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CHAPTER 1. INTRODUCTION 

1.1 Background 

Nondestructive evaluation (NDE) has been an extremely important 

area of study that is involved with testing a product or material without 

destroying its integrity or serviceability. The field of NDE has recently 

gained recognition for its usefulness and importance, especially as a 
(1 

critical component in quality control of manufactured parts in many 

industries. 

The concept of NDE is based on the analysis of information generated 

during the interaction between an energy source and the test specimen. 

The form of the energy source is chosen appropriately in accordance with 

the properties of the specimen and the objectives of the test. Examples of 

energy sources include acoustic waves; x-rays, and magnetic fields [1]. 

The nondestructive testing (NDT) system contains an energy source that 

interacts with the test specllnen. The response of this interaction is 

measured and analyzed to determine the condition of the specimen. The 

fundamental concept of NDT is to inject energy in the test specimen and 

then measure the resulting energy source/test specimen· interaction 

without causing damage to the test specimen. The inverse problem in 

NDE is concerned with deducing the state or integrity of the objeCt under 



source 

signal 
processing 

2 

storage 

'INVERSE' 

output 

Figure 1.1. Generic NDE system [2]. 

inspection, i.e., estimate the size, shape, orientation of defects which may 

be present in the test specimen. A block diagram of a typical NDE 

system is shown in Figure 1.1 [2]. 

Practical NDE applications find usage In the inspection of a wide 

range of engineering components such as integrated chips, aging aircraft, 

railroad tracks and wheels, heat exchanger tubes, and natural gas 

transmission pipelines. The accurate detection and characterization of 

flaws is critical in containing manufacturing costs as well as in saving 

human lives and property. Indeed, the primary motivation behind the 

research work described in this thesis ,is related to the issue of ensuring 

safety through NDE by characterizing defects in natural gas transmission 
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pipelines. These flaws could potentially have fatal consequences if left 

undetected. 

The NDT method utilized in this research work is the electromagnetic 

method; in particular, the magnetic flux leakage (MFL) technique. MFL 

methods are used for inspecting ferromagnetic material structures. It is 

known that the presence of a defect in a magnetized ferromagnetic 

specimen results in a redistribution of the flux lines causing some of these 

flux lines to "leak" into the surrounding medium. The leakage flux may 

be sensed and measured by a flux sensitive device such as a Hall probe. 

This is illustrated in Figure 1.2. 

The approach proposed for solving the inverse problem is through the 

use of neural networks. Artificial neural networks have been studied 

extensively for many years by researchers who were motivated by a 

Figure 1.2. Leakage flux in the vicinity of a surface-breaking anomaly. 
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desire to mimic the information processing strategies of the human brain 

and develop systems that match the pattern recognition and cognitive 

skills of biological creatures. In fact, considerable progress in achieving 

this goal is steadily being made. Neural networks have become known for 

their impressive classification capabilities of sample patterns. Different 

neural network paradigms employ different learning rules; however, all of 

them in some way determine pattern statistics from a set of training 

samples and then classify new patterns on the basis of information 

acquired from the exemplars [3]. 

The back-propagation method proposed by Rumelhart and McClelland 

[4] is one of the most commonly used algorithms for training neural 

networks. The most well-known neural network that employs this 

learning algorithm is the multilayer perceptron (MLP). Multilayer 

perceptrons are feedforward networks with at least one layer of nodes 

between the input and output nodes, called the "hidden" nodes. 

Feedforward layered neural networks are used extensively in many areas 

of signal processing. The use of these networks for processing complex 

signals can be interpreted as performing a curve-fitting operation in a 

multidimensional space. Such networks can be employed for realizing 

complex nonlinear decision functions or to approximate certain 

complicated data-generating mechanisms. 
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A drawback of these traditional neural networks is related to the 

exceSSIve computation effort involved in training them as well as a 

tendency to gravitate towards suboptimal solutions. The learning 

employs nonlinear optimization techniques, and the parameter estimate 

may become trapped at a local minimum of the chosen optimization 

criterion during the learning procedure [4]. 

Recently, many researchers have turned their attention to a number of 

alternate neural network models, among which is the radial basis 

function network [5]. The radial basis function (RBF) network is a fairly 

new concept that has recently gained wide interest and attention in the 

area of artificial neural networks. 

Similar to the MLP, RBF networks are two-layer networks with good 

approximation capabilities. Originally, the RBF method was introduced 

strictly as a tool for interpolation in multidimensional space. In this 

scheme, the RBF method employs as many basis function centers as there 

are data points. This is extremely impractical in signal processing 

applications, since the number of data points is usually very large [4]. 

The RBF network developed for this research more closely adopts 

Broomhead and Lowe's [7] approximation to the original RBF model. The 

modified approach is more suitable for signal processing applications 

where we typically encounter overdetermined systems [7]. 
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This thesis describes the application of RBF networks for 

characterizing defects in natural gas transmission pipelines. Artificial 

neural networks have been applied extensively for defect sizing in the 

past. The radial basis function network, in particular, has been shown to 

be particularly successful in defect sizing applications [8]. However, in all 

these applications, the RBF network has been used only to predict simple 

characteristics of the defect such as the size, location, or orientation. This 

thesis describes an extension of the concept where an RBF network is 

used to characterize the complete defect profile. Results obtained to date 

have proven the feasibility of using neural networks for solving inverse 

problems in nondestructive evaluation [2]. 

1.2 Scope of Thesis 

This thesis focuses on the characterization of MFL signals using 

artificial neural networks. To provide an appreciation and understanding 

of the problem under investigation, Chapter 2 begins with the problem 

statement and a brief background and motivation for this research. This 

is followed by a description of the approach employed for solving the 

problem. The defect characterization network requires an extensive data 

set for training. Since experimental data is relatively scarce and 

expensive to obtain, numerical models simulating the test are employed 
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for generating training data. Chapter 2 provides a brief description of the 

finite element model that was used for generating the data. 

In Chapter 3, a detailed discussion of artificial neural networks is 

presented. In particular, the multilayer perceptron and radial basis 

function networks are described and compared. The chapter describes the 

concept of a "three-dimensional" artificial neural network that is currently 

being evaluated for defect characterization. 

Chapter 4 is devoted to a discussion of various methods used in 

selecting centers that are needed in RBF networks. The K-means 

clustering algorithm has traditionally been used to calculate the centers 

required by the RBF network. The K-means algorithm is well established 

and widely used because of its simplicity. The chapter examines 

alternative methods for selecting the centers and compares their 

performances. The chapter describes a new optimal procedure as well as 

a method of using potential functions approach for determining the basis 

function centers. The superiority of these approaches is shown through 

validation studies in Chapter 5. Finally, Chapter 6 presents conclusions 

together with a discussion of difficulties encountered and suggestions for 

future work. 
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CHAPTER2. MAGNETICFLUXLEAKAGETEC~QUES 

2.1 Problem Statement 

The motivation behind this research work comes from a desire to 

detect and characterize defects which occur in natural gas transmission 

pipelines. Natural gas is a vital resource in meeting many of the nation's 

high energy demands. The gas is transported from the well to the 

consumer using a network of pipelines. Most of the pipeline systems in 

this country were built within the last four decades, although some 

constructed before World War II are still in use today. There are over 

90,000 miles of natural gas gathering and field pipelines, 280,000 miles of 

U. S. transmission pipelines, and more than 835,000 miles of gas 

distribution mains and service lines. This pipeline system has become a 

critical means of supplying energy that would otherwise be impractical 

and extremely costly to replace. Consequently, preventive maintenance 

methods are used to secure the integrity and serviceability required to 

meet future demands of transporting natural gas [10]. Figure 2.1 

illustrates the pipeline system more clearly. 

One of the most popular methods for inspecting pipelines is the 

magneto static technique. Magnetostatic methods of nondestructive 

evaluation are used extensively for the inspection of ferromagnetic 

specimens. In the past, magnetic "inks" or powders were widely accepted 
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Figure 2.1. Natural gas pipeline system [10]. 

as reliable indicators of flaws and defects found in components and 

assemblies manufactured from ferrous metals. Today, improved methods 

of detecting magnetic leakage flux associated with defects at or near the 

surface of a magnetized ferromagnetic material are in use. The 

magnetostatic method can be classified on the basis of the state of the 

excitation source during the inspection. If the excitation source is 

energized during the inspection, the method is called an active leakage 

field test. If the test relies on the measurement of the residual field 

present in the specimen after the source is de-energized, the method is 

called the residual leakage field test. Active leakage field methods are 
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one of the most commonly used techniques for the in-line inspection of 

natural gas transmission pipelines. 

The inspection is achieved by launching an inspection vehicle; 

otherwise known as a "pig," through the pipeline. The pig is propelled by 

the flow of the natural gas in the transmission pipes. Fully equipped with 

appropriate instrumentation and devices, the pig detects and records the 

NDE signals generated due to corrosion and cracks existing on the inner, 

as well as the outer diameter of the pipe. The pig employs permanent 

magnets and a magnetic circuit to saturate the pipe wall. In the presence 

of surface-breaking anomalies, magnetic flux "leaks" into the region 

surrounding the test object. This leakage flux may then be detected by a 

flux sensitive device such as a Hall probe. The characteristics of this 

magnetic flux leakage (MFL) profile is indicative of the nature of the 

defect. Figure 2.2 shows the axial and radial components of a typical 

MFL signal. The objective is to determine the profile of the defect based 

on information contained in the MFL signal. Figure 2.3 shows such a 

mappIng. 

The characterization of defects found during in-line inspection of the 

pipelines is, however, fraught with several problems. Chief among the 

problems is the sensitivity of the signal to a number of operational 

variables. These variables include probe velocity and pipeline stress 
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levels. The latter affects the permeability of the pipeline which, in turn, 

affects the MFL signal. Another factor that complicates the 

characterization process is variation in the permeability of the pipe. 

Accurate characterization of the defect requires a proper understanding of 

these factors and methods to compensate for the effects [6]. It is very 

difficult and expensive to study the effects of these variables using 

experimental methods. An alternative approach is to use a numerical 

model as a test bed and simulate the test conditions. Such a test bed can 

also serve as a source for generating signals required for designing defect 

characterization systems. One of the more powerful tools for simulation is 

the finite element technique. The modeling technique is described in 

section 2.2. 

Accurate defect characterization offers significant benefits: Pipeline 

companies benefit from an understanding of when and how operational 

variables affect inspection results. These results naturally lead to better 

planning of the operational controls needed for accurate inspections. 

Maintenance and repair operations benefit by reducing the number of 

bellholes required as a consequence of increased inspection accuracy. 

Inspection vendors benefit by understanding their systems and where 

improvements are beneficial and needed. Pipeline owners gain better 

knowledge of the accuracy, strengths, and limitations of present MFL 
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inspection tools. Researchers benefit from helping further current state­

of-the-art technology. All of these support the enhancement of safety, 

reliability, integrity, and serviceability of natural gas transmission 

pipelines [10]. 

2.2 Finite Element Method 

2.2.1 Introduction 

The finite element method is a numerical technique for solving partial 

differential equations to obtain approximate solutions to a wide variety of 

engineering problems. The basic premise of the finite element method is 

that a solution region can be analytically modeled or approximated by 

representing it as an assemblage of discrete elements. Instead of solving 

the partial differential equation directly, the finite element method 

involves the minimization of an energy functional. Since these elements 

can be assembled in various ways, they have the ability to represent 

exceedingly complex shapes. In other words, the finite element method 

takes the approach of dividing the solution domain into a finite number of 

subdomains, or elements. These elements are connected only at nodal 

points in the domain and on the element boundaries: The solution domain 

is discretized and represented as a patchwork of elements. To summarize 



14 

In general terms, the finite element modeling technique involves the 

following steps [7]: 

1. Identify an appropriate energy functional corresponding to 

the partial differential equation 

2. Discretize the continuum 

3. Select interpolation functions 

4. Determine the element "stiffness" matrix 

5. Assemble the local stiffness matrices to obtain the global 

matrix equation 

6. Solve the system of equations to obtain the solution 

7. Use the solution to compute other parameters of interest 

In discretizing the continuum, once the element mesh for the solution 

domain is defined, the behavior of the unknown field variable over each 

element is approximated by continuous functions expressed in terms of 

the nodal values. The function defined over each finite element is called 

an interpolation or shape function. The set of interpolation functions for 

the whole solution domain yields a piecewise polynomial approximation to 

the field variable [7]. The numerical solution of the partial differential 

equation reduces to solving a system of algebraic equations in terms of 

parameters defining the approximate solution [13]. 
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2.2.2 Governing Equations 

Maxwell's equations are the fundamental equations that govern all 

electromagnetic phenomena. The equations may be expressed in both 

differential and integral form, but are presented here in differential form 

since they lead to differential equations that can be solved using the finite 

element method [14]. 

For general time-varying fields, Maxwell's equations can be written as 

follows [14]: 

aB VxE+-=O 
at 

(2.1) 

aD VxH- - = J at 
(2.2) 

V·D = P (2.3) 

V·B = 0 (2.4) 

where 

E = electric field intensity (volts/meter) 

D = electric flux density (coulombs/meter2) 

H = magnetic field intensity (amperes/meter) 

B = magnetic flux density (webers/meter2) 

J = electric current density (amperes/meter2) 

p = electric charge density (coulombs/meter3) 
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In the case when the field quantities do not vary with time, they are 

called static fields and may be expressed as follows: 

VxE = 0 

VxH = J 

Equations (2.3) and (2.4) remain unchanged. 

(2.5) 

(2.6) 

Clearly, under this situation, no interaction between electric and 

magnetic fields exist and can, thereby, be described as an electrostatic case 

(equations (2.3) and (2.5)) or a magnetostatic case (equations (2.4) and 

(2.6». 

Additionally, assuming isotropy, the following constitutive relations 

relate the macroscopic properties of the medium and the field variables: 

D = EE (2.7) 

B = Jl H (2.8) 

J = (j E (2.9) 

where the parameters E, Jl, and (j denote, respectively, the permittivity 

(Farads/meter), permeability (Henrys/meter), and conductivity 

(Siemens/meter) of the medium. The parameters are tensors for 

anisotropic media and scalars for isotropic media. For inhomogeneous 
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media, they are position-dependent, while they are not for homogeneous 

media. 

To solve Maxwell's equations, the first-order differential equations 

involving two field quantities may first be converted into second-order 

differential equations involving a field quantity: 

Exploiting the fact that B is divergence free we can write: 

B = VxA (2.10) 

where A is called the magnetic vector potential. 

Substituting equation (2.10) into equation (2.6) and utilizing equation 

(2.8) yields the second-order differential equation: 

1 
V x (-VxA) = J (2.11) 

/l 

This does not uniquely define A since if A is a solution to equation (2.11), 

any function that can be written as AI = A + Vf is also a solution 

regardless of the form of f. Therefore, in order to uniquely define A, a 

condition on its divergence also needs to be defined. Such a condition is 

called a gauge condition and a natural choice is 

V· A = 0 (2.12) 

The finite element model used in this study exploits the axisymmetric 

nature of the pig geometry. Finite element analysis methods solve the 

partial differential equation governing the physical process in an indirect 

manner. 
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An alternative to solving equation (2.11) directly IS to embed the 

governing partial differential equation in an energy functional. The 

energy functional corresponding to equation (2.11) is given by 

Jff(H·dB - J·dA)dv (2.13) 
v 

where, again, H represents the magnetic field intensity, B is the magnetic 

flux density, and v is the volume of interest. 

Minimizing this energy functional is tantamount to solving the partial 

differential equation. The method involves discretization of the region 

with an appropriate mesh. In minimizing the functional at each of the 

nodes, a matrix equation is generated. Solving this matrix equation 

yields the vector magnetic potential, A, which can then be used to 

determine other quantities of interest such as the flux density in the 

material and the leakage field profile. 

2.3 Data Collection 

The MFL signals used for training the neural network are generated 

using a finite element model. The performance of a neural network is 

larg~ly dependent on the amount and quality of data presented during the 

training process. In other words, in order for a neural network to properly 

learn the properties inherent in a given data set, an extensive and 

comprehensive amount of training data is required. Since the amount of 
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experimental data is limited, this study relied primarily on MFL signals 

generated using the finite element model. The model has been validated 

using experimental results. Examples of simulated signals (axial 

components) for various rectangular defect lengths are shown in Figure 

2.4. It is known that the peak-to-peak distance is equivalent to the length 

of the defect. Moreover, the peak-to-peak magnitude is equivalent to the 

depth of the defect [15]. In order to minimize the computational effort, 

the finite element model exploits the axisymmetric nature of the geometry 

as illustrated in Figure 2.5. A detailed two-dimensional tool geometry is 

shown in Figure 2.6. It shows the various components and materials that 

comprises the tool. The axisymmetric defect encircles the outer diameter 

of the pipe as shown in the shaded region. 

Once these signals are generated and a substantial data base 

constructed, the neural network may be trained. The approach taken in 

using neural networks to solve the inverse problem in NDE is one of 

multidimensional mapping. The concept of neural networks is explained 

in details in the next chapter. 
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Figure 2.5. Axisymmetric approximation of a pig. 
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CHAPTER 3. NEURAL NETWORKS 

3.1 Background 

Artificial neural networks have been the focus of extensive studies by 

researchers in hopes of achieving human-like performance in solving 

problems that require cognitive skills. Examples of such problems include 

those encountered in speech and image recognition [9]. Artificial neural 

networks are composed of simple processing elements that are densely 

interconnected. These networks are trained to perform arbitrary 

mappings between sets of input-output pairs through the adjustment of 

interconnection weights. In this sense, the architecture of artificial neural 

networks emulates that of a biological nervous system. Neural networks 

are attractive in that they require no a priori information or built-in rules; 

rather, they acquire knowledge of the data through the presentation of 

examples. This characteristic allows neural networks to approximate 

mappIngs for functions that do not appear to have a clearly defined 

algorithm or theory. 

The computational elements or nodes used in neural networks are 

nonlinear in nature. A simple node sums N weighted inputs and passes 

the result through a nonlinearity; otherwise known as an activation 

function, as shown in Figure 3.1. The node is characterized by an 

internal bias e and by the type of nonlinearity. The neural network 
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characteristics are determined by the network topology, node 

characteristics, and training or learning algorithms. The algorithms 

dictate the initial weight values and subsequent adaptation during the 

training process so as to improve performance. 

Neural networks are known for their robustness or fault tolerance, in 

that the failure of a few processing nodes or links will not have a 

significant effect on the overall performance. In addition, most neural 

networks adapt connection weights with new data so as to improve 

performance continually with time. The ability to adapt and continually 

learn is an important asset unique to neural networks and learning 

systems. Adaptation provides a degree of robustness by compensating for 
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mInor variability in the characteristics of processing elements. The 

functionality of the network is defined by the nature of interconnection 

weights and the type of processors used. The determination of the 

interconnection weights is essentially equivalent to the determination of 

the input-output relation of the network and, hence, constitutes the 

training procedure of the neural network. In other words, the information 

inherent in sample patterns, required for discrimination, is automatically 

extracted and embedded into the network in the form of interconnection 

weights. 

Several types of neural networks have been proposed and are 

primarily distinguished by their architecture and the learning rule 

employed to train them. Examples of these include the multilayer 

perceptron (MLP), Hopfield network, Kohonen network, and the more 

recently developed, Radial Basis Function (RBF) network. 

Each network offers its own set of advantages and disadvantages and 

certain networks are preferred over others depending on the particular 

application of interest. For this research, we use an RBF network. A 

justification of this choice will be presented later. However, the MLP is 

also used to facilitate a comparison of the results and demonstrate the 

superiority of the RBF network relative to the MLP for the application on 

hand. To further understand the properties of neural networks, we will 
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look at two primary application categories of neural networks. Neural 

network applications can be classified into two main categories: 

recognition and generalization. The training for both types of neural 

network applications involves the presentation of a set of input-output 

pairs (exemplars) (I1,01), (I2,02), ... , (Io,Oo). The main distinction between 

the two categories is that in recognition problems, the trained network is 

tested with an exemplar signal I.i (l5j,$.n) corrupted by noise, as shown in 

Figure 3.2. The trained network is expected to reproduce the output OJ, 

corresponding to Ij, in the presence of noise. Examples of these types of 

applications include shape and handwriting recognition. In generalization 

problems, the trained neural network is tested with input 10 +1, which is 

distinct from the inputs II, 12, ... , 10 , used for training the network as 

shown in Figure 3.3. The network is expected to predict correctly the 

output 0 0+1 for the input 10+1 from the model it has learned through 

training. 

There are many real-world applications that would benefit from the 

use of neural networks for solving generalization problems, because it is 

extremely difficult to successfully apply either conventional mathematical 

techniques (e.g. statistical regression) or standard artificial intelligence 

approaches (e.g. rule-based systems) for solving such problems. The 

generalization ability of a neural network is useful since it does not 
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require an a priori specification of a functional domain model; rather, it 

attempts to learn the underlying structure relating input-output data 

from the training samples [17]. 

Learning algorithms for generalization and recognition problems are 

different. In the case of recognition problems, the neural network is 

expected to reproduce one of the previously seen outputs. The network 

may recall the outputs and inputs by fitting a curve through the (li,Oi) 

pairs used for training. To remember the outputs, a large network with 

numerous nodes and weights may be employed. However, the 

memorization of learning samples is not appropriate for generalization 

problems since this may result in overfitting. Overfitting which results in 

poor performance can be measured in terms of the ability of the network 

to correctly predict the output when novel inputs are presented. Networks 

designed for solving generalization problems can tolerate a small amount 

of error in the predicted output; therefore, the fitted curve is not required 

to pass through any (Ii,Oi) pair used in the training phase. Neural 

networks designed for solving generalization problems may instead fit a 

simple curve (e.g. a low degree polynomial, or basic analytical functions 

such as log(x), sine(x), tangent(x), etc.) through the input-output pairs. 

Neural networks employed for generalization applications are usually 

simpler, employing a small number of hidden nodes, layers, and 
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interconnection edges and weights, allowing the usage of more 

computationally sophisticated algorithms [17]. The RBF networks used in 

this work are designed for generalization applications. 

3.2 Multilayer Perceptrons 

Multilayer perceptrons (MLPs) are used very widely in diverse 

applications. These networks are usually trained in a supervised manner 

with a popular algorithm known as the error back-propagation algorithm 

[11]. A typical example of an MLP network is shown in Figure 3.4. 

The resurgence in the popularity of layered, feedforward networks 

(perceptrons) has been credited to the development of the error backward 

propagation algorithm for the determination of the synaptic coupling 

strengths in multilayered networks with hidden layers. 

input 
layer 

hidden 
layer 

~----
o u tpu t 
layer 

Figure 3.4. MLP network architecture. 
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The learning algorithm is extremely simple and yet powerful. The 

synaptic strengths Wij are iteratively modified such that the output signal 

differs minimally from the desired one. This may be achieved by using 

the gradient method, which yields the required modifications OWij. The 

operation of this network corresponds to a highly nonlinear mapping 

between the input and the output; consequently, the method is applied 

recursively until a predefined convergence criterion is reached. 

Error back-propagation is a particular example of a larger class of 

learning algorithms that are classified as supervised learning approaches 

since at each step the network parameters are adjusted appropriately by 

comparing the actual output with the desired output [18]. 

The success of back-propagation was first demonstrated by Hinton [19] 

in training neural networks for nonlinear XOR problems. Since then, its 

application has become widespread in numerous pattern recognition 

problems including its use for solving generalization problems [17]. Back­

propagation is a learning algorithm for the derivation of weights in feed­

forward neural networks. The algorithm minimizes the error of fit to 

learning samples by fine-tuning the weights during the learning process. 

In each iteration, there are two phases: forward propagation and reverse 

propagation. In the forward propagation, the output of the network is 
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computed using the input vector. The total error, E, is computed in this 

phase by comparing the desired with the actual outputs: 

(3.1) 

In the reverse propagation, the error derivative with respect to all the 

network weights is computed. The error derivative associated with a 

weight is an estimate of the effect of that weight on the total error. In 

other words, the total error, with respect to a given set of learning (or 

training) samples and a given set of weights, is given by equation (3.1), 

where yjp is the actual output of node j in training sample p, and djp is the 

desired output. The error derivative with respect to the weight Wij is 

employed to calculate the change in weight Wij as given by equation (3.2). 

The weight change is accordingly computed such that it moves the 

network in the direction of maximum error reduction, or gradient of error 

surface. 

~Wij = -k(aE/a Wij) = E Opi apj (3.2) 

0Pi in equation (3.2) is the effect of a change in the input of the network to 

unit j on the output of unit i in the training sample p. The determination 

of the incremental change in weights is an iterative process starting at the 

output unit. This computation is done in the reverse propagation phase. 

In reference to equation (3.2), the term apj represents the output of unit j 

for training sample p; and, E and k represent constants [17]. 
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To verify how well the neural network has been properly trained, i.e. 

learned the underlying input-output model, the same set of weights (on 

the connections) derived during the learning phase, and the accuracy of 

the predicted output for a new set of input vectors is tested and checked. 

In general, the success of the predictions for the neural network depends 

upon the range covered by the input-output vectors of the training 

samples. 

The performance of a neural network that is trained using the error 

back-propagation learning algorithm depends on two performance 

parameters: the learning rate and momentum. Learning rate is 

associated with the change in weights from the error derivatives, and is 

the constant of proportionality between the two. Ideally, the change in 

weights should be infinitesimal for a true gradient descent. The 

momentum term is used to reduce the amount of oscillation caused by 

large values of learning rates. It modifies the weight changes calculated 

using the present derivative by an amount proportional to the weight 

changes in the previous iteration. Also, it is representative of the relative 

importance of the weight change in the previous iteration [17]. 

The MLP network used in this study for defect characterization is 

coded using MATLAB with the built-in neural network functions. The 

network is trained with a backpropagation learning rule. The training is 
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stopped when either the maximum number of epochs has been reached or 

the network sum-squared error attains a value below the error goal. 

The time required to train an MLP is typically in the order of a few 

hours on a DECAxp workstation. Obviously, the MLP approach is not 

suitable for this application. Also, the performance is not very good, as is 

evident from some of the typical results presented in Figure 3.5. In fact, 

with the same training and testing data set, the RBF network offers much 

better performance with significantly lower training time. This is obvious 

from the characterization results illustrated in Figure 3.6. 

3.3 Radial Basis Functions Network 

The design of the radial basis function (RBF) network can be viewed as 

an exercise in curve-fitting or solving an approximation problem in multi­

dimensional space. The learning of this network is, in essence, equivalent 

to determining a surface in multidimensional space that provides a best 

fit to the training data, with the definition for "best fit" being measured in 

some statistical sense. The hidden units of the RBF network provide a set 

of "functions" that constitute an arbitrary "basis" for the input vectors 

when they are expanded into the hidden-unit space [11]. 

RBF networks have recently gained prominence and increased usage 

as a tool for multidimensional interpolation. The architecture of these 
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Figure 3.5. MLP characterization results. 
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Figure 3.7. RBF network architecture. 

networks closely resembles that of the multilayer perceptron. The 

architecture of a typical RBF network is shown in Figure 3.7. 

RBF networks are two-layer networks that can be employed as a tool 

for multivariate dimensional mapping. They map an n-dimensional input 

function into an m-dimensional output function using a basis function 

expansion approach [7]: 

Given a set ofm distinct vectors or data points: 

{Xj I j=1,2, ... ,m} 

and m real function values, 

fj, j=1,2, ... ,m 

the objective is to determine a function such that 

j=1,2, ... ,m (3.3) 

The function, s, is constrained to pass through the known data points. 
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The approach involves constructing a linear function space that is 

dependent on the positions of the given data points according to an 

arbitrary distance measure. Therefore, a set of m arbitrary "basis" 

functions <1>( I I x - Ci I I) are used. The vectors Ci, i=1,2, ... ,m are centers of 

the radial basis functions and usually chosen from sample data points. 

Using the concept of basis function expansion, we consider 

interpolating functions of the form: 

s(Xj) = LAi<l>( I I x - Ci I I) (3.4) 

where <1>( I I-I I) is an appropriately chosen basis function and I I-I I 

denotes an appropriate norm, usually Euclidean. 

Inserting the interpolation conditions, i.e., equation (3.3) into equation 

(3.4), yields a set of linear equations for the coefficients, {At}, which can be 

expressed in the following matrix form: 

(3.5) 

where Aij == <1>( I I Xi - Cj I I), ij = 1,2, ... ,m. 

If the inverse of matrix A with elements AU exists, equation (3.5) allows 

the expansion coefficients Aj to be computed using 
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A = A-I f (3.6) 

It has been proven by Micchelli that for all positive integers m,n and for a 

significant class of functions <1>, the matrix A is non-singular if the data 

points are all distinct [7]. 

Once the radial basis function, <1>, is appropriately chosen and a 

distance measure defined, the above relations specify the interpolation 

problem exactly. The solution under these conditions is guaranteed. The 

above analysis is for the case when the number of centers is equal to the 

number of data samples. This is impractical in many applications where 

the number of data points is fairly large. 

Broomhead and Lowe propose an alternative by weakening the 

interpolation conditions. They propose a scheme where the number of 

centers is less than the number of data samples. Under this situation, the 

problem becomes overspecified; hence, the matrix A is no longer square 

and consequently, an inverse cannot be computed. An alternative is to 

determine a A vector which minimizes 1 1 A A - f 1 12. The solution is given 

by A =A+f, where A+ is Moore-Penrose pseudo-inverse [7]. 

A multitude of basis functions may be used in the expanSlOn. 

Examples include [20]: 

<I>(p) = exp{-p2/2cr) (Gaussian) 
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<!>(p) = log(1+p) (logarithmic) 

<!>(p) = p (linear) 

<!>(p) = (p2 + c2)112 (multiquadric) 

where c is a positive constant. 

3.4 Comparison of MLP and RBF Networks 

The MLP and RBF networks are similar in the sense that they are 

both nonlinear layered feedforward networks. In fact, an RBF network is 

capable of accurately emulating a specified MLP network, and vice versa. 

Nevertheless, many differences exist that distinguish the two networks. 

Some of these include [21]: 

1. The hidden layer of an RBF network is nonlinear, but the output 

layer is linear. This is in contrast to an MLP where both the hidden and 

output layers are usually nonlinear. (It should be noted that when an 

MLP is used to solve nonlinear regression problems, a linear output layer 

is the preferred choice.) 

2. An MLP constructs a global approximation to nonlinear input­

output maps. Hence, reasonable generalization capabilities in regions of 

the input space, where little or no training data is available, may be 

acquired. On the other hand, an RBF uses localized nonlinearities, such 

as Gaussian functions; and hence, constructs local approximations to 
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nonlinear input-output maps. As a result, RBF networks are capable of 

learning fast and offer less sensitivity to the order of training data 

presented. Unfortunately, it performs poorly in function extrapolation 

applications since the basis functions that are chosen usually have very 

limited support. 

3. RBF networks generally have only one hidden layer, whereas MLP 

networks have one or more hidden layers. 

The work described in this thesis IS primarily focused on two­

dimensional signals. However, studies done to date indicate that it may 

be necessary to process the signals from all the sensors using a three­

dimensional processing scheme. The motivation for pursuing this 

approach is explained in the following section. 

3.5 Extension to Three-Dimensional Neural Networks 

It is imperative that the signals be rendered invariant to the various 

operational parameters for accurate characterization [11]. For example, 

the distortion effects due to velocity are dependent on the location of the 

Hall sensor with respect to the flaw. These effects are most significant 

only in the case of sensors located in the close proximity to the defect 

walls and MFL measurements located away from defects are not 

significantly affected. It is critical that velocity effects be properly 
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accounted for, since the angular position of the sensor relative to the 

defect may vary due to the tool rotation. 

Furthermore, "blooming" of the field far beyond the confines of the 

defect can lead to considerable error in estimating the width of the defect. 

Other issues that need to be addressed to ensure accurate 

characterization of defects include errors introduced by poor sampling of 

the leakage field along the circumferential direction. A natural solution is 

to process the signals of all the Hall sensors as a three dimensional array 

of data and perform both the compensation schemes and the defect 

characterization using three-dimensional neural networks, as shown in 

Figure 3.8. 
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CHAPTER 4. CENTER SELECTION METHODS FOR RBF 
NETWORKS 

4.1 Introduction 

The accuracy of the defect characterization hinges on the proper choice 

of the centers of the radial basis functions associated with the network. 

The center may be selected using one of the following approaches: 

1. Clustering algorithms 

2. Self-organized selection of centers using 

potential functions approach 

3. Optimal selection of center locations 

This chapter describes each of the methods and offers a comparative 

assessment of the performance obtained. In all of these approaches, a 

Gaussian, with a fixed region of support, is used as a basis function. 

Later on, the region of support is also optimized. The Gaussian radial 

basis function centered at Ci is defined as [22]: 

<1>( 1 1 x - cd 12) = exp{-I 1 x - cd 12} i=1,2, ... ,N 

where N is the specified number of centers. 

Once the centers are determined, the only parameters that need to be 

computed are the linear weights, A's, in the output layer of the RBF 

network. The determination of these expansion coefficients constitutes 

the training process. A straightforward procedure for computing the 

expansion coefficients is to determine the pseudo-inverse as described in 
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Broomehead and Lowe [7]. 

4.2 K-means Algorithm 

The concept of pattern classification employing distance functions is a 

relatively straightforward method that is used in many applications. The 

motivation for using distance functions as a classification tool follows 

intuitively from the fact that the most obvious way of determining 

similarity among pattern vectors is to consider them as points in the 

Euclidean space and classify them based on their proximity in the spatial 

domain. This method of pattern classification may be expected to yield 

practical and reasonable results when the pattern classes tend to possess 

clustering properties. 

The method of the K-means clustering algorithm is based on the 

minimization of a performance index that is defined as the sum of the 

squared distances from all points in a cluster domain to the cluster center. 

The basic procedure is outlined below [22]: 

(1) Choose K initial cluster centers zl(l), Z2(l), ... , zk(l) 

(2) Distribute the training samples {xl among the K cluster 

domains at the kth iterative step using the relation: 

X E Sj(k) if I I x - zj(k) I I < I I x - zi(k) I I 

for all i=1,2, ... ,K, i*j. 
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(3) Compute new cluster centers zj(k+1),j=1,2, ... ,K as follows: 

zj{k+1) = (lIMj)LxeSj(k) x, j=1,2, ... ,K 

where Mj is the number of samples in Sj(k). 

(4) Algorithm has converged and procedure is terminated if 

zj(k+l) = zi(k), for j=1,2, ... ,K 

To begin, the K initial centers are usually chosen to be the first K samples 

in the training sample set. The subscript specifies a particular center and 

the number in parentheses indicates the iteration number. In step (2), 

the term Sj(k) denotes the set of samples whose cluster center is zj(k). 

Next, the center calculation in step (3) is such that the sum of the squared 

distances from all points in Sj{k) to the new cluster center is minimized, 

i.e., the new cluster center zik+1) is computed such that the performance 

index defined as 

Jj = LXeSj(k) II x - Zj(k+1) 11 2, j=1,2, ... ,K 

is minimized. The zj(k+ 1) which minimizes this performance index is 

merely the sample mean of Sj(k). 

It is known that the performance of the K-means algorithm is largely 

influenced by the number of cluster centers chosen, the definition of the 

initial cluster centers, the order in which the training samples are 

presented, and the geometrical properties of the training data [22]. The 

K-means algorithm can be expected to yield reasonably decent results 
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when the data points are linearly separable. An example of this 

clustering method is shown in Figure 4.1 where the sample data patterns 

exhibit clustering properties (linear separability) [22]. 

Once these centers have been selected and fixed, the training of the 

RBF network involves the determination of the expansion coefficients, 

which defines the nature of the multivariate mapping. 
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Figure 4.1. Sample data patterns that exhibit clustering property [22]. 
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4.3 Potential Functions Approach 

The second method of center selection may be viewed as a self­

organized selection process that is based on the concept of the potential 

functions approach. Implied in the process is the determination of 

decision functions which generate the partition boundaries in the pattern 

space separating patterns of one class from another. Unlike the K-means 

clustering scheme, which focuses on local distance measurements, the 

potential functions approach integrates the overall error fit between the 

predicted and true sample values. To understand how the concept of 

potential functions may be applied in the decision function determination, 

consider two pattern classes to be distinguished, 001 and 002. The sample 

patterns may be either vectors or points in the n-dimensional pattern 

space. Suppose that these sample pattern points are viewed as some type 

of energy source, then the potential at any of these points acquires a peak 

value and then abruptly decreases at any point away from the sample 

pattern point, Xk. Keeping this analogy in mind, the concept of 

equipotential contours may be visualized. The pattern class 001 may be 

represented by a "plateau" formed by all sample patterns in illl with the 

sample points located at the peaks of a group of hills. Analogously, a 

"plateau" is formed by sample patterns of class 002. These two "plateaus" 

are separated by a ''valley'' where the potential is essentially zero. This is 
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illustrated in Figure 4.2, for the two pattern class case. This intuitive 

analogy naturally leads to the representation of decision functions for 

pattern classification using the concept of potential functions approach 

[22]. 

d(xl 

Figure 4.2. Plateaus and valleys of two pattern classes [22]. 

An alternative analogy to help explain the potential functions 

approach is to view the center selection process as setting up "tents" in 

multidimensional space. In this sense, "tents" are propped up in the 

spatial domain where the spatial derivatives in a region are high, as 

shown in Figure 4.3 for an arbitrary function in one dimension. 
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Figure 4.3. "Tents" representing center locations: k is number of centers. 

To begin the procedure, the initial cumulative potential Ko(x) is assigned 

to zero. Also, an error threshold, c, needs to be defined. Once the first 

training sample pattern, Xl, has been presented, the cumulative potential 

is updated as follows: 

KI(X) = Ko(x) + K(X,XI) 

where, henceforth, the potential function used is of the form: 

K(X,Xk) = exp{-I I X - Xk 112} 

Since Ko(x)=O, the first computed value of the cumulative potential 

becomes 
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or, simply, the cumulative potential is equal to the potential function for 

sample pattern Xl. At this point, the cumulative potential K(XI) describes 

the initial partition boundary. Next, when the second training sample 

pattern, X2, is presented, the cumulative potential is determined as 

follows: 

IfKI(X2) > E, then the cumulative potential is adjusted using: 

K2(x) = KI(X) + K(x, X2), 

Otherwise, the cumulative potential remains unchanged: 

K2(X) = KI(X) 

This procedure is followed subsequently for all the training sample 

patterns. 

Consequently, more "tents" are set up where the difference between 

the sample value and the function synthesized using the potential 

functions is high. The center selection process in this sense is done in an 

intuitively meaningful way by placing "tents" (centers) in only those 

regions of the spatial domain where it is needed the most. This method of 

center selection is more appropriate for the application under study since 

defect characterization is not a problem of classification; but rather, a 

problem of approximation. The procedure eliminates unnecessary or 

redundant centers and, thus, minimizes the overall computational effort 

associated with the characterization phase. 
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4.4 Optimization Technique 

The last method evaluated for center selection is an optimal procedure. 

In this method, the centers and parameters of the radial basis functions, 

as well as the expansion coefficients, are determined optimally by 

minimizing the mean square error using an iterative procedure. Under 

this approach, the RBF network takes on its most generalized form. The 

technique employed is based on the minimization of an error function 

implemented using the conjugate-gradient procedure. The first step in the 

development of such a learning procedure is to define the cost function: 

E = (1/2)Iep (4.4.1) 

where the summation is over all the training samples used in the training 

process, j=1,2, ... ,M (M is the number of training samples), and ej is the 

error defined as 

(4.4.2) 

where dj is the desired vector, x is the training sample pattern, Ci 

represents the basis function centers, <!> is the chosen basis function, and Ai 

are the expansion coefficients. Since the error criterion, or cost function, 

is a nonlinear function of the variables, the problem of finding a globally 

optimum solution transforms into one of unconstrained nonlinear least 

squares minimization. These problems are usually solved using iterative 
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methods. A popular iterative scheme for minimizing the cost function is 

the conjugate-gradient method. 

The goal in the optimization method is to find the parameters Ai, Ci, 

and O'i (assuming that a Gaussian function is employed as the radial basis 

function), so as to minimize E. 

minimize E( Ci + h ti) 

The update equations for Ai and Ci are assigned different step parameters. 

The step size, h, is chosen such that it also minimizes the error function; 

hence, a similar approach to computing the centers is taken, i.e., use the 

first partial derivative with respect to h to obtain the gradient. In this 

sense, the step size calculated will yield the value that minimizes the 

error cost function. For computing the coefficients which minimize the 

cost function, the usual procedure is utilized to determine the expansion 

coefficients. This differs from the conventional MLP where the weights 

are slowly adjusted to obtain the optimum values. This novel approach of 

coupling the gradient-descent method of optimizing center locations in 

conjunction with the matrix inversion method of optimizing coefficients 

results in a more efficient and faster alternative to the MLP network 

learning mechanism. 

In other words, unlike the conventional back-propagation algorithm, 

this gradient descent procedure does not involve error back-propagation. 
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And as mentioned before, the gradient descent procedure for optimizing 

the center selection is coupled with the pseudo-inverse method of 

determining the expansion coefficients. As a result, the training time is 

decreased. The initial values of the various parameters are estimated 

using a standard pattern-classification method such as an RBF network 

[11]. 

The method of conjugate gradients is used extensively. In employing 

the conjugate-gradient method for the problem under study, a modified 

form of the method is used. More specifically, in minimizing the error 

function defined in equation (4.4.1), the first-order partial derivatives 

with respect to each of the centers are computed. This yields the search 

direction vector, which is simply the negative of the slope. In general, the 

partial derivatives of a function with respect to each of the n variables are 

collectively called the gradient of the function. The gradient is a vector of 

n-components and it points in the direction of most rapid increase of 

function values in the n-dimensional space; consequently, the gradient 

direction is called the direction of steepest ascent. Hence, taking the 

negative of this gradient vector yields the direction of steepest descent. A 

major drawback of the steepest descent (or ascent) is that it is a local 

property and not a global one. Consequently, other means need to be 

employed to ensure that a global minimum is found. In the method of 
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conjugate gradients, a new search direction is established using a linear 

combination of all previous search directions, and the newly determined 

gradient. A detailed theorem and proof for the development of the 

conjugate-gradient method is given in [23]. The algorithm adopted for 

this work is described below: 

Step 1. Start with an arbitrary initial guess of the solution CI 

Step 2. Set the first search direction tl = -VE(Cl) = -VEl 

Step 3. Compute the vector C2 according to the relation: 

C2 = Cl + hI tl 

where hI is the optimal step length in the direction tI. 

Set i=2 and go to the next step. 

Step 4. Calculate VEi = VE(ci) and set 

ti = -VEi + ( 1 VEi 12/ I VEi.I! 2) ti-l 

Step 5. Find the optimum step length hi in the direction ti, and update 

the solution using 

Step 6. Test for optimality of the Ci+l. If the error criterion is satisfied, 

stop the process; otherwise, set i=i+1, and go to step 4. 

The search direction in the ith step, ti, is obtained using: 

ti = -VEi + ~i ti-I 

where the value of ~i is determined by making ti conjugate to ti-l : 
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VE;VEj 
VEi.l VEi _1 

A general form of this minimization procedure was suggested by Fletcher 

and Reeves [23]. The flow chart that describes this process of optimizing 

the RBF centers is shown in Figure 4.4. Using a similar approach to 

calculate the optimum step size, the function E(Ci + hi ti) is minimized 

using a procedure outlined in the flow chart shown in Figure 4.5. 

Start with 
initial guess 
of centers, Cl 

Find ~(C1) = VEl 
Set Sl = - VEl 

i =-

Figure 4.4. Flow chart for optimizing RBF centers. 
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Find VE(h) = VEl 
Set Sl = -VEl 

t~=hl +<XSI 

Seti = 2 

Find ~i=~~) 

Set~+l =~ + <XSj 

>-~ hopt= ~+l 
Stop. 

Figure 4.5. Flow chart for computing the optimum step size, h. 
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The error gradient with respect to the centers can be computed as 

follows: 

aE 
tl = --

a~ 

aE 
t2 = 

a c 2 

minimizeE 
1 M N -lix. - c. 02 2 

= - L [d. - L A.e J 1 ] 
2 j=l J i=l 1 

M N -lix. - c. ,,2 _II _ 02 
= L [d. - L A.e J 1 ]A

1
(Xj _ c1)e Xj C1 =0 

j=l J i=l 1 

M N -llx. - c.o2 -llx -c 02 
= L [d. - L A.e J 1 ]A (x. - c)e j 2 = 0 

j=l J . 1 1 2 J 2 1= 

M N -llx. - c.U2 -llx.-CNU2 
= L [d. - L A.e J 1 ]AN(X. - CN)e J = 0 

j=1 J i=l 1 J 

where M is the number of sample patterns and N is the number of center 

vectors. To compute the optimum step size, hi, the error gradient with 

respect to the step size can be determined as follows: 
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1 M N - IIx. - c. - h.t. 02 2 
= - I [d. - I A.e J I I I ] 

2 j=l J i=l I 

aE 1 M N -IIx.-c. -h.t.112 N -lIx. - c. - h.t.,,2 T 
-=- I [d.- I A.e J I I I ][- L A.e J I I I t. (Xj-C. -h.t.) 
a h 2 j=l J i=l I i = III I I I 

In optimizing the RBF parameter, ai, the approach used in optimizing the 

centers and step size is employed. The error gradient with respect to the 

parameter, ai, corresponding to each basis function, can be calculated 

USIng: 

minimize E 
1 M N = - I [d. - I A.e 
2 j=l J i=l I 

2 IIx. - c.1I _ J I 

M N 
= I [d. - L A.e 

j=l J i=l I 

2a? 
I 

2 IIx. - c.1I _ J 1 

M N 
= L [d. - L A.e 

j=l J i=l 1 

2cr? 
1 

IIX. - c.,,2 
J I 

o. 
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IIx. - c.1I2 
J I 

2a? 
I 

2<12 
N 

The initial starting points of the centers are calculated using the K-means 

algorithm. After these centers are computed, the initial values of ai are 

set at one half of the distance between each center and the next center 

location. The flow chart for optimizing ai is shown in Figure 4.6. Note 

that the step size used in this process is the same as that used for 

determining the centers. 

The expansion coefficients are optimized in the sense that they are 

obtained using the matrix inversion procedure outlined in section 3.3. 

The overall algorithm can be summarized as follows: (Note that the 

superscripts denote iteration number.) 

Step 1. Start with initial guess c I and a l . 

Step 2. Calculate AI. 

Step 3. Update ck = Ck-I + h tk and a k = a k-I + h Sk. 

Step 4. Calculate A,k using c k and a k using the matrix inversion 

procedure. 

Step 5. If the error criterion is satisfied, terminate the process; 

otherwise, set k=k+1, and go to step 3. 



59 

The selection of the "optimal" number of centers and the specific 

locations, along with the basis function parameters, O'i, are important 

since they have a significant impact on the quality of the interpolation 

algorithm. It is easy to declare each training sample as a center; however, 

this is impractical as the number of samples become large, as it often does 

in real-world applications. The goal of the optimization procedure is to 

minimize the computation effort by minimizing the number of RBF nodes: 

This is accomplished by manipulating the RBF parameters, such as the 

centers and O'i associated with the functions. The widths O'i of Gaussian 

functions control the overlap of the functions, thereby establishing the 

network generalization performance. 
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Figure 4.6. Flow chart for optimizing center widths. 
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CHAPTER 5. RESULTS AND DISCUSSIONS 

As part of the initial effort in developing neural network-based 

schemes for defect characterization, MFL signals were generated using 

finite element models for a set of rectangular defects described in Table 

5.1. As discussed in Chapter 1, the MFL signal needs to be rendered 

invariant to the effects of changes in magnetization characteristics before 

being applied to the defect characterization neural network. All the MFL 

signals was, therefore, preprocessed appropriately [11] before being 

presented to the defect characterization neural network. The network's 

performance, in terms of its ability to interpolate the depths and lengths 

of defects, was evaluated using 2.5" and 3.5" defects at all the depths. The 

testing data set is described in Table 5.2. The results obtained are shown 

in Figures 5.1 and 5.2. A remarkable aspect of the results lies in the fact 

that the neural network manages to predict the length of the flaw 

accurately without being explicitly told about the relation between the 

peak-to-peak separation distance and the length of the flaw. 

Previously, the network was trained with defect sets that are spaced 1" 

apart in length and tested with defects that differed by 0.5" in length from 

the training sample set. In order to assess the performance of the 

network when a denser training set is used, the network was trained with 

defects that are spaced 0.5" apart in length as described in Table 5.3. 
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Table 5.1. Training data set. 

20% 30% 40% 50% 60% 70% 80% 

2" Al A2 A3 A4 A5 A6 A7 

3" BI B2 B3 B4 B5 B6 B7 

4" CI C2 C3 C4 C5 C6 C7 

Table 5.2. Testing data set. 

20% 30% 40% 50% 60% 70% 80% 

2.5" DI D2 D3 D4 D5 D6 D7 

3.5" EI E2 E3 E4 E5 E6 E7 
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Figure 5.1. True and predicted defect profiles for 2.5" long defect. 
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Figure 5.2. True and predicted defect profile for 3.5" long defect. 

Table 5.3. Denser training data set. 

20% 30% 40% 50% 60% 70% 80% 

2" Al A2 A3 A4 A5 A6 A7 

2.5" BI B2 B3 B4 B5 B6 B7 

3" CI C2 C3 C4 C5 C6 C7 

3.5" DI D2 D3 D4 D5 D6 D7 

4" EI E2 E3 E4 E5 E6 E7 
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Table 5.4. Denser testing data set. 

20% 30% 40% 50% 60% 70% 80% 

2.25" Fl F2 F3 F4 F5 F6 F7 

3.25" Gl G2 G3 G4 G5 G6 G7 

The network's performance is then tested with an even denser defect 

set that is spaced 0.25" apart in length as summarized in Table 5.4. The 

results are shown in Figures 5.3 and 5.4. These results clearly indicate 

that the classification performance improves when the network is trained 

with a denser set of training samples. Training with signals from a 

denser defect set minimizes error introduced by quantization which is 

inherent in modeling the geometry using finite element analysis 

techniques. 

The basis function employed in this initial study was the logarithmic 

interpolation function given by: 

<j>(p) = log(l+p) 

However, since the primary goal was to improve the network performance, 

continual efforts were made to identify methods for attaining network 

improvements. As a result of this effort, alternative interpolation 
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functions were investigated. These include the Gaussian, multiquadric, 

and linear interpolation functions. Studies to date indicate that linear 

interpolation functions offer the best performance. This is quite 

understandable since the signals used in the defect characterization 

schemes have all been preprocessed to be invariant to permeability 

effects. The preprocessing renders the signal substantially linear with 

respect to the defect dimension. The method used to accomplish this also 

employed an RBF network prior to presenting them to the defect 

characterization RBF network. Figure 5.5 shows some of the results 

obtained using an RBF network which utilized a linear interpolating basis 

function. 

Since the code for computing the basis function centers was based on a 

Gaussian function, most of the validation studies were carried out using a 

Gaussian basis function. 

Efforts were also devoted towards evaluating and comparing the 

performance of each of the three methods of determining the basis 

function parameters. Figures 5.6 through 5.8 show results obtained using 

the three techniques; namely, the K-means, potential functions approach, 

and a technique where the centers were selected by sampling the training 

sample data set. Although the potential function approach appears to 

offer superior representational accuracy, it typically requires a larger 
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training data set. Since these results indicate the superiority of the 

potential functions approach, the procedure was used to implement the 

defect characterization scheme. The results obtained for defect 

characterization using this approach are compared with results using the 

K-means approach in Figure 5.9. 
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Figure 5.5. Defect characterization results obtained using an RBF 
network employing linear interpolation functions. 
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Figure 5.6. Interpolation results obtained using the K-means approach to 
determine centers for a simple arbitrary nonlinear function. 
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Figure 5.7 Interpolation results obtained using the potential functions 
approach to determine centers for a simple arbitrary nonlinear 
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The improvement in results obtained using this network shows that a 

proper selection of centers can indeed greatly improve the performance of 

defect characterization scheme. 

Finally, the optimal procedure for estimating the basis function 

parameters and expansion coefficients was implemented. The variables 

estimated using the approach include the following: 

1. Locations of the radial basis function centers 

2. Coefficients associated with the radial basis expansion 

3. Parameters of the radial basis function 

In developing the optimal network, the procedure was implemented in 

incremental steps starting with the development of software codes that 

optimized the first two of the three variables. The gradient descent 

method was used for minimizing the mean squared error. The results 

obtained using optimal values of these two variables indicated that the 

procedure yielded performance levels that are superior to the results 

obtained using the conventional K-means clustering procedure. In fact, 

the worst performance obtained using the procedure was approximately 

the same as that obtained using the K-means method. 

Figure 5.10(a) shows the performance obtained using the same 

training and testing data set, and employing parameters that were 

obtained using the K-means algorithm. Figure 5.10(b) shows the results 



73 

K-means 
60 

(J) . ~ 
(J) I 
Q) 
C 
~ 40 0 
:c -Q) 
a. 20 "a. -0 

I ..c - 0 / 
a. 
Q) I.. 

"0 
~ 0 

-20 
0 10 20 30 40 50 60 70 80 90 

Optimization 
60 

(J) 
(J) 
Q) 
c 
~ 40 0 :c -Q) 
a. 20 "a. -0 
..c 
li 0 \. 
Q) 
"0 
~ 0 

-20 
0 10 20 30 40 50 60 70 80 90 

Figure 5.10. True and predicted profiles obtained using the defect 
characterization network employing (a) K-means algorithm, 
and (b) Optimal approach for identifying centers. 

100 

100 



74 

obtained when all three variables are optimized. The same training and 

testing data samples were used to illustrate the network performance. 

The improvement in performance is evident. Although the 

optimization technique involves the solution of a set of nonlinear 

equations, only the training effort is increased. The optimization 

technique offers results that are superior to those obtained using the 

conventional K-means or potential functions approach. The increase in 

defect characterization performance is achieved with fewer number of 

centers. With decreased number of centers employed, the computational 

effort in the testing phase is also decreased. The improvement in the 

characterization performance comes at the expense of increased training 

times, which is typically not of any great consequence. 

The optimization network performed better than those obtained using 

the potential functions or the K-means approach when the training and 

testing data set is the same. At times, the optimization network seems to 

perform slightly poorly when novel testing data samples are presented. 

The problem may be due to the fact that the result obtained may be 

suboptimal and that the iterative procedure may have been trapped in a 

local minimum. The procedure employed does not guarantee that a global 

minimum has been reached. 
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Finally, the defect characterization network was evaluated usmg 

actual experimental data. These results are preliminary due to the 

limited availability of experimental data. Thirteen defects were chosen 

out of the limited data set available. The three-dimensional defect 

parameters are defined in Figure 5.11. A fair amount of experimental 

data had to be discarded due to their poor quality. The network was 

trained with twelve defect signals and tested with the remaining signal. 

Figure 5.12 shows the defect profile predicted by the network of a defect 

that was not a member of the training set where the network only utilized 

six centers with twelve training samples. Figure 5.13 shows the same 

results, but where the network used twelve centers. This illustrates the 

point that, although, the network performance is better with increased 

centers, we can alleviate the tradeoff between characterization accuracy 

and computational complexity if the proper method of center selection is 

used. Therefore, an increase in defect characterization may be obtained 

simultaneously with a decrease in number of RBF nodes. 
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Figure 5.11. Parameters of three-dimensional defect. 
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CHAPTER 6. SUMMARY AND FUTURE WORK 

6.1 Summary 

This thesis focuses on methods for characterizing MFL signals using 

artificial neural networks. To gain an appreciation and understanding of 

the problem, the thesis begins with a problem statement and a brief 

background and the motivation prompting this research. This is followed 

by a description of the method used for solving the problem. A brief 

introductory background of the finite element method and its use for 

studying the underlying physical process and generating training data is 

presented. 

Next, a detailed discussion of artificial neural networks is presented. 

Two of the more popular neural networks; namely, the radial basis 

functions and the multilayer perceptrons are described. 

A brief discussion of various methods used in selecting centers that are 

used in designing the RBF networks is presented. Without a priori 

knowledge, the centers are usually chosen by sampling the training data 

set. Another traditional approach involves the use of a K-means 

clustering algorithm to calculate the centers required by the RBF 

network. This thesis presents alternative methods for selecting the 

centers. In particular, two new methods: a potential functions approach 

and an optimal technique are proposed. The superiority of these novel 
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approaches are shown. In addition, comparisons of the performance 

obtained using various center selection techniques are made. 

6.2 Future Work 

Future work in the area should focus on evaluating the neural network 

performance using more experimental data. Most of the results presented 

in this thesis were obtained using MFL signals generated using the finite 

element model. The next step is to test the neural network with a more 

extensive set of experimental data. The network needs to be evaluated 

using signals from more complicated defect geometries, also. Studies done 

to date indicate the necessity of using a three-dimensional neural 

network. 

Also, in all the results presented, the neural network performance was 

evaluated visually in terms of how closely the predicted defect profile fit 

that of the desired defect profile. This method is rather subjective and 

hence, a more substantial or quantitative means of determining the 

network performance is needed. Attention should also be devoted to 

methods for estimating the confidence interval for the predicted results. 

This will aid the pipeline vendors in evaluating the quality of the 

characterization results and assist them in arriving at the proper 

remediation efforts. 
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APPENDIX 

Program Listing: 

C K-MEANS ALGORITHM FOR CENTER SELECTION 
parameter (numsam=12, vsize=33, classes=12, out=33) 
double precision x(numsam,vsize), center(classes,vsize), 

+ dist, mindist, dum(classes,vsize),duml 
integer iclass(numsam), n(classes) 

open(7 ,file='train_sample' ,status='unknown') 
open(B,file='cluster _center' ,status='unknown') 

c read in input data 
do i=l,numsam 

do j=l,vsize 
read(7, *) x(ij) 

enddo 
doj=l,out 

read(7, *) duml 
enddo 

end do 

c initialize cluster centers to first "classes" number of input sample 
do i=l,classes 

do j=l,vsize 
center(ij) = x(ij) 

enddo 
enddo 

c calculate distances and find the minimum distance 
10 do i=l,numsam 

mindist = lE18 
do j=l,classes 

dist=O.O 
do k=l,vsize 

dist = dist + (x(i,k) - center(j,k))**2 
enddo 
dist = sqrt(dist) 



if (dist.lt.mindist) then 
mindist=dist 
iclass(i) = j 

endif 
enddo 

enddo 
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c count number of samples within a class 
do i=l,classes 

n(i) = 0 
do j=l,numsam 
if (iclass(j).eq.i) n(i) = n(i) + 1 

enddo 
enddo 

c save cluster centers first, then zero out clusters 
do i=l,classes 

do j=l,vsize 
dum(ij) = center(ij) 
center(ij) = 0.0 

enddo 
enddo 

c create new cluster center 
do i=l,classes 

do j=l,numsam 
if (iclass(j).eq.i) then 

do k=l,vsize 
center(i,k) = center(i,k) + (x(j,k)/n(i)) 

enddo 
endif 

enddo 
end do 

c check for convergence 
m=O 
do i=l,classes 

do j=l,vsize 
if (center(ij).ne.dum(ij)) m = 1 

enddo 
enddo 
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if (m.ne.O) goto 10 
c write center to file "cluster_center" 

do i=l,classes 
do j=l,vsize 

write(8, *) center(i,j) 
enddo 
write(8, *) , , 

enddo 

end 

C ******************************************************************* 
C RADIAL BASIS FUNCTION ALGORITHM FOR TRAINING 

c ni = number of input nodes 
c nh = number of hidden nodes 
c no = number of output nodes 
c nsam = number of samples 

parameter (ni=33, nh=l, no=33, nsam=2) 
double precision A(nsam,nh), S(nsam,no), x(nsam,ni), lamb(nh,no), 

+ dum1(nh,nh), dum2(nh,nsam), Atran(nh,nsam), 
+ p, center(nh,ni), b(nh), dinv(nh,nh), z(nh), rcond 

integer job, ipvt(nh) 

c Gaussian basis function 
c rbftp) = exp(-p) 
c Logarithmic basis function 
c rbftp) = log10«1+p)*4.) 
c Multi-quadric 
c rbftp) = (p**2 + c**2)**0.5 
c Linear 
c rbftp) = p 

open(7 ,file='train_sample' ,status='unknown') 
open( 8,file='cluster_center' ,status='unknown') 

open( lO,file='lambda' ,status='unknown') 
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c read in data points and S outputs 
do i=l,nsam 

do k=l,ni 
read(7,*) x(i,k) 

enddo 
do k=l,no 

read(7, *) s(i,k) 
enddo 

end do 

c read in cluster centers 
do i=l,nh 

do k=l,ni 
read( 8, *) center(i,k) 

enddo 
enddo 

c calculates A-matrix: A=phi( I I x-c I I) 
do i=l,nsam 
doj=l,nh 

do k=l,ni 
A(ij) = (x(i,k) - center(j,k»**2 + A(ij) 

enddo 
A(ij) = rb{tsqrt(A(ij») 
enddo 

end do 

c calculates the transpose of A-matrix 
do i=l,nsam 
doj=l,nh 
Atran(j,i) = A(ij) 

enddo 
enddo 

c multiplies transpose of A-matrix by A-matrix 
do i=l,nh 
doj=l,nh 

do k=l,nsam 
duml(ij) = duml(ij) + Atran(i,k)*A(kj) 

enddo 
enddo 
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enddo 

c calculate the inverse matrix of dum 1 
call dgeco(duml,nh,nh,ipvt,rcond,z) 
rconda=rcond 
do 20 i=l,nh 
do 25j=1,nh 

b(j)=O.O 
25 continue 

b(i)=1.0 
call dgesl(duml,nh,nh,ipvt,bjob) 
do 22 jj=l,nh 

dinv(jj ,i)=b(jj) 
22 continue 
20 continue 

c multiplies the result by A-matrix transpose 
do i=l,nh 

doj=l,nsam 
do k=l,nh 

dum2(ij) = dum2(ij) + dinv(i,k)* Atran(kj) 
enddo 

enddo 
enddo 

c calculates lambda (expansion coefficients) and write to file 
do i=l,nh 

doj=l,no 
do k=l,nsam 
lamb(ij) = lamb(ij) + dum2(i,k)*S(kj) 

enddo 
write(10, *) lamb(ij) 
enddo 

enddo 

end 

C ******************************************************************* 
C RADIAL BASIS FUNCTION ALGORITHM FOR TESTING 



c ni = number of input nodes 
c nh = number of hidden nodes 
c no = number of output nodes 
c nsam = number of samples 
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parameter (ni=33, nh=l, no=33, nsam=l) 
double precision A(nsam,nh), S(nsam,no), x(nsam,ni), p, 

+ lamb(nh,no), center(nh,ni), t, twe(nsam,no) 

c Gaussian basis function 
c rbftp) = exp( -p) 
c Logarithmic basis function 
c rbftp) = loglO«1+p)*4.) 
c Multi-quadric 
c rbftp) = (p**2 + c**2)**O.5 
c Linear 
c rbftp) = p 

c open files 
open(7 ,file='test_sample' ,status='unknown') 
open(8,file='cluster_center',status='unknown') 
open(9,file='lambda' ,status='unknown') 

open(lO,file='output' ,status='unknown') 

c read in test data 
do i=l,nsam 

do k=l,ni 
read(7, *) x(i,k) 

enddo 
do k=l,no 

read(7, *) twe(i,k) 
enddo 

enddo 

c read in cluster centers 
do i=l,nh 

do k=l,ni 
read(8,*) center(i,k) 

enddo 
enddo 
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c read in expansion coefficients (lambda) 
do i=l,nh 
doj=l,no 

read(9, *) lamb(ij) 
enddo 

enddo 

c calculate A-matrix: A=phi( I I x-c I I) 
do i=l,nsam 
doj=l,nh 

do k=l,ni 
A(ij) = A(ij) + (x(i,k) - center(j,k»**2 

enddo 
A(ij) = rbf(sqrt(A(ij») 
enddo 

enddo 

c calculate S-output 
do i=l,nsam 
doj=l,no 

do k=l,nh 
S(ij) = S(ij) + A(i,k)*lamb(kj) 

enddo 
enddo 

enddo 

c write predicted output to file 
do i=l,nsam 

doj=l,no 
write(10, *) twe(ij), S(ij) 

end do 
write(lO, *) , , 

enddo 

end 

c ******************************************************************* 
C POTENTIAL FUNCTIONS ALGORITHM FOR CENTER SELECTION 
c numsam = number of training samples 
c vsize = vector size of each input sample (input nodes) 
c classes = number of centers (hidden nodes) 
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c out = vector size of each desired output (output nodes) 

parameter (numsam=12,vsize=33,classes=6,out=33) 
double precision x(numsam,vsize ),center( classes, vsize) ,dist,mindist, 

+ dum(classes,vsize), duml 
real thresh, tmp 
integer iclass(numsam), n(classes) 

c various potential functions 
pot( q) = exp( -q) 

c pot(q) = lI(l+q) 

c open input file: contains training data samples 
open(7 ,file='training_data' ,status='unknown') 

c open output file: will contain centers after program execution 
open(8,file='testing_data',status='unknown') 

c read in error threshold 
print* ,'enter threshold value' 
read(*, *) thresh 

c read in data 
c file format containing training samples is such that the first vector of 
c data is the input sample vector followed by the corresponding desired 
c output vector. Then the next training sample input vector followed by 
c the corresponding output vector is listed. So on and so forth ... 

do i=l,numsam 
do j=l,vsize 

read(7, *) x(ij) 
enddo 
do k=l,out 

read(7,*) tmp 
enddo 

enddo 

c initialize potential function to be that of the first training sample 
do j=l,vsize 
center(lj) = x(lj) 

end do 
c calculate potential function of each sample 

m=l 
do i=l,numsam 
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c skip the first sample since it's already been initialized to this 
if (i.eq.1) goto 12 

c initialize cumulative potential to zero 
pf=O.O 
doj=l,m 

q=O.O 
do k=l,vsize 

q=q +(x(i,k)-center(j ,k) )**2 
enddo 

c compute the potential function of each sample 
pf=pf+pot(q) 

enddo 

c determine if the sample vector is retained as a center vector 
c ie., if the quantity exp{-I I x-xc I I} is greater than the error threshold, 
c (meaning that x is close to the existing center xc) then discard the 
c training sample; otherwise, keep sample as center and progress to next 
c sample 

if (pf.gt.thresh) goto 12 
m=m+1 
do k=l,vsize 

c keep sample as center 
center(m,k)=x(i,k) 

enddo 
12 continue 

enddo 

print*,'number of centers = ',m 

c write centers to file 
do i=l,m 

do j=l,vsize 
write(8,*) center(ij) 

enddo 
write(8,*) , , 

end do 

end 

C OPTIMIZATION PROGRAM 
c optimized center locations and widths of the radial basis functions, 
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c along with the step length used in updating those two parameters. 
c the expansion coefficients are optimized in the sense that they 
c correspond to the optimal center locations. 
c nsam = number of training samples 
c vsize = vector size of the sample patterns 
c ncen = number of centers 
c itmax = maximum number of iterations 

parameter (nsam=19,vsize=33,ncen=8,itmax=200) 
double precision c(ncen,vsize),oldc(ncen,vsize),lambda(ncen,vsize), 

+ oldlamb(ncen,vsize) ,s(nsam,vsize) ,x(nsam, vsize), 
+ pred(nsam,vsize) ,delf{ncen,vsize) ,oldelf{ncen, vsize), 
+ oldelsig(ncen) ,sdir(ncen,vsize) ,sigdir(ncen) ,delsig(ncen), toler, 
+ h,oldsigma(ncen),sigma(ncen),delta 

double precision cencon,lamcon,matnorm,step,error ,old error 

c open input file 
open(7 ,file='training_data' ,status='unknown') 
open(8,file='optimum_center' ,status='unknown') 
open(9 ,file='optimum_Iambda' ,status='unknown') 
open( 1 0 ,file='ini tiaLsigma' ,status='unknown') 

c error criterion 
toler = 1e-1 

c initial step size 
h=.005 

c scale factor for updating optimal step length 
step = .0001 

c read in initial sigmas 
doj=1,ncen 

read(10, *) sigma(j) 
enddo 

c read in data file and scale appropriately 
do i=1,nsam 

do k=1,vsize 
read(7, *) x(i,k) 
x(i,k)=x(i,k)/1e2 

enddo 
do k=1,vsize 

read(7, *) s(i,k) 
s(i,k)=s(i,k)/le2 

enddo 



enddo 
rewind(7) 

93 

c read in initial guesses of centers 
doj=l,ncen 

do k=l,vsize 
read(8, *) c(j,k) 

enddo 
enddo 

c compute corresponding lambda's 
call train( c,x,s,lambda,sigma) 

iter=O 
50 continue 

c find error gradient for first iteration 
call gradfun( delf,c,lambda,s,x,sigma) 
call gradsig(c,lambda,s,x,sigma,delsig) 

c save gradient 
doj=l,ncen 

do k=l,vsize 
oldelf(j ,k)=delf(j ,k) 

end do 
oldelsig(j)=delsig(j) 
enddo 

c initialize the first search direction 
doj=l,ncen 

do k-l,vsize 
sdir(j,k)=-delf(j,k) 

enddo 
sigdir(j)=-delsig(j) 
enddo 

c compute optimal step size which minimizes cost function 
call hupdate(h,c,lambda,s,x,sdir ,step,sigma) 

c update centers 
call update(c,sdir,h,sigma,sigdir,delta) 
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c compute corresponding lambda's 
call train( c,x,s,lambda,sigma) 

c begin iteration 
10 continue 

iter=iter+ 1 
olderror = error 

c compute new gradient at updated values 
call gradfun( delf,c,lambda,s,x,sigma) 
call gradsig( c,lambda,s,x,sigma,delsig) 

c save centers, sigmas, and lambdas 
doj=l,ncen 
do k=l,vsize 

oldc(j ,k)=c(j ,k) 
oldlamb(j ,k)=lambda(j ,k) 

end do 
oldsigma(j)=sigma(j) 

end do 

c compute matrix norm of delf and oldelfwith ratio stored in matnorm 
call norm2( oldelf,delf,matnorm) 

c compute new search direction 
doj=l,ncen 

do k=l,vsize 
sdir(j ,k)=-delftj ,k)+sdir(j ,k)*matnorm 

enddo 
sigdir(j )=-delsig(j h( delsig(j)/oldelsig(j) )*sigdir(j) 
oldelsig(j)=delsig(j ) 
enddo 

c compute optimal step size 
call hupdate(h,c,lambda,s,x,sdir,step,sigma) 

c update centers and sigmas 
call update( c,sdir ,h,sigma,sigdir,delta) 

c compute lambdas 
call train( c,x,s,lambda,sigma) 

c compute error function value 
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call fun(error,c,lambda,s,x,sigma) 

c check for convergence 
if(error.gt.toler .and. iter.le.itmax) goto 10 

c write centers and lambdas to files 
doj=l,ncen 
do k=l,vsize 

write(8,*) oldc(j,k), c(j,k) 
write(9,*) oldlamb(j,k), lambda(j,k) 

enddo 
enddo 

print*, 'total number of iterations = ',iter 

stop 
end 

CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

C gradsig: find width gradient 
CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

subroutine gradsig( c,lambda,s,x,sigma,delsig) 
parameter(nsam=19,vsize=33,ncen=8) 
double precision c(ncen, vsize) ,s(nsam, vsize) ,x(nsam, vsize), 

+ lambda(ncen,vsize),delsig(ncen),sigma(ncen),sigdir(ncen), 
+ sigsign(ncen) ,pred(nsam, vsize) ,deriv(nsam, vsize), 
+ xc(nsam,ncen),A(nsam,ncen),fac(nsam,ncen) 

c clear all arrays 
do i=l,nsam 
doj=l,ncen 

delsig(j)=O.O 
do k=l,vsize 

pred(i,k)=O.O 
deriv(i,k)=O.O 

enddo 
xc(ij)=O.O 
A(ij)=O.O 
fac(ij)=O.O 

end do 
enddo 

do i=l,nsam 



doj=l,ncen 
do k=l,vsize 
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xc(ij)=xc(ij) + (x(i,k)-c(j,k»**2 
end do 
A(ij)=xc(ij)/2*(sigma(j)**2) 
A(ij )=exp( -A(ij» 
fac(ij)=xc(ij)/(sigma(j)**3) 

enddo 
enddo 

do i=nsam 
doj=l,ncen 

do k=l,vsize 
pred(i,k)=pred(i,k)+ A(ij)*lambda(j ,k) 
deriv(j ,k)=deriv(j ,k)+ A(ij )*lambda(j ,k)*fac(ij) 

enddo 
enddo 

enddo 

doj=l,ncen 
do i=l,nsam 

do k=l,vsize 
delsig(j)=delsig(j)+(s(i,k)-pred(i,k) )*deriv(j ,k)*( -1) 

enddo 
enddo 

enddo 

return 
end 

CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

c hupdate: calculate optimal step size, h 
CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

subroutine hupdate(h,c,lambda,s,x,sdir,step,sigma) 
parameter (nsam=19,vsize=33,ncen=8) 
double precision c(ncen, vsize) ,s(nsam, vsize) ,x(nsam, vsize), 

+ lambda(ncen,vsize),step,sigma(ncen),h,deleh,search, 
+ sdir(ncen,vsize),tol,oldh 

integer itt 

tol = 1e-2 
imatit = 50 
itt = 0 
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c compute gradient wrt to h 
call gradh(h,c,lambda,s,x,sdir ,deleh,sigma) 

c initialize search direction 
search=-deleh 

if(search.lt.O.O) then 
sign=-1 

else if(search.gt.O.O) then 
sign=1 

else 
sign=O.O 

endif 
h=abs(h+step*sign) 

12 continue 
itt=itt+1 
oldh=h 
call gradh(h,c,lambda,s,x,sdir ,deleh,sigma) 

search=-deleh+abs(hloldh)*search 
if(search.lt.O.O) then 

sign=-1 
else if(search.gt.O.O) then 

sign=1 
else 

sign=O.O 
endif 

h=abs(h+step*sign) 
if(abs(h-oldh).gt.tol.and.itt.le.imatit) goto 12 
return 
end 

CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

C gradh: calculate gradient wrt h 
CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

subroutine gradh(h,c,lambda,s,x,sdir,deleh,sigma) 
parameter (nsam=19,vsize=33,ncen=8) 
double precision c(ncen, vsize) ,s(nsam, vsize) ,x(nsam, vsize), 

+ lambda(ncen,vsize), sigma(ncen),h,deleh,pred(nsam,vsize), 
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+ sdir(ncen, vsize), tol,stm p(ncen, vsize) ,A(nsam,ncen), 
+ fac(nsam,ncen),deriv(nsam,vsize), tmp 

deleh=O.O 
do i=l,nsam 
doj=l,ncen 

do k=l,vsize 
stpm(j ,k)=O.O 
pred(i,k)=O.O 
deriv(i,k)=O.O 

enddo 
A(ij)=O.O 
fac(ij)=O.O 

enddo 
enddo 

c compute exp{-/ / x-c / / "2} 
do i=l,nsam 
doj=l,ncen 

do k=l,vsize 
tmp=x(i,k)-c(j,k)-h*sdir(j,k) 

enddo 
A(ij)=A(ij)+tmp**2 
fac(ij)=fac(ij)+O.5*tmp*sdir(j,k)/(sigma(j)**2) 

enddo 
A(ij)=exp( -A(ij)*O .5/(sigma(j)**2» 

enddo 

c compute predicted output 
doj=l,ncen 

do k=l,vsize 
pred(i,k)=pred(i,k)+ A(ij)*lambda(j ,k) 
deriv(j ,k)=deriv(j ,k)+A(ij)*lambda(j ,k)*fac(ij) 

enddo 
enddo 

c compute gradient value 
doj=l,ncen 

do k=l,vsize 
deleh=deleh+(s(i,k)-pred(i,k) )*( deriv(j ,k) )*( -1) 

enddo 
end do 



return 
end 
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CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

c update centers and sigmas 
CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

subroutine update( c,sdir ,h,sigma,sigdir ,delta) 
parameter( vsize=33,ncen=8) 
double precision c(ncen, vsize) ,sdir(ncen, vsize), tm ps(ncen, vsize), 

+ h,delta,sigsign(ncen),sigma(ncen),sigdir(ncen) 

doj=1,ncen 
do k=1,vsize 

ifCsdir(j,k).lt.O.O) then 
tmps(j,k)=-l.O 

else if (sdir(j,k).gt.O.O) then 
tmps(j,k)=l.O 

else 
tmps(j ,k)=O.O 

endif 
enddo 
if (sigdir(j).lt.O.O) then 

sigsign(j)=-1.0 
else if (sigdir(j).gt.O.O) then 

sigsign(j)=l.O 
else 

sigsign(j )=0.0 
endif 
sigma(j) = sigma(j) + h*sigsign(j) 

enddo 

doj=1,ncen 
do k=1,vsize 

c(j ,k)=c(j ,k)+ h *tm ps(j ,k) 
enddo 

end do 
return 
end 

CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

c calculate function gradient 
CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

subroutine gradfun( delf,c,lambda,s,x,sigma) 
parameter(nsam= 19 ,vsize=33,ncen=8) 



100 

double precision c(ncen, vsize) ,s(nsam, vsize) ,x(nsam, vsize), 
+ lambda(ncen,vsize),pred(nsam,vsize),delf(ncen,vsize), 
+ A(nsam,ncen),sigma(ncen), tmp1, tmp2 

do i=l,nsam 
doj=l,ncen 

do k=l,vsize 
delf(j ,k)=O. 0 
pred(i,k)=O.O 

enddo 
A(ij)=O.O 

enddo 
enddo 

c compute exp{-I I x-c I I "2} 
do i=l,nsam 
doj=l,ncen 

do k=l,vsize 
A(ij )=A(ij)+(x(i,k)-c(j ,k) )**2 

enddo 
A(ij)=exp( -A(ij)/(2*(sigma(j)**2») 

enddo 
end do 

c compute predicted output 
do i=l,nsam 

do k=l,vsize 
doj=l,ncen 

pred(i,k)=pred(i,k)+ A(ij)*lambda(j ,k) 
enddo 

end do 
enddo 

c compute gradient 
do i=l,nsam 
doj=l,ncen 

do k=l,vsize 
tm p l=(s(i,k)-pred(i,k»* A(ij) 
tmp2=2*(sigma(j)**2) 
delf(j,k)=delf(j,k)+tmp1 *lambda(j,k)*(x(i,k)-c(j,k»*(-lItmp2) 

enddo 
enddo 



enddo 
return 
end 
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CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

c calculate matrix norm and ratio 
CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

subroutine norm 2 ( oldelf,delf,matnorm) 
parameter (vsize=33,ncen=8) 
double precision oldelf(ncen,vsize),delf(ncen,vsize),oldnorm,newnorm, 

+ matnorm 

oldnorm=O.O 
newnorm=O.O 

do j=l,ncen 
do k=l,vsize 

oldnorm=oldnorm + oldelftj ,k)**2 
newnorm=newnorm + delftj,k)**2 

end do 
enddo 

matnorm = newnormloldnorm 
return 
end 

CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

c evaluate error function 
CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

subroutine fun( error,c,lambda,s,x,sigma) 
parameter(nsam=19, vsize=33,ncen=8) 
double precision c(ncen, vsize) ,s(nsam,vsize) ,x(nsam, vsize), 

+ lambda(ncen, vsize),pred(nsam,vsize),fnc(nsam, vsize), 
+ A(nsam,ncen),error,sigma(ncen) 

open(7 ,file='output' ,status='unknown') 
open(8,file='opt_sigma' ,status='unknown') 
error=O.O 
do i=l,nsam 
doj=l,ncen 

do k=l,vsize 
pred(i,k)=O.O 

enddo 
A(ij)=O.O 



end do 
enddo 

c compute exp(-II x-c 11/\2) 
do i=l,nsam 
doj=l,ncen 

do k=l,vsize 
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A(ij)=A(ij )+(x(i,k)-c(j ,k) )**2 
enddo 

A(ij)=exp( -A(ij)/(2*(sigma(j)**2))) 
enddo 

enddo 

c compute predicted output 
do i=l,nsam 

do k=l,vsize 
doj=l,ncen 

pred(i,k)=pred(i,k)+ A(ij)*lambda(j ,k) 
enddo 

write(7, *) s(i,k)*100.,pred(i,k)*100. 
enddo 

write(7, *) , , 
end do 

doj=l,ncen 
write(8, *) sigma(j) 

enddo 

c compute function 
do i=l,nsam 

do k=l,vsize 
error=error+(s(i,k)-pred(i,k) )**2 

enddo 
enddo 

rewind(7) 
rewind(8) 
return 
end 

c/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\ 

c RBF training network 
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CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

C ni = number of input nodes 
c nh = number of hidden nodes 
c no = number of output nodes 
c nsam = number of samples 

subroutine train( c,x,s,lambda,sigma) 
parameter (ni=33, nh=8, no=33, nsam=19) 
double precision A(nsam,nh), S(nsam,no), x(nsam,ni), lamb(nh,no), 

+ duml(nh,nh), dum2(nh,nsam), Atran(nh,nsam), 
+ p, center(nh,ni), b(nh), dinv(nh,nh), z(nh), rcond, 
+ sigma(nh),sig 

integer job, ipvt(nh) 

c Gaussian basis function 
c rbf{p) = exp(-p/(2*(sig**2») 

c read in data points and S outputs 
do i=l,nsam 
doj=l,nh 

A(ij)=O.O 
b(j)=O.O 
dum2(j,i)=0.0 
Atran(j ,i)=O. 0 

enddo 
end do 

doj=l,nh 
do k=l,no 

lambda(j,k)=O.O 
enddo 

enddo 
do i=l,nh 

doj=l,nh 
duml(ij)=O.O 

enddo 
enddo 

m=nsam 
ia=nsam 
n=nh 
iu=nh 
ifail=O 
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job=O 

c calculates A-matrix: A=phi( Ilx-c II) 
do i=l,nsam 
doj=l,nh 

sig=sigma(j) 
do k=l,ni 
A(ij) = (x(i,k) - c(j,k»**2 + A(ij) 

end do 
A(ij) = rbf(A(ij» 
enddo 

enddo 

c calculates the transpose of A-matrix 
do i=l,nsam 
doj=l,nh 
Atran(j,i) = A(ij) 

enddo 
end do 

c multiplies transpose of A-matrix by A-matrix 
do i=l,nh 
doj=l,nh 
dok=l,nsam 

dum1(ij) = dum1(ij) + Atran(i,k)* A(kj) 
enddo 

enddo 
end do 

c calculate the inverse matrix of dum1 
call dgeco(dum1,nh,nh,ipvt,rcond,z) 
rconda=rcond 
do 20 i=l,nh 
do 25j=1,nh 

b(j)=O.O 
25 continue 

b(i)=l.O 
call dgesl(dum1,nh,nh,ipvt,bjob) 
do 22 jj=l,nh 

dinv(jj ,i)=b(jj) 
22 continue 
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20 continue 

c multiplies the result by A-matrix transpose 
do i=l,nh 

doj=l,nsam 
do k=l,nh 

dum2(iJ) = dum2(iJ) + dinv(i,k)*Atran(kJ) 
enddo 

enddo 
enddo 

c calculates lambda (expansion coefficients) and write to file 
do i=l,nh 

do j=l,no 
do k=l,nsam 

lambda(iJ) = lambda(iJ) + dum2(i,k)*S(kJ) 
enddo 

enddo 
enddo 

end 


