
Neural networks for characterizing

magnetic flux leakage signals

by

Marian M. Chao

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Department: Electrical and Computer Engineering
Major: Electrical Engineering

Signatures have been redacted for privacy
Signatures have been redacted for privacy

Iowa State University
Ames, Iowa

1995

11

TABLE OF CONTENTS

ACKNOWLEDGMENTS iv

CHAPTER 1. INTRODUCTION 1

1.1 Background 1

1.2 Scope of Thesis 6

CHAPTER 2. MAGNETIC FLUX LEAKAGE TECHNIQUES 8

2.1 Problem Statement 8

2.2 Finite Element Method 13

2.2.1 Introduction 13

2.2.2 Governing Equations 15

2.3 Data Collection 18

CHAPTER 3. NEURAL NETWORKS 22

3.1 Background 22

3.2 Multilayer Perceptrons 28

3.3 Radial Basis Functions Network 32

3.4 Comparison ofMLP and RBF Networks 38

3.5 Extension to Three-Dimensional Neural Networks 39

CHAPTER 4. CENTER SELECTION METHODS FOR RBF
NETWORKS 42

4.1 Introduction 42

4.2 K-means Algorithm 43

111

4.3 Potential Functions Approach

4.4 Optimization Technique

CHAPTER 5. RESULTS AND DISCUSSIONS

CHAPTER 6. SUMMARY AND FUTURE WORK

6.1 Summary

6.2 Future Work

BIBLIOGRAPHY

APPENDIX

46

50

61

79

79

80

81

83

IV

ACKNOWLEDGMENTS

My deepest gratitude goes to my adviser, Dr. Satish Udpa, for his

unfaltering encouragement, guidance, patience, and understanding.

Dr. Udpa: Thank you for being my teacher, my mentor, and most of all, my

friend. To Dr. Lalita Udpa: Thank you for your guidance and support. To

Dr. William Lord: Thank you for your encouragements, long philosophical

chats, and deep emotional probing into pursuing my dreams and finding my

passions in life. I wish to sincerely thank Dr. Eric Bartlett for graciously

agreeing to be on my committee. I wish to thank Dr. Mani Mina for always

having his door opened to me. Also, I wish to thank all my colleagues,

especially my "pig" associates who have made this so memorable and actually

fun! Grateful acknowledgment is also due to Gas Research Institute for

funding me as a research assistant for my entire duration at Iowa State

University.

Lastly, I wish to take this opportunity to thank the utmost important

people in my life: To my parents, Chun-Yun and Pi-Lien: I love you and

thank you for all that you have sacrificed for me. To my brother, Joe: Thank

you for your encouragement, support, morale-boosts, optimistic attitude,

idealistic dreams, and care-free spirit when I needed it most. I couldn't have

survived without you here. And to my sister, Mei-Ling: Thank you for your

constant support and encouragement and always being there for me.

1

CHAPTER 1. INTRODUCTION

1.1 Background

Nondestructive evaluation (NDE) has been an extremely important

area of study that is involved with testing a product or material without

destroying its integrity or serviceability. The field of NDE has recently

gained recognition for its usefulness and importance, especially as a
(1

critical component in quality control of manufactured parts in many

industries.

The concept of NDE is based on the analysis of information generated

during the interaction between an energy source and the test specimen.

The form of the energy source is chosen appropriately in accordance with

the properties of the specimen and the objectives of the test. Examples of

energy sources include acoustic waves; x-rays, and magnetic fields [1].

The nondestructive testing (NDT) system contains an energy source that

interacts with the test specllnen. The response of this interaction is

measured and analyzed to determine the condition of the specimen. The

fundamental concept of NDT is to inject energy in the test specimen and

then measure the resulting energy source/test specimen· interaction

without causing damage to the test specimen. The inverse problem in

NDE is concerned with deducing the state or integrity of the objeCt under

source

signal
processing

2

storage

'INVERSE'

output

Figure 1.1. Generic NDE system [2].

inspection, i.e., estimate the size, shape, orientation of defects which may

be present in the test specimen. A block diagram of a typical NDE

system is shown in Figure 1.1 [2].

Practical NDE applications find usage In the inspection of a wide

range of engineering components such as integrated chips, aging aircraft,

railroad tracks and wheels, heat exchanger tubes, and natural gas

transmission pipelines. The accurate detection and characterization of

flaws is critical in containing manufacturing costs as well as in saving

human lives and property. Indeed, the primary motivation behind the

research work described in this thesis ,is related to the issue of ensuring

safety through NDE by characterizing defects in natural gas transmission

3

pipelines. These flaws could potentially have fatal consequences if left

undetected.

The NDT method utilized in this research work is the electromagnetic

method; in particular, the magnetic flux leakage (MFL) technique. MFL

methods are used for inspecting ferromagnetic material structures. It is

known that the presence of a defect in a magnetized ferromagnetic

specimen results in a redistribution of the flux lines causing some of these

flux lines to "leak" into the surrounding medium. The leakage flux may

be sensed and measured by a flux sensitive device such as a Hall probe.

This is illustrated in Figure 1.2.

The approach proposed for solving the inverse problem is through the

use of neural networks. Artificial neural networks have been studied

extensively for many years by researchers who were motivated by a

Figure 1.2. Leakage flux in the vicinity of a surface-breaking anomaly.

4

desire to mimic the information processing strategies of the human brain

and develop systems that match the pattern recognition and cognitive

skills of biological creatures. In fact, considerable progress in achieving

this goal is steadily being made. Neural networks have become known for

their impressive classification capabilities of sample patterns. Different

neural network paradigms employ different learning rules; however, all of

them in some way determine pattern statistics from a set of training

samples and then classify new patterns on the basis of information

acquired from the exemplars [3].

The back-propagation method proposed by Rumelhart and McClelland

[4] is one of the most commonly used algorithms for training neural

networks. The most well-known neural network that employs this

learning algorithm is the multilayer perceptron (MLP). Multilayer

perceptrons are feedforward networks with at least one layer of nodes

between the input and output nodes, called the "hidden" nodes.

Feedforward layered neural networks are used extensively in many areas

of signal processing. The use of these networks for processing complex

signals can be interpreted as performing a curve-fitting operation in a

multidimensional space. Such networks can be employed for realizing

complex nonlinear decision functions or to approximate certain

complicated data-generating mechanisms.

5

A drawback of these traditional neural networks is related to the

exceSSIve computation effort involved in training them as well as a

tendency to gravitate towards suboptimal solutions. The learning

employs nonlinear optimization techniques, and the parameter estimate

may become trapped at a local minimum of the chosen optimization

criterion during the learning procedure [4].

Recently, many researchers have turned their attention to a number of

alternate neural network models, among which is the radial basis

function network [5]. The radial basis function (RBF) network is a fairly

new concept that has recently gained wide interest and attention in the

area of artificial neural networks.

Similar to the MLP, RBF networks are two-layer networks with good

approximation capabilities. Originally, the RBF method was introduced

strictly as a tool for interpolation in multidimensional space. In this

scheme, the RBF method employs as many basis function centers as there

are data points. This is extremely impractical in signal processing

applications, since the number of data points is usually very large [4].

The RBF network developed for this research more closely adopts

Broomhead and Lowe's [7] approximation to the original RBF model. The

modified approach is more suitable for signal processing applications

where we typically encounter overdetermined systems [7].

6

This thesis describes the application of RBF networks for

characterizing defects in natural gas transmission pipelines. Artificial

neural networks have been applied extensively for defect sizing in the

past. The radial basis function network, in particular, has been shown to

be particularly successful in defect sizing applications [8]. However, in all

these applications, the RBF network has been used only to predict simple

characteristics of the defect such as the size, location, or orientation. This

thesis describes an extension of the concept where an RBF network is

used to characterize the complete defect profile. Results obtained to date

have proven the feasibility of using neural networks for solving inverse

problems in nondestructive evaluation [2].

1.2 Scope of Thesis

This thesis focuses on the characterization of MFL signals using

artificial neural networks. To provide an appreciation and understanding

of the problem under investigation, Chapter 2 begins with the problem

statement and a brief background and motivation for this research. This

is followed by a description of the approach employed for solving the

problem. The defect characterization network requires an extensive data

set for training. Since experimental data is relatively scarce and

expensive to obtain, numerical models simulating the test are employed

7

for generating training data. Chapter 2 provides a brief description of the

finite element model that was used for generating the data.

In Chapter 3, a detailed discussion of artificial neural networks is

presented. In particular, the multilayer perceptron and radial basis

function networks are described and compared. The chapter describes the

concept of a "three-dimensional" artificial neural network that is currently

being evaluated for defect characterization.

Chapter 4 is devoted to a discussion of various methods used in

selecting centers that are needed in RBF networks. The K-means

clustering algorithm has traditionally been used to calculate the centers

required by the RBF network. The K-means algorithm is well established

and widely used because of its simplicity. The chapter examines

alternative methods for selecting the centers and compares their

performances. The chapter describes a new optimal procedure as well as

a method of using potential functions approach for determining the basis

function centers. The superiority of these approaches is shown through

validation studies in Chapter 5. Finally, Chapter 6 presents conclusions

together with a discussion of difficulties encountered and suggestions for

future work.

8

CHAPTER2. MAGNETICFLUXLEAKAGETEC~QUES

2.1 Problem Statement

The motivation behind this research work comes from a desire to

detect and characterize defects which occur in natural gas transmission

pipelines. Natural gas is a vital resource in meeting many of the nation's

high energy demands. The gas is transported from the well to the

consumer using a network of pipelines. Most of the pipeline systems in

this country were built within the last four decades, although some

constructed before World War II are still in use today. There are over

90,000 miles of natural gas gathering and field pipelines, 280,000 miles of

U. S. transmission pipelines, and more than 835,000 miles of gas

distribution mains and service lines. This pipeline system has become a

critical means of supplying energy that would otherwise be impractical

and extremely costly to replace. Consequently, preventive maintenance

methods are used to secure the integrity and serviceability required to

meet future demands of transporting natural gas [10]. Figure 2.1

illustrates the pipeline system more clearly.

One of the most popular methods for inspecting pipelines is the

magneto static technique. Magnetostatic methods of nondestructive

evaluation are used extensively for the inspection of ferromagnetic

specimens. In the past, magnetic "inks" or powders were widely accepted

9

(835,000 miles)

(90,000 miles)

(280,000 miles)
I

I I

~ ~

~ I II' \II '
Processing an~or Pipeline Terminus

Compressor StatIons Valves

Figure 2.1. Natural gas pipeline system [10].

as reliable indicators of flaws and defects found in components and

assemblies manufactured from ferrous metals. Today, improved methods

of detecting magnetic leakage flux associated with defects at or near the

surface of a magnetized ferromagnetic material are in use. The

magnetostatic method can be classified on the basis of the state of the

excitation source during the inspection. If the excitation source is

energized during the inspection, the method is called an active leakage

field test. If the test relies on the measurement of the residual field

present in the specimen after the source is de-energized, the method is

called the residual leakage field test. Active leakage field methods are

10

one of the most commonly used techniques for the in-line inspection of

natural gas transmission pipelines.

The inspection is achieved by launching an inspection vehicle;

otherwise known as a "pig," through the pipeline. The pig is propelled by

the flow of the natural gas in the transmission pipes. Fully equipped with

appropriate instrumentation and devices, the pig detects and records the

NDE signals generated due to corrosion and cracks existing on the inner,

as well as the outer diameter of the pipe. The pig employs permanent

magnets and a magnetic circuit to saturate the pipe wall. In the presence

of surface-breaking anomalies, magnetic flux "leaks" into the region

surrounding the test object. This leakage flux may then be detected by a

flux sensitive device such as a Hall probe. The characteristics of this

magnetic flux leakage (MFL) profile is indicative of the nature of the

defect. Figure 2.2 shows the axial and radial components of a typical

MFL signal. The objective is to determine the profile of the defect based

on information contained in the MFL signal. Figure 2.3 shows such a

mappIng.

The characterization of defects found during in-line inspection of the

pipelines is, however, fraught with several problems. Chief among the

problems is the sensitivity of the signal to a number of operational

variables. These variables include probe velocity and pipeline stress

600

500

400

300

100

11

A-./1 ! i I .
I !

! \

I \
\
"--

o~--------------------

Axial Component

400

300

200

100

o -!-----~------
-100

-200

-300

-400
Radial Component

Figure 2.2. Axial and radial components of a typical MFL signal.

Axial Component
Defect Profile

mapping

ill II h+....,....,-.4
I
J.T J Lr

I

rl fl.
I

I
!

I
i

Figure 2.3. Inverse mapping from an MFL signal to defect profile.

12

levels. The latter affects the permeability of the pipeline which, in turn,

affects the MFL signal. Another factor that complicates the

characterization process is variation in the permeability of the pipe.

Accurate characterization of the defect requires a proper understanding of

these factors and methods to compensate for the effects [6]. It is very

difficult and expensive to study the effects of these variables using

experimental methods. An alternative approach is to use a numerical

model as a test bed and simulate the test conditions. Such a test bed can

also serve as a source for generating signals required for designing defect

characterization systems. One of the more powerful tools for simulation is

the finite element technique. The modeling technique is described in

section 2.2.

Accurate defect characterization offers significant benefits: Pipeline

companies benefit from an understanding of when and how operational

variables affect inspection results. These results naturally lead to better

planning of the operational controls needed for accurate inspections.

Maintenance and repair operations benefit by reducing the number of

bellholes required as a consequence of increased inspection accuracy.

Inspection vendors benefit by understanding their systems and where

improvements are beneficial and needed. Pipeline owners gain better

knowledge of the accuracy, strengths, and limitations of present MFL

13

inspection tools. Researchers benefit from helping further current state­

of-the-art technology. All of these support the enhancement of safety,

reliability, integrity, and serviceability of natural gas transmission

pipelines [10].

2.2 Finite Element Method

2.2.1 Introduction

The finite element method is a numerical technique for solving partial

differential equations to obtain approximate solutions to a wide variety of

engineering problems. The basic premise of the finite element method is

that a solution region can be analytically modeled or approximated by

representing it as an assemblage of discrete elements. Instead of solving

the partial differential equation directly, the finite element method

involves the minimization of an energy functional. Since these elements

can be assembled in various ways, they have the ability to represent

exceedingly complex shapes. In other words, the finite element method

takes the approach of dividing the solution domain into a finite number of

subdomains, or elements. These elements are connected only at nodal

points in the domain and on the element boundaries: The solution domain

is discretized and represented as a patchwork of elements. To summarize

14

In general terms, the finite element modeling technique involves the

following steps [7]:

1. Identify an appropriate energy functional corresponding to

the partial differential equation

2. Discretize the continuum

3. Select interpolation functions

4. Determine the element "stiffness" matrix

5. Assemble the local stiffness matrices to obtain the global

matrix equation

6. Solve the system of equations to obtain the solution

7. Use the solution to compute other parameters of interest

In discretizing the continuum, once the element mesh for the solution

domain is defined, the behavior of the unknown field variable over each

element is approximated by continuous functions expressed in terms of

the nodal values. The function defined over each finite element is called

an interpolation or shape function. The set of interpolation functions for

the whole solution domain yields a piecewise polynomial approximation to

the field variable [7]. The numerical solution of the partial differential

equation reduces to solving a system of algebraic equations in terms of

parameters defining the approximate solution [13].

15

2.2.2 Governing Equations

Maxwell's equations are the fundamental equations that govern all

electromagnetic phenomena. The equations may be expressed in both

differential and integral form, but are presented here in differential form

since they lead to differential equations that can be solved using the finite

element method [14].

For general time-varying fields, Maxwell's equations can be written as

follows [14]:

aB VxE+-=O
at

(2.1)

aD VxH- - = J at
(2.2)

V·D = P (2.3)

V·B = 0 (2.4)

where

E = electric field intensity (volts/meter)

D = electric flux density (coulombs/meter2)

H = magnetic field intensity (amperes/meter)

B = magnetic flux density (webers/meter2)

J = electric current density (amperes/meter2)

p = electric charge density (coulombs/meter3)

16

In the case when the field quantities do not vary with time, they are

called static fields and may be expressed as follows:

VxE = 0

VxH = J

Equations (2.3) and (2.4) remain unchanged.

(2.5)

(2.6)

Clearly, under this situation, no interaction between electric and

magnetic fields exist and can, thereby, be described as an electrostatic case

(equations (2.3) and (2.5)) or a magnetostatic case (equations (2.4) and

(2.6».

Additionally, assuming isotropy, the following constitutive relations

relate the macroscopic properties of the medium and the field variables:

D = EE (2.7)

B = Jl H (2.8)

J = (j E (2.9)

where the parameters E, Jl, and (j denote, respectively, the permittivity

(Farads/meter), permeability (Henrys/meter), and conductivity

(Siemens/meter) of the medium. The parameters are tensors for

anisotropic media and scalars for isotropic media. For inhomogeneous

17

media, they are position-dependent, while they are not for homogeneous

media.

To solve Maxwell's equations, the first-order differential equations

involving two field quantities may first be converted into second-order

differential equations involving a field quantity:

Exploiting the fact that B is divergence free we can write:

B = VxA (2.10)

where A is called the magnetic vector potential.

Substituting equation (2.10) into equation (2.6) and utilizing equation

(2.8) yields the second-order differential equation:

1
V x (-VxA) = J (2.11)

/l

This does not uniquely define A since if A is a solution to equation (2.11),

any function that can be written as AI = A + Vf is also a solution

regardless of the form of f. Therefore, in order to uniquely define A, a

condition on its divergence also needs to be defined. Such a condition is

called a gauge condition and a natural choice is

V· A = 0 (2.12)

The finite element model used in this study exploits the axisymmetric

nature of the pig geometry. Finite element analysis methods solve the

partial differential equation governing the physical process in an indirect

manner.

18

An alternative to solving equation (2.11) directly IS to embed the

governing partial differential equation in an energy functional. The

energy functional corresponding to equation (2.11) is given by

Jff(H·dB - J·dA)dv (2.13)
v

where, again, H represents the magnetic field intensity, B is the magnetic

flux density, and v is the volume of interest.

Minimizing this energy functional is tantamount to solving the partial

differential equation. The method involves discretization of the region

with an appropriate mesh. In minimizing the functional at each of the

nodes, a matrix equation is generated. Solving this matrix equation

yields the vector magnetic potential, A, which can then be used to

determine other quantities of interest such as the flux density in the

material and the leakage field profile.

2.3 Data Collection

The MFL signals used for training the neural network are generated

using a finite element model. The performance of a neural network is

larg~ly dependent on the amount and quality of data presented during the

training process. In other words, in order for a neural network to properly

learn the properties inherent in a given data set, an extensive and

comprehensive amount of training data is required. Since the amount of

19

experimental data is limited, this study relied primarily on MFL signals

generated using the finite element model. The model has been validated

using experimental results. Examples of simulated signals (axial

components) for various rectangular defect lengths are shown in Figure

2.4. It is known that the peak-to-peak distance is equivalent to the length

of the defect. Moreover, the peak-to-peak magnitude is equivalent to the

depth of the defect [15]. In order to minimize the computational effort,

the finite element model exploits the axisymmetric nature of the geometry

as illustrated in Figure 2.5. A detailed two-dimensional tool geometry is

shown in Figure 2.6. It shows the various components and materials that

comprises the tool. The axisymmetric defect encircles the outer diameter

of the pipe as shown in the shaded region.

Once these signals are generated and a substantial data base

constructed, the neural network may be trained. The approach taken in

using neural networks to solve the inverse problem in NDE is one of

multidimensional mapping. The concept of neural networks is explained

in details in the next chapter.

....... en en
:::J
co
~
N
III

20

25.------,.------.-------.-------.-------.-------.------~

20

.---\
..... \ /

\
\/

15
.,
/ \ , ,

10

5
I
I

/ /
/ /

0
---~---....:.-.

0 5 10

/

\/ , / (\
...... " /. \

/ \

"
" - _

15 20

,

\

\

25

, ,

--2"

. _. - 3"

- - 4"

-.--'- -
30 35

Figure 2.4. Examples of simulated signals for 2",3", and 4" long defects.

21

Figure 2.5. Axisymmetric approximation of a pig.

steel core

plate
magnet

plate

pole piece

brush plate I

/ bristles \ / \
pipe - I ... I

defect

Figure 2.6. Two-dimensional tool geometry.

22

CHAPTER 3. NEURAL NETWORKS

3.1 Background

Artificial neural networks have been the focus of extensive studies by

researchers in hopes of achieving human-like performance in solving

problems that require cognitive skills. Examples of such problems include

those encountered in speech and image recognition [9]. Artificial neural

networks are composed of simple processing elements that are densely

interconnected. These networks are trained to perform arbitrary

mappings between sets of input-output pairs through the adjustment of

interconnection weights. In this sense, the architecture of artificial neural

networks emulates that of a biological nervous system. Neural networks

are attractive in that they require no a priori information or built-in rules;

rather, they acquire knowledge of the data through the presentation of

examples. This characteristic allows neural networks to approximate

mappIngs for functions that do not appear to have a clearly defined

algorithm or theory.

The computational elements or nodes used in neural networks are

nonlinear in nature. A simple node sums N weighted inputs and passes

the result through a nonlinearity; otherwise known as an activation

function, as shown in Figure 3.1. The node is characterized by an

internal bias e and by the type of nonlinearity. The neural network

input

f(a)
11-----

o
-1

hard limiter

a-

23

y

output

f(a)

o 0:-

threshold logic

Figure 3.1. Activation functions [16].

fCa)
+1

o

sigmoid

a-

characteristics are determined by the network topology, node

characteristics, and training or learning algorithms. The algorithms

dictate the initial weight values and subsequent adaptation during the

training process so as to improve performance.

Neural networks are known for their robustness or fault tolerance, in

that the failure of a few processing nodes or links will not have a

significant effect on the overall performance. In addition, most neural

networks adapt connection weights with new data so as to improve

performance continually with time. The ability to adapt and continually

learn is an important asset unique to neural networks and learning

systems. Adaptation provides a degree of robustness by compensating for

24

mInor variability in the characteristics of processing elements. The

functionality of the network is defined by the nature of interconnection

weights and the type of processors used. The determination of the

interconnection weights is essentially equivalent to the determination of

the input-output relation of the network and, hence, constitutes the

training procedure of the neural network. In other words, the information

inherent in sample patterns, required for discrimination, is automatically

extracted and embedded into the network in the form of interconnection

weights.

Several types of neural networks have been proposed and are

primarily distinguished by their architecture and the learning rule

employed to train them. Examples of these include the multilayer

perceptron (MLP), Hopfield network, Kohonen network, and the more

recently developed, Radial Basis Function (RBF) network.

Each network offers its own set of advantages and disadvantages and

certain networks are preferred over others depending on the particular

application of interest. For this research, we use an RBF network. A

justification of this choice will be presented later. However, the MLP is

also used to facilitate a comparison of the results and demonstrate the

superiority of the RBF network relative to the MLP for the application on

hand. To further understand the properties of neural networks, we will

25

look at two primary application categories of neural networks. Neural

network applications can be classified into two main categories:

recognition and generalization. The training for both types of neural

network applications involves the presentation of a set of input-output

pairs (exemplars) (I1,01), (I2,02), ... , (Io,Oo). The main distinction between

the two categories is that in recognition problems, the trained network is

tested with an exemplar signal I.i (l5j,$.n) corrupted by noise, as shown in

Figure 3.2. The trained network is expected to reproduce the output OJ,

corresponding to Ij, in the presence of noise. Examples of these types of

applications include shape and handwriting recognition. In generalization

problems, the trained neural network is tested with input 10 +1, which is

distinct from the inputs II, 12, ... , 10 , used for training the network as

shown in Figure 3.3. The network is expected to predict correctly the

output 0 0+1 for the input 10+1 from the model it has learned through

training.

There are many real-world applications that would benefit from the

use of neural networks for solving generalization problems, because it is

extremely difficult to successfully apply either conventional mathematical

techniques (e.g. statistical regression) or standard artificial intelligence

approaches (e.g. rule-based systems) for solving such problems. The

generalization ability of a neural network is useful since it does not

Learning
Examples

Learning
Examples

26

Noise

000

Figure 3.2. Recognition problem [17].

000

Testing

Testing
Example

Trained
Neural

Network

Trained
Neural

Network

Example I 0
n+2 n+2

Figure 3.3. Generalization problem [17].

27

require an a priori specification of a functional domain model; rather, it

attempts to learn the underlying structure relating input-output data

from the training samples [17].

Learning algorithms for generalization and recognition problems are

different. In the case of recognition problems, the neural network is

expected to reproduce one of the previously seen outputs. The network

may recall the outputs and inputs by fitting a curve through the (li,Oi)

pairs used for training. To remember the outputs, a large network with

numerous nodes and weights may be employed. However, the

memorization of learning samples is not appropriate for generalization

problems since this may result in overfitting. Overfitting which results in

poor performance can be measured in terms of the ability of the network

to correctly predict the output when novel inputs are presented. Networks

designed for solving generalization problems can tolerate a small amount

of error in the predicted output; therefore, the fitted curve is not required

to pass through any (Ii,Oi) pair used in the training phase. Neural

networks designed for solving generalization problems may instead fit a

simple curve (e.g. a low degree polynomial, or basic analytical functions

such as log(x), sine(x), tangent(x), etc.) through the input-output pairs.

Neural networks employed for generalization applications are usually

simpler, employing a small number of hidden nodes, layers, and

28

interconnection edges and weights, allowing the usage of more

computationally sophisticated algorithms [17]. The RBF networks used in

this work are designed for generalization applications.

3.2 Multilayer Perceptrons

Multilayer perceptrons (MLPs) are used very widely in diverse

applications. These networks are usually trained in a supervised manner

with a popular algorithm known as the error back-propagation algorithm

[11]. A typical example of an MLP network is shown in Figure 3.4.

The resurgence in the popularity of layered, feedforward networks

(perceptrons) has been credited to the development of the error backward

propagation algorithm for the determination of the synaptic coupling

strengths in multilayered networks with hidden layers.

input
layer

hidden
layer

~----
o u tpu t
layer

Figure 3.4. MLP network architecture.

29

The learning algorithm is extremely simple and yet powerful. The

synaptic strengths Wij are iteratively modified such that the output signal

differs minimally from the desired one. This may be achieved by using

the gradient method, which yields the required modifications OWij. The

operation of this network corresponds to a highly nonlinear mapping

between the input and the output; consequently, the method is applied

recursively until a predefined convergence criterion is reached.

Error back-propagation is a particular example of a larger class of

learning algorithms that are classified as supervised learning approaches

since at each step the network parameters are adjusted appropriately by

comparing the actual output with the desired output [18].

The success of back-propagation was first demonstrated by Hinton [19]

in training neural networks for nonlinear XOR problems. Since then, its

application has become widespread in numerous pattern recognition

problems including its use for solving generalization problems [17]. Back­

propagation is a learning algorithm for the derivation of weights in feed­

forward neural networks. The algorithm minimizes the error of fit to

learning samples by fine-tuning the weights during the learning process.

In each iteration, there are two phases: forward propagation and reverse

propagation. In the forward propagation, the output of the network is

30

computed using the input vector. The total error, E, is computed in this

phase by comparing the desired with the actual outputs:

(3.1)

In the reverse propagation, the error derivative with respect to all the

network weights is computed. The error derivative associated with a

weight is an estimate of the effect of that weight on the total error. In

other words, the total error, with respect to a given set of learning (or

training) samples and a given set of weights, is given by equation (3.1),

where yjp is the actual output of node j in training sample p, and djp is the

desired output. The error derivative with respect to the weight Wij is

employed to calculate the change in weight Wij as given by equation (3.2).

The weight change is accordingly computed such that it moves the

network in the direction of maximum error reduction, or gradient of error

surface.

~Wij = -k(aE/a Wij) = E Opi apj (3.2)

0Pi in equation (3.2) is the effect of a change in the input of the network to

unit j on the output of unit i in the training sample p. The determination

of the incremental change in weights is an iterative process starting at the

output unit. This computation is done in the reverse propagation phase.

In reference to equation (3.2), the term apj represents the output of unit j

for training sample p; and, E and k represent constants [17].

31

To verify how well the neural network has been properly trained, i.e.

learned the underlying input-output model, the same set of weights (on

the connections) derived during the learning phase, and the accuracy of

the predicted output for a new set of input vectors is tested and checked.

In general, the success of the predictions for the neural network depends

upon the range covered by the input-output vectors of the training

samples.

The performance of a neural network that is trained using the error

back-propagation learning algorithm depends on two performance

parameters: the learning rate and momentum. Learning rate is

associated with the change in weights from the error derivatives, and is

the constant of proportionality between the two. Ideally, the change in

weights should be infinitesimal for a true gradient descent. The

momentum term is used to reduce the amount of oscillation caused by

large values of learning rates. It modifies the weight changes calculated

using the present derivative by an amount proportional to the weight

changes in the previous iteration. Also, it is representative of the relative

importance of the weight change in the previous iteration [17].

The MLP network used in this study for defect characterization is

coded using MATLAB with the built-in neural network functions. The

network is trained with a backpropagation learning rule. The training is

32

stopped when either the maximum number of epochs has been reached or

the network sum-squared error attains a value below the error goal.

The time required to train an MLP is typically in the order of a few

hours on a DECAxp workstation. Obviously, the MLP approach is not

suitable for this application. Also, the performance is not very good, as is

evident from some of the typical results presented in Figure 3.5. In fact,

with the same training and testing data set, the RBF network offers much

better performance with significantly lower training time. This is obvious

from the characterization results illustrated in Figure 3.6.

3.3 Radial Basis Functions Network

The design of the radial basis function (RBF) network can be viewed as

an exercise in curve-fitting or solving an approximation problem in multi­

dimensional space. The learning of this network is, in essence, equivalent

to determining a surface in multidimensional space that provides a best

fit to the training data, with the definition for "best fit" being measured in

some statistical sense. The hidden units of the RBF network provide a set

of "functions" that constitute an arbitrary "basis" for the input vectors

when they are expanded into the hidden-unit space [11].

RBF networks have recently gained prominence and increased usage

as a tool for multidimensional interpolation. The architecture of these

33

90
f

-- true I (I
80 "

. - . - predicted

70

rn 60 ~ii
I~ \

I I
rn .;.).
CI> 1'11 I I
c: 'II"
~ '.~ i'i i 1 .. 1

I I
U (. ·,1'

£ 50 I. I
1·1 I I
'1"

(ij I I
I. I I I

::
40 I CI>

Co 0c... -0 30 .!:
a.
CI>
-0 '\ ..
;:,!! 20 0

10

0
° I .,

-10
0 50 100 150 200 250 300 350 400

Figure 3.5. MLP characterization results.

(/l
(/l

90

80

70

~ 60
~
(.)

:.s
~50
::
Q)
a.
2-40
o
~

a.
~30
?fl.

20

10

o o

34

§ . -. - pred

". ~
II I r

r-

r·
.\
r·
. I
I

I
r

I
r

.... ,....., --
I \

I
I

r I
I \ r \ r \

\ r I

50 100 150 200 250 300

Figure 3.6. RBF characterization results.

r-

1\ ..
II ..
I I

I I

r I

I

350 400

input
layer

N

35

au tpu t
layer

Figure 3.7. RBF network architecture.

networks closely resembles that of the multilayer perceptron. The

architecture of a typical RBF network is shown in Figure 3.7.

RBF networks are two-layer networks that can be employed as a tool

for multivariate dimensional mapping. They map an n-dimensional input

function into an m-dimensional output function using a basis function

expansion approach [7]:

Given a set ofm distinct vectors or data points:

{Xj I j=1,2, ... ,m}

and m real function values,

fj, j=1,2, ... ,m

the objective is to determine a function such that

j=1,2, ... ,m (3.3)

The function, s, is constrained to pass through the known data points.

36

The approach involves constructing a linear function space that is

dependent on the positions of the given data points according to an

arbitrary distance measure. Therefore, a set of m arbitrary "basis"

functions <1>(I I x - Ci I I) are used. The vectors Ci, i=1,2, ... ,m are centers of

the radial basis functions and usually chosen from sample data points.

Using the concept of basis function expansion, we consider

interpolating functions of the form:

s(Xj) = LAi<l>(I I x - Ci I I) (3.4)

where <1>(I I-I I) is an appropriately chosen basis function and I I-I I

denotes an appropriate norm, usually Euclidean.

Inserting the interpolation conditions, i.e., equation (3.3) into equation

(3.4), yields a set of linear equations for the coefficients, {At}, which can be

expressed in the following matrix form:

(3.5)

where Aij == <1>(I I Xi - Cj I I), ij = 1,2, ... ,m.

If the inverse of matrix A with elements AU exists, equation (3.5) allows

the expansion coefficients Aj to be computed using

37

A = A-I f (3.6)

It has been proven by Micchelli that for all positive integers m,n and for a

significant class of functions <1>, the matrix A is non-singular if the data

points are all distinct [7].

Once the radial basis function, <1>, is appropriately chosen and a

distance measure defined, the above relations specify the interpolation

problem exactly. The solution under these conditions is guaranteed. The

above analysis is for the case when the number of centers is equal to the

number of data samples. This is impractical in many applications where

the number of data points is fairly large.

Broomhead and Lowe propose an alternative by weakening the

interpolation conditions. They propose a scheme where the number of

centers is less than the number of data samples. Under this situation, the

problem becomes overspecified; hence, the matrix A is no longer square

and consequently, an inverse cannot be computed. An alternative is to

determine a A vector which minimizes 1 1 A A - f 1 12. The solution is given

by A =A+f, where A+ is Moore-Penrose pseudo-inverse [7].

A multitude of basis functions may be used in the expanSlOn.

Examples include [20]:

<I>(p) = exp{-p2/2cr) (Gaussian)

38

<!>(p) = log(1+p) (logarithmic)

<!>(p) = p (linear)

<!>(p) = (p2 + c2)112 (multiquadric)

where c is a positive constant.

3.4 Comparison of MLP and RBF Networks

The MLP and RBF networks are similar in the sense that they are

both nonlinear layered feedforward networks. In fact, an RBF network is

capable of accurately emulating a specified MLP network, and vice versa.

Nevertheless, many differences exist that distinguish the two networks.

Some of these include [21]:

1. The hidden layer of an RBF network is nonlinear, but the output

layer is linear. This is in contrast to an MLP where both the hidden and

output layers are usually nonlinear. (It should be noted that when an

MLP is used to solve nonlinear regression problems, a linear output layer

is the preferred choice.)

2. An MLP constructs a global approximation to nonlinear input­

output maps. Hence, reasonable generalization capabilities in regions of

the input space, where little or no training data is available, may be

acquired. On the other hand, an RBF uses localized nonlinearities, such

as Gaussian functions; and hence, constructs local approximations to

39

nonlinear input-output maps. As a result, RBF networks are capable of

learning fast and offer less sensitivity to the order of training data

presented. Unfortunately, it performs poorly in function extrapolation

applications since the basis functions that are chosen usually have very

limited support.

3. RBF networks generally have only one hidden layer, whereas MLP

networks have one or more hidden layers.

The work described in this thesis IS primarily focused on two­

dimensional signals. However, studies done to date indicate that it may

be necessary to process the signals from all the sensors using a three­

dimensional processing scheme. The motivation for pursuing this

approach is explained in the following section.

3.5 Extension to Three-Dimensional Neural Networks

It is imperative that the signals be rendered invariant to the various

operational parameters for accurate characterization [11]. For example,

the distortion effects due to velocity are dependent on the location of the

Hall sensor with respect to the flaw. These effects are most significant

only in the case of sensors located in the close proximity to the defect

walls and MFL measurements located away from defects are not

significantly affected. It is critical that velocity effects be properly

40

accounted for, since the angular position of the sensor relative to the

defect may vary due to the tool rotation.

Furthermore, "blooming" of the field far beyond the confines of the

defect can lead to considerable error in estimating the width of the defect.

Other issues that need to be addressed to ensure accurate

characterization of defects include errors introduced by poor sampling of

the leakage field along the circumferential direction. A natural solution is

to process the signals of all the Hall sensors as a three dimensional array

of data and perform both the compensation schemes and the defect

characterization using three-dimensional neural networks, as shown in

Figure 3.8.

41

FromNN64

(Ht

(HM

Figure 3.8. Three-dimensional neural network.

Meet
Profile

42

CHAPTER 4. CENTER SELECTION METHODS FOR RBF
NETWORKS

4.1 Introduction

The accuracy of the defect characterization hinges on the proper choice

of the centers of the radial basis functions associated with the network.

The center may be selected using one of the following approaches:

1. Clustering algorithms

2. Self-organized selection of centers using

potential functions approach

3. Optimal selection of center locations

This chapter describes each of the methods and offers a comparative

assessment of the performance obtained. In all of these approaches, a

Gaussian, with a fixed region of support, is used as a basis function.

Later on, the region of support is also optimized. The Gaussian radial

basis function centered at Ci is defined as [22]:

<1>(1 1 x - cd 12) = exp{-I 1 x - cd 12} i=1,2, ... ,N

where N is the specified number of centers.

Once the centers are determined, the only parameters that need to be

computed are the linear weights, A's, in the output layer of the RBF

network. The determination of these expansion coefficients constitutes

the training process. A straightforward procedure for computing the

expansion coefficients is to determine the pseudo-inverse as described in

43

Broomehead and Lowe [7].

4.2 K-means Algorithm

The concept of pattern classification employing distance functions is a

relatively straightforward method that is used in many applications. The

motivation for using distance functions as a classification tool follows

intuitively from the fact that the most obvious way of determining

similarity among pattern vectors is to consider them as points in the

Euclidean space and classify them based on their proximity in the spatial

domain. This method of pattern classification may be expected to yield

practical and reasonable results when the pattern classes tend to possess

clustering properties.

The method of the K-means clustering algorithm is based on the

minimization of a performance index that is defined as the sum of the

squared distances from all points in a cluster domain to the cluster center.

The basic procedure is outlined below [22]:

(1) Choose K initial cluster centers zl(l), Z2(l), ... , zk(l)

(2) Distribute the training samples {xl among the K cluster

domains at the kth iterative step using the relation:

X E Sj(k) if I I x - zj(k) I I < I I x - zi(k) I I

for all i=1,2, ... ,K, i*j.

44

(3) Compute new cluster centers zj(k+1),j=1,2, ... ,K as follows:

zj{k+1) = (lIMj)LxeSj(k) x, j=1,2, ... ,K

where Mj is the number of samples in Sj(k).

(4) Algorithm has converged and procedure is terminated if

zj(k+l) = zi(k), for j=1,2, ... ,K

To begin, the K initial centers are usually chosen to be the first K samples

in the training sample set. The subscript specifies a particular center and

the number in parentheses indicates the iteration number. In step (2),

the term Sj(k) denotes the set of samples whose cluster center is zj(k).

Next, the center calculation in step (3) is such that the sum of the squared

distances from all points in Sj{k) to the new cluster center is minimized,

i.e., the new cluster center zik+1) is computed such that the performance

index defined as

Jj = LXeSj(k) II x - Zj(k+1) 11 2, j=1,2, ... ,K

is minimized. The zj(k+ 1) which minimizes this performance index is

merely the sample mean of Sj(k).

It is known that the performance of the K-means algorithm is largely

influenced by the number of cluster centers chosen, the definition of the

initial cluster centers, the order in which the training samples are

presented, and the geometrical properties of the training data [22]. The

K-means algorithm can be expected to yield reasonably decent results

45

when the data points are linearly separable. An example of this

clustering method is shown in Figure 4.1 where the sample data patterns

exhibit clustering properties (linear separability) [22].

Once these centers have been selected and fixed, the training of the

RBF network involves the determination of the expansion coefficients,

which defines the nature of the multivariate mapping.

x2

10

9 ;19 x.
20

8 .x16 !17 x~a

7

6

5

4

3

Figure 4.1. Sample data patterns that exhibit clustering property [22].

46

4.3 Potential Functions Approach

The second method of center selection may be viewed as a self­

organized selection process that is based on the concept of the potential

functions approach. Implied in the process is the determination of

decision functions which generate the partition boundaries in the pattern

space separating patterns of one class from another. Unlike the K-means

clustering scheme, which focuses on local distance measurements, the

potential functions approach integrates the overall error fit between the

predicted and true sample values. To understand how the concept of

potential functions may be applied in the decision function determination,

consider two pattern classes to be distinguished, 001 and 002. The sample

patterns may be either vectors or points in the n-dimensional pattern

space. Suppose that these sample pattern points are viewed as some type

of energy source, then the potential at any of these points acquires a peak

value and then abruptly decreases at any point away from the sample

pattern point, Xk. Keeping this analogy in mind, the concept of

equipotential contours may be visualized. The pattern class 001 may be

represented by a "plateau" formed by all sample patterns in illl with the

sample points located at the peaks of a group of hills. Analogously, a

"plateau" is formed by sample patterns of class 002. These two "plateaus"

are separated by a ''valley'' where the potential is essentially zero. This is

47

illustrated in Figure 4.2, for the two pattern class case. This intuitive

analogy naturally leads to the representation of decision functions for

pattern classification using the concept of potential functions approach

[22].

d(xl

Figure 4.2. Plateaus and valleys of two pattern classes [22].

An alternative analogy to help explain the potential functions

approach is to view the center selection process as setting up "tents" in

multidimensional space. In this sense, "tents" are propped up in the

spatial domain where the spatial derivatives in a region are high, as

shown in Figure 4.3 for an arbitrary function in one dimension.

48

·· .. f(c)
: 1

..
1 1 1 1 1

1 1 1

1 1 1 1

1
1 1 1

C1 C2 CffsC6 C7
• • • Ck

Figure 4.3. "Tents" representing center locations: k is number of centers.

To begin the procedure, the initial cumulative potential Ko(x) is assigned

to zero. Also, an error threshold, c, needs to be defined. Once the first

training sample pattern, Xl, has been presented, the cumulative potential

is updated as follows:

KI(X) = Ko(x) + K(X,XI)

where, henceforth, the potential function used is of the form:

K(X,Xk) = exp{-I I X - Xk 112}

Since Ko(x)=O, the first computed value of the cumulative potential

becomes

49

or, simply, the cumulative potential is equal to the potential function for

sample pattern Xl. At this point, the cumulative potential K(XI) describes

the initial partition boundary. Next, when the second training sample

pattern, X2, is presented, the cumulative potential is determined as

follows:

IfKI(X2) > E, then the cumulative potential is adjusted using:

K2(x) = KI(X) + K(x, X2),

Otherwise, the cumulative potential remains unchanged:

K2(X) = KI(X)

This procedure is followed subsequently for all the training sample

patterns.

Consequently, more "tents" are set up where the difference between

the sample value and the function synthesized using the potential

functions is high. The center selection process in this sense is done in an

intuitively meaningful way by placing "tents" (centers) in only those

regions of the spatial domain where it is needed the most. This method of

center selection is more appropriate for the application under study since

defect characterization is not a problem of classification; but rather, a

problem of approximation. The procedure eliminates unnecessary or

redundant centers and, thus, minimizes the overall computational effort

associated with the characterization phase.

50

4.4 Optimization Technique

The last method evaluated for center selection is an optimal procedure.

In this method, the centers and parameters of the radial basis functions,

as well as the expansion coefficients, are determined optimally by

minimizing the mean square error using an iterative procedure. Under

this approach, the RBF network takes on its most generalized form. The

technique employed is based on the minimization of an error function

implemented using the conjugate-gradient procedure. The first step in the

development of such a learning procedure is to define the cost function:

E = (1/2)Iep (4.4.1)

where the summation is over all the training samples used in the training

process, j=1,2, ... ,M (M is the number of training samples), and ej is the

error defined as

(4.4.2)

where dj is the desired vector, x is the training sample pattern, Ci

represents the basis function centers, <!> is the chosen basis function, and Ai

are the expansion coefficients. Since the error criterion, or cost function,

is a nonlinear function of the variables, the problem of finding a globally

optimum solution transforms into one of unconstrained nonlinear least

squares minimization. These problems are usually solved using iterative

51

methods. A popular iterative scheme for minimizing the cost function is

the conjugate-gradient method.

The goal in the optimization method is to find the parameters Ai, Ci,

and O'i (assuming that a Gaussian function is employed as the radial basis

function), so as to minimize E.

minimize E(Ci + h ti)

The update equations for Ai and Ci are assigned different step parameters.

The step size, h, is chosen such that it also minimizes the error function;

hence, a similar approach to computing the centers is taken, i.e., use the

first partial derivative with respect to h to obtain the gradient. In this

sense, the step size calculated will yield the value that minimizes the

error cost function. For computing the coefficients which minimize the

cost function, the usual procedure is utilized to determine the expansion

coefficients. This differs from the conventional MLP where the weights

are slowly adjusted to obtain the optimum values. This novel approach of

coupling the gradient-descent method of optimizing center locations in

conjunction with the matrix inversion method of optimizing coefficients

results in a more efficient and faster alternative to the MLP network

learning mechanism.

In other words, unlike the conventional back-propagation algorithm,

this gradient descent procedure does not involve error back-propagation.

52

And as mentioned before, the gradient descent procedure for optimizing

the center selection is coupled with the pseudo-inverse method of

determining the expansion coefficients. As a result, the training time is

decreased. The initial values of the various parameters are estimated

using a standard pattern-classification method such as an RBF network

[11].

The method of conjugate gradients is used extensively. In employing

the conjugate-gradient method for the problem under study, a modified

form of the method is used. More specifically, in minimizing the error

function defined in equation (4.4.1), the first-order partial derivatives

with respect to each of the centers are computed. This yields the search

direction vector, which is simply the negative of the slope. In general, the

partial derivatives of a function with respect to each of the n variables are

collectively called the gradient of the function. The gradient is a vector of

n-components and it points in the direction of most rapid increase of

function values in the n-dimensional space; consequently, the gradient

direction is called the direction of steepest ascent. Hence, taking the

negative of this gradient vector yields the direction of steepest descent. A

major drawback of the steepest descent (or ascent) is that it is a local

property and not a global one. Consequently, other means need to be

employed to ensure that a global minimum is found. In the method of

53

conjugate gradients, a new search direction is established using a linear

combination of all previous search directions, and the newly determined

gradient. A detailed theorem and proof for the development of the

conjugate-gradient method is given in [23]. The algorithm adopted for

this work is described below:

Step 1. Start with an arbitrary initial guess of the solution CI

Step 2. Set the first search direction tl = -VE(Cl) = -VEl

Step 3. Compute the vector C2 according to the relation:

C2 = Cl + hI tl

where hI is the optimal step length in the direction tI.

Set i=2 and go to the next step.

Step 4. Calculate VEi = VE(ci) and set

ti = -VEi + (1 VEi 12/ I VEi.I! 2) ti-l

Step 5. Find the optimum step length hi in the direction ti, and update

the solution using

Step 6. Test for optimality of the Ci+l. If the error criterion is satisfied,

stop the process; otherwise, set i=i+1, and go to step 4.

The search direction in the ith step, ti, is obtained using:

ti = -VEi + ~i ti-I

where the value of ~i is determined by making ti conjugate to ti-l :

54

VE;VEj
VEi.l VEi _1

A general form of this minimization procedure was suggested by Fletcher

and Reeves [23]. The flow chart that describes this process of optimizing

the RBF centers is shown in Figure 4.4. Using a similar approach to

calculate the optimum step size, the function E(Ci + hi ti) is minimized

using a procedure outlined in the flow chart shown in Figure 4.5.

Start with
initial guess
of centers, Cl

Find ~(C1) = VEl
Set Sl = - VEl

i =-

Figure 4.4. Flow chart for optimizing RBF centers.

55

Find VE(h) = VEl
Set Sl = -VEl

t~=hl +<XSI

Seti = 2

Find ~i=~~)

Set~+l =~ + <XSj

>-~ hopt= ~+l
Stop.

Figure 4.5. Flow chart for computing the optimum step size, h.

56

The error gradient with respect to the centers can be computed as

follows:

aE
tl = --

a~

aE
t2 =

a c 2

minimizeE
1 M N -lix. - c. 02 2

= - L [d. - L A.e J 1]
2 j=l J i=l 1

M N -lix. - c. ,,2 _II _ 02
= L [d. - L A.e J 1]A

1
(Xj _ c1)e Xj C1 =0

j=l J i=l 1

M N -llx. - c.o2 -llx -c 02
= L [d. - L A.e J 1]A (x. - c)e j 2 = 0

j=l J . 1 1 2 J 2 1=

M N -llx. - c.U2 -llx.-CNU2
= L [d. - L A.e J 1]AN(X. - CN)e J = 0

j=1 J i=l 1 J

where M is the number of sample patterns and N is the number of center

vectors. To compute the optimum step size, hi, the error gradient with

respect to the step size can be determined as follows:

minimize E

57

1 M N - IIx. - c. - h.t. 02 2
= - I [d. - I A.e J I I I]

2 j=l J i=l I

aE 1 M N -IIx.-c. -h.t.112 N -lIx. - c. - h.t.,,2 T
-=- I [d.- I A.e J I I I][- L A.e J I I I t. (Xj-C. -h.t.)
a h 2 j=l J i=l I i = III I I I

In optimizing the RBF parameter, ai, the approach used in optimizing the

centers and step size is employed. The error gradient with respect to the

parameter, ai, corresponding to each basis function, can be calculated

USIng:

minimize E
1 M N = - I [d. - I A.e
2 j=l J i=l I

2 IIx. - c.1I _ J I

M N
= I [d. - L A.e

j=l J i=l I

2a?
I

2 IIx. - c.1I _ J 1

M N
= L [d. - L A.e

j=l J i=l 1

2cr?
1

IIX. - c.,,2
J I

o.

M N
= L [d. - L A.e

j=1 J i=1 I

58

IIx. - c.1I2
J I

2a?
I

2<12
N

The initial starting points of the centers are calculated using the K-means

algorithm. After these centers are computed, the initial values of ai are

set at one half of the distance between each center and the next center

location. The flow chart for optimizing ai is shown in Figure 4.6. Note

that the step size used in this process is the same as that used for

determining the centers.

The expansion coefficients are optimized in the sense that they are

obtained using the matrix inversion procedure outlined in section 3.3.

The overall algorithm can be summarized as follows: (Note that the

superscripts denote iteration number.)

Step 1. Start with initial guess c I and a l .

Step 2. Calculate AI.

Step 3. Update ck = Ck-I + h tk and a k = a k-I + h Sk.

Step 4. Calculate A,k using c k and a k using the matrix inversion

procedure.

Step 5. If the error criterion is satisfied, terminate the process;

otherwise, set k=k+1, and go to step 3.

59

The selection of the "optimal" number of centers and the specific

locations, along with the basis function parameters, O'i, are important

since they have a significant impact on the quality of the interpolation

algorithm. It is easy to declare each training sample as a center; however,

this is impractical as the number of samples become large, as it often does

in real-world applications. The goal of the optimization procedure is to

minimize the computation effort by minimizing the number of RBF nodes:

This is accomplished by manipulating the RBF parameters, such as the

centers and O'i associated with the functions. The widths O'i of Gaussian

functions control the overlap of the functions, thereby establishing the

network generalization performance.

t~=<1r+hst
Seti=2

60

Find optimal h
(h to minimize

EXC;+hs)

Figure 4.6. Flow chart for optimizing center widths.

61

CHAPTER 5. RESULTS AND DISCUSSIONS

As part of the initial effort in developing neural network-based

schemes for defect characterization, MFL signals were generated using

finite element models for a set of rectangular defects described in Table

5.1. As discussed in Chapter 1, the MFL signal needs to be rendered

invariant to the effects of changes in magnetization characteristics before

being applied to the defect characterization neural network. All the MFL

signals was, therefore, preprocessed appropriately [11] before being

presented to the defect characterization neural network. The network's

performance, in terms of its ability to interpolate the depths and lengths

of defects, was evaluated using 2.5" and 3.5" defects at all the depths. The

testing data set is described in Table 5.2. The results obtained are shown

in Figures 5.1 and 5.2. A remarkable aspect of the results lies in the fact

that the neural network manages to predict the length of the flaw

accurately without being explicitly told about the relation between the

peak-to-peak separation distance and the length of the flaw.

Previously, the network was trained with defect sets that are spaced 1"

apart in length and tested with defects that differed by 0.5" in length from

the training sample set. In order to assess the performance of the

network when a denser training set is used, the network was trained with

defects that are spaced 0.5" apart in length as described in Table 5.3.

62

Table 5.1. Training data set.

20% 30% 40% 50% 60% 70% 80%

2" Al A2 A3 A4 A5 A6 A7

3" BI B2 B3 B4 B5 B6 B7

4" CI C2 C3 C4 C5 C6 C7

Table 5.2. Testing data set.

20% 30% 40% 50% 60% 70% 80%

2.5" DI D2 D3 D4 D5 D6 D7

3.5" EI E2 E3 E4 E5 E6 E7

80 D7
r-

70
Ci;'

60 til
tIl

D6 ,- ,
- True ~ ~
- . _. Predicted ~ , ~

~ ~

~ 50 u
D4

r-=-.
:t D3
E- 40 ~
...l
..J D2
-< 30
~

~ 20

,...-,
Dl ~

~
::r:
!l: 10 tIl
0

0

~

~ ~
~ ,

I " . - - - . - ~ .
-10

Figure 5.1. True and predicted defect profiles for 2.5" long defect.

63

80 E7
r .---

70 - True E6 --- .
I- p- I

- . _. Predicted I

iii' 60 CIl

E5
~

tIl
Z E4
::.:: 50
~ ~

g:
40 -l

-l «

E3
I- ~

~
E2

~ 30
~

~
El ~

::z: 20
0...

,...:....:....;
~ ~

tIl
0...
0 10 ~

0 ~ ~ I
~
~ I

Figure 5.2. True and predicted defect profile for 3.5" long defect.

Table 5.3. Denser training data set.

20% 30% 40% 50% 60% 70% 80%

2" Al A2 A3 A4 A5 A6 A7

2.5" BI B2 B3 B4 B5 B6 B7

3" CI C2 C3 C4 C5 C6 C7

3.5" DI D2 D3 D4 D5 D6 D7

4" EI E2 E3 E4 E5 E6 E7

64

Table 5.4. Denser testing data set.

20% 30% 40% 50% 60% 70% 80%

2.25" Fl F2 F3 F4 F5 F6 F7

3.25" Gl G2 G3 G4 G5 G6 G7

The network's performance is then tested with an even denser defect

set that is spaced 0.25" apart in length as summarized in Table 5.4. The

results are shown in Figures 5.3 and 5.4. These results clearly indicate

that the classification performance improves when the network is trained

with a denser set of training samples. Training with signals from a

denser defect set minimizes error introduced by quantization which is

inherent in modeling the geometry using finite element analysis

techniques.

The basis function employed in this initial study was the logarithmic

interpolation function given by:

<j>(p) = log(l+p)

However, since the primary goal was to improve the network performance,

continual efforts were made to identify methods for attaining network

improvements. As a result of this effort, alternative interpolation

90

80
,.-...
IZl 70 IZl
~

~ 60
u 50 ::r::
Eo-<
...J 40
...J
< 30
~
~ 20
'-'

::r:: 10 Eo-<
A..
~ 0 A..
0

-10

Figure 5.3.

90

80
....-.-
CIl

70 CIl
~
z

60 ~ u -~ 50
..J 40 ..J
<
~ 30
~
'-'

~
20

~ 10
~
Cl

0

65

I'"
F7

F6 r-:-:-' - True -----
I- - . _. Predicted F5 'r--

I· - -.

F4 - -.. ,
I- 'r----

F3 -... I-

.1'1 ..
Fl
~ ,

p ,
• .

Defect profiles predicted by the characterization network for
2.25" long defects.

G6 G7

-- ' -True .. .,
I -. _. Predicted . , ,

G5 ... -.... , • ..
G4

.----- ..
G3 _

G2
I-

..... -
G1

-'
, ~ ,

~.
,

Figure 5.4. Defect profiles predicted by the characterization network for
3.25" long defects.

-, .

,

66

functions were investigated. These include the Gaussian, multiquadric,

and linear interpolation functions. Studies to date indicate that linear

interpolation functions offer the best performance. This is quite

understandable since the signals used in the defect characterization

schemes have all been preprocessed to be invariant to permeability

effects. The preprocessing renders the signal substantially linear with

respect to the defect dimension. The method used to accomplish this also

employed an RBF network prior to presenting them to the defect

characterization RBF network. Figure 5.5 shows some of the results

obtained using an RBF network which utilized a linear interpolating basis

function.

Since the code for computing the basis function centers was based on a

Gaussian function, most of the validation studies were carried out using a

Gaussian basis function.

Efforts were also devoted towards evaluating and comparing the

performance of each of the three methods of determining the basis

function parameters. Figures 5.6 through 5.8 show results obtained using

the three techniques; namely, the K-means, potential functions approach,

and a technique where the centers were selected by sampling the training

sample data set. Although the potential function approach appears to

offer superior representational accuracy, it typically requires a larger

67

training data set. Since these results indicate the superiority of the

potential functions approach, the procedure was used to implement the

defect characterization scheme. The results obtained for defect

characterization using this approach are compared with results using the

K-means approach in Figure 5.9.

(/)
(/)

CD
c:
~
(.)

:E -
(ij
3:
CD
0-
'0.. -0
.!: -0-

CD
"'C
~ 0

90

80

70

60

50

40

30

20

10

0

-10 o

,

-tr ~e
---- p edicted

il

r1 ;...

r \
~~'- '-- L...J "- L....

100 200

'-
--

r
- \
;-;

L.... '--:':-'''-'~ '- '-- I.- '- '- I.-

300 400 500 600

Figure 5.5. Defect characterization results obtained using an RBF
network employing linear interpolation functions.

L..

700

68

2.-----.-----.-----.----,.----,~---,~---,----~-----,-----,

1.5

1

0.5 --- true

o
-- -- predicted

-0.5

-1
-,

I / -

-1.5 \

I \ I I
I

\
-2 - I , I-

\ -\'
- ,

-2.5 I-
-/
I-
I

-3
-25 -20 -15 -10 -5 o 5 10 15 20

Figure 5.6. Interpolation results obtained using the K-means approach to
determine centers for a simple arbitrary nonlinear function.

25

69

2.----.-----,----.-----,----.-----.-----.----.-----.----.

1.5

1

0.5
-true

. - . - predicted

o

-0.5

-1

-1.5

-2~--~----~----~----~----~----~----~----~----~--~
-25 -20 -15 -10 -5 o 5 10 15 20

Figure 5.7 Interpolation results obtained using the potential functions
approach to determine centers for a simple arbitrary nonlinear
function.

25

70

2.----.-----.-----.-----r----,-----.-----~----r_--~----~

1.5

1

0.5

o

-0.5

-1
\

-1.5

-2

\

\

\

. I

'. i
'.i

--- true

. - . - predicted

f
-2.5~--~----~----~----~----~----~----~----~----~--~

-25 -20 -15 -10 -5 o 5 10 15 20

Figure 5.8. Interpolation results obtained using the decimation approach
to determine centers for a simple arbitrary nonlinear
function.

25

71

K-means
60

~ . en \ en
Q)
c
~ 40 0
:2 -Q)
c.. 20 00.. -0

/ .c / a. 0 \ I Q) ... '
"0
~ 0

-20
0 10 20 30 40 50 60 70 80 90

Potential functions
60

en en
Q)
c
~ 40 0
:2 -Q)
c.. 20 00.. -0
.c / - 0 c..
Q)
"0
~ 0

-20
0 10 20 30 40 50 60 70 80 90

Figure 5.9. Results contrasting the network performance obtained using
the K-means approach with the potential functions for
selecting centers.

100

100

72

The improvement in results obtained using this network shows that a

proper selection of centers can indeed greatly improve the performance of

defect characterization scheme.

Finally, the optimal procedure for estimating the basis function

parameters and expansion coefficients was implemented. The variables

estimated using the approach include the following:

1. Locations of the radial basis function centers

2. Coefficients associated with the radial basis expansion

3. Parameters of the radial basis function

In developing the optimal network, the procedure was implemented in

incremental steps starting with the development of software codes that

optimized the first two of the three variables. The gradient descent

method was used for minimizing the mean squared error. The results

obtained using optimal values of these two variables indicated that the

procedure yielded performance levels that are superior to the results

obtained using the conventional K-means clustering procedure. In fact,

the worst performance obtained using the procedure was approximately

the same as that obtained using the K-means method.

Figure 5.10(a) shows the performance obtained using the same

training and testing data set, and employing parameters that were

obtained using the K-means algorithm. Figure 5.10(b) shows the results

73

K-means
60

(J) . ~
(J) I
Q)
C
~ 40 0
:c -Q)
a. 20 "a. -0

I ..c - 0 /
a.
Q) I..

"0
~ 0

-20
0 10 20 30 40 50 60 70 80 90

Optimization
60

(J)
(J)
Q)
c
~ 40 0 :c -Q)
a. 20 "a. -0
..c
li 0 \.
Q)
"0
~ 0

-20
0 10 20 30 40 50 60 70 80 90

Figure 5.10. True and predicted profiles obtained using the defect
characterization network employing (a) K-means algorithm,
and (b) Optimal approach for identifying centers.

100

100

74

obtained when all three variables are optimized. The same training and

testing data samples were used to illustrate the network performance.

The improvement in performance is evident. Although the

optimization technique involves the solution of a set of nonlinear

equations, only the training effort is increased. The optimization

technique offers results that are superior to those obtained using the

conventional K-means or potential functions approach. The increase in

defect characterization performance is achieved with fewer number of

centers. With decreased number of centers employed, the computational

effort in the testing phase is also decreased. The improvement in the

characterization performance comes at the expense of increased training

times, which is typically not of any great consequence.

The optimization network performed better than those obtained using

the potential functions or the K-means approach when the training and

testing data set is the same. At times, the optimization network seems to

perform slightly poorly when novel testing data samples are presented.

The problem may be due to the fact that the result obtained may be

suboptimal and that the iterative procedure may have been trapped in a

local minimum. The procedure employed does not guarantee that a global

minimum has been reached.

75

Finally, the defect characterization network was evaluated usmg

actual experimental data. These results are preliminary due to the

limited availability of experimental data. Thirteen defects were chosen

out of the limited data set available. The three-dimensional defect

parameters are defined in Figure 5.11. A fair amount of experimental

data had to be discarded due to their poor quality. The network was

trained with twelve defect signals and tested with the remaining signal.

Figure 5.12 shows the defect profile predicted by the network of a defect

that was not a member of the training set where the network only utilized

six centers with twelve training samples. Figure 5.13 shows the same

results, but where the network used twelve centers. This illustrates the

point that, although, the network performance is better with increased

centers, we can alleviate the tradeoff between characterization accuracy

and computational complexity if the proper method of center selection is

used. Therefore, an increase in defect characterization may be obtained

simultaneously with a decrease in number of RBF nodes.

76

Length --.t

Figure 5.11. Parameters of three-dimensional defect.

77

K-means
80

rJl
rJl
<I.l
c:

/'-'-'-" _._.-.-
t5 60 "-._0_.- \

:E I
\ - / <I.l '-._.

"~40 /
\ -0 \

.l:: /
\..-

0.20 -- true "\

<I.l I
"0 . - . - predicted
::,g
0

I 0
0 10 20 30 40 50 60

Potential functions
60

rJl
._._0_0_.

rJl '-0-
<I.l
c:

r'/ ,.~ .::t:.
(,)

/ \
:E 40 -<I.l
0-
"0.. -0 20 \. . -
.l:: / --true '\ -0- J
<I.l . - . - predicted "0 J ::,g

0 I
0

0 10 20 30 40 50 60

Figure 5.12. K-means approach compared with potential functions
approach for center selection: Expanded view of the
predicted profile of a defect that was not a member of the
training set using 6 centers and 12 training samples.

70

\

\

\.

70

50

45

40

(ij

~ 25 a. .0..

~20
i5..
a.>

""0
~ 15

10

5

o o

I

I _.-
/

I

I

I

I

10

/

/

/ -
J

I

J

J

I _._'
I

J

I

I

I

20

78

r '"
~ \. -

\

\

\ .-
\

\

\

\

\
-'-,

\

\

\

\

\

\ _.-.
\

-- true \

. - . - predicted \

\

\

30 40 50 60

Figure 5.13. Expanded view of the predicted profile of a defect that was
not a member of the training set using 12 centers and 12
training samples.

\

\

70

79

CHAPTER 6. SUMMARY AND FUTURE WORK

6.1 Summary

This thesis focuses on methods for characterizing MFL signals using

artificial neural networks. To gain an appreciation and understanding of

the problem, the thesis begins with a problem statement and a brief

background and the motivation prompting this research. This is followed

by a description of the method used for solving the problem. A brief

introductory background of the finite element method and its use for

studying the underlying physical process and generating training data is

presented.

Next, a detailed discussion of artificial neural networks is presented.

Two of the more popular neural networks; namely, the radial basis

functions and the multilayer perceptrons are described.

A brief discussion of various methods used in selecting centers that are

used in designing the RBF networks is presented. Without a priori

knowledge, the centers are usually chosen by sampling the training data

set. Another traditional approach involves the use of a K-means

clustering algorithm to calculate the centers required by the RBF

network. This thesis presents alternative methods for selecting the

centers. In particular, two new methods: a potential functions approach

and an optimal technique are proposed. The superiority of these novel

80

approaches are shown. In addition, comparisons of the performance

obtained using various center selection techniques are made.

6.2 Future Work

Future work in the area should focus on evaluating the neural network

performance using more experimental data. Most of the results presented

in this thesis were obtained using MFL signals generated using the finite

element model. The next step is to test the neural network with a more

extensive set of experimental data. The network needs to be evaluated

using signals from more complicated defect geometries, also. Studies done

to date indicate the necessity of using a three-dimensional neural

network.

Also, in all the results presented, the neural network performance was

evaluated visually in terms of how closely the predicted defect profile fit

that of the desired defect profile. This method is rather subjective and

hence, a more substantial or quantitative means of determining the

network performance is needed. Attention should also be devoted to

methods for estimating the confidence interval for the predicted results.

This will aid the pipeline vendors in evaluating the quality of the

characterization results and assist them in arriving at the proper

remediation efforts.

81

BIBLIOGRAPHY

[1] J. Hwang, Defect characterization of magnetic leakage fields, Ph. D.
Dissertation, Colorado State University, Fort Collins, Colorado, 1975.

[2] W. Lord, Class notes, EE448x, Spring semester, Iowa State
University, 1994.

[3] D. F. Specht, "Probabilistic neural networks," Neural Networks, vol.
3, pp. 109-118, 1990.

[4] D. E. Rumelhart and J. L. McClelland, Eds., Parallel Distributed
Processing, vol. 1, Cambridge, MA: MIT Press., 1986.

[5] S. Chen, C. F. N. Cowan, and P. M. Grant, "Orthogonal least squares
learning algorithm for radial basis function networks," IEEE Trans.
on Neural Networks, vol. 2, no. 2, pp. 302-309, March 1991.

[6] L. Xu, A. Krzyzak, and A. Yuille, "On radial basis function nets and
kernel regression: Statistical consistency, convergence rates, and
receptive field size," Neural Networks, vol. 7, no. 4, pp. 609-628,1994.

[7] D. S. Broomhead and D. Lowe, "Multivariate functional
interpolation and adaptive networks," Complex Systems, vol.2,
pp. 321-355, 1988.

[8] S. Nair, S. Udpa, and L. Udpa, "Radial basis functions network for
defect sizing," Proceedings of the Review of Progress in Quantitative
Nondestructive Evaluation, San Diego, 1992.

[9] M. Chao, S. Udpa, L. Udpa, and W. Lord, "Characterization of
magnetic flux leakage signals using radial basis function network,"
Proceedings of the 3rd annual Midwest Electro-Technology
Conference, pp. 118-121, April 1994.

[10] G. J. Posakony, Topical Report, Assuring the Integrity of Natural
Gas Transmission Pipelines, Gas Research Institute, Nov., 1992.

[11] S. Mandayam, L. Udpa, S. Udpa, and W. Lord, "New methods for
processing magnetic flux leakage signals in NDE applications,"
Symposium on Adv. in Measur. Tech. and Instr. for Mag.Proper.
Determination, pp. 93-102, May 1994.

82

[12] K. H. Huebner, The Finite Element Method for Engineers, John Wiley
& Sons, Inc., New York, 1975.

[13] R. Wait and A. R. Mitchell, Finite Element Analysis and Applications,
John Wiley & Sons, New York, 1985.

[14] J. Jin, The Finite Element Method in Electromagnetics, John Wiley &
Sons, Inc., New York, 1993.

[15] W. Lord and J. H. Hwang, "Defect characterization from magnetic
leakage fields," British Journal ofNDT, pp. 14-18, Jan., 1977.

[16] R. P. Lippmann, "An Introduction to Computing with Neural
Nets ,"IEEE Acoust., Speech and Signal Processing Mag., vol. 61,
ppA-22, 1987.

[17] S. Shekhar, M. B. Amin, and P. Khandelwal, "Generalization
Performance of Feed-Forward Neural Networks," in Neural
Networks: Advances and Applications 2, E. Gelenbe, Ed.,
Elsevier Science Publishers B. V., The Netherlands, pp. 13-38, 1992.

[18] B. Muller and J. Reinhart, Neural Networks: An Introduction,
Springer-Verlag, Berlin Heidelberg, 1990.

[19] G. E. Hinton, "Learning distributed representation of concepts," in
Proc. 8th Annual Conf. Cognitive Science Society, Amherst, MA,
pp.I-12, 1986.

[20] M. J. D. Powell, "Radial basis functions for muItivariable
interpolation: A review," in Algorithms for Approximation, J. C.
Madison and M. G. Cox, Eds., Oxford, pp. 143-167, 1987.

[21] S. Haykin, Neural Networks, A Comprehensive Foundation,
Macmillan College Publishing Company, Inc., New Jersey, 1994.

[22] J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles,
Addison-Wesley Publishing Company, Inc., Massachusetts, 1974.

[23] S. S. Rao, Optimization Theory and Applications, Wiley Eastern
Limited, India, 1978.

83

APPENDIX

Program Listing:

C K-MEANS ALGORITHM FOR CENTER SELECTION
parameter (numsam=12, vsize=33, classes=12, out=33)
double precision x(numsam,vsize), center(classes,vsize),

+ dist, mindist, dum(classes,vsize),duml
integer iclass(numsam), n(classes)

open(7 ,file='train_sample' ,status='unknown')
open(B,file='cluster _center' ,status='unknown')

c read in input data
do i=l,numsam

do j=l,vsize
read(7, *) x(ij)

enddo
doj=l,out

read(7, *) duml
enddo

end do

c initialize cluster centers to first "classes" number of input sample
do i=l,classes

do j=l,vsize
center(ij) = x(ij)

enddo
enddo

c calculate distances and find the minimum distance
10 do i=l,numsam

mindist = lE18
do j=l,classes

dist=O.O
do k=l,vsize

dist = dist + (x(i,k) - center(j,k))**2
enddo
dist = sqrt(dist)

if (dist.lt.mindist) then
mindist=dist
iclass(i) = j

endif
enddo

enddo

84

c count number of samples within a class
do i=l,classes

n(i) = 0
do j=l,numsam
if (iclass(j).eq.i) n(i) = n(i) + 1

enddo
enddo

c save cluster centers first, then zero out clusters
do i=l,classes

do j=l,vsize
dum(ij) = center(ij)
center(ij) = 0.0

enddo
enddo

c create new cluster center
do i=l,classes

do j=l,numsam
if (iclass(j).eq.i) then

do k=l,vsize
center(i,k) = center(i,k) + (x(j,k)/n(i))

enddo
endif

enddo
end do

c check for convergence
m=O
do i=l,classes

do j=l,vsize
if (center(ij).ne.dum(ij)) m = 1

enddo
enddo

85

if (m.ne.O) goto 10
c write center to file "cluster_center"

do i=l,classes
do j=l,vsize

write(8, *) center(i,j)
enddo
write(8, *) , ,

enddo

end

C ***
C RADIAL BASIS FUNCTION ALGORITHM FOR TRAINING

c ni = number of input nodes
c nh = number of hidden nodes
c no = number of output nodes
c nsam = number of samples

parameter (ni=33, nh=l, no=33, nsam=2)
double precision A(nsam,nh), S(nsam,no), x(nsam,ni), lamb(nh,no),

+ dum1(nh,nh), dum2(nh,nsam), Atran(nh,nsam),
+ p, center(nh,ni), b(nh), dinv(nh,nh), z(nh), rcond

integer job, ipvt(nh)

c Gaussian basis function
c rbftp) = exp(-p)
c Logarithmic basis function
c rbftp) = log10«1+p)*4.)
c Multi-quadric
c rbftp) = (p**2 + c**2)**0.5
c Linear
c rbftp) = p

open(7 ,file='train_sample' ,status='unknown')
open(8,file='cluster_center' ,status='unknown')

open(lO,file='lambda' ,status='unknown')

86

c read in data points and S outputs
do i=l,nsam

do k=l,ni
read(7,*) x(i,k)

enddo
do k=l,no

read(7, *) s(i,k)
enddo

end do

c read in cluster centers
do i=l,nh

do k=l,ni
read(8, *) center(i,k)

enddo
enddo

c calculates A-matrix: A=phi(I I x-c I I)
do i=l,nsam
doj=l,nh

do k=l,ni
A(ij) = (x(i,k) - center(j,k»**2 + A(ij)

enddo
A(ij) = rb{tsqrt(A(ij»)
enddo

end do

c calculates the transpose of A-matrix
do i=l,nsam
doj=l,nh
Atran(j,i) = A(ij)

enddo
enddo

c multiplies transpose of A-matrix by A-matrix
do i=l,nh
doj=l,nh

do k=l,nsam
duml(ij) = duml(ij) + Atran(i,k)*A(kj)

enddo
enddo

87

enddo

c calculate the inverse matrix of dum 1
call dgeco(duml,nh,nh,ipvt,rcond,z)
rconda=rcond
do 20 i=l,nh
do 25j=1,nh

b(j)=O.O
25 continue

b(i)=1.0
call dgesl(duml,nh,nh,ipvt,bjob)
do 22 jj=l,nh

dinv(jj ,i)=b(jj)
22 continue
20 continue

c multiplies the result by A-matrix transpose
do i=l,nh

doj=l,nsam
do k=l,nh

dum2(ij) = dum2(ij) + dinv(i,k)* Atran(kj)
enddo

enddo
enddo

c calculates lambda (expansion coefficients) and write to file
do i=l,nh

doj=l,no
do k=l,nsam
lamb(ij) = lamb(ij) + dum2(i,k)*S(kj)

enddo
write(10, *) lamb(ij)
enddo

enddo

end

C ***
C RADIAL BASIS FUNCTION ALGORITHM FOR TESTING

c ni = number of input nodes
c nh = number of hidden nodes
c no = number of output nodes
c nsam = number of samples

88

parameter (ni=33, nh=l, no=33, nsam=l)
double precision A(nsam,nh), S(nsam,no), x(nsam,ni), p,

+ lamb(nh,no), center(nh,ni), t, twe(nsam,no)

c Gaussian basis function
c rbftp) = exp(-p)
c Logarithmic basis function
c rbftp) = loglO«1+p)*4.)
c Multi-quadric
c rbftp) = (p**2 + c**2)**O.5
c Linear
c rbftp) = p

c open files
open(7 ,file='test_sample' ,status='unknown')
open(8,file='cluster_center',status='unknown')
open(9,file='lambda' ,status='unknown')

open(lO,file='output' ,status='unknown')

c read in test data
do i=l,nsam

do k=l,ni
read(7, *) x(i,k)

enddo
do k=l,no

read(7, *) twe(i,k)
enddo

enddo

c read in cluster centers
do i=l,nh

do k=l,ni
read(8,*) center(i,k)

enddo
enddo

89

c read in expansion coefficients (lambda)
do i=l,nh
doj=l,no

read(9, *) lamb(ij)
enddo

enddo

c calculate A-matrix: A=phi(I I x-c I I)
do i=l,nsam
doj=l,nh

do k=l,ni
A(ij) = A(ij) + (x(i,k) - center(j,k»**2

enddo
A(ij) = rbf(sqrt(A(ij»)
enddo

enddo

c calculate S-output
do i=l,nsam
doj=l,no

do k=l,nh
S(ij) = S(ij) + A(i,k)*lamb(kj)

enddo
enddo

enddo

c write predicted output to file
do i=l,nsam

doj=l,no
write(10, *) twe(ij), S(ij)

end do
write(lO, *) , ,

enddo

end

c ***
C POTENTIAL FUNCTIONS ALGORITHM FOR CENTER SELECTION
c numsam = number of training samples
c vsize = vector size of each input sample (input nodes)
c classes = number of centers (hidden nodes)

90

c out = vector size of each desired output (output nodes)

parameter (numsam=12,vsize=33,classes=6,out=33)
double precision x(numsam,vsize),center(classes, vsize) ,dist,mindist,

+ dum(classes,vsize), duml
real thresh, tmp
integer iclass(numsam), n(classes)

c various potential functions
pot(q) = exp(-q)

c pot(q) = lI(l+q)

c open input file: contains training data samples
open(7 ,file='training_data' ,status='unknown')

c open output file: will contain centers after program execution
open(8,file='testing_data',status='unknown')

c read in error threshold
print* ,'enter threshold value'
read(*, *) thresh

c read in data
c file format containing training samples is such that the first vector of
c data is the input sample vector followed by the corresponding desired
c output vector. Then the next training sample input vector followed by
c the corresponding output vector is listed. So on and so forth ...

do i=l,numsam
do j=l,vsize

read(7, *) x(ij)
enddo
do k=l,out

read(7,*) tmp
enddo

enddo

c initialize potential function to be that of the first training sample
do j=l,vsize
center(lj) = x(lj)

end do
c calculate potential function of each sample

m=l
do i=l,numsam

91

c skip the first sample since it's already been initialized to this
if (i.eq.1) goto 12

c initialize cumulative potential to zero
pf=O.O
doj=l,m

q=O.O
do k=l,vsize

q=q +(x(i,k)-center(j ,k))**2
enddo

c compute the potential function of each sample
pf=pf+pot(q)

enddo

c determine if the sample vector is retained as a center vector
c ie., if the quantity exp{-I I x-xc I I} is greater than the error threshold,
c (meaning that x is close to the existing center xc) then discard the
c training sample; otherwise, keep sample as center and progress to next
c sample

if (pf.gt.thresh) goto 12
m=m+1
do k=l,vsize

c keep sample as center
center(m,k)=x(i,k)

enddo
12 continue

enddo

print*,'number of centers = ',m

c write centers to file
do i=l,m

do j=l,vsize
write(8,*) center(ij)

enddo
write(8,*) , ,

end do

end

C OPTIMIZATION PROGRAM
c optimized center locations and widths of the radial basis functions,

92

c along with the step length used in updating those two parameters.
c the expansion coefficients are optimized in the sense that they
c correspond to the optimal center locations.
c nsam = number of training samples
c vsize = vector size of the sample patterns
c ncen = number of centers
c itmax = maximum number of iterations

parameter (nsam=19,vsize=33,ncen=8,itmax=200)
double precision c(ncen,vsize),oldc(ncen,vsize),lambda(ncen,vsize),

+ oldlamb(ncen,vsize) ,s(nsam,vsize) ,x(nsam, vsize),
+ pred(nsam,vsize) ,delf{ncen,vsize) ,oldelf{ncen, vsize),
+ oldelsig(ncen) ,sdir(ncen,vsize) ,sigdir(ncen) ,delsig(ncen), toler,
+ h,oldsigma(ncen),sigma(ncen),delta

double precision cencon,lamcon,matnorm,step,error ,old error

c open input file
open(7 ,file='training_data' ,status='unknown')
open(8,file='optimum_center' ,status='unknown')
open(9 ,file='optimum_Iambda' ,status='unknown')
open(1 0 ,file='ini tiaLsigma' ,status='unknown')

c error criterion
toler = 1e-1

c initial step size
h=.005

c scale factor for updating optimal step length
step = .0001

c read in initial sigmas
doj=1,ncen

read(10, *) sigma(j)
enddo

c read in data file and scale appropriately
do i=1,nsam

do k=1,vsize
read(7, *) x(i,k)
x(i,k)=x(i,k)/1e2

enddo
do k=1,vsize

read(7, *) s(i,k)
s(i,k)=s(i,k)/le2

enddo

enddo
rewind(7)

93

c read in initial guesses of centers
doj=l,ncen

do k=l,vsize
read(8, *) c(j,k)

enddo
enddo

c compute corresponding lambda's
call train(c,x,s,lambda,sigma)

iter=O
50 continue

c find error gradient for first iteration
call gradfun(delf,c,lambda,s,x,sigma)
call gradsig(c,lambda,s,x,sigma,delsig)

c save gradient
doj=l,ncen

do k=l,vsize
oldelf(j ,k)=delf(j ,k)

end do
oldelsig(j)=delsig(j)
enddo

c initialize the first search direction
doj=l,ncen

do k-l,vsize
sdir(j,k)=-delf(j,k)

enddo
sigdir(j)=-delsig(j)
enddo

c compute optimal step size which minimizes cost function
call hupdate(h,c,lambda,s,x,sdir ,step,sigma)

c update centers
call update(c,sdir,h,sigma,sigdir,delta)

94

c compute corresponding lambda's
call train(c,x,s,lambda,sigma)

c begin iteration
10 continue

iter=iter+ 1
olderror = error

c compute new gradient at updated values
call gradfun(delf,c,lambda,s,x,sigma)
call gradsig(c,lambda,s,x,sigma,delsig)

c save centers, sigmas, and lambdas
doj=l,ncen
do k=l,vsize

oldc(j ,k)=c(j ,k)
oldlamb(j ,k)=lambda(j ,k)

end do
oldsigma(j)=sigma(j)

end do

c compute matrix norm of delf and oldelfwith ratio stored in matnorm
call norm2(oldelf,delf,matnorm)

c compute new search direction
doj=l,ncen

do k=l,vsize
sdir(j ,k)=-delftj ,k)+sdir(j ,k)*matnorm

enddo
sigdir(j)=-delsig(j h(delsig(j)/oldelsig(j))*sigdir(j)
oldelsig(j)=delsig(j)
enddo

c compute optimal step size
call hupdate(h,c,lambda,s,x,sdir,step,sigma)

c update centers and sigmas
call update(c,sdir ,h,sigma,sigdir,delta)

c compute lambdas
call train(c,x,s,lambda,sigma)

c compute error function value

95

call fun(error,c,lambda,s,x,sigma)

c check for convergence
if(error.gt.toler .and. iter.le.itmax) goto 10

c write centers and lambdas to files
doj=l,ncen
do k=l,vsize

write(8,*) oldc(j,k), c(j,k)
write(9,*) oldlamb(j,k), lambda(j,k)

enddo
enddo

print*, 'total number of iterations = ',iter

stop
end

CAA

C gradsig: find width gradient
CAA

subroutine gradsig(c,lambda,s,x,sigma,delsig)
parameter(nsam=19,vsize=33,ncen=8)
double precision c(ncen, vsize) ,s(nsam, vsize) ,x(nsam, vsize),

+ lambda(ncen,vsize),delsig(ncen),sigma(ncen),sigdir(ncen),
+ sigsign(ncen) ,pred(nsam, vsize) ,deriv(nsam, vsize),
+ xc(nsam,ncen),A(nsam,ncen),fac(nsam,ncen)

c clear all arrays
do i=l,nsam
doj=l,ncen

delsig(j)=O.O
do k=l,vsize

pred(i,k)=O.O
deriv(i,k)=O.O

enddo
xc(ij)=O.O
A(ij)=O.O
fac(ij)=O.O

end do
enddo

do i=l,nsam

doj=l,ncen
do k=l,vsize

96

xc(ij)=xc(ij) + (x(i,k)-c(j,k»**2
end do
A(ij)=xc(ij)/2*(sigma(j)**2)
A(ij)=exp(-A(ij»
fac(ij)=xc(ij)/(sigma(j)**3)

enddo
enddo

do i=nsam
doj=l,ncen

do k=l,vsize
pred(i,k)=pred(i,k)+ A(ij)*lambda(j ,k)
deriv(j ,k)=deriv(j ,k)+ A(ij)*lambda(j ,k)*fac(ij)

enddo
enddo

enddo

doj=l,ncen
do i=l,nsam

do k=l,vsize
delsig(j)=delsig(j)+(s(i,k)-pred(i,k))*deriv(j ,k)*(-1)

enddo
enddo

enddo

return
end

CAA

c hupdate: calculate optimal step size, h
CAA

subroutine hupdate(h,c,lambda,s,x,sdir,step,sigma)
parameter (nsam=19,vsize=33,ncen=8)
double precision c(ncen, vsize) ,s(nsam, vsize) ,x(nsam, vsize),

+ lambda(ncen,vsize),step,sigma(ncen),h,deleh,search,
+ sdir(ncen,vsize),tol,oldh

integer itt

tol = 1e-2
imatit = 50
itt = 0

97

c compute gradient wrt to h
call gradh(h,c,lambda,s,x,sdir ,deleh,sigma)

c initialize search direction
search=-deleh

if(search.lt.O.O) then
sign=-1

else if(search.gt.O.O) then
sign=1

else
sign=O.O

endif
h=abs(h+step*sign)

12 continue
itt=itt+1
oldh=h
call gradh(h,c,lambda,s,x,sdir ,deleh,sigma)

search=-deleh+abs(hloldh)*search
if(search.lt.O.O) then

sign=-1
else if(search.gt.O.O) then

sign=1
else

sign=O.O
endif

h=abs(h+step*sign)
if(abs(h-oldh).gt.tol.and.itt.le.imatit) goto 12
return
end

CAA

C gradh: calculate gradient wrt h
CAA

subroutine gradh(h,c,lambda,s,x,sdir,deleh,sigma)
parameter (nsam=19,vsize=33,ncen=8)
double precision c(ncen, vsize) ,s(nsam, vsize) ,x(nsam, vsize),

+ lambda(ncen,vsize), sigma(ncen),h,deleh,pred(nsam,vsize),

98

+ sdir(ncen, vsize), tol,stm p(ncen, vsize) ,A(nsam,ncen),
+ fac(nsam,ncen),deriv(nsam,vsize), tmp

deleh=O.O
do i=l,nsam
doj=l,ncen

do k=l,vsize
stpm(j ,k)=O.O
pred(i,k)=O.O
deriv(i,k)=O.O

enddo
A(ij)=O.O
fac(ij)=O.O

enddo
enddo

c compute exp{-/ / x-c / / "2}
do i=l,nsam
doj=l,ncen

do k=l,vsize
tmp=x(i,k)-c(j,k)-h*sdir(j,k)

enddo
A(ij)=A(ij)+tmp**2
fac(ij)=fac(ij)+O.5*tmp*sdir(j,k)/(sigma(j)**2)

enddo
A(ij)=exp(-A(ij)*O .5/(sigma(j)**2»

enddo

c compute predicted output
doj=l,ncen

do k=l,vsize
pred(i,k)=pred(i,k)+ A(ij)*lambda(j ,k)
deriv(j ,k)=deriv(j ,k)+A(ij)*lambda(j ,k)*fac(ij)

enddo
enddo

c compute gradient value
doj=l,ncen

do k=l,vsize
deleh=deleh+(s(i,k)-pred(i,k))*(deriv(j ,k))*(-1)

enddo
end do

return
end

99

CAA

c update centers and sigmas
CAA

subroutine update(c,sdir ,h,sigma,sigdir ,delta)
parameter(vsize=33,ncen=8)
double precision c(ncen, vsize) ,sdir(ncen, vsize), tm ps(ncen, vsize),

+ h,delta,sigsign(ncen),sigma(ncen),sigdir(ncen)

doj=1,ncen
do k=1,vsize

ifCsdir(j,k).lt.O.O) then
tmps(j,k)=-l.O

else if (sdir(j,k).gt.O.O) then
tmps(j,k)=l.O

else
tmps(j ,k)=O.O

endif
enddo
if (sigdir(j).lt.O.O) then

sigsign(j)=-1.0
else if (sigdir(j).gt.O.O) then

sigsign(j)=l.O
else

sigsign(j)=0.0
endif
sigma(j) = sigma(j) + h*sigsign(j)

enddo

doj=1,ncen
do k=1,vsize

c(j ,k)=c(j ,k)+ h *tm ps(j ,k)
enddo

end do
return
end

CAA

c calculate function gradient
CAA

subroutine gradfun(delf,c,lambda,s,x,sigma)
parameter(nsam= 19 ,vsize=33,ncen=8)

100

double precision c(ncen, vsize) ,s(nsam, vsize) ,x(nsam, vsize),
+ lambda(ncen,vsize),pred(nsam,vsize),delf(ncen,vsize),
+ A(nsam,ncen),sigma(ncen), tmp1, tmp2

do i=l,nsam
doj=l,ncen

do k=l,vsize
delf(j ,k)=O. 0
pred(i,k)=O.O

enddo
A(ij)=O.O

enddo
enddo

c compute exp{-I I x-c I I "2}
do i=l,nsam
doj=l,ncen

do k=l,vsize
A(ij)=A(ij)+(x(i,k)-c(j ,k))**2

enddo
A(ij)=exp(-A(ij)/(2*(sigma(j)**2»)

enddo
end do

c compute predicted output
do i=l,nsam

do k=l,vsize
doj=l,ncen

pred(i,k)=pred(i,k)+ A(ij)*lambda(j ,k)
enddo

end do
enddo

c compute gradient
do i=l,nsam
doj=l,ncen

do k=l,vsize
tm p l=(s(i,k)-pred(i,k»* A(ij)
tmp2=2*(sigma(j)**2)
delf(j,k)=delf(j,k)+tmp1 *lambda(j,k)*(x(i,k)-c(j,k»*(-lItmp2)

enddo
enddo

enddo
return
end

101

CAA

c calculate matrix norm and ratio
CAA

subroutine norm 2 (oldelf,delf,matnorm)
parameter (vsize=33,ncen=8)
double precision oldelf(ncen,vsize),delf(ncen,vsize),oldnorm,newnorm,

+ matnorm

oldnorm=O.O
newnorm=O.O

do j=l,ncen
do k=l,vsize

oldnorm=oldnorm + oldelftj ,k)**2
newnorm=newnorm + delftj,k)**2

end do
enddo

matnorm = newnormloldnorm
return
end

CAA

c evaluate error function
CAA

subroutine fun(error,c,lambda,s,x,sigma)
parameter(nsam=19, vsize=33,ncen=8)
double precision c(ncen, vsize) ,s(nsam,vsize) ,x(nsam, vsize),

+ lambda(ncen, vsize),pred(nsam,vsize),fnc(nsam, vsize),
+ A(nsam,ncen),error,sigma(ncen)

open(7 ,file='output' ,status='unknown')
open(8,file='opt_sigma' ,status='unknown')
error=O.O
do i=l,nsam
doj=l,ncen

do k=l,vsize
pred(i,k)=O.O

enddo
A(ij)=O.O

end do
enddo

c compute exp(-II x-c 11/\2)
do i=l,nsam
doj=l,ncen

do k=l,vsize

102

A(ij)=A(ij)+(x(i,k)-c(j ,k))**2
enddo

A(ij)=exp(-A(ij)/(2*(sigma(j)**2)))
enddo

enddo

c compute predicted output
do i=l,nsam

do k=l,vsize
doj=l,ncen

pred(i,k)=pred(i,k)+ A(ij)*lambda(j ,k)
enddo

write(7, *) s(i,k)*100.,pred(i,k)*100.
enddo

write(7, *) , ,
end do

doj=l,ncen
write(8, *) sigma(j)

enddo

c compute function
do i=l,nsam

do k=l,vsize
error=error+(s(i,k)-pred(i,k))**2

enddo
enddo

rewind(7)
rewind(8)
return
end

c/\

c RBF training network

103

CAA

C ni = number of input nodes
c nh = number of hidden nodes
c no = number of output nodes
c nsam = number of samples

subroutine train(c,x,s,lambda,sigma)
parameter (ni=33, nh=8, no=33, nsam=19)
double precision A(nsam,nh), S(nsam,no), x(nsam,ni), lamb(nh,no),

+ duml(nh,nh), dum2(nh,nsam), Atran(nh,nsam),
+ p, center(nh,ni), b(nh), dinv(nh,nh), z(nh), rcond,
+ sigma(nh),sig

integer job, ipvt(nh)

c Gaussian basis function
c rbf{p) = exp(-p/(2*(sig**2»)

c read in data points and S outputs
do i=l,nsam
doj=l,nh

A(ij)=O.O
b(j)=O.O
dum2(j,i)=0.0
Atran(j ,i)=O. 0

enddo
end do

doj=l,nh
do k=l,no

lambda(j,k)=O.O
enddo

enddo
do i=l,nh

doj=l,nh
duml(ij)=O.O

enddo
enddo

m=nsam
ia=nsam
n=nh
iu=nh
ifail=O

104

job=O

c calculates A-matrix: A=phi(Ilx-c II)
do i=l,nsam
doj=l,nh

sig=sigma(j)
do k=l,ni
A(ij) = (x(i,k) - c(j,k»**2 + A(ij)

end do
A(ij) = rbf(A(ij»
enddo

enddo

c calculates the transpose of A-matrix
do i=l,nsam
doj=l,nh
Atran(j,i) = A(ij)

enddo
end do

c multiplies transpose of A-matrix by A-matrix
do i=l,nh
doj=l,nh
dok=l,nsam

dum1(ij) = dum1(ij) + Atran(i,k)* A(kj)
enddo

enddo
end do

c calculate the inverse matrix of dum1
call dgeco(dum1,nh,nh,ipvt,rcond,z)
rconda=rcond
do 20 i=l,nh
do 25j=1,nh

b(j)=O.O
25 continue

b(i)=l.O
call dgesl(dum1,nh,nh,ipvt,bjob)
do 22 jj=l,nh

dinv(jj ,i)=b(jj)
22 continue

105

20 continue

c multiplies the result by A-matrix transpose
do i=l,nh

doj=l,nsam
do k=l,nh

dum2(iJ) = dum2(iJ) + dinv(i,k)*Atran(kJ)
enddo

enddo
enddo

c calculates lambda (expansion coefficients) and write to file
do i=l,nh

do j=l,no
do k=l,nsam

lambda(iJ) = lambda(iJ) + dum2(i,k)*S(kJ)
enddo

enddo
enddo

end

