GOTO 30 
IF J > 116 THEN SIGS = "B" + CHRS(J - 52): GOTO 30 
SIGS = CHRS(J) 
30 NAMES(L) = PATHS+ "\F." +SIG$ 
OPEN "I", I , NAMES(L) 
'••••••••••••••••••••READ IN DATA••••••••••••••••••••• 
FTOT! = 0: A VGF! = 0 
FOR I = I TO 512 
INPUT #1 , F!(I) 
FTOT! = FTOT! + F!(I) 
NEXT I 
CLOSE #I 
'••••••••••••••••••••CALCULATE MEAN FORCE•••••••••• 
AVGF!(L) = FTOT! I 512 
•••••••••••••••••••••PRINT MEAN••••••••••••••••••••••• 
PRINT "MEAN FORCE FOR "; NAMES(L); " = "; A VGF!(L) 
'LPRINT "MEAN FORCE FOR"; NAMES(L); " = "; AVGF!(L) 
NEXT J 
OUTFILES =PATHS+ "\A VGFORCE.CSV" 
OPEN "O", I, OUTFILES 
WRITE #1 , "PATH", "FORCE" 
FORK= I TO NS 
WRITE #1 , NA.MES(K), AVGF!(K) 
NEXTK 
CLOSE #1 

'CALCULATE MEAN POWER FREQUENCY MPF 
•••••••••••••••••••••••••••••••• 
DfM PSD!(256), MEAN!(78) 
CLS : LOCATE 10, 10 
IF NS > 78 THEN GOTO I 0 
NSA = 64 +NS 
CLS 
'• • • • • • •• • • • • ••••••••MAIN LOOP••••••••••••••••••••••• 
FOR J = 65 TO NSA 
L = J - 64 
IF J > 90 THEN SIG$ = "A" + CHRS(J - 26): GOTO 40 
IF J > 116 THEN SIG$ = "B" + CHRS(J - 52): GOTO 40 



SIGS = CHRS(J) 
40 NAMES(L) =PATHS+ "\PSD." + SIGS 
OPEN "I", 1, NAMES(L) 
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·••••••••••••••••••••READ IN DATA••••••••••••••••••••• 
FOR I = 1 TO 256 
INPUT # 1, PSD! (I) 
NEXT I 
CLOSE #1 
FPI = 0: FREQ = 0: PSDTOTI = 0: :MEAN! = 0 
•••• •• •• • • • • • •••••••*CALCULATE :MEAN••••••••••••••••••• 
••• • • • •• •• • ••• • • • • • • • • • •••••••••FROM 1 TO 350 Hz•••••• 
FOR I= 1 TO 175 
FP! = FPI + PSDI (I) • FREQ 
FREQ = FREQ + 2 
PSDTOT! = PSDTOT! + PSD!(D 
NEXT I 
:MEAN!(L) = FP! I PSDTOT! 
'••••••••••••••••••••PRINT :MEAN••••••••••••••••••••••• 
PRINT ":MEAN FREQUENCY OF PSD FOR"; NAMES(L); " = "; :MEAN!(L) 
'LPRINT ":MEAN FREQUENCY OF PSD FOR"; NAMES(L); " = "; :MEAN!(L) 
NEXT J 
OUTFILES =PATHS+ "\FREQ:MEAN.CSV" 
OPEN "O", 1, OUTFILES 
WRITE #1 , "PATH", "MPF" 
FORK = 1 TO NS 
WRITE #1, NAMES(K), :MEAN!(K) 
NEXT K 
END 

'••*CALCULATE FREQUENCIES OF -3dB POWER••••••••••••• 
'•••••FREQUENCY RANGE OF 0 TO 200 Hz•••••••••••••••• 
•••••••••••••••••••••••••••••••••••••••••••••••••••• 
Q = 500 
DIM P!(256), NAME$(78), PT(Q), F!(256), PDBl(Q) 
DIM AP!(78), BP1(78), AF1(78), BF!(78), RATI0!(78), DrFF!(78) 
CLS : LOCATE 10, 10 
PRINT "VERIFY THAT PRINTER IS ON LINE ................. ." : INPUT Z 
CLS : LOCATE 10, 10: PRINT "ENTER SUBJECT NUMBER :": LINE INPUT SUBNS 
'LPRINT SUBNS, SUBNS, SUBNS, SUBNS, SUBNS 
'LPRINT 
5 CLS : LOCATE 10, 1 
NS= 0 
PRINT "ENTER PATH TO PSD FILES (B:\BOB\BOB l) :": LINE INPUT SNS 
10 PRINT "ENTER NUMBER OF FILES TO CALCULATE, (MAX. NUMBER IS 78) :": INPUT NS 
IF NS > 78 THEN GOTO 10 
NSA = 64 +NS 
FILE !$ = SNS + "\SMOOTH.A" : FILE2$ = SNS + "\SMOOTH." + CHRS(NSA) 
LOCATE 17, 1 
PRINT "IS THIS CORRECT (Y,N) :" 
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PRINT • READ FILES "; FILElS; " - "; FILE2S 
LINE INPUT XS: IF XS = "N" THEN GOTO 5 
CLS 
'••••••••••••••••••••NIA.IN LOOP••••••••••••••••••••••• 
K! = 10 A (-3 I 20) 
FOR J = 65 TO NSA 
L = J - 64 
IF J > 90 THEN SIGS ="A" + CHRS(J - 26): GOTO 20 
IF J > 116 THEN SIGS = "B" + CHRS(J - 52): GOTO 20 
SIGS = CHRS(J) 
20 NAMES(L) = SNS + "\SMOOTH.• + SIGS 
TPF! = 0: FBW = 2: TF = 200 
OPEN "I", 1, NAMES(L) 
'• •• •••••••••••••••••READ IN DAT A••••••••••••••••••••• 
FOR I = 1 TO 100 
INPUT #1 , P!(I) 
F!(I) = ((I - 1) • 2) 
TPF! = TPF! + P!(I) • FBW 
NEXT I 
CLOSE #1 
PAVO!= TPF! I TF 
SC= 0 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
'••••••••••••••••SEARCH FOR -3dB POWERS AND FREQ.'S•••••••••••••• 
B! =PAVO! • K!: C! = (B! + .01) 
FOR X = 1 TO 100 
IF (P!(X) < B!) OR (P!(X) > C!) THEN GOTO 35 
SC= SC+ 1 
PT(SC) = X 
'PRINT SC; PT(SC); F!(X) 
35 NEXT X 
'••• •• • • • • • ••••••••••PRINT RES UL TS••••••••••••••••••••••• 
FS = PT(l) 
LS= PT(SC) 
40 PRINT NA.MES(L); " THE SEARCH FOUND"; SC; " POINTS!" 

PRINT " "; "FIRST"; FS; P!(FS); F!(FS) 
PRINT " "; "LAST" ; LS; P!(LS); F!(LS) 

' LPRINT NAMES(L); " THE SEARCH FOUND "; SC; • POINTS! PA VG =" ; PA VG! 
I LPRINT • "; "FrRST"; FS; P!(FS); F!(FS) 
I LPRINT • "; "LAST"; LS; P!(LS); F!(LS) 

AP!(L) = P!(FS): AF!(L) = F!(FS) 
BP!(L) = P!(LS): BF!(L) = F!(LS) 
IF AF!(L) = 0 THEN AF!(L) = I 
RATIO!(L) = BF!(L) I AF!(L) 
DIFF!(L) = BF!(L) - AF!(L) 
NEXT J 

OUTFILES = SNS + "\DBELL.CSV" 
OPEN ·o·, 1, OUTFILES 



WRITE #1, "PATH", "LF" , "HF" , "HF/LF", "HF-LF" 
FORK= 1 TO NS 
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WRITE #1 , NAMES(K), AF!(K), BF!(K), RATIO!(K), DIFF!(K) 
NEXTK 
CLOSE #1 
END 
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!DADISP COMMAND FILE TO READ EMG'S 

Q 
@POP("Pl",-1 ,-1,"ENTER LABBOOK TO OPEN") 
0 
@SUSPEND("@CR") 
@UNPOP("Pl ") 
u 
I 
@F2 
@POP("P2",-l ,-l ,"SUBJECT# \ TRIAL") 
C:\EMGDATA\ 
@SUSPEND("@CR") 
@UNPOP("P2") 
@PAUSE(3) 
EMG.A 
@CR 
E 
@DN @DN @DN @DN @DN @ON 
V @CR 
@DN 
1024 @CR 
@F2 
@PAUSE(3) 
p 

EMG.B 
@CR 
p 

EMG.C 
@CR 
p 

EMG.D 
@CR 
p 

EMG.E 
@CR 
p 

-- CONTINUED THROUGH EMG.AZ --
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!DADISP COMMAND FILE TO 
!GET AND SAVE SMOOTHED PSD'S 
@POP("P3",-l,-l,"PUT STORAGE DISC IN A DRIVE [SPACE BAR]") 
@BEEP(3) 
@SUSPEND _NOPASS("@SP") 
@UNPOP("P3") 
Q 
@POP("Pl ",-1,-1,"ENTER LABBOOK TO OPEN") 
0 
@SUSPEND("@CR ") 
@UNPOP("Pl ") 

w 
A3 @CR 
E @F8 EMO. I @CR @CR 
@DN PSD(W I) @CR 
@DN MOVAVG(W2,10) @CR 
WRITEA("A:\SMOOTH.A",W3) @CR 
WRITEA(" A:\PSD.A" ,W2) @CR 

@CNTL_HOME 
@F8 EMG.2 @CR @CR 
@ON PSD(W I) @CR 
@DN MOVA VG(W2, I 0) @CR 
WRITEA(" A:\SMOOTH.B" ,W3) @CR 
WRITEA(" A:\PSD.B",W2) @CR 

@CNTL_HOME 
@F8 EMG.3 @CR @CR 
@DN PSD(W I) @CR 
@DN MOVAVG(W2,1 0) @CR 
WRITEA(" A:\SMOOTH.C",W3) @CR 
WRITEA(" A:\PSD.C" , W2) @CR 

@CNTL_HOME 
@F8 EMG .4 @CR @CR 
@DN PSD(Wl ) @CR 
@DN MOVAVG(W2,10) @CR 
WRITEA("A:\SMOOTH.D",W3) @CR 
WRITEA(" A:\PSD.D" ,W2) @CR 

@CNTL_HOME 
@F8 EMG.5 @CR @CR 
@DN PSD(Wl) @CR 
@DN MOVA VG(W2, 10) @CR 
WRITEA("A:\SMOOTH.E",W3) @CR 
WRITEA(" A:\PSO.E" ,W2) @CR 

-- CONTINUED THROUGH EMG.52 --



97 

APPENDIX D 

SUBJECT DA TA, CORRELATION AND REGRESSION TABLES, AND GRAPHS 
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$9JJS.OM~T:BlC.JgA'ft'f:i'MVCi#:48K~;\Fi:;W:itE).J@WMttl 
TIME % TIME FORCE MPF RMS LF HF HF/LF HF-LF 

1 0 .53 7.08 77.46 1.19E-02 32 124 3.88 92 
10 5.26 7.14 65.63 1.59E-02 34 108 3.18 74 
20 10.53 7.14 65.63 1.59E-02 34 108 3.18 74 
30 15.79 7.14 65.63 1.59E-02 34 108 3.18 74 
40 21 .05 7.17 72.47 1.78E-02 32 118 3.69 86 
50 26.32 7.88 63.51 1.67E-02 26 120 4.62 94 
60 31 .58 7.46 67.01 1.95E-02 30 118 3.93 88 
70 36.84 7.17 62.77 1.90E-02 32 106 3.31 74 
80 42.11 7.18 73.64 9.62E-03 20 122 6.10 102 
90 47.37 7.95 61 .52 1.71E-02 24 106 4.42 82 
100 52.63 7.15 65.63 1.70E-02 26 110 4.23 84 
110 57.89 7.13 57.76 2.11E-02 30 86 2.87 56 
120 63.16 7.13 57.76 2.11E-02 30 86 2.87 56 
130 68.42 6.32 58.39 1.48E-02 32 108 3.38 76 
140 73.68 7.18 60.50 1.40E-02 30 108 3.60 78 
150 78.95 7.10 62.63 1.98E-02 28 102 3.64 74 
160 84.21 6.07 59.87 2.50E-02 30 106 3.53 76 
170 89.47 6 .09 58.05 2.44E-02 30 102 3.40 72 
180 94.74 3.41 50.51 1.02E-02 22 92 4.18 70 
190 100.00 1.01 55.58 9.47E-03 28 98 3.50 70 

REST 1 -5.07 80.26 5.87E-04 1 142 142.00 141 
REST2 -5.00 100.52 8.04E-04 1 176 176.00 175 
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so1:;.1SOMETRlC DAY 2 MVC€=26KG{FEMALE) ·=~::: I 
TIME %TIME FORCE MPF RMS LF HF HF/LF HF-LF 

1 0.50 7.84 74.46 1.29E-02 32 112 3.50 80 
10 5.00 7.76 67.63 1.19E-02 33 114 3.45 81 
20 10.00 7.93 65.63 9.20E-03 34 108 3.18 74 
30 15.00 7 .53 66.26 1.59E-02 32 118 3.69 86 
40 20.00 7 .72 72.47 1.73E-02 32 116 3.63 84 
50 25.00 7 .88 65.23 1.27E-02 28 118 4.21 90 
60 30.00 7 .64 67.02 1.57E-02 26 118 4.54 92 
70 35.00 8.17 62.77 1.70E-02 30 106 3.53 76 
80 40.00 7 .80 72.64 1.62E-02 26 122 4.69 96 
90 45.00 7 .95 66.58 1.71E-02 24 106 4.42 82 

100 50.00 7 .48 65.63 1.80E-02 26 112 4.31 86 
110 55.00 7 .83 56.56 1.93E-02 28 114 4.07 86 
120 60.00 8 .13 57.76 2.01E-02 30 110 3.67 80 
130 65.00 7 .32 58.37 1.76E-02 30 106 3.53 76 
140 70.00 7.18 60.50 1.70E-02 28 108 3.86 80 
150 75.00 7.10 57.62 1.78E-02 28 104 3.71 76 
160 80.00 6 .07 59.87 2.38E-02 32 100 3.13 68 
170 85.00 6 .09 57.04 2.40E-02 30 102 3.40 72 
180 90.00 7.13 51 .54 1.82E-02 24 92 3.83 68 
190 95.00 3.01 56.18 2.17E-02 28 98 3.50 70 
200 100.00 4.58 53.85 1.71E-02 28 96 3.43 68 

REST1 -5 .07 91 .61 6.87E-04 1 140 140.00 139 
REST2 -5.00 102.56 8.19E-04 1 162 162.00 161 
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so2·1sOMETRIC''MVC=40KG''{MAtEN .. ·:·::;;::: 'I 
TIME %TIME FORCE MPF RMS LF HF HF/LF HF-LF 

1 0.56 12.19 76.36 4.49E-03 14 114 8.14 100 
10 5.56 12.06 88.14 6.63E-03 34 116 3.41 82 
20 11 .11 11 .99 87.75 6.27E-03 32 126 3.94 94 
30 16.67 12.09 81 .95 0.006637 32 126 3.94 94 
40 22.22 12.12 81 .10 6.14E-03 34 128 3.76 94 
50 27.78 11 .90 85.64 8.92E-03 30 126 4.20 96 
60 33.33 12.06 82.96 8.12E-03 40 126 3.15 86 
70 38.89 12.09 77.07 8.62E-03 30 124 4.13 94 
80 44.44 12.06 76.03 1.08E-02 26 116 4.46 90 
90 50.00 12.06 69.12 1.18E-02 10 118 11 .80 108 
100 55.56 12.11 70.39 1.18E-02 32 120 3.75 88 
110 61 .11 12.01 80.90 8.63E-03 30 132 4.40 102 
120 66.67 12.04 67.15 9.78E-03 30 108 3.60 78 
130 72.22 11 .86 76.30 1.51 E-02 28 116 4.14 88 
140 77.78 12.06 76.30 1.51E-02 28 116 4.14 88 
150 83.33 11 .20 67.22 6.99E-03 26 98 3.77 72 
160 88.89 12.00 71 .50 1.07E-02 26 104 4.00 78 
170 94.44 10.01 78.81 1.45E-02 28 130 4.64 102 
180 100.00 6.46 60.00 6.71E-03 26 98 3.77 72 

REST1 -5.00 29.73 8.33E-04 1 78 78.00 78 
REST2 -5.00 31.45 8.10E-04 1 18 18.00 18 
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SOZ PULS'£:0'1$0METRIC lib 30-%0MVCffRIAL-#1 :~~ ·.•. ··.· 

TIME %TIME CYCLE FORCE MPF RMS LF HF HF/LF HF-LF 
10 4.17 1 10.45 100.25 3.40E-03 38 162 4.26 124 
20 8.33 10.45 100.25 3.40E-03 38 162 4.26 124 
30 12.50 2 12.69 103.35 6.61E-03 36 152 4.22 116 
40 16.67 12.70 100.84 4.96E-03 34 160 4.71 126 
50 20.83 3 12.47 98.12 3.89E-03 46 160 3.48 114 
60 25.00 12.86 89.04 4.67E-03 44 128 2.91 84 
70 29.17 4 10.47 86.81 4.02E-03 36 118 3.28 82 
80 33.33 12.18 95.06 3.81E-03 32 136 4.25 104 
90 37.50 5 11 .28 93.62 3.38E-03 32 128 4.00 96 
100 41 .67 11 .28 93.62 3.38E-03 32 128 4.00 96 
110 45.83 6 12.64 102.93 6.12E-03 40 130 3.25 90 
120 50.00 11 .63 99.13 5.30E-03 34 128 3.76 94 
130 54.17 7 11 .33 99.95 7 .56E-03 34 140 4.12 106 
140 58.33 11 .33 99.95 7.56E-03 34 140 4.12 106 
150 62.50 8 11 .03 90.27 6.00E-03 28 124 4.43 96 
160 66.67 11 .03 90.27 6.00E-03 28 124 4.43 96 
170 70.83 9 14.97 83.80 7.97E-03 32 122 3.81 90 
180 75.00 12.63 98.14 8.31 E-03 32 132 4.13 100 
190 79.17 10 10.88 91 .82 6.91E-03 36 126 3.50 90 
200 83.33 12.13 83.57 5.40E-03 30 116 3.87 86 
210 87.50 11 9.37 89.13 6.45E-03 40 130 3.25 90 
220 91 .67 9.28 97.64 8.85E-03 32 134 4.19 102 
230 95.83 12 10.12 91 .73 9.68E-03 34 136 4.00 102 
240 100.00 10.41 90.04 8.31E-03 30 134 4 .47 104 

REST 1 -0.39 64.33 7.31 E-04 1 94 94.00 93 
REST2 0.29 46.08 6.63E-04 1 36 36.00 35 
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$Oi· PtJLS~!);:ISOMe,TRtC @"®% MVC>TRIAI.. #2 ,:rm+nr~='='~: 
.·:·:·:-:-:-:·:·:·:· 
·::::::..-::::~:-· I 

TIME %TIME CYCLE FORCE MPF RMS LF HF HF/LF HF-LF 
10 4.55 1 13.81 107.00 2.55E-Q3 18 140 7.78 122 
20 9.09 13.81 107.00 2.55E-03 18 140 7.78 122 
30 13.64 2 10.89 91 .56 3.74E-03 18 168 9.33 150 
40 18.18 12.00 88.26 2.58E-03 12 122 10.17 110 
50 22.73 3 12.41 96.76 5.04E-03 32 140 4.38 108 
60 27.27 12.41 96.76 5.04E-03 32 140 4.38 108 
70 31 .82 4 9.17 89.62 3.37E-03 28 170 6.07 142 
80 36.36 12.71 99.24 4.72E-03 40 162 4.05 122 
90 40.91 5 13.22 99.59 3.87E-03 34 160 4.71 126 
100 45.45 13.17 109.70 4.46E-03 30 174 5.80 144 
110 50.00 6 13.12 84.60 6.77E-03 28 144 5.14 116 
120 54.55 13.12 84.60 6.77E-03 28 144 5.14 116 
130 59.09 7 10.38 91 .01 4.49E-03 34 152 4.47 118 
140 63.64 12.66 95.29 4.09E-03 32 132 4.13 100 
150 68.18 8 12.64 96.64 0.0058796 36 144 4.00 108 
160 72.73 12.51 94.76 4.83E-03 32 146 4.56 114 
170 77.27 9 12.97 101.22 6.85E-03 30 134 4.47 104 
180 81 .82 12.42 94.82 5.54E-03 36 134 3.72 98 
190 86.36 10 10.57 94.66 7.92E-03 30 160 5.33 130 
200 90.91 10.57 94.66 7.92E-03 30 160 5.33 130 
210 95.45 11 11 .40 83.00 1.51E-02 28 112 4.00 84 
220 100.00 13.03 83.01 7.98E-03 32 116 3.63 84 

REST 1 0.19 48.26 1.32E-03 1 66 66.00 65 
REST2 0.14 45.64 6 .63E-04 1 32 32.00 31 
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S02J'ULSEO ISOMETRIC. ~fl 300~'MYC'TRIAL #3 '=:Wff:4'' \'.'tWWV · 1 
TIME %TIME CYCLE FORCE MPF RMS LF HF HF/LF HF-LF 

10 5.00 1 12.73 99.19 4.49E-03 36 128 3.56 92 
20 10.00 11 .95 83.25 3.05E-03 30 126 4.20 96 
30 15.00 2 12.81 87.23 5.60E-03 34 148 4.35 114 
40 20.00 12.81 87.23 5.60E-03 34 148 4.35 114 
50 25.00 3 13.38 80.84 5.02E-03 30 124 4.13 94 
60 30.00 13.38 80.84 5.02E-03 30 124 4.13 94 
70 35.00 4 10.45 92.55 7.03E-03 32 132 4.13 100 
80 40.00 12.68 104.48 6.18E-03 44 166 3.n 122 
90 45.00 5 14.11 95.66 7.54E-03 44 126 2.86 82 
100 50.00 11.43 100.51 7.61E-03 50 148 2.96 98 
110 55.00 6 9.09 86.44 7.76E-03 38 124 3.26 86 
120 60.00 9.74 82.45 8.81E-03 28 152 5.43 124 
130 65.00 7 8.80 82.94 8.27E-03 34 156 4.59 122 
140 70.00 11.12 92.28 1.14E-02 38 140 3.68 102 
150 75.00 8 16.44 82.60 1.09E-02 38 122 3.21 84 
160 80.00 12.32 91 .35 7.61E-03 30 136 4.53 106 
170 85.00 9 11 .63 84.76 8.80E-03 30 126 4.20 96 
180 90.00 11 .63 84.76 8.80E-03 30 126 4.20 96 
190 95.00 10 10.62 n .78 1.04E-02 30 122 4 .07 92 
200 100.00 12.74 91 .19 1.21 E-02 30 132 4.40 102 

REST 1 0.24 53.46 6.43E-04 1 38 38.00 37 
RETS2 0.72 40.33 7.14E-04 1 34 34.00 33 
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$<>3]SOMET:RlC"MVC~$?.KGt!MAtEld%i'Y~+I 

TIME %TIME FORCE MPF RMS LF HF HF/LF HF-LF 
1 0.48 17.16 64.37 0.013627 44 116 2.64 72 
10 4.76 18.07 70.12 8.13E-03 32 114 3.56 82 
20 9.52 17.65 61 .92 1.30E-02 36 102 2.83 66 
30 14.29 17.98 62.98 1.16E-02 32 100 3.13 68 
40 19.05 18.24 63.57 1.27E-02 28 110 3.93 82 
50 23.81 17.06 61 .14 1.37E-02 30 . 108 3.60 78 
60 28.57 18.22 58.29 1.18E-02 30 108 3.60 78 
70 33.33 18.24 53.44 1.46E-02 28 94 3.36 66 
80 38.10 17.42 55.71 1.39E-02 26 94 3.62 68 
90 42.86 18.22 53.03 1.21E-02 24 98 4.08 74 

100 47.62 18.16 50.83 1.76E-02 32 80 2.50 48 
110 52.38 18.24 49.12 1.85E-02 22 92 4.18 70 
120 57.14 18.24 46.04 1.37E-02 20 88 4.40 68 
130 61 .90 18.24 51 .36 2.39E-02 26 86 3.31 60 
140 66.67 16.99 49.68 2.43E-02 22 88 4.00 66 
150 71 .43 18.15 52.13 2.13E-02 24 104 4.33 80 
160 76.19 16.07 51 .12 1.85E-02 24 94 3.92 70 
170 80.95 14.77 50.16 2.10E-02 24 92 3.83 68 
180 85.71 16.33 52.32 2.66E-02 26 90 3.46 64 
190 90.48 16.03 43.41 2.09E-02 22 80 3.64 58 
200 95.24 17.54 49.65 2.77E-02 22 86 3.91 64 
210 100.00 13.83 47.89 2.90E-02 24 80 3.33 56 

REST 1 0.15 88.79 4.43E-04 1 68 68.00 67 
REST2 0.52 102.38 4.27E-04 6 126 21 .00 120 
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Sl}4'.ISOMSTRfC .DAY 1JMVC:;;~1:l<G '(FEMALEltW+<t I 
TIME %TIME FORCE MPF RMS LF HF HF/LF HF-LF 

1 0 .00 10.52 122.33 9.73E-03 50 176 3 .52 126 
10 4.00 9.39 107.59 1.06E-02 42 168 4.00 126 
20 8.00 9.36 115.95 7.80E-03 46 162 3 .52 116 
30 12.00 9.39 114.70 8.38E-03 48 156 3 .25 108 
40 16.00 9.37 120.02 8.15E-03 34 182 5 .35 148 
50 20.00 9.37 109.10 9.09E-03 40 136 3 .40 96 
60 24.00 9.39 120.16 1.16E-02 52 166 3 .19 114 
70 28.00 9.15 112.61 8.31 E-03 56 150 2.68 94 
80 32.00 8.56 124.22 1.06E-02 40 166 4.15 126 
90 36.00 9.32 110.31 7.75E-03 40 156 3.90 116 
100 40.00 9.39 115.66 8.02E-03 52 184 3.54 132 
110 44.00 9.39 109.65 6.77E-03 48 160 3.33 112 
120 48.00 9.31 105.50 8.58E-03 50 164 3.28 114 
130 52.00 9.15 115.23 7.86E-03 52 178 3.42 126 
140 56.00 9.37 108.48 7.59E-03 42 142 3.38 100 
150 60.00 8.50 110.33 5.07E-03 32 164 5.13 132 
160 64.00 8.29 110.90 7.33E-03 44 146 3.32 102 
170 68.00 8.83 96.87 9.13E-03 44 160 3.64 116 
180 72.00 8.32 117.91 7.92E-03 40 176 4.40 136 
190 76.00 8.93 109.36 9.09E-03 44 150 3.41 106 
200 80.00 7.18 105.67 8.49E-03 44 186 4.23 142 
210 84.00 9.24 114.94 8.69E-03 42 162 3.86 120 
220 88.00 9.22 114.38 0 .010641 42 160 3.81 118 
230 92.00 9.26 11 3.60 6.17E-03 40 178 4.45 138 
240 96.00 8.03 101.05 8.79E-03 38 160 4.21 122 
250 100.00 7.30 106.03 8.03E-03 34 154 4.53 120 

REST 1 0.50 104.36 5.75E-04 6 126 21 .00 120 
REST2 0.13 128.33 7.67E-04 2 176 88.00 174 
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SO~'ISOMETRlC DAY~z:;:MVCli31'KG''{FEMALE}:~N''''" ···' I 
TIME %TIME FORCE MPF RMS LF HF H/l H-L 

1 0.38 9 .52 121.43 8.73E-03 46 168 3.65 122 
10 3.85 9 .49 117.59 9.06E-03 48 170 3.54 122 
20 7.69 9 .49 115.95 7.80E-03 42 162 3.86 120 
30 11 .54 9.47 116.02 8.38E-03 46 156 3.39 110 
40 15.38 9.50 118.02 8.20E-03 38 176 4.63 138 
50 19.23 9.47 109.10 9.29E-03 40 136 3.40 96 
60 23.08 9.49 115.12 1.06E-02 44 166 3.77 122 
70 26.92 9 .45 112.61 9.53E-03 56 150 2.68 94 
80 30.77 9 .36 120.02 1.01E-02 44 160 3.64 116 
90 34.62 9 .42 110.31 7.87E-03 40 156 3.90 116 

100 38.46 9 .39 115.66 8.02E-03 50 184 3.68 134 
110 42.31 9.49 112.65 9.77E-03 48 160 3.33 112 
120 46.15 9.45 105.50 8.79E-03 46 166 3.61 120 
130 50.00 9 .45 111 .23 8.86E-03 48 178 3.71 130 
140 53.85 9 .47 108.48 7.59E-03 42 142 3.38 100 
150 57.69 9.50 113.33 7.07E-03 38 158 4.16 120 
160 61.54 9 .39 110.90 7.33E-03 44 146 3.32 102 
170 65.38 9 .43 107.87 9.13E-03 38 164 4 .32 126 
180 69.23 9 .42 112.40 9.16E-03 40 176 4 .40 136 
190 73.08 9.43 109.38 9.09E-03 44 154 3.50 110 
200 76.92 9 .18 105.67 8.65E-03 42 186 4.43 144 
210 80.77 9 .24 110.95 9.19E-03 39 162 4 .15 123 
220 84.62 9 .22 110.38 0.009065 42 160 3.81 118 
230 88.46 8.26 113.60 7.17E-03 38 170 4 .47 132 
240 92.31 8.03 101 .04 8.79E-03 40 160 4 .00 120 
250 96.15 7.30 104.01 9.50E-03 34 154 4 .53 120 
260 100.00 6 .54 97.03 1.27E-02 38 150 3.95 112 

REST 1 0.48 108.59 5.53E-04 6 122 20.33 116 
REST2 0.12 126.38 7.67E-04 4 186 46.50 182 
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S.05HSOMSRlC£MVQ#.aQ.KG.'.f(:MA'f'Ell~HtWNWM%rnfa§\~1:~;,1 

TIME %TIME FORCE MPF RMS LF HF HF/LF HF-LF 
1 0.45 23.64498 68.97372 6.20E-03 34 110 3 .235294 76 
10 4.55 24.36485 66.84908 8.65E-03 42 112 2.666667 70 
20 9 .09 24.04706 69.22954 6.40E-03 28 118 4.214286 90 
30 13.64 24.95935 75.28671 4.91E-03 26 114 4.384615 88 
40 18.18 25.81747 88.3802 4.23E-03 34 142 4.176471 108 
50 22.73 25.80882 79.82309 3.77E-03 38 122 3 .210526 84 
60 27.27 25.88447 60.36009 6.35E-03 28 100 3 .571429 72 
70 31 .82 24.90315 73.35574 4.16E-03 30 114 3.8 84 
80 36.36 24.88154 72.61201 5.35E-03 34 120 3 .529412 86 
90 40.91 25.92122 62.75618 7.68E-03 36 108 3 72 

100 45.45 24.88802 62.71139 7.12E-03 32 110 3.4375 78 
110 50.00 25.98822 65.43689 4.69E-03 32 106 3.3125 74 
120 54.55 24.88154 62.73973 7.01 E-03 28 106 3 .785714 78 
130 59.09 24.88154 58.18106 8.76E-03 30 104 3.466667 74 
140 63.64 26.98026 58.91986 1.57E-02 28 104 3 .714286 76 
150 68.18 21 .17425 59.0735 8.37E-03 24 104 4.333333 80 
160 72.73 23.21916 54.99537 1.12E-02 26 98 3.769231 72· 
170 77.27 16.15739 101 .5224 1.11 E-02 36 142 3.944444 106 
180 81 .82 27.95296 60.53203 1.52E-02 30 104 3.466667 74 
190 86.36 16.31522 68.15078 6 .16E-03 26 120 4.615385 94 
200 90.91 17.89963 51 .00027 8.61 E-03 24 92 3 .833333 68 
210 95.45 13.48573 51 .04969 1.20E-02 24 92 3.833333 68 
220 100.00 12.0806 59.137 9.47E-03 28 98 3.5 70 

REST 1 -0.37425 96.34179 4.42E-04 1 46 46 45 
REST2 0.295834 120.6594 4.41E-04 8 168 21 160 
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SQ5J?.UtSEl?fl$0METRtc:'~O%MVC::J:E:IAt"#1-U:f(fFNtlrnwmm?Jfitkn 

TIME %TIME CYCLE FORCE MPF RMS LF HF HF/LF HF-LF 
10 2.38 1 I 7.06 I 67.94 1.45E-03 I 1 J 106 3.50 105 
20 4.76 23.78 81 .72 5.24E-03 32 128 4.00 96 
30 7.14 2 23.47 62.77 7.83E-03 30 110 3.67 80 
40 9.52 22.90 63.15 8.73E-03 26 112 4.31 86 
50 11 .90 3 22.70 63.59 7.59E-03 30 102 3.40 72 
60 14.29 23.22 84.68 3.37E-03 34 132 3.88 98 
70 16.67 4 20.34 63.99 5.75E-03 36 108 3.00 72 
80 19.05 23.03 65.59 6.50E-03 32 104 3.25 72 
90 21 .43 5 23.90 58.66 6.77E-03 34 106 3.12 72 

100 23.81 20.66 71 .51 3.76E-03 32 122 3.81 90 
110 26.19 6 23.68 65.10 7.96E-03 32 112 3.50 80 
120 28.57 23.68 65.10 7.96E-03 32 112 3.50 80 
130 30.95 7 24.76 69.62 8.77E-03 38 118 3.11 80 
140 33.33 24.00 64.82 5.67E-03 28 104 3.71 76 
150 35.71 8 23.15 64.46 7.15E-03 30 114 3.80 84 
160 38.10 22.52 58.78 1.15E-02 30 110 3.67 80 
170 40.48 9 27.13 65.85 7.72E-03 36 110 3.06 74 
180 42.86 27.13 65.85 7.72E-03 36 110 3.06 74 
190 45.24 10 25.92 68.18 1.10E-02 32 118 3.69 86 
200 47.62 23.84 64.92 1.01 E-02 32 114 3.56 82 
210 50.00 11 22.86 69.24 4.60E-03 32 110 3.44 78 
220 52.38 23.25 67.09 8.91E-03 32 110 3.44 78 
230 54.76 12 23.47 67.22 9.31E-03 38 114 3.00 76 
240 57.14 23.47 67.22 9.31E-03 38 114 3.00 76 
250 59.52 13 20.95 62.65 9.63E-03 32 106 3.31 74 
260 61 .90 20.95 62.65 9.63E-03 32 106 3.31 74 
270 64.29 14 25.03 69.47 6.59E-03 30 118 3.93 88 
280 66.67 23.72 59.85 7.92E-03 28 98 3.50 70 
290 69.05 15 24.47 65.94 9.24E-03 32 104 3.25 72 
300 71 .43 23.77 64.45 8.06E-03 34 108 3.18 74 
310 73.81 16 21 .70 66.37 6.73E-03 24 106 4.42 82 
320 76.19 15.13 68.55 4.20E-03 28 108 3.86 80 
330 78.57 17 25.02 67.45 1.17E-02 32 116 3.63 84 
340 80.95 23.78 78.59 4.66E-03 36 112 3.11 76 
350 83.33 18 29.69 68.80 1.54E-02 34 112 3.29 78 
360 85.71 19.83 58.89 1.07E-02 28 104 3.71 76 
370 88.10 19 24.63 66.60 0.0157185 38 114 3.00 76 
380 90.48 20.35 63.32 0.010688 26 108 4.15 82 
390 92.86 20 21.70 59.59 1.41E-02 32 104 3.25 72 
400 95.24 19.58 67.90 3.95E-03 30 108 3.60 78 
410 97.62 21 23.05 63.56 1.34E-02 32 102 3.63 84 
420 100.00 26.46 62.68 1.38E-02 32 106 3.31 74 

REST 1 -0.57 55.54 6.19E-04 1 38 38.00 37 
REST2 -0.57 64.13 6.10E-04 1 34 34.00 33 
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:S05f.eUtS:EIYl:S.OM:!iTRtC.ff:RfAfa#2l~tiP?tl 

TIME %TIME CYCLE FORCE MPF RMS LF HF HF/LF HF-LF 
10 2.78 1 19.40 76.71 6.17E-03 36 112 3.11 76 
20 5.56 23.39 69.13 0.006325 46 118 2.57 72 
30 8.33 2 24.16 70.40 7.59E-03 36 116 3.22 80 
40 11 .11 22.38 66.88 0.007615 42 112 2.67 70 
50 13.89 3 23.04 63.37 7.58E-03 38 110 2.89 72 
60 16.67 22.63 61 .71 7.41E-03 34 116 3.41 82 
70 19.44 4 24.62 66.07 6.71E-03 36 112 3.11 76 
80 22.22 21 .91 63.34 7.53E-03 30 110 3.67 80 
90 25.00 5 19.83 67.47 6.06E-03 32 108 3.38 76 

100 27.78 23.35 66.81 5.22E-03 26 104 4.00 78 
110 30.56 6 20.10 61 .43 5.89E-03 30 108 3.60 78 
120 33.33 20.84 59.57 6.55E-03 26 110 4.23 84 
130 36.11 7 24.59 59.76 6.70E-03 26 100 3.85 74 
140 38.89 21 .41 63.03 7.01 E-03 30 110 3.67 80 
150 41 .67 8 30.05 63.36 8.48E-03 30 102 3.40 72 
160 44.44 30.05 63.36 8.48E-03 30 102 3.40 72 
170 47.22 9 15.04 60.56 6.42E-03 28 92 3.29 64 
180 50.00 23.57 64.08 8.31E-03 24 102 4.25 78 
190 52.78 10 20.37 62.36 6.89E-03 28 112 4.00 84 
200 55.56 23.77 72.03 6.89E-03 32 120 3.75 88 
210 58.33 11 24.43 66.51 7.70E-03 36 108 3.00 72 
220 61 .11 22.02 64.73 7.24E-03 38 102 2.68 64 
230 63.89 12 23.36 68.49 8.07E-03 30 120 4.00 90 
240 66.67 23.36 68.49 8.07E-03 30 120 4.00 90 
250 69.44 13 23.78 69.99 1.28E-02 38 114 3.00 76 
260 72.22 23.78 69.99 1.28E-02 38 114 3.00 76 
270 75.00 14 23.78 62.18 1.29E-02 30 106 3.53 76 
280 77.78 23.04 65.33 8.65E-03 28 116 4.14 88 
290 80.56 15 25.42 62.66 1.45E-02 30 110 3.67 80 
300 83.33 25.42 62.66 1.45E-02 30 110 3.67 80 
310 86.11 16 26.02 70.96 1.52E-02 36 116 3.22 80 
320 88.89 23.14 66.94 1.25E-02 32 110 3.44 78 
330 91 .67 17 24.31 66.20 0.015894 34 116 3.41 82 
340 94.44 22.48 67.73 1.23E-02 32 122 3.81 90 
350 97.22 18 23.78 65.48 1.67E-02 38 116 3.05 78 
360 100.00 19.84 61 .80 1.22E-02 32 108 3.38 76 

REST 1 -0.57 56.45 6.41E-04 1 40 40.00 39 
REST2 -0.57 62.34 9.34E-04 1 86 86.00 85 
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'.S05:RUtSEEllS'OMET:RKPt'RfALJ:#3MW~'t:'t:'M 

TIME %TIME CYCLE FORCE MPF RMS LF HF HF/LF HF-LF 
10 3.13 1 19.32 77.33 0.004811 36 128 3.56 92 
20 6.25 23.34 75.59 7.98E-03 44 116 2.64 72 
30 9.38 2 22.75 68.36 7.32E-03 36 118 3.28 82 
40 12.50 22.79 67.40 6.00E-03 34 118 3.47 84 
50 15.63 3 22.49 69.85 6.45E-03 32 114 3.56 82 
60 18.75 22.74 65.22 6.20E-03 38 114 3.00 76 
70 21 .88 4 23.77 68.37 5.82E-03 36 110 3.06 74 
80 25.00 23.35 82.37 3.50E-03 36 128 3.56 92 
90 28.13 5 22.96 83.62 4.72E-03 40 126 3.15 86 
100 31 .25 22.48 81 .52 5.54E-03 40 116 2.90 76 
110 34.38 6 25.36 73.92 9.45E-03 38 120 3.16 82 
120 37.50 25.36 73.92 9.45E-03 38 120 3.16 82 
130 40.63 7 24.76 75.96 5.26E-03 34 116 3.41 82 
140 43.75 24.76 75.96 5.26E-03 34 116 3.41 82 
150 46.88 8 23.69 82.12 8.62E-03 34 128 3.76 94 
160 50.00 23.10 79.54 5.13E-03 34 116 3.41 82 
170 53.13 9 15.64 66.97 8.27E-03 24 114 4.75 90 
180 56.25 24.19 67.78 9.91E-03 30 110 3.67 80 
190 59.38 10 25.60 65.47 1.14E-02 28 116 4.14 88 
200 62.50 22.45 64.89 1.03E-02 34 104 3.06 70 
210 65.63 11 23.78 68.71 7.86E-03 27 115 4.26 88 
220 68.75 23.51 75.38 8.89E-03 28 116 4.14 88 
230 71 .88 12 25.54 66.65 6.72E-03 34 122 3.59 88 
240 75.00 20.59 66.70 8.39E-03 36 118 3.28 82 
250 78.13 13 30.76 69.36 1.51E-02 38 116 3.05 78 
260 81 .25 21 .57 66.98 1.02E-02 32 114 3.56 82 
270 84.38 14 23.80 82.61 6.43E-03 46 122 2.65 76 
280 87.50 23.80 82.61 6.43E-03 46 122 2.65 76 
290 90.63 15 27.61 70.75 1.33E-02 40 118 2.95 78 
300 93.75 23.66 67.89 1.48E-02 30 110 3.67 80 
310 96.88 16 23.49 63.25 0.01156 32 112 3.50 80 
320 100.00 23.49 63.25 0.01156 32 112 3.50 80 

REST 1 -0.57 62.10 6.29E-04 1 62 62.00 61 
REST2 -0.57 143.96 3.80E-03 62 198 3.19 136 
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S96:JSQ.M5.r:RJC::M\fC':'.-4.0KG:'{MAllE)\'$%ltfMl%1 
TIME %TIME FORCE MPF RMS LF HF HF/LF HF-LF 

1 0.48 11 .30 118.24 0.0123774 30 188 6.27 158 
10 4 .76 12.78 120.39 1.52E-02 54 196 3.63 142 
20 9.52 13.35 ·· 116.24 1.69E-02 46 186 4.04 140 
30 14.29 12.71 114.30 0.0150828 42 188 4.48 146 
40 19.05 12.32 106.66 1.28E-02 36 186 5.17 150 
50 23.81 11 .83 116.53 2.14E-02 42 200 4.76 158 
60 28.57 12.71 116.80 2.20E-02 44 188 4.27 144 
70 33.33 13.84 104.53 1.50E-02 24 182 7.58 158 
80 38.10 12.70 102.75 1.61E-02 42 164 3.90 122 
90 42.86 12.96 97.84 1.57E-02 34 156 4.59 122 
100 47.62 11 .05 97.42 1.34E-02 14 174 12.43 160 
110 52.38 12.72 93.65 1.57E-02 40 148 3.70 108 
120 57.14 13.82 103.43 2.40E-02 36 160 4.44 124 
130 61 .90 11 .56 108.90 2.52E-02 32 196 6.13 164 
140 66.67 12.50 86.67 1.73E-02 32 146 4.56 114 
150 71.43 11 .88 97.49 2.20E-02 30 176 5.87 146 
160 76.19 12.60 96.90 3.01E-02 16 174 10.88 158 
170 80.95 12.76 79.03 2.43E-02 30 170 5.67 140 
180 85.71 12.22 75.11 3.02E-02 26 144 5.54 118 
190 90.48 10.53 77.82 2.35E-02 24 156 6 .50 132 
200 95.24 6.94 69.42 1.32E-02 18 124 6.89 106 
210 100.00 4.34 65.21 1.22E-02 18 116 6.44 98 

REST 1 -0.57 59.15 9.67E-04 12 80 6 .67 68 
REST2 -0.57 106.39 1.80E-03 10 278 27.80 268 
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:$Q~U1!Q'4$EPJSQM:gt.a!P::irRfAl#i;~fHl'ftt1 

TIME %TIME CYCLE FORCE MPF RMS LF HF HF/LF HF-LF 
10 2.38 1 14.92 78.22 1.95E-02 44 134 3.05 90 
20 4.76 15.95 80.23 2.04E-02 44 124 2.82 80 
30 7.14 2 14.56 81 .95 2.17E-02 38 134 3.53 96 
40 9.52 14.95 71 .74 3.05E-02 44 116 2.64 72 
50 11 .90 3 13.79 76.64 2.44E-02 32 128 4.00 96 
60 14.29 15.93 70.81 2.38E-02 42 120 2.86 78 
70 16.67 4 15.25 79.53 2.63E-02 36 122 3.39 86 
80 19.05 15.84 71 .04 2.69E-02 36 108 3.00 72 
90 21 .43 5 14.54 71 .56 2.11E-02 38 124 3.26 86 
100 23.81 15.96 74.48 2.60E-02 38 134 3.53 96 
110 26.19 6 15.53 69.01 2.80E-02 38 124 3.26 86 
120 28.57 15.00 80.94 2.65E-02 38 138 3.63 100 ·. 
130 30.95 7 14.03 67.39 3.54E-02 34 112 3.29 78 
140 33.33 16.00 77.47 0.027068 34 126 3.71 92 
150 35.71 8 16.02 67.98 2.80E-02 32 124 3.88 92 
160 38.10 14.88 71 .55 2.72E-02 34 116 3.41 82 
170 40.48 9 14.95 72.81 2.70E-02 34 116 3.41 82 
180 42.86 15.89 77.33 2.54E-02 36 124 3.44 88 
190 45.24 10 15.19 74.62 2.80E-02 38 132 3.47 94 
200 47.62 13.78 78.73 2.07E-02 30 124 4.13 94 
210 50.00 11 15.91 71 .33 3.09E-02 36 114 3.17 78 
220 52.38 15.91 71 .33 3.09E-02 36 114 3.17 78 
230 54.76 12 17.83 79.10 3.41E-02 28 122 4.36 94 
240 57.14 15.22 67.68 2.02E-02 30 108 3.60 78 
250 59.52 13 16.03 73.89 2.86E-02 32 106 3.31 74 
260 61 .90 15.28 82.46 1.78E-02 32 144 4.50 112 
270 64.29 14 15.93 78.16 2.59E-02 34 126 3.71 92 
280 66.67 14.52 78.47 2.50E-02 32 160 5.00 128 
290 69.05 15 15.23 78.00 2.54E-02 31 120 3.87 89 
300 71 .43 14.01 72. 19 0.022579 28 130 4.64 102 
310 73.81 16 15.52 67.41 3.22E-02 28 112 4.00 84 
320 76.19 18.03 77.58 3.14E-02 34 126 3.71 92 
330 78.57 17 15.11 69.57 3.26E-02 32 114 3.56 82 
340 80.95 15.87 69.08 2.97E-02 36 106 2.94 70 
350 83.33 18 15.14 75.05 0.035192 32 138 4.31 106 
360 85.71 15.14 75.05 0.035192 32 138 4.31 106 
370 88.10 19 15.81 70.43 2.74E-02 28 104 3.71 76 
380 90.48 14.06 65.93 2.31E-02 34 100 2.94 66 
390 92.86 20 15.08 68.24 3.42E-02 32 102 3.19 70 
400 95.24 14.93 67.03 2.81 E-02 26 96 3.69 70 
410 97.62 21 20.11 65.29 3.28E-02 30 112 3.73 82 
420 100.00 14.93 69.95 3.14E-02 30 108 3.60 78 

REST 1 0.13 79.53 8.63E-04 16 198 12.38 182 
REST2 0.53 102.06 5.56E-04 1 84 84.00 83 



113 

SOEtm:;lt.:SSPJSQM£TR1<>X.R~Alf#2':ttHfW\l 
TIME % TIME CYCLE FORCE MPF RMS LF HF HF/LF HF-LF 

10 2.94 1 16.02 72.21 2.80E-02 68 114 1.68 46 
20 5.88 16.04 84.79 1.98E-02 40 120 3.00 80 
30 8.82 2 14.81 78.20 1.95E-02 42 132 3.14 90 
40 11 .76 16.03 72.84 2.79E-02 44 114 2.59 70 
50 14.71 3 15.99 77.78 2.29E-02 34 128 3.76 94 
60 17.65 16.03 79.29 1.64E-02 32 126 3.94 94 
70 20.59 4 15.20 81 .68 1.45E-02 34 118 3.47 84 
80 23.53 16.21 75.99 1.86E-02 38 128 3.37 90 
90 26.47 5 16.06 75.86 1.91E-02 36 130 3.61 94 
100 29.41 16.10 74.23 2.04E-02 32 132 4.13 100 
110 32.35 6 17.15 71 .95 2.57E-02 32 118 3.69 86 
120 35.29 16.05 66.04 2.70E-02 34 104 3.06 70 
130 38.24 7 16.74 74.32 2.56E-02 36 112 3.11 76 
140 41 .18 16.19 74.71 2.66E-02 40 126 3.15 86 
150 44.12 8 16.04 70.46 3.37E-02 34 112 3.29 78 
160 47.06 16.04 70.46 3.37E-02 34 112 3.29 78 
170 50.00 9 16.07 78.42 3.43E-02 32 122 3.81 90 
180 52.94 16.29 66.89 3.33E-02 42 108 2.57 66 
190 55.88 10 15.93 72.16 2.95E-02 34 123 3.62 89 
200 58.82 17.58 74.06 2.64E-02 30 120 4.00 90 
210 61 .76 11 16.59 68.47 3.17E-02 32 115 3.59 83 
220 64.71 15.86 71 .37 3.21E-02 28 118 4.21 90 
230 67.65 12 16.86 75.65 3.26E-02 38 126 3.32 88 
240 70.59 16.86 75.65 3.26E-02 38 126 3.32 88 
250 73.53 13 14.52 69.93 3.45E-02 30 112 3.73 82 
260 76.47 15.47 72.82 3.17E-02 30 114 3.80 84 
270 79.41 14 17.18 70.19 3.83E-02 36 112 3.11 76 
280 82.35 16.03 68.02 3.44E-02 32 104 3.25 72 
290 85.29 15 14.51 73.16 3.69E-02 38 116 3.05 78 
300 88.24 14.52 70.86 3.28E-02 32 102 3.19 70 
310 91 .18 16 17.50 70.41 2.95E-02 32 94 2.94 62 
320 94.12 17.50 70.41 2.95E-02 32 94 2.94 62 
330 97.06 17 14.86 68.18 0.033346 34 124 3.65 90 
340 100.00 15.11 58.14 3.19E-02 30 106 3.53 76 

REST 1 0.53 95.40 5.23E-04 1 80 80.00 79 
REST2 0.53 77.74 6.51 E-04 1 80 80.00 79 



114 
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TIME %TIME CYCLE FORCE MPF RMS LF HF HF/LF HF-LF 
10 3.33 1 17.50 85.54 1.92E-02 44 126 2.86 82 
20 6.67 17.50 85.54 1.92E-02 44 126 2.86 82 
30 10.00 2 13.65 87.47 1.41E-02 38 116 3.05 78 
40 13.33 16.33 87.37 1.60E-02 32 176 5.50 144 
50 16.67 3 16.21 83.64 2.24E-02 42 122 2.90 80 
60 20.00 16.06 82.74 1.33E-02 40 138 3.45 98 
70 23.33 4 16.25 80.13 2. 11E-02 32 138 4.31 106 
80 26.67 16.04 78.52 2.50E-02 38 116 3.05 78 
90 30.00 5 16.11 82.26 2.83E-02 35 129 3.69 94 
100 33.33 16.04 82.87 2.04E-02 44 114 2.59 70 
110 36.67 6 16.84 79.38 2.48E-02 34 126 3.71 92 
120 40.00 16.84 79.38 2.48E-02 34 126 3.71 92 
130 43.33 7 15.51 76.80 2.58E-02 34 118 3.47 84 
140 46.67 15.81 73.01 2.80E-02 42 120 2.86 78 
150 50.00 8 16.00 71 .15 2.91E-02 33 118 3.58 85 
160 53.33 15.77 70.02 2.82E-02 34 114 3.35 80 
170 56.67 9 16.37 69.60 0.033802 36 106 2.94 70 
180 60.00 16.37 69.60 0.033802 36 106 2.94 70 
190 63.33 10 15.92 74.43 2.67E-02 36 128 3.56 92 
200 66.67 16.21 64.28 3.43E-02 36 104 2.89 68 
210 70.00 11 12.21 87.25 3.70E-02 34 144 4.24 110 
220 73.33 16.44 66.87 3.00E-02 26 106 4.08 80 
230 76.67 12 16.03 67.71 2.95E-02 32 114 3.56 82 
240 80.00 16.03 67.71 2.95E-02 32 114 3.56 82 
250 83.33 13 15.89 74.17 3.48E-02 30 118 3.93 88 
260 86.67 15.89 74.17 3.48E-02 30 118 3.93 88 
270 90.00 14 17.30 64.43 3.44E-02 26 110 4.23 84 
280 93.33 16.03 72.18 3.12E-02 24 104 4.33 80 
290 96.67 15 14.19 71 .11 3.22E-02 34 100 2.94 66 
300 100.00 13.19 66.23 4.32E-02 31 99 3.19 68 

REST 1 0.53 52.20 5.83E-04 1 80 80.00 79 
REST2 0.53 55.67 6.95E-04 1 80 80.00 79 
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$01:;J$0METRfCJ:;).AY::,1 .MVC#32KGWFl;MA.L~E\. 

TIME %TIME FORCE MPF RMS LF HF HF/LF HF-LF 
1 0.33 7.73 108.76 5 .16E-03 44 158 3 .59 114 
10 3.33 8.31 98.61 5.28E-03 34 152 4.47 118 
20 6 .67 8.29 98.73 6 .15E-03 44 162 3 .68 118 
30 10.00 8.69 89.90 5 .72E-03 44 132 3 .00 88 
40 13.33 8.76 86.85 5.64E-03 46 112 2.43 66 
50 16.67 7.52 94.07 4.71 E-03 36 142 3.94 106 
60 20.00 8.33 88.49 4.61E-03 42 154 3.67 112 
70 23.33 7.69 93.41 7 .76E-03 38 156 4.11 118 
80 26.67 8.28 86.28 5.99E-03 34 134 3.94 100 
90 30.00 8.97 92.90 8.49E-03 40 156 3.90 116 

100 33.33 8.07 88.93 7.19E-03 42 142 3.38 100 
110 36.67 9.05 93.99 5.16E-03 38 152 4.00 114 
120 40.00 8.26 95.85 4.16E-03 42 156 3 .71 114 
130 43.33 8 .42 97.23 6 .99E-03 38 166 4.37 128 
140 46.67 8.30 79.37 6 .49E-03 30 126 4.20 96 
150 50.00 8.14 86.76 5.59E-03 36 156 4.33 120 
160 53.33 7.99 89.78 4.78E-03 34 152 4.47 118 
170 56.67 8.60 83.54 5.27E-03 30 136 4.53 106 
180 60.00 8.34 84.40 6 .31 E-03 44 136 3.09 92 
190 63.33 6 .89 85.97 4.76E-03 36 138 3.83 102 
200 66.67 9.40 85.23 6 .88E-03 36 154 4.28 118 
210 70.00 8.28 83.50 5.95E-03 28 142 5.07 114 
220 73.33 7 .68 87.45 4.50E-03 38 138 3.63 100 
230 76.67 7 .53 80.70 1.11 E-02 36 122 3.39 86 
240 80.00 7 .35 87.13 5.91E-03 40 128 3.20 88 
250 83.33 5.87 88.26 6 .50E-03 36 138 3.83 102 
260 86.67 6 .37 77.67 7.22E-03 30 114 3.80 84 
270 90.00 6.73 84.34 9.41E-03 36 130 3.61 94 
280 93.33 8.53 97.26 7.51E-03 40 156 3.90 116 
290 96.67 6 .92 97.49 7.44E-03 42 132 3.14 90 
300 100.00 8.30 79.74 8.18E-03 28 114 4.07 86 

REST 1 -0.57 83.72 6.13E-04 2 80 40.00 78 
REST2 -0.57 65.64 8.16E-04 1 80 80.00 79 
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S07 ISQME.TRlC DAY 2 MVC=32 {f;EMALE} .,.,,r i~i.if"W~ I 
TIME %TIME FORCE MPF RMS LF HF HF/LF HF-LF 

1 0.45 6.33 113.94 5.58E-03 38 172 4.53 134 
10 4.55 8.72 115.66 6.86E-03 52 176 3.38 124 
20 9.09 9.37 107.70 7.21E-03 46 172 3.74 126 
30 13.64 9.72 118.10 8 .87E-03 48 188 3.92 140 
40 18.18 8.24 108.95 7.62E-03 48 172 3.58 124 
50 22.73 8.09 99.29 6.39E-03 36 172 4.78 136 
60 27.27 7.58 98.71 0.007791 44 160 3.64 116 
70 31 .82 7.17 105.55 7.53E-03 38 168 4.42 130 
80 36.36 7.80 91 .43 6.02E-03 32 162 5.06 130 
90 40.91 9.39 98.41 8.22E-03 40 158 3.95 118 

100 45.45 9.38 97.09 7.61E-03 40 174 4.35 134 
110 50.00 9.37 104.02 1.09E-02 34 176 5.18 142 
120 54.55 9.39 99.17 6.48E-03 32 158 4.94 126 
130 59.09 8.85 99.33 7.94E-03 42 160 3.81 118 
140 63.64 8.28 100.14 5.39E-03 36 148 4.11 112 
150 68.18 10.11 113.76 0.010431 44 178 4.05 134 
160 72.73 10.40 100.02 7.48E-03 34 164 4.82 130 
170 77.27 7.15 104.08 5.76E-03 38 166 4.37 128 
180 81 .82 8.59 97.37 7.00E-03 44 148 3.36 104 
190 86.36 9.33 98.32 5.95E-03 30 140 4.67 110 
200 90.91 7.17 89.96 7.68E-03 28 138 4.93 110 
210 95.45 10.04 99.80 9.05E-03 36 180 5.00 144 
220 100.00 9.39 102.75 9.13E-03 36 168 4.67 132 

REST 1 -1.29 51 .02 7.76E-04 1 80 80.00 79 
REST2 -1 .41 64.81 7.21 E-04 1 46 46.00 45 
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S08 ISOMET..ffiC DAY 1 MVC=2:SKG'{FEMALE) ,., .. #?''t i 
TIME %TIME FORCE MPF RMS LF HF HF/LF HF-LF 

1 0.25 9 .48 101 .11 6.35E-03 34 160 4.71 126 
10 2.50 7 .15 93.82 6.44E-03 34 150 4.41 116 
20 5.00 7 .03 95.76 6.31E-03 52 140 2.69 88 
30 7.50 7 .16 90.02 7.81 E-03 18 152 8.44 134 
40 10.00 7 .14 96.74 6.58E-03 38 130 3.42 92 
50 12.50 7 .07 100.71 6.02E-03 34 146 4.29 112 
60 15.00 7 .02 85.63 7.04E-03 36 138 3.83 102 
70 17.50 7.12 90.41 7.83E-03 30 148 4.93 118 
80 20.00 7 .09 96.59 6.94E-03 36 160 4.44 124 
90 22.50 6 .69 87.65 8.98E-03 34 140 4.12 106 

100 25.00 7.07 92.62 7.89E-03 42 152 3.62 110 
110 27.50 6 .97 92.42 1.05E-02 44 154 3.50 110 
120 30.00 7.06 87.39 9.85E-03 32 132 4.13 100 
130 32.50 7.13 87.31 0.007504 44 142 3.23 98 
140 35.00 7.09 71 .97 1.01E-02 28 136 4.86 108 
150 37.50 7.09 74.60 9.09E-03 28 124 4.43 96 
160 40.00 7.16 87.01 8.61E-03 32 136 4.25 104 
170 42.50 7.11 80.99 6.72E-03 24 134 5.58 110 
180 45.00 8.60 83.70 0.011949 38 134 3.53 96 
190 47.50 7.14 88.67 9.92E-03 38 152 4.00 114 
200 50.00 7 .10 86.57 7.33E-03 28 140 5.00 112 
210 52.50 6 .97 90.07 6 .59E-03 40 138 3.45 98 
220 55.00 7 .17 81 .72 8.01E-03 34 126 3.71 92 
230 57.50 7 .10 77.05 1.09E-02 34 122 3.59 88 
240 60.00 6 .99 79.60 0.011167 28 134 4.79 106 
250 62.50 7.14 67.23 1.35E-02 22 124 5.64 102 
260 65.00 7 .14 67.23 1.35E-02 22 124 5.64 102 
270 67.50 6 .42 81 .04 1.33E-02 36 124 3.44 88 
280 70.00 7 .05 91 .91 1.32E-02 40 152 3.80 112 
290 72.50 7 .14 82.24 0.010886 28 124 4.43 96 
300 75.00 7 .17 75.61 1.50E-02 28 124 4.43 96 
310 77.50 7 .13 77.30 1.75E-02 24 134 5.58 110 
320 80.00 7.22 82.82 1.56E-02 32 156 4.88 124 
330 82.50 7 .11 77.82 1.26E-02 26 130 5.00 104 
340 85.00 6 .62 74.43 1.35E-02 32 124 3.88 92 
350 87.50 6 .85 70.63 1.40E-02 24 124 5.17 100 
360 90.00 6 .74 68.72 1.03E-02 26 110 4.23 84 
370 92.50 7 .16 64.88 1.56E-02 24 128 5.33 104 
380 95.00 5.37 71 .23 1.56E-02 24 122 5.08 98 
390 97.50 6 .89 63.84 1.28E-02 22 118 5.36 96 
400 100.00 5.01 67.10 1.88E-02 24 124 5.17 100 

REST 1 -1.68 34.17 1.54E-03 1 80 80.00 79 
REST2 -1.68 67.16 1.33E-03 1 100 100.00 99 
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·SQ8itSQ.M&:J,RIG:1:0AY:'2~:MVQ::~l,(G'=tt:EMAl£~:mmntKiMM:tt::1 

TIME %TIME FORCE MPF RMS LF HF HF/LF HF-LF 
1 0.38 9.39 95.75 4.89E-03 34 142 4.18 108 
10 3.85 9.39 80.59 5.38E-03 32 126 3.94 94 
20 7.69 9.39 88.21 5.35E-03 38 146 3.84 108 
30 11 .54 9.39 85.59 6.37E-03 32 134 4.19 102 
40 15.38 9.39 87.11 7.53E-03 36 142 3.94 106 
50 19.23 9.39 101.42 5.74E-03 34 162 4.76 128 
60 23.08 9.40 89.91 7.04E-03 36 152 4.22 116 
70 26.92 9.39 89.97 5.76E-03 26 160 6.15 134 
80 30.77 9.39 100.28 6.21E-03 40 160 4.00 120 
90 34.62 9.44 87.97 8.18E-03 38 140 3.68 102 
100 38.46 9.39 79.55 6.63E-03 34 138 4.06 104 
110 42.31 9.39 84.33 6.40E-03 36 130 3.61 94 
120 46.15 9.39 91 .19 8.63E-03 36 144 4.00 108 
130 50.00 9.39 109.97 6.82E-03 36 174 4.83 138 
140 53.85 9.39 93.71 6.11E-03 44 142 3.23 98 
150 57.69 9.39 96.01 6.20E-03 34 172 5.06 138 
160 61 .54 9.39 90.95 9.40E-03 36 150 4.17 114 
170 65.38 9.39 104.44 1.15E-02 52 158 3.04 106 
180 69.23 9.39 102.27 1.06E-02 38 158 4.16 120 
190 73.08 9.39 93.94 9.32E-03 38 172 4.53 134 
200 76.92 9.63 92.36 1.12E-02 34 162 4.76 128 
210 80.77 9.56 96.78 1.26E-02 38 154 4.05 116 
220 84.62 9.36 73.41 1.10E-02 20 124 6.20 104 
230 88.46 8.82 83.64 9.71E-03 26 134 5.15 108 
240 92.31 9.38 78.11 1.25E-02 26 144 5.54 118 
250 96.15 8.30 74.92 1.49E-02 22 122 5.55 100 
260 100.00 7.83 84.68 1.09E-02 30 138 4.60 108 

REST 1 0.53 84.06 1.42E-03 14 118 8.43 104 
REST2 0.55 88.39 5.63E-04 1 144 144.00 143 
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$01 ' ISOMErRIC:DAW·1 :; CORREtATIONS;,. :l ::::i\~~tt\~=·: I 
% TIME FORCE MPF RMS LF HF HFll..F HF-LF 

%TIME 1 
FORCE -0.61791 1 
MPF -0.77748 0.534932 1 
RMS 0.112341 0.405927 -0.16961 1 
LF -0.41354 0.195691 0 .160104 0 .343557 1 
HF -0.59752 0.386848 0.821567 -0.26668 0.006026 1 
HF/LF -0.04632 0.087328 0 .372722 -0 .4605 -0.80738 0.561495 1 
HF-LF -0.42004 0.296724 0 .718056 -0.36914 -0.33833 0.938972 0.806129 1 
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S01~lSOMETRlC::o-A Y 4 CORREL.A TIONS .,,:. I 
% TIME FORCE MPF RMS LF HF HFILF HF-LF 

%TIME 1 
FORCE -0.69354 1 
MPF -0 .85228 0.516208 1 
RMS 0.75948 -0.50014 -0.55805 1 
LF -0 .44717 0.08445 0 .264748 -0.23903 1 
HF -0.76949 0.622831 0 .767933 -0.46567 0.160938 1 
HF/LF -0.14149 0.352763 0 .306228 -0.11863 -0.75451 0.521305 1 
HF-LF -0.60624 0.589066 0.669363 -0.37808 -0.19453 0.936802 0.785561 1 
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S02 ISOMETRK>CORRELATIONS"I#t " ., l 
% TIME FORCE MPF RMS LF HF HFILF HF-LF 

% TIME 1 
FORCE -0.54421 1 
MPF -0.69519 0.51761 1 
RMS 0.5939 0 .058881 -0.18529 1 
LF -0.11964 0 .080255 0.463569 -0.09935 1 
HF -0.47457 0.423484 0.75417 0.062277 0.340726 1 
HF/LF -0.13135 0 .118013 -0.20805 0.070784 -0.88361 0.003782 1 
HF-LF -0.39811 0.372905 0.450625 0.12884 -0.32273 0.779892 0.592072 1 
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S02 PULSEO:,JSOMETRJC TRtAUt CORRELA TIO NS .. :~:,,, .. ·'~:~:-::: I 

nME CYCLE FORCE MPF RMS LF HF HFA..F HF-LF 
TIME 1 
CYCLE 1 1 
FORCE -0.28408 -0.20272 1 
MPF -0.48479 -0.57224 -0.00969 1 
RMS o.n214 0.7485 -0.07131 -0.07741 1 
LF -0.4697 -0.31308 0.09361 0.27862 -0.30372 1 
HF -0.59851 -0.59804 -0.02456 0.717245 -0.23128 0.434853 1 
HF/LF 0.004931 -0.19512 -0.10936 0.280222 0.128134 -0.67666 0.360153 1 
HF-LF -0.49023 -0.57587 -0.06091 0.690225 -0.14527 0.118114 0.94556 0.641697 1 
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$02 PUL~Et!SOMETRIC TR!At#ZCORRELATIONS ? >id'· l 
CYCLE FORCE MPF RMS LF HF HFILF HF-LF 

CYCLE 1 
FORCE -0.15557 1 
MPF -0.37454 0.400312 1 
RMS 0.7897 -0.17919 -0.51057 1 
LF 0.54716 -0.02861 -0.0173 0.277808 1 
HF -0.4474 -0.33703 0.383789 -0 .39611 0.151637 1 
HF/LF -0.69244 -0.07219 0.140633 -0.4908 -0.92215 0.152923 1 
HF-LF -0.58791 -0.31909 0.383098 -0.49824 -0.24695 0.920375 0.514736 1 
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soz PULSED iSOM.E;JRIC TR1AJ~;;f#3-CORRElA TIONS ··~uw@rv ... I 
CYCLE FORCE MPF RMS LF HF HFILF HF-LF 

CYCLE 1 
FORCE -0.16999 1 
MPF -0.64361 0.106162 1 
RMS 0.934373 -0.10029 -0 .09869 1 
LF -0.17026 0.164337 0.717422 0.006973 1 
HF -0.23196 -0.28488 0.428611 -0.05962 0.331936 1 
HF/LF 0.022643 -0 .36205 -0 .4598 -0.02201 -0.79198 0 .293285 1 
HF-LF -0.15109 -0 .37745 0.111293 -0.06601 -0.12415 0.894795 0 .683364 1 
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·. 

$03 ISOMETRIC :CORRELA TlQNS%1%WiW\!: I 
% TIME FORCE MPF RMS LF HF HFILF HF-LF 

% TIME 1 
FORCE -0.58047 1 
MPF -0.86445 0.343818 1 
RMS 0.880525 -0.56089 -0 .68782 1 
LF -0.76581 0.193683 0.771351 -0 .50689 1 
HF -0.7844 0 .369726 0.872097 -0.69872 0.629415 1 
HF/LF 0.390052 0 .055259 -0.37778 0.124651 -0.79186 -0.0524 1 
HF-LF -0.49726 0.343874 0.605264 -0.55766 0.146676 0 .860985 0.451612 1 
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·. 

:S04 lSOMETRJCOAY:1 CORR.etAilONS-V=' ···~::;:::giww 1 

"TIME FORCE MPF RMS LF HF Hll.. H-L 

%TIME 1 
FORCE -0.64968 1 
MPF -0.4503 0.422065 1 
RMS -0.25863 0.174217 0.202587 1 
LF -0.37465 0.438572 0 .176513 0.26377 1 
HF -0.01982 -0.01411 0.346772 -0.0119 0.080311 1 
H/L 0.289794 -0.39309 0 .046129 -0 .28727 -0.84336 0.440839 1 
H-L 0.145609 -0.20533 0.24683 -0.12668 -0.36303 0.899613 0.781575 1 
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.SO•f !SOMeTRtc'.DAY 2 CORRElATIONSi=:bif'' I 
% TIME FORCE MPF RMS LF HF HIL H-L 

% TIME 1 
FORCE -0.65212 1 
MPF -0.75 0.670588 1 
RMS 0.161111 -0.47196 -0.34484 1 
LF -0.51305 0.476355 0.384497 0.029455 1 
HF -0.04411 0.16498 0.28883 -0.12491 0.126208 1 
H/l 0.443691 -0.35371 -0.17231 -0.09189 -0.79384 0.485277 1 
H-L 0.153961 -0.02226 0.133513 -0.13286 -0.26095 0.9247 0.77689 1 
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sos.::1sOMET'RtO:C¢RRSQ\1lONSJftN:M::nm1 
% TIME FORCE MPF RMS LF HF HFA..F HF-LF 

% TIME 1 
FORCE -0.64315 1 
MPF -0.3925 -0.55002 1 
RMS 0.597892 0.370771 -0.59878 1 
LF -0.54336 0.800016 -0.35896 0.353038 1 
HF -0.40025 0.089344 0.515242 -0 .15752 0.301 742 1 
HF/LF 0.250697 -0.77288 0.563279 -0.5067 -0.82942 -0 .3606 1 
HF-LF -0 .23213 -0.23851 0.686587 -0.3108 -0.09977 0.91853 -0.0324 1 
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SOSPULSED 1SOMETRICrtRI;i\:tb~l'H 
% TIME CYCLE FORCE MPF RMS LF HF HFILF HF-LF 

% TIME 1 
CYCLE 1 1 
FORCE 0.145023 0.402973 1 
MPF -0.19598 0.098276 0.042077 1 
RMS 0.544025 0.753896 0.489237 -0.44639 1 
LF 0.181053 0.315365 0.758502 0.118448 0.345944 1 
HF -0.32481 0.006135 0.20664 0.768766 -0.19361 0.267335 1 
HF/LF -0.08161 0.107761 -0.22658 0.145117 -0.21182 -0.47584 0.210765 1 
HF-LF -035814 -0.16207 -0.40102 0.571526 -037059 -0.531 0.628212 0.573349 1 



130 

S~;flUl$.Et!!l$t\5.METRlC:rn~~~::m;~ 
% TIME CYCLE FORCE MPF RMS LF HF HFILF HF-LF 

% TIME 1 
CYCLE 1 1 
FORCE 0.158671 0.285405 1 
MPF -0.05752 -0.15806 0.078876 1 
RMS 0.806054 0.859706 0.324887 0.059484 1 
LF -0.16769 -0.01672 0.067358 0.502718 0.155624 1 
HF 0.16796 0.231466 0.110519 0.559161 0.268217 0.39673 1 
HF/LF 0.207842 0.157178 -0.03169 -0.30767 -0.10263 -0.90124 0.010218 1 
HF-LF 0.297689 0.294037 0.06235 0.193771 0.157211 -0.34594 0.724015 0.687685 1 
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S05 PULsEP JSOMETRJC TRJAl.::='#3 t:· ~,,. J 
% TIME CYCLE FORCE MPF RMS LF HF HFILF HF-LF 

%TIME 1 
CYCLE 1 1 
FORCE 0.257359 0.441172 1 
MPF -0.25773 -0.2419 0.026785 1 
RMS 0.642046 0.647381 0.407722 -0.53962 1 
LF -0.14587 0.050107 0.288882 0.543434 -0.23885 1 
HF -0.27106 -0.21093 0.008606 0.686389 -0.44424 0.395568 1 
HF/LF 0.099596 -0.04396 -0.3677 -0.31727 0.107072 -0.92784 -0.08296 1 
HF-LF -0.12865 -0.24282 -0.24376 0.174013 -0.21103 -0.49856 0.598936 0.730699 1 
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SQ6:EO}:sED'lSOMETIUQTl{IAL.#l I 
% TIME CYCLE FORCE MPF RMS LF HF HF/LF HF-LF 

% TIME 1 
CYCLE 1 1 
FORCE 0.204953 0.508907 1 
MPF -0.39468 -0.4562 -0.07653 1 
RMS 0.443501 0.664209 0.347747 -0.3978 1 
LF -0.73728 -0.7178 -0.05555 0.25745 -0.2819 1 
HF -0.31649 -0.55419 -0.12084 0.7104 -0.274 0.239 1 
HF/ LF 0.384289 0.346354 -0.0441 0.31401 0.02236 -0.671 0.5506 1 
HF-LF -0.06783 -031608 -0.10447 0.63817 -0.1827 -0.103 0.9413 0.79725 1 
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S06".e'(JM1$1) lSOM.ET.RJC:itlUAL #2 I 
% TIME CYCLE FORCE MPF RMS LF HF HFILF HF-LF 

% TIME 1 
CYCLE 1 1 
FORCE -0.01842 0.04228 1 
MPF -0.61954 -0.6164 0.042146 1 
RMS 0.736133 0.745246 -0.02185 -0.6161 1 
LF -0.48209 -0.46366 -0.01678 0.15995 -0.1061 1 
HF -0.52584 -0.43309 -0.14329 0.5886 -0.4704 0.1234 1 
HF/LF 0.159271 0.216479 -0.07396 0.11454 -0.1323 -0.8097 0.4032 1 
HF-LF -0.16726 0.003043 -0.11502 0.41733 -0.3467 -0.4983 0.7989 0.84297 1 



134 

S~D\l$.~1CS~~Tt{t~~xltt~J.m~3.ll 
% TIME CYCLE FORCE MPF RMS LF HF HFILF HF-LF 

% TIME 1 
CYCLE 1 1 
FORCE -0.32019 -0.18823 1 
MPF -0.78372 -0.73478 0.560284 1 
RMS 0.865126 0.855486 0.596411 0.0043 1 
LF -0.70518 -0.72198 0.836765 0.73802 0.39232 1 
HF -0.56741 -0.41048 0.541968 0.80202 0.04783 0.54486 1 
HF/ LF 0.162817 0.334U9 -0.95767 -0.5982 -0.6922 -0.867 -0.5332 1 
HF-LF -0.33042 -0.13392 0.103216 0.47744 -0.1976 0.00072 0.83892 -0.0732 1 
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S01 ISOMETRIC OAY 1 CORRELAT.IONS I 
"TIME FORCE MPF RMS LF HF HFILF HF-LF 

% TIME 1 
FORCE -0.4339 1 
MPF -0.50748 0.130841 1 
RMS 0.432585 -0.16383 -0.279 1 
LF -0.42242 0.14942 0.568177 -0.1338 1 
HF -0.42174 0.341305 0.701067 -0.28775 0.280684 1 
HF/LF 0.069588 0.156005 -0.04924 -0.11801 -0.74047 0.421987 1 
HF-LF -0.29164 0.303018 0.531465 -0.25275 -0.05617 0.942518 0.696762 1 
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SQ1i:tS.eMas:t.Sl.CfDAY\'.2::c-oR.F:{St;Ar:toNsWMit§T@t:J 
% TIME FORCE MPF RMS LF HF HFILF HF-LF 

%TIME 1 
FORCE 0.14735 1 
MPF -0.4686 0.83012 1 
RMS 0.09196 0.79195 0 .73151 1 
LF -0.61292 0.74046 0 .90674 0.6377 1 
HF -0.46172 0.82987 0.9028 0.79203 0.83052 1 
HF/LF 0.4402 -0.90671 -0.84724 -0.71273 -0.80501 -0.8151 1 
HF-LF -0.18747 0.72935 0.72301 0.74411 0 .54972 0 .92183 -0.6623 1 



137 

S08:lSOMETRlC DAY1 CORRELA.TlONS < l 
% TIME FORCE MPF RMS LF HF HFILF HF-LF 

%TIME 1 
FORCE -0.45299 1 
MPF -0 .81322 0.409302 1 
RMS 0.84163 -0.40606 -0 .72545 1 
LF -0.50569 0.211873 0.682788 -0.47173 1 
HF -0 .64677 0.396248 0.787993 -0.44906 0.466947 1 
HF/LF 0.187307 -0.0674 -0 .35665 0 .270538 -0 .85118 -0.02888 1 
HF-LF -0 .3971 0.306911 0.440497 -0 .19736 -0.12574 0.818554 0.520522 1 
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S08·l~OMETRIC DAY 2 CORRELATIONS-+·= at§ I 
% TIME FORCE MPF RMS LF HF HFILF HF-LF 

%TIME 1 
FORCE -0.46586 1 
MPF -0.17468 0.349281 1 
RMS 0.858837 -0.38946 -0.23463 1 
LF --0.26778 0.401956 0.69385 --0.23518 1 
HF --0.00876 0 .377749 0.816524 -0.14334 0.452195 1 
HF/LF 0.381952 -0.25451 --0.35974 0.284207 --0.86339 --0.00701 1 
HF-LF 0.124129 0 .22245 0.568373 --0.04306 0.006763 0.894957 0.424019 1 
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S01J SOMETRtC OAY::t=REGRESSION ON MPF ,.,;;):-,.,. ::/J( ::::ti 
Regression Statistics 

Multiple R 0.777475 
R Square 0.604468 
Adjusted R Square 0.582494 
Standard Error 4.15639 
Observations 20 

Analysis of Variance 
df m of SquarBs ean SquarB F igniffcance F 

Regression 1 475.2223 475.2223 27.50833 5.48E-05 
Residual 18 310.9604 17.27558 
Total 19 786.1827 

Coefficients tandard Error t Statistic P-value Lower 95% Upper 95% 

Intercept 71 .14303 1.793734 39.66198 9.74E-20 67.37453 74.91153 
%TIME -0.16085 0.030667 -5.24484 4.61 E-05 -0.22528 -0.09642 

sot ISOMETRIC DAY;t REGRESSION ON RMS I 
Regression Statistics 

Multiple R 0.112341 
R Square 0.01262 
Adjusted R Square -0.04223 
Standard Error 0.004521 
Observations 20 

Analysis of Variance 
df m of SquarBs ean SquarB F igniffcance F 

Regression 1 4.7E-06 4.7E-06 0.230072 0.637247 
Residual 18 0.000368 2.04E-05 
Total 19 0.000373 

Coefficients tandard Error t Statistic P-value Lower 95% UpP4Jr95% 

Intercept 0.016016 0.001951 8.209362 1.14E-07 0.011917 0.0201 15 
% TIME 1.6E-05 3.34E-05 0.479658 0.636945 -5.4E-05 8.61E-05 



Regression Statistics 

Multiple R 
R Square 
Adjusted R Square 
Standard Error 
Observations 

Analysis of Variance 

Regression 
Residual 
Total 

Intercept 
% TIME 

Regression Statistics 

Multiple R 
R Square 
Adjusted R Square 
Standard Error 
Observations 

Analysis of Variance 

Regression 
Residual 
Total 

Intercept 
% TIME 

0.852281 
0.726383 
0.711982 
3.444274 

21 
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di m of Squares ean Square F ignifJcance F 

1 598.~735 598.3735 50.44022 9.37E-07 
19 225.3975 11 .86302 
20 823.771 

Coefffcients tandard Error t Statistic P-va/ue Lower 95% Upper 95% 

71 .47929 1.452936 49.19645 2.42E-22 68.43825 74.52032 
-0.17654 0.024857 -7.10213 6.97E-07 -0.22856 -0.12451 

0.601244 
0.361494 
0.327888 
0.004072 

21 

di m of Squares 

1 0.000178 
19 0.000315 
20 0.000493 

Coefffcients tandard Error 

0.011661 0.001718 
9.64E-05 2.94E-05 

ean Square 

0.000178 
1.66E-05 

t Statistic 

6.78904 
3.27978 

F lgnifJcance F 

10.75696 0.003941 

P-va/ue Lower95% Upper95% 

1.33E-06 0.008066 0.015257 
0.003746 3.49E-05 0.000158 



141 

s:Q.i'l~O~IY.J:PA".(\!iREGRESSJON:.ONRf,FU::-:,_,,/::Jt:ti l 

Regression Statistics 

Multiple R 0.420037 
R Square 0.176431 
Adjusted R Square 0.130677 
Standard Error 10.61089 
Observations 20 

Analysis of Variance 

df of Squares ean Square F gnificanu F 

Regression 1 434.1615 434.1615 3.856094 0.065203 
Residual 18 2026.638 112.591 
Total 19 2460.8 

Coefficients ndard Error t Suuisric P-value Lower 95% Uppq95% 

Intercept 85.29104 4.579242 18.62558 1.16E-13 75.6704 94.91168 
% TIME -0.15374 0.078291 -1.96369 0.064369 -0.31822 0.010744 

sdi.ISOMETRlO:PJ\Y,.2 ,:REGRESSIONON HF .. LP .+::::::::::::=t i 
Regression Statistics 

Multiple R 0.606242 
R Square 0.367529 
Adjusted R Square 0.334241 
Standard Error 6.591323 
Observations 21 

Analysis of Variance 

df of Squares ean Square F gnificanu F 

Regression 1 479.6776 479.6776 11.04089 0.003577 
Residual 19 825.4652 43.44554 
Total 20 1305.143 

Coefficients ndard Error t Statistic P-value Lower 95% Uppq95% 

Intercept 87.47818 2.78049 31.46143 1.65£-18 81.65855 93.29782 
% TIME -0.15806 0.047568 -3.32278 0.003394 -0.25762 -0.0585 
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$02 i$OMETRIC R~RESSION-ON MF'F -::::;.: . _;,,.,. I 
Regression Statistics 

Multiple R 0.695186 
R Square 0.483284 
Adjusted R Square 0.452889 
Standard Error 5.584695 
Observations 19 

Analysis of Variance 
di m of Squares ean Square F ignlffcance F 

Regression 1 495.904 495.904 15.90006 0.000953 
Residual 17 530.2098 31 .18881 
Total 18 1026.114 

Coefficients tandard Error t Statistic P-va/ue Lower95% Upper95% 

Intercept 84.97626 2.468356 34.42626 7.01E-18 79.76848 90.18404 
%TIME -0.16816 0.042171 -3.98749 0.000864 -0.25713 -0.07918 

S02 tSOMETRLC REGRE$.SIOMON RMS· .:.;:·.· :}Vt l 
Regression Statistics 

Multiple R 0.5939 
R Square 0.352718 
Adjusted R Square 0.314642 
Standard Error 0.002634 
Observations 19 

Analysis of Variance 

df m of Squares ean Square F ign/ffcance F 
Regression 1 6.43E-05 6.43E-05 9.263657 0.007339 
Residual 17 0.000118 6.94E-06 
Total 18 0.000182 

Coefffcients tandard Error t Statistic P-va/ue Lower95% Upper95% 

Intercept 0.006326 0.001164 5.433673 3.67E-05 0.00387 0.008782 
% TIME 6.05E-05 1.99E-05 3.043626 0.006989 1.86E-05 0.000103 
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i$Q2:leVJ4$t;Q]J$.9.MJ;;JElCffR(AW:tt.CRt:GRE;§SlONHQ~fMRfifttttl 
Regression StaUsUcs 

Multiple R 0.484793 
R Square 0.235024 
Adjusted R Square 0.200252 
Standard Error 5.263503 
Observations 24 

Analysis of Variance 
df m of Squal'8s ean Squal'8 F ignmcance F 

Regression 1 187.2564 187.2564 6.759071 0.016352 
Residual 22 609.4982 27.70446 
Total 23 796.7546 

Coefffcients tandard Error t Statistic P-value Lower95% Upper95% 

Intercept 99.60012 2.217779 44.90984 6.58E-24 95.00072 104.1995 
%TIME -0.09685 0.037251 -2.59982 0.016016 -0 .1741 -0.01959 

;$P2l.l?VLSEDHSOMEJRIC~~wa1'AlJ#1fR,EGRESSfON!::ON·.RM$@@W'I 

Regression StaUstics 

Multiple R 0.77214 
R Square 0.5962 
Adjusted R Square 0.577845 
Standard Error 0.001259 
Observations 24 

Analysis of Variance 
df m of Squal'8s ean Squal'8 F ignmcance F 

Regression 1 5.15E-05 5.15E-05 32.4824 9.87E-06 
Residual 22 3.49E-05 1.59E-06 
Total 23 8.64E-05 

Coefffcients tandard Error t StaUsUc P-value Lower95% Upper95% 

Intercept 0.003269 0.000531 6.161133 2.76E-06 0.002168 0.004369 
%TIME 5.08E-05 8.91 E-06 5.699333 8.38E-06 3.23E-05 6.93Ec05 



Regression statistics 

Multiple R 
R Square 
Adjusted R Square 
Standard Error 
Observations 

Analysis of Variance 

Regression 
Residual 
Total 

Intercept 
%TIME 
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0.406704 
0.165408 
0.123679 
7.064154 

22 

df m of Squares 

1 197.8034 
20 998.0454 
21 1195.849 

Coefffcients tandard Error 

100.1512 3.117887 
. -0 .10398 0.052226 

ean Square 

197.8034 
49.90227 

t staastic 

32.12151 
-1 .99093 

F igniffcance F 

3.963815 0.060327 

P-va/ue Lower95% 

2.45E-19 93.64744 
0.059659 -0.21292 

S0:2fRWl$EQ:J$OMEi1Rte':fra.tAUt#21ReGRESSfON~:oN MPF#iH#ttMiHMHMi:I 
Regression Statistics 

Multiple R 0.740943 
R Square 0.548996 
Adjusted R Square 0.526446 
Standard Error 0.001881 
Observations 22 

Analysis of Variance 

df m of Squares ean Square F igniffcance F 

Regression 1 8.62E-05 8.62E-05 24.34549 8E-05 
Residual 20 7.08E-05 3.54E-06 
Total 21 0.000157 

Coefficients tandarri Error t Statistic P-value Lower95% 

Intercept 0.00196 0.00083 2.36048 0.028001 0.000228 
%TIME 6.86E-05 1.39E-05 4.934115 7E-05 3.96E-05 

Upper95% 

106.655 
0.004963 

Upper95% 

0.003692 
9.76E-05 
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so~ fl.l.LSEDJSOMETRlG<H~.tAL #3 .REGR~SS!ON ON Mf'.f;::::·:.,.:.:.'.'.' I 
Regression Statistics 

Multiple R 0.211246 
R Square 0.044625 
Adjusted R Square -0.00845 
Standard Error 7.317399 
Observations 20 

Analysis of Variance 
df m of Squares ean Square F ignfflcance F 

Regression 1 45.01846 45.01846 0.84077 0.371299 
Residual 18 963.7978 53.54432 
Total 19 1008.816 

Coefflcients tandard Enor t Statistic P-value Lower9S% Upper9S% 

Intercept 91.14699 3.399162 26.81455 1.46E-16 84.00561 98.28837 
%TIME -0.05204 0.056751 -0.91694 0.370669 -0.17127 0.067193 

$0:"2 PULSED lSOME(RtC·XR.1AL #3 REGRESSION.ON RMS··::-= >d 
Regression Statistics 

Multiple R 0.888341 
R Square 0.78915 
Adjusted R Square 0.777436 
Standard Error 0.001148 
Observations 20 

Analysis of Variance 
df m of Squares ean Square F ignfflcance F 

Regression 1 8.88E-05 8.88E-05 67.36874 1.7E-07 
Residual 18 2.37E-05 1.32E-06 
Total 19 0.000112 

Coefficients tandard Enor t Statistic P-value Lower9S% Upper9S% 

Intercept 0.003766 0.000533 7.063405 1.01E-06 0.002646 0.004886 
%TIME 7.31 E-05 8.9E-06 8.207846 1.14E-07 5.44E-05 9.18E-05 
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S02,PULSED ISOMETRIC TRIAL #1 REGRESSION ON HF-LF t :~~*ilift ·'=· I 
Regression Statistics 

Multiple R 0.490234 
R Square 0.240329 
Adjusted R Square 0.205799 
Standard Error 11 .23351 
Observations 24 

Analysis of Variance 
df m of Squares ean Square F lgniffcance F 

Regression 1 878.2826 878.2826 6.959908 0.015017 
Residual 22 2776.217 126.1917 
Total 23 3654.5 

Coefffcients tandard Error t Statistic P-value Lower95% Upper95% 

Intercept 111 .6739 4.733244 23.59353 1.28E-17 101 .8578 121 .4901 
%TIME -0.20974 0.079502 -2.63816 0.014696 -0.37462 -0.04486 

S02~PULSED .ISOMETRIC·TRIAL #2 REGRESSION ON HF,.LF . ===::::: :f ·==··'\.· tt I 
Regression Statistics 

Multiple R 0.488181 
R Square 0.238321 
Adjusted R Square 0.200237 
Standard Error 15.39503 
Observations 22 

Analysis of Variance 
df m of Squares ean Square F lgniffcance F 

Regression 1 1483.135 1483.135 6.257771 0.021163 
Residual 20 4740.138 237.0069 
Total 21 6223.273 

Coefficients tandard Error t Statistic P-value Lower95% Upper95% 

Intercept 131.0649 6.794864 19.28882 7.73E-15 116.8911 145.2388 
%TIME -0.28472 0.113817 -2.50155 0.020709 -0.52214 -0.0473 
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$02.lrVliSED ISOMETRIC TRIAL #3 REGRESSION ON HF-LF ::: 
,., :-: 1 

Regression Statistics 

Multiple R 0.075107 
R Square 0.005641 
Adjusted R Square -0.0496 
Standard Error 12.86318 
Observations 20 

Analysis of Variance 
df m of Squares ean Square F ignificance F 

Regression 1 16.89624 16.89624 0.102116 0.752984 
Residual 18 2978.304 165.4613 
Total 19 2995.2 

CoefYScients tandard Error t Statistic P-value Lower9S% Up~r9S% 

Intercept 102.4737 5.97535 17.1494 5.11E-13 89.91993 115.0274 
%TIME -0.03188 0.099763 -0.31956 0.752792 -0.24147 0.177714 

S02J$0METRIC REGRESSION ON HF,.Lf=' .,.:::.,.:::.\,,,x,,,.,,;,,,,,,, .. ,., ,. . .: .; .. ....:·.,,.,,,,,,,,,.,,.,! 
:-:· ····'.:~:·:'.:'.:·:'.z'.:· 

Regression Statistics 

Multiple R 0.398115 
R Square 0.158495 
Adjusted R Square 0.108995 
Standard Error 9.541427 
Observations 19 

Analysis of Variance 
df m of Squares ean Square F ignificance F 

Regression 1 291 .4979 291 .4979 3.201907 0.091383 
Residual 17 1547.66 91 .03882 
Total 18 1839.158 

Coefficients tandard Error t Statistic P-value Lower9S% Up~r9S% 

Intercept 96.23948 4.217175 22.82084 9.76E-15 87.342 105.1369 
%TIME -0.12892 0.07205 -1 .78939 0.090392 -0.28094 0.023087 
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·S03. .. lSOMETRIC REGRESSION ON MPF 
.. I '"" Y'' 

Regression Statistics 

Multiple R 0.864448 
R Square 0.74727 
Adjusted R Square 0.734633 
Standard Error 3.539798 
Observations 22 

Analysis of Variance 
df m of Squares ean Square F ignificance F 

Regression 1 740.9818 740.9818 59.1358 2.13E-07 
Residual 20 250.6035 12.53017 
Total 21 991 .5853 

Coefffcients tandard Error t Statistk P-value Lower95% Upper 95% 

Intercept 64.08768 1.461054 43.86399 3.87E-22 61 .03997 67.13538 
% TIME -0.19233 0.02501 -7.68998 1.54E-07 -0.2445 -0.14016 

·soa::JSPMETRJC': REGRE~SION ON :.RMS+tHWi=L:+wd+ I 
Regression Statistics 

Multiple R 0.880525 
R Square 0.775324 
Adjusted R Square 0.76409 
Standard Error 0.002879 
Observations 22 

Analysis of Variance 
df m of Squares ean Square F ignificance F 

Regression 1 0.000572 0.000572 69.01694 6.48E-08 
Residual 20 0.000166 8.29E-06 
Total 21 0.000738 

Coefffcients tandard Error t Statistic P-value Lower95% Upper95% 

Intercept 0.009184 0.001188 7.7291 08 1.42E-07 0.006706 0.011663 
% TIME 0.000169 2.03E-05 8.307643 4.47E-08 0.000127 0.000211 



RegressU>n Statistics 

Multiple R 
R Square 
Adjusted R Square 
Standard Error 
Observations 

Analysis of Variance 

Regression 
Residual 
Total 

Intercept 
% TIME 

0.497259 
0247267 

0.20963 
7.62171 

22 

df 

1 
20 
21 
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of Squares ean Square 

381.6453 381.6453 
1161.809 58.09046 
1543.455 

Coefficients ndard E" or t Statistic 

75.35895 3.145866 23.95491 
-0.13803 0.053851 -2.56317 

F gnijicance F 

6.569846 0.018544 

P-value Lower 95% Upper95% 

9.88E-17 68.79679 81.92111 
0.018117 -0.25036 -0.0257 
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£DliJit~i!tiW':\t>;, 'if:':::'1':'::RE~£SstON'1:otf::'MP.F&:f'fVi'%:}':';;;f:I 

Regression Statistics 

Multiple R 0.450298275 
R Square 0. 202768536 
Adjusted R Square o. 169550558 
Standard Error 5.799322054 
Observations 26 

Analysis ol Variance 

df Sum ol Squares M&811 Sqvate F Significance F 

Regression 1 205 . 2966352 205.2966352 6. 104180641 o.0209m63 
Residual 24 807.1712709 33.63213629 
Total 25 1012.467906 

Coefficients Standard Error t Statistic P-value Lower959' Upper959' 

Intercept 116.7036927 2.210611723 52.79248791 3.64663E-27 112.1412153 121.2661701 
X TIME -0.093667019 0.037911678 -2.470664008 0.020656702 -0.171912861 -0.015421177 

stl4'' 1SCJ4tiR:iC :DAY 1 .REGRESSlC»I, '01Mt1'!St6 · .c' '.-.·~t .·:·. I 
Regression StalJstics 

Multiple R 0.258629866 
R Square 0.066889407 
Adjusted R Square 0.028009799 
Standard Error 0.001402931 
Observations 26 

Analysis ol Variance 
df Sum ol Squares M6all Square F Signif'icance F 

Regression 1 3.38616E-06 3.38616E-06 1. 720423914 0. 20204 7959 
Residual 24 4 . 72372E-05 1. 96822E -06 
Total 25 5. 06233E-05 

Coefficients Standard Error t Statistic P-value Lower95% Upper95% 

Intercept 0.009069281 0.000534776 16.95904187 3 .1mse-15 0.007965558 0.010173003 
X TIME -1.20296E-05 9.17132E- 06 -1.311649311 0.201556894 -3 .09582E-05 6.89912E-06 
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$6.4\i$OM.ETRiC.'tiAY=·4,REGRES~loN··Ot-·fMPfMJtt@WJ.%fli%H@t l 
Regression Statistics 

Multiple R 0.750001 
R Square 0.562502 
Adjusted R Square 0.545002 
Standard Error 3.770768 
Observations 27 

Analysis of Variance 
df of Squares an Square F nmcance F 

Regression 1 457.033 457.033 32.14312 6.67E-06 
Residual 25 355.4672 14.21869 
Total 26 812.5002 

Coefficients ndard Error t Statistic P-value Lower95% Upper95% 

Intercept 118.2163 1.413077 83.65876 3.6E-33 115.306 121 .1266 
%TIME -0.13745 0.024243 -5.66949 5.6E-06 -0.18738 -0.08752 

~lSOME;I;RI~;D:AY''2::REG;RESSION,.ON':l~M$lH@UMff@MitMWWH 
Regression Statistics 

Multiple R 0.161111 
R Square 0.025957 
Adjusted R Square -0.013 
Standard Error 0.001175 
Observations 27 

Analysis of Variance 
df of Squares an Square F nmcance F 

Regression 1 9.2E-07 9.2E-07 0.666213 0.422084 
Residual 25 3.45E-05 1.36E-06 
Total 26 3.54E-05 

Coefficients ndard Error t Statistic P-value Lower 95% Upper95% 

Intercept 0.008559 0.00044 19.43527 5.24E-17 0.007652 0.009466 
% TIME 6.17E-06 7.56E-06 0.616219 0.421791 -9.4E-06 2.17E-05 



Regression Suuistics 

Multiple R 
R Square 
Adjusted R Square 
Standard Error 
Observations 

Analysis of Variance 

Regression 
Residual 
Total 

Intercept 
% TIME 

Regression Suuistics 

Multiple R 
R Square 
Adjusted R Square 
Standard Error 
Observations 

Analysis of Variance 

Regression 
Residual 
Total 

Intercept 
% TIME 

0.145609 
0.021202 
-0.01958 
13.96291 

26 

df 

1 
24 
25 
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of Squares ean Square 

101.3556 101.3556 
4679.106 194.9627 
4780.462 

Coefficients ndard Error t Statistic 

116.1708 
0.065814 

0.153961 
0.023704 
-0.01535 
12.45111 

27 

df 

1 
25 
26 

5322443 21.82659 
0.091279 0.721021 

of Squares ean Square 

94.10088 94.10088 
3875.751 155.03 
3969.852 

Coefficients ndard E" or t Statistic 

115.9548 4.665992 24.85105 
0.062367 0.080051 0.77'X192 

F gnijicance F 

0.519872 0.477862 

P-value Lower 95% Upper 95% 

8.53E-18 105.1858 127.1558 
0.477585 -0.12258 0.254205 

F gnijicance F 

0.606985 0.443238 

P-value Lower 95% Upper95% 

1.21E-19 106.345 125.5646 
0.442959 -0.1025 0.227236 
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S05·lSOMETRIC REGRESSION ON MPF :t'WM1¥ I 
Regression Statistics 

Multiple R 0.392503 
R Square 0.154059 
Adjusted R Square 0.113776 
Standard Error 11 .0388 
Observations 23 

Analysis of Variance 
df m of Squares &an Square F ignifrcance F 

Regression 1 466.0251 466.0251 3.824417 0.063947 
Residual 21 2558.959 121 .8552 
Total 22 3024.984 

Coemcients tandard Error t Statistic P-value Lower95% Upper95% 

Intercept 74.04419 4.462157 16.59381 6.33E-14 64.76463 83.32375 
% TIME -0.14945 0.076423 -1 .95561 0.063329 -0.30838 0.009477 

S05'tSOMETRfC,REGRESSION ON RMSYlffFL I 
R&gression Statistics 

Multiple R 0.597892 
R Square 0.357474 
Adjusted R Square 0.326878 
Standard Error 0.002707 
Observations 23 

Analysis of Variance 
df m of Squares &an Square F ignificance F 

Regression 1 8.56E-05 8.56E-05 11 .68352 0.002586 
Residual 21 0.000154 7.33E-06 
Total 22 0.00024 

Coefficients tandard Error t Statistic P-value Lower95% Upper95% 

Intercept 0.004758 0.001094 4.348051 0.000258 0.002482 0.007034 
% TIME 6.41 E-05 1.87E-05 3.418116 0.002462 2.51 E-05 0.000103 
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SQS PULSED ISOMETRIC TRIAL #1 REGRESSION ON MPF" I 
Regression Statistics 

Multiple R 0.195977 
R Square 0.038407 
Adjusted R Square 0.014367 
Standard Error 5.302852 
Observations 42 

Analysis of Variance 
df of Squares an Square F nmcance F 

Regre~ion 1 44.92616 44.92616 1.597645 0.213554 
Residual 40 1124.809 28.12024 
Total 41 1169.736 

Coefficients ndard Error t Statistic P-va/ue Lower 95% Upper 95% 

Intercept 68.12812 1.666163 40.88924 7.38E-35 64.76068 71 .49556 
%TIME -0.03584 0.028353 -1 .26398 0.213376 -0.09314 0.021466 

SOS.PULSED ISOMETRlC'ffRIAL #1 REGRESSION ON RMS)t\:?d 
Regression Statistics 

Multiple R 0.544025 
R Square 0.295963 
Adjusted R Square 0.278362 
Standard Error 0.00278 
Observations 42 

Analysis <?f Variance 
df of Squares an Square F nmcance F 

Regression 1 0.00013 0.00013 16.81517 0.000196 
Residual 40 0.000309 7.73E-06 
Total 41 0.000439 

Coefficients ndard Error t Statistic P-value Lower 95% Upper 95% 

Intercept 0.005234 0.000873 5.992476 4.43E-07 0.003469 0.006999 
%TIME 6.09E-05 1.49E-05 4.10063 0.00019 3.09E-05 9.1 E-05 
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~:::eut$at1.HSC?:M$tRt¢MtRl»Jli#.~::a~G.:s$.&.$tQ.N.::w.w.:Mea:ri:wt::i 
Regression Statistics 

Multiple R 0.057522 
R Square 0.003309 
Adjusted R Square -0.02601 
Standard Error 3.869723 
Observations 36 

Analysis of Variance 
df of Squares an Square F nificance F 

Regression 1 1.690218 1.690218 0.112871 0.738963 
Residual 34 509.1416 14.97475 
Total 35 510.8318 

Coefficients ndard Error t Statistic P-value Lower95% Upper95% 

Intercept 65.98486 1.317258 50.09257 3.58E-34 63.30788 68.66185 
%TIME -0.00751 0.02235 -0.33596 0.738905 -0.05293 0.037913 

$.Q:5.:':P~$..fZ.Q):J$Q.MSJllW.ftRlAU:#i::as.G.RES.$.~(;;)~fQN.J3M$.ff:Mtd 
Regression Statistics 

Multiple R 0.806054 
R Square 0.649723 
Adjusted R Square 0.639421 
Standard Error 0.001986 
Observations 36 

Analysis of Variance 
df of Squares an Square F nificance F 

Regression 1 0.000249 0.000249 63.06615 2.99E-09 
Residual 34 0.000134 3.94E-06 
Total 35 0.000383 

Coefficients ndard Error t Statistic P-value Lower95% Upper95% 

Intercept 0.004531 0.000676 6.701776 9.3E-08 0.003157 0.005905 
%TIME 9.11E-05 1.15E-05 7.94142 2.43E-09 6.78E-05 0.000114 
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'®~J?,U(i$E[lf$QMETRIQ/fR.fAJJ~iREGR~$SJQN::PN, Mi?f:i@\Hlll 
Regression Statistics 

Multiple R 0.257727 
R Square 0.066423 
Adjusted R Square 0.035304 
Standard Error 6.39331 
Observations 32 

Analysis of Variance 
df of Squares an Square F nificance F 

Regression 1 87.24566 87.24566 2.134481 0.154415 
Residual 30 1226.232 40.87441 
Total 31 1313.478 

Coefficients ndard Effor t Statistic P-value Lower95% Upper 95% 

Intercept 75.14794 2.314417 32.46949 1.67E-25 70.42128 79.87461 
%TIME -0.05723 0.03917 -1 .46099 0.154082 -0.13722 0.022769 

:$O~·:PUt;SEOH.S.PME.'f:8lOff.RfAt #3J~EGRESSION~~PN .RMSJMdtH 
Regression Statistics 

Multiple R 0.642046 
R Square 0.412223 
Adjusted R Square 0.392631 
Standard Error 0.002311 
Observations 32 

Analysis of Variance 
df of Squares an Square F nificance F 

Regression 1 0.000112 0.000112 21 .0398 7.46E-05 
Residual 30 0.00016 5.34E-06 
Total 31 0.000273 

Coefficients ndard Effor t Statistic P-value Lower 95% Upper 95% 

Intercept 0.004863 0.000837 5.812049 2.1 E-06 0.003154 0.006572 
%TIME 6.5E-05 1.42E-05 4.586916 6.99E-05 3.6E-05 9.39E-05 
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$05 PULSED fSOMETRIC,TRJAL #1 :REGRESSION ON lif·LF ;::('f}::;:;::,.,,,; ,/'}:i: I 
Regression Statistics 

Multiple R 0.316453 
R Square 0.100142 
Adjusted R Square 0.077646 
Standard Error 6.293206 
Observations 42 

Analysis of Variance 
df m of Squares ean Square F ignificance F 

Regression 1 176.2984 176.2984 4.451479 0.041175 
Residual 40 1584.178 39.60445 
Total 41 1760.476 

Coefficients tandard Error t Statistic P-value Lower95% Upper95% 

Intercept 82.82462 1.977333 41 .88703 2.81 E-35 78.82828 86.82096 
%TIME -0.07099 0.033648 -2.10985 0.041019 -0.139 -0.00299 

sos PUt.SED tSOMETRlCffR1AL #2 :REGRESSION"ON HF~LFtJlitt \'.\KAr, I 
Regression Statistics 

Multiple R 0.297689 
R Square 0.088619 
Adjusted R Square 0.061813 
Standard Error 6.21 1905 
Observations 36 

Analysis of Variance 
df m of Squares ean Square F ignlffcance F 

Regression 1 127.5717 127.5717 3.306014 0.077846 
Residual 34 1311 .984 38.58776 
Total 35 1439.556 

Coefffcients tandard Error t Statistic P-value Lower95% Upper95% 

Intercept 74.75873 2.11454 35.3546 5.6E-29 70.46147 79.05599 
%TIME 0.065236 0.035878 1.818245 0.077594 -0.00768 0.138149 
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SOS Rt.Jl.SEO lSOMETRtCTRJAL #3 REGRESSION ON HF .. Lf.::,J@t::;:: ,,,,,,. I 
Regression Statistics 

Multiple R 0.128648 
R Square 0.01655 
Adjusted R Square -0.01623 
Standard Error 5.928063 
Observations 32 

Analysis of Variance 
df m of Squares ean Square F igniffcance F 

Regression 1 17.74194 17.74194 0.504865 0.482858 
Residual 30 1054.258 35.14194 
Total 31 1072 

Coeflfcients tandard Error t Statistic P-value Lower9S% Upper9S% 

Intercept 83.33065 2.145995 38.83078 7.44E-28 78.94794 87.71335 
%TIME -0.02581 0.03632 -0.71054 0.482682 -0.09998 0.048368 

so.5··1SOMETRlC REGRESSlON ON HF·LF.$/, .. :-·· "· :;::;~::t~f}' .~·- :~~- I ·" 
··:·: 

·:·: 

Regression Statistics 

Multiple R 0.232125 
R Square 0.053882 
Adjusted R Square 0.008829 
Standard Error 11.0615 
Observations 23 

Analysis of Variance 
df m of Squares ean Square F igniffcance F 

Regression 1 146.3346 146.3346 1.195967 0.286516 
Residual 21 2569.492 122.3567 
Total 22 2715.826 

Coemcients tandard Error t Statistic P-value Lower9S% Upper9S% 

Intercept 84.27603 4.47133 18.84809 4.59E-15 74.97739 93.57467 
%TIME -0.08375 0.07658 -1 .0936 0.28596 -0.24301 0.075509 
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.$06.1$.QME.TRIC REGRESSION C>N MPF. =fl#t, _,,=Ah I 
Regression Statistics 

Multiple R 0.91 4732 
R Square 0.836735 
Adjusted R Square 0.828572 
Standard Error 6.894315 
Observations 22 

Analysis of Variance 
df m of Squares ean Square F igniffcance F 

Regression 1 4872 4872 102.5003 2.57E-09 
Residual 20 950.6317 47.53158 
Total 21 5822.632 

CoeMcients tandard Error t Statistic P-value Lower95% Upper95% 

Intercept 123.0935 2.845634 43.25695 5.17E-22 117.1576 129.0293 
%TIME -0.49316 0.048711 -10.1242 1.56E-09 -0 .59477 -0.39155 

$06 tSOMETRIC REGRESSION ON RMS .::I 
Regression statistics 

Multiple R 0.412817 
R Square 0.170418 
Adjusted R Square 0.128939 
Standard Error 0.005233 
Observations 22 

Analysis of Variance 
df m of Squares ean Square F ignfflcance F 

Regression 1 0.000113 0.000113 4.108518 0.056208 
Residual 20 0.000548 2.74E-05 
Total 21 0.00066 

Coefffcients tandard Error t Statistic P-value Lower95% Upper95% 

Intercept 0.015052 0.00216 6.968678 6.99E-07 0.010546 0.019558 
%TIME 7.49E-05 3.7E-05 2.026948 0.055552 -2.2E-06 0.000152 
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S'O§J?®.l$J;P.]$.QM1$lRf.Q:1ffJijAt:P.1lRE.G.RJ;~$lON)~N-.M.REft?f:J 
Regression Statistics 

Multiple R 0.39468 
R Square 0.155772 
Adjusted R Square 0.134666 
Standard Error 4.468217 
Observations 42 

Analysis of Variance 
df of Squares an Square F nificance F 

Regression 1 147.3527 147.3527 7.380563 0.009694 
Residual 40 798.5986 19.96496 
Total 41 945.9513 

Coefficients ndard Error t Statistic P-value Lower95% Upper95% 

Intercept 76.82842 1.403919 54.72424 5.91E-40 73.99099 79.66584 
%TIME -0.0649 0.02389 -2.71672 0.009612 -0.11319 -0.01662 

S.06kEUQSE04SOMEmte:TR1Att #1/REGRESSlON:=oN RMS:V'='':\:) ·. ·.·:· <. ~··. .. ···:· .•. .. . ' ' ··.:· ,•. . •.O:· • . :-: • • •• •. .·'.·:·.·:·:·'.·'.::-.-:· 

Regression Statistics 

Multiple R 0.443501 
R Square 0.196693 
Adjusted R Square 0.176611 
Standard Error 0.004223 
Observations 42 

Analysis of Variance 
df of Squares an Square F nificance F 

Regression 1 0.000175 0.000175 9.794179 0.003264 
Residual 40 0.000713 1.78E-05 
Total 41 0.000888 

Coefficients ndard Error t Statistic P-value Lower 95% Upper95% 

Intercept 0.023729 0.001327 17.88203 5.71E-21 0.021047 0.026411 
%TIME 7.07E-05 2.26E-05 3.129565 0.003221 2.SE-05 0.000116 
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$.06i''RW9,~0::J$QMJ#.IJil0:;)fRlAP'#2{Rf;~8.J:;$$tON. 1Q.N;:MPfTtW\d 
Regression Statistics 

Multiple R 0.619542 
R Square 0.383832 
Adjusted R Square 0.364577 
Standard Error 3.921972 
Observations 34 

Analysis of Variance 
df of Squares an Square F nificance F 

Regression 1 306.6206 306.6206 19.9339 9.34E-05 
Residual 32 492.2196 15.38186 
Total 33 798.8402 

Coefficients ndard Error t Statistic P-value Lower 95% Upper95% 

Intercept 78.16829 1.375459 56.8307 1.67E-34 75.36658 80.97001 
%TIME -0.10407 0.02331 -4.46474 8.84E-05 -0.15155 -0.05659 

~~RVUSE.Qit$.OMEJ:$lCff.RtAL#2:'8EG~ESSlON::oN .RMSNMt1 
Regression Statistics 

Multiple R 0.736133 
R Square 0.541892 
Adjusted R Square 0.527576 
Standard Error 0.004282 
Observations 34 

Analysis of Variance 
df of Squares an Square F nificance F 

Regression 1 0.000694 0.000694 37.85247 6.99E-07 
Residual 32 0.000587 1.83E-05 
Total 33 0.001281 

Coefficients ndard Error t Statistic P-value Lower 95% Upper 95% 

Intercept 0.020313 0.001502 13.52601 5.15E-1 5 0.017254 0.023372 
%TIME 0.000157 2.55E-05 6.152436 6.16E-07 0.000105 0.000208 
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:$.~feUt$!;PJ$PM~IRlQfJRJAl:({#3.:':Ri::GR~§~tQNMP.l':fMeEtlid%tl 
Regression Statistics 

Multiple R 0.783718 
R Square 0.614214 
Adjusted R Square 0.600435 
Standard Error 4.681954 
Observations 30 

Analysis of Variance 
df of Squares an Square F nificance F 

Regression 1 977.2027 977.2027 44.57901 3.02E-07 
Residual 28 613.7793 21 .92069 
Total 29 1590.982 

Coefficients ndard Error t Statistic P-value Lower95% Upper95% 

Intercept 86.07236 1.753264 49.09263 1.82E-29 82.48095 89.66376 
%TIME -0.19782 0.029628 -8.67675 2.53E-07 -0.25851 -0.13713 

:$.®.J'~:!JtS.EPJ$0MfiJltl!>T~fAl.f#3iR:EGRESS10f.fPN-· RMS:t\t(f.I 
Regression Statistics 

Multiple R 0.865126 
R Square 0.748444 
Adjusted R Square 0.73946 
Standard Error 0.003626 
Observations 30 

Analysis of Variance 
df of Squares an Square F nificance F 

Regression 1 0.001095 0.001095 83.30715 6.94E-10 
Residual 28 0.000368 1.31E-05 
Total 29 0.001463 

Coefficients ndard Error t Statistic P-value Lower 95% Upper 95% 

Intercept 0.016677 0.001358 12.2833 5.13E-13 0.013895 0.019458 
%TIME 0.000209 2.29E-05 9.127275 5.02E-10 0.000162 0.000256 
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§.®.Leqt$.~PJ$QM&T8.IC:ff8JAU "lf.tiRE<?Rt;~IONiON Hf:it.f!>tl'fflfttfl?fd 
Regression Statistics 

Multiple R 0.067827 
R Square 0.004601 
Adjusted R Square -0 .02028 
Standard Error 12.83489 
Observations 42 

Analysis of Variance 
df m of Squares ean Square F ignffrcance F 

Regression 1 30.45495 30.45495 0.184873 0.669526 
Residual 40 6589.378 164.7345 
Total 41 6619.833 

Coefficients tandard Error t Statistic P-va/ue Lower95% Upper95% 

Intercept 88.34379 4.032739 21 .90665 3.01E-24 80.19332 96.49425 
% TIME -0.02951 0.068625 -0.42997 0.66947 -0.1682 0.109189 

$0Et f'?.tlt1SEO:f:l$0METRIC-:TRIAL #Z REGRESSION::;pN HF.:4J3WtLt#tMtt@l'd 
Regression Statistics 

Multiple R 0.167258 
R Square 0.027975 
Adjusted R Square -0.0024 
Standard Error 11 .4392 
Observations 34 

Analysis of Variance 
df m of Squares ean Square F ignifrcance F 

Regression 1 120.5146 120.5146 0.920976 0.344414 
Residual 32 4187.368 130.8552 
Total 33 4307.882 

Coefficients tandard Error t Statistic P-value Lower95% Upper95% 

Intercept 84.29947 4.011794 21 .01291 1.12E-20 76.12771 92.47122 
%TIME -0.06525 0.067988 -0.95968 0.344198 -0.20373 0.073241 
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S()ffRl_JtSEDJSOMETRIG.fTRfAL #3 REGRESSION'.ON HF;;(FhiH211%\ :i <fl 
Regression Statistics 

Multiple R 0.330419 
R Square 0.109177 
Adjusted R Square 0.077362 
Standard Error 14.77439 
Observations 30 

Analysis of Variance 
df m of Squares ean Square 

Regression 1 749.0573 749.0573 
Residual 28 6111 .909 218.2825 
Total 29 6860.967 

Coeflfcients tandard Error t Statistic 

Intercept 93.98161 5.532606 16.98686 
%TIME -0.17319 0.093493 -1 .85246 

S06JSOMETRlC REGRE$SION ON HF··Lffabw ·="\:.,.,/: I 
Regression Statistics 

Multiple R 
R Square 
Adjusted R Square 
Standard Error 
Observations 

Analysis of Variance 

Regression 
Residual 
Total 

Intercept 
% TIME 

0.508099 
0.258165 
0.221073 
17.54637 

22 

df m of Squares 

1 2142.863 
20 6157.5 
21 8300.364 

Coefflcients tandard Error 

153.0877 7.242276 
-0.34264 0.129876 

ean Square 

2142.863 
307.875 

t Statistic 

21 .13806 
-2.63821 

F igniffcance F 

3.431596 0.07453 

P-value Lower95% 

1.3E-16 82.64857 
0.074164 -0.36471 

F igniffcance F 

6.960172 0.015765 

P-value Lower95% 

1.24E-15 137.9805 
0.015371 -0.61356 

Upper95% 

105.3147 
0.01832 

Upper95% 

168.1948 
-0.07172 
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!$0lol$Qt.11;TRtC· ReGRESSION ON MPF)i:/:I 
Regression Statistics 

Multiple R 0.50748 
R Square 0.257536 
Adjusted R Square 0.231934 
Standard Error 6.070205 
Observations 31 

Analysis of Variance 
df mofSquar Mean Square F Signiffcance F 

Regression 1 370.653 370.6529556 10.0591383 0.0035676 
Residual 29 1068.574 36.84738622 
Total 30 1439.227 

Coemclents tandard Err t Statistic P-value Lower95% Upper95% 

Intercept 95.24177 2.130049 44.71341171 5.1221E-29 90.88532596 99. 59821 036 
%TIME -0.11605 0.03659 -3.171614469 0.00348399 -0. 190883636 -0.041214222 

.S07 fSOMEJBiC REGRESSION ON RMS .. ,::,::/I 
Regression Statistics 

Multiple R 0.432585 
R Square 0.18713 
Adjusted R Square 0.1591 
Standard Error 0.001427 
Observations 31 

Analysis of Variance 
df m ofSquar Mean Square F Signiffcance F 

Regression 1 1.36E-05 1.35901E-05 6.67604408 0.015077179 
Residual 29 5.9E-05 2.03564E-06 
Total 30 7.26E-05 

CoeMcients tandard Err t Statistic P-value Lower95% Upper95% 

Intercept 0.005237 0.000501 10.45969455 1.5899E-11 0.004212731 0.006260634 
%TIME 2.22E-05 8.6E-06 2. 583804187 0.01488642 4.63184E-06 3. 981 06E-05 
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.SQ1ilJ&QM~T:RlQ=.DAX::~~:R!$GR.E.~lON- bN . MPf:i:tnttra 
Regression Statistics 

Multiple R 0.530282 
R Square 0.281199 
Adjusted R Square 0.246971 
Standard Error 6.382839 
Observations 23 

Analysis of Variance 
df m of Squares ean Square F lgniffcance F 

Regression 1 334.698 334.698 8.215336 0.009244 
Residual 21 855.5533 40.74063 
Total 22 1190.251 

Coefffcients tandard Error t Statistic P-value Lower95% Upper95% 

Intercept 109.0991 2.580101 42.28482 1.45E-22 103.7335 114.4647 
%TIME -0.12666 0.044189 -2.86624 0.008973 -0.21855 -0.03476 

S:07}J$:QMET.aic:::oAWZ:JiE:G~SStOt'fON:"'RMStftft::il 
Regression Statistics 

Multiple R 0.184451 
R Square 0.034022 
Adjusted R Square -0.01198 
Standard Error 0.001463 
Observations 23 

Analysis of Variance 
df m of Squares ean Square F igniffcance F 

Regression 1 1.58E-06 1.58E-06 0.739628 0.399492 
Residual 21 4.5E-05 2.14E-06 
Total 22 4.65E-05 

Coefficients tandard Error tStatistic P-value Lower95% Upper95% 

Intercept 0.007081 0.000591 11 .9706 4.17E-11 0.005851 0.008311 
%TIME 8.71 E-06 1.01 E-05 0.860016 0.399055 -1 .2E-05 2.98E-05 



Regression Statistics 

Multiple R 
R Square 
Adjusted R Square 
Standard Error 
Observations 

Analysis of Variance 

Regression 
Residual 
Total 

Intercept 
% TIME 

Regression S tori.sties 

Multiple R 
RSquare 
Adjusted R Square 
Standard Error 
Observations 

A nalysis of Variance 

R egression 
Residual 
Total 

Intercept 
% TIME 

0.291645 
0.085057 
0.053507 
13.91364 

31 

df 

1 
29 
30 

167 

of Squares ean Squan 

521.9071 521.9071 
5614.093 193.5894 

6136 

Coefficiem.s ndard Error I Stali.sric 

110.8868 
-0.13771 

0.228599 
0.052258 
0.007127 

10.7975 
23 

df 

1 
21 
22 

4.88233 22.71186 
0.083868 -1.64193 

of Squares ean Square 

134.9972 134.9972 
2448.307 116.5861 
2583.304 

Coefficielll.s ndard E"or I S tati.stic 

130.1974 4.364617 29.83021 
-0.08044 0.074753 -1.07607 

F gnificance F 

2.695949 0.111405 

P-val~ Lower 95% Upper95% 

l.87E-20 100.9013 120.8723 
0.111047 -0.30924 0.033824 

F gnificance F 

1.157919 0.294105 

P-va/~ Lower 95% Upper95% 

2.74E-19 121.1207 139.2742 
0.293557 --0.2359 0.075018 
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S08.tsOMEJRlC DAY t REGRESSlON .. ON.MPF . ·::::::;:::: .. ;:}:~:~: :~:·:· ::nnu:r:. :::,~%'''=<:Mt:t1t::t:t1 

Regression Statistics 

Multiple R 0.813223939 
R Square 0.661333175 
Adjusted R Square 0.65264941 
Standard Error 6 .04367124 
Observations 41 

Analysis of Variance 
elf Sum of Squares Maan Square F Signiffcance F 

Regression 1 2781 .723271 2781.723271 76.15743 1.04402E-10 
Residual 39 1424.51252 36.52596205 
Total 40 4206.235791 

Coef/fcients Standard Error t Statistic P-value Lower95% Upper95% 

Intercept 96.46977988 1.854354955 52.02336242 2.33E-38 92.71899663 100.22056 
%TIME -0.27855568 0.031919485 -8. 726822246 8.41 E-11 -0.343118866 -0.213992 

$08 t$0METRIC,OAY1 REGRESSION· QN:RMS ~$= :::: .1 .. &~~~?.~:i:~~=~:=::=~=~:~::::~ .:. :i:%\kktl 
Regression Statistics 

Multiple R 0.841629544 
R Square 0.70834029 
Adjusted R Square 0.700861836 
Standard Error 0.001894724 
Observations 41 

Analysis of Variance 
elf Sum of Squares Mean Square F Significance F 

Regression 1 0.000340034 0.000340034 94.71748 5.48695E-12 
Residual 39 0.000140009 3.58998E-06 
Total 40 0.000480043 

Coefficients Standard Error t Statistic P-value Lower95% Upper95% 

Intercept 0.005670065 0.00058135 9.753265867 3.95E-12 0.004494174 0.006846 
%TIME 9.73904E-05 1. 00069E-05 9.732290329 4.2E-12 7.71495E-05 0.0001176 
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$P8J$.QMliTRJQl:DAY~2··RE:G.8E~$.ION·:oN MPFftff:@:tlf I 
Regression Statistics 

Multiple R 0.174677 
R Square 0.030512 
Adjusted R Square -0.00827 
Standard Error 9.072425 
Observations 27 

Analysis of Variance 
df Sum of Squares Mean Square F SlgnMcance F 

Regression 1 64.7610687 64.76107 0.78681 0.3835219 
Residual 25 2057.7222 82.30889 
Total 26 2122.48327 

Coefffcients Standard Error t Statistic P-value Lower95% UP{)6r95% 

Intercept 92.84816 3.39984741 27.30951 1.1E-20 85.846049 99.85027 
%TIME -0.05174 0.05832885 -0.88702 0.3832 -0.1718693 0.068392 

$®1l$P."MtaTR.lC:'.PA~:oz::REGRE.$S10N:::ONlRMSttIW@ttttl 

Regression Statistics 

Multiple R 0.858837 
R Square 0.737602 
Adjusted R Square 0.727106 
Standard Error 0.001418 
Observations 27 

Analysis of Variance 

df Sum of Squares Mean Square F SignMcance F 

Regression 1 0.00014132 0.000141 70.2751 9.912E-09 
Residual 25 5.0272E-05 2.01E-06 
Total 26 0.00019159 

Coefffcients Standard Error t Statistic P-value Lower95% Upper95% 

Intercept 0.004579 0.00053141 8.616044 4.3E-09 0.0034842 0.005673 
%TIME 7.64E-05 9.117E-06 8.383022 7.3E-09 5.765E-05 9.52E-05 
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S0$1SOMETRIC OAYi! '.REGRESSlON ONHF~LF . YI 
Regression Stali.stics 

Multiple R 0.397103 
R Square 0.157691 
Adjusted R Square 0.136093 
Standard Error 10.4659 
Observations 41 

Analysis of Variance 

df of Squares ean Square F gnificance F 

Regression 1 799.7457 799.7457 7.301281 0.010148 
Residual 39 4271.864 109.535 
Total 40 5071.61 

CoefficienJs ndard Error I Stali.stic P-value Lowe 95% Upper95% 

Intercept 111.5664 3.211208 34.74282 l.69E-31 105.0711 118.0617 
%TIME -0.14936 0.055275 -2.7(}2JY) 0.01006 --0.26116 -0.03755 

S08'1SOMEl'RtCD.AY'2:R;Eo:RESSlON ONHP~LF ··:o VFI 
Regression StaJistics 

Multiple R 0.124129 
R Square 0.015408 
Adjusted R Square -0.02398 
Standard Error 13.26325 
Observations 27 

Analysis of Variance 

df of Squares ean Square F gnificance F 

Regression 1 68.82239 68.82239 0.391228 0.537323 
Residual 25 4397.844 175.9138 
Total 26 4466.667 

Coefficients ndard En-or 1 Statistic P-value Lowe 95% Upper95% 

Intercept 110.4435 4.970339 22.22052 1.95E-18 100.2069 120.6801 
% TIME 0.053337 0.085273 0.625482 0.537107 -0.12229 0.228959 
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!soi ISOMETRIC ' 
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% TIME OF CONTRACTION 

- -..•- - Predicted MPF MPF --- FORCE 
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!so1 ISOMETRIC DAY 19 
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:!: · - :I: 
_ .:.: - :I: / ' , :.: 

·······x---x -- -x -:::.'.!S:.::.-.x : .............. ·· • ·············;X A~-X····················· · ··········· ···,-························· ············ 
. ', X· - ·:x \ 

~.' 
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II) ~ II) ,.... 0 M II) co ....... ~ ~ ~ ....... """. ~ O> ~ """. ,.... 0 
0 II) c:) II) ....... co ....... co N ,.... C'\I ,.... M co M co • O> • 0 
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jso1 ISOMETRIC DAY 29 
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% TIME OF CONTRACTION 

_....,•------ Predicted MPF MPF --- FORCE 
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!soi ISOMETRIC DAY 1 PDS BAND WIDTH' 

120 
100 x x 

'N' - - - ~ - ~ )( ! 80 - - - - - -
~ - i :I: x x x ~ - - - ~ :i:: i X-:1:-X -u.. 60 x x ...J 

I u.. 40 :I: 
20 

0 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...... N ("') ..,. II) «> "' CX) a> 0 ...... N ("') ..,. II) «> "' CX) a> ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... 
TIME (SECONDS) 

• Predicted BAND WIDTH x HF-LF 
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is01 PDS BAND WIDTH' 
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0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - C'J ,.,.., 
~ ..n <.O r- CJ:) en a - "' ,..,,. ""T ..n <.O r- CJ:) en - - - - - - - - - -

TIME (SECONDS) 

• SOl DAY 1 • SOl DAY2 
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lso21SOMETRIC' 
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% TIME OF CONTRACTION 

- ..... •-- Predicted MPF MPF - - - FORCE 
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lso21SOMETRIC' 
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·. lso2 PULSED ISOMETRIC TRIAL #1 f 
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!so2 PULSED ISOMETRIC TRIAL 1 f 
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• Predicted RMS :.: RMS --- FORCE 
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[so2 PULSED ISOMETRIC TRIAL #21 
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lso2 PULSED ISOMETRIC TRIAL #21 
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lso2 PULSED ISOMETRIC TRIAL #31 
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lso2 PULSED ISOMETRIC TRIAL #31 
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lso2 PDS BAND WIDTH' 

CX) 

CYCLE (10 SECONDS/CYCLE) 

0 ..... ..... ..... 

_ ...___ TRIAL #1 --o-- TRIAL #2 - -e-- TRIAL #3 --<>--- ISO 

N ..... 
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lso3 ISOMETRIC' 
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% TIME OF CONTRACTION 
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[s03 ISOMETRIC PDS BAND WIDTH ' 
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TIME (SECONDS) 

• Predicted BAND WIDTH x HF-LF 
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lso4 ISOMETRIC DAY 19 
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!s04 PDS BAND WIDTH' 

112 +--t-----+--t-_,...__,.__,,__,__.,__-.-_,__,___,__,...___,.__,~.--...--t-....,_-+-_,__,...__,.__,,__. 

========================= -~~~~=~ro==-~~~~=~ro==-~~~~ 
-- -- -- -- - - - - -- - C"J ('..J C"J C"J C"J C"-1 

TIME (SECONDS) 

• S04DAY 1 • S04DAY 2 
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