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LITERATURE REVIEW 

Biology of Maize Dwarf Mosaic Virus 
and Sugarcane Mosaic Virus 

In 1962, mosaic symptoms were observed on the leaves of 

corn plants (Zea mays) growing in southern Ohio. 

Approximately 50% of the corn plants in the 10,000 total 

acres, exhibited the mosaic symptoms (50). Within one year, 

corn grown in fourteen other counties exhibited similar 

symptoms (132). By 1964, Dale showed that the symptoms were 

caused by a virus (19) and designated the virus as MDMV-A. 

MDMV-A had similar host ranges and symptomolgies as SCMV. 

However, those viruses considered to be classic SCMV viruses 

did not have the ability to replicate in Johnsongrass 

(Sorghum halpense) and MDMV-A did. Mackenzie et. al. (74) 

isolated a new strain o f MDMV that did not infect 

Johnsongrass and identified it as MDMV-B. The MDMV strains 

included a non-johnsongrass infecting strain, MDMV-B (74); 

several corn and sorghum infecting strains, MDMV-C,D,E,F 

(73); and an oat infecting strain, MDMV-0 (76). Since the 

advent of this project, strains of this virus have been 

reclassified (114). The six strains of MDMV acquired for 

this project, are now classified as three distinct members 

of the potyvirus group of plant viruses . MDMV-0 is now 

classified as johnsongrass mosaic virus (JGMV) ; MDMV-A, 

along with strains D,E, and F, are still classified as MDMV, 
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and MDMV-B is now classified as SCMV (108,114,115,117). 

SCMV, JGMV, and MDMV are members of the potyvirus group 

of plant viruses. Potyviruses are flexuous, rod-shaped 

viruses that are 680-900 nm long, 11 nm wide, and 

contain single-stranded, pos i tive-sense RNA encapsidated by 

repeating subunits of a single protein (48). Potyviruses 

have a capsid protein that varies between 30 and 37 K (48, 

114). Most potyviruses are non-persistently transmissible 

by aphid vectors (75), although mites and fungi have also 

been identified as vectors (114). Pinwheel or cylindrical 

shaped cytoplasmic inclusion bodies are another 

characteristic of Potyviruses (48). 

The various strains of SCMV, JGMV, and MDMV are 

pathogens of corn (Zea mays L.), sorghum (Sorghum bicolar 

L.), sugarcane (Saccharum officinarium L.), Johnsongrass 

(Sorghum halepense L. Pers . ) and Sudangrass (Sorghum 

sudanense (Piper) Stapf) (100,134). Other host species, 

such as certain grasses endemic to Mississippi, are also 

susceptible to MDMV (98) . MDMV-A and MDMV-B are the more 

economically significant MDMV strains, and may reduce yields 

by as much as 45 percent (96) . Johnsongrass is the 

overwintering host for MDMV-A; but no overwintering host is 

known for MDMV-B (62). 

The symptomology of SCMV, JGMV, and MDMV varies 

according to strain and/ or host, but includes mosaic 
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patterns on leaves, as well as systemic necrosis, dwarfing, 

and necrosis of whole or large portions of leaves (referred 

to as the red leaf reaction) (86,88,117). Symptomology is 

affected by many environmental factors including light 

quality and quantity (105), temperature (38,54,105), and 

stage of plant development at time of infection (51). 

Cellular functions of the host plant are altered by a 

infection with MDMV, SCMV, or JGMV. Virus infection blocks 

the translocation of host plant photosynthetic assimilates 

(13). The blockage results in decreases in total 

chlorophyll content (70) and ATP concentration. The reduced 

ATP concentration results in an impaired ability of the host 

to pump potassium into guard cells (70). The rate of 

photosynthesis and transpiration in infected johnsongrass 

and maize is reduced, while the rate of respiration 

increases due to an increase in the demand of metabolic 

materials from cellular pools (70) . 

MDMV, SCMV, and JGMV reduce the yield of the host plant 

by significantly lowering both the numbers of marketable 

ears and the fresh weight of the grain (38,59,61,79). Sweet 

corn cultivars infected with MDMV require a significantly 

longer time to reach the midsilk stage. Kernel fill, ear 

weight and diameter (13,38, 79), stalk strength and diameter 

(61), pollen vigor (61,80), and plant height were also 

reduced in a variety of infected sweetcorn cultivars 
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(61,79). By extrapolating from yield data collected from 

infected Zea mays, Kingsland in 1980 (61) proposed that each 

1% increase in disease incidence decreases grain yield by an 

average of 63 Kg/ha. 

Over 23 species of aphids are reported to 

non-persistently transmit the various strains of SCMV, JGMV, 

and MDMV. The three major subfamilies include Aphidinae, 

Lachmninae, and Brepanosiphinae (62,122). Daniels et. al. 

(21) reported that the greenbug Schizaphis graminum could 

transmit MDMV. There is some debate as to whether SCMV and 

MDMV are soil transmissible (10). Evidence does exist to 

support seed transmission of MDMV-B (46,49). 

Virus titer is affected by many types of biological 

conditions. As the plant grows, a maximum virus titer 

appears at the fourth or fifth leaf (54,118). It is 

interesting, however, that the presence of symptoms in the 

plant is a poor indicator of the virus titer in the plants. 

The correlation between virus concentration and visual 

assessment was low (r2=0.399) (34). 

Controlling MDMV, SCMV, and JGMV 

The most significant measure developed to control the 

spread of MDMV, SCMV , and JGMV has been MDMV resistant 

and/or tolerant corn hybrids (104). The inbred MDMV-A 

resistant lines Pa405 (72), B68 (72), and Oh78 (72) have 
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been used to identify genes which encode for MDMV-A 

resistance. Genetic mapping showed that these plants 

carried a gene in a region near the centrosome of chromosome 

6, identified as locus Rmdl, which induced resistance to 

MDMV-A {92,93). Pa405, when backcrossed with yM14 and K55, 

appears to induce resistance to MDMV-A, and the gene was 

identified and designated Mdml {77). Even with the 

identification of the resistance genes {97), effective 

control of MDMV has not occurred. Evidence exists that 

tolerant corn hybrids have been ineffective due to the 

inability to prevent MDMV, JGMV, and SCMV from replicating 

within cells {69). Thus, it is possible that these plants 

may act as a reservoir for infectious virus (75). Certain 

corn inbred lines that demonstrate resistance to MDMV-B are 

highly susceptible to MDMV-A, and corn inbred lines 

resistant to MDMV-A have been shown to be susceptible to 

MDMV-B (29,88). This suggests that the resistance response 

is, at least to some degree, strain specific. Additionally, 

the expression of certain genes that are thought to elicit 

the resistance response are modified by different 

environmental stimuli (48). 

Eradicating or controlling the aphid vector populations 

by the use of insecticides has been examined. Control of a 

vector can only be achieved after considering the 

virus/vector relationship. The mechanism by which the 
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vector feeds, the persistence in transmittance, and the 

action of the insecticide, must all be considered for 

effective elimination of the vector. MDMV, SCMV, and JGMV 

are non-persistently transmitted. Virus adsorbs to the 

aphid stylet for a limited period of time. However, a 

single leaf probe by an aphid can transmit the virus (75). 

The use of a systemic insecticide would only be effective if 

it killed the aphid immediately, before the aphid 

transferred virus from an infected plant to a non-infected 

plant. Systemic insecticides may not be effective against 

other known or suspected vectors of MDMV, JGMV, and SCMV. 

Therefore, the use of a systemic insecticide has very 

limited application. Leaf oils can be applied to plants to 

inhibit probing by the aphids, but the use of leaf oils is 

an expensive method of protection for low value crops 

because the oil must be applied frequently (122). 

Eradication of alternative hosts to control the spread 

of MDMV, SCMV, and JGMV is not feasible because the number 

of virus hosts are too numerous (99,100). Moreover, not all 

alternate hosts for each virus have been identified. This 

would further limit virus control by alternate host 

strategies. 

Differentiation of Strains of MDMV, SCMV, and JGMV 

Because identification and characterization of 
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pathogens that cause disease are a prerequisite to disease 

control, differentiation of viruses and strains is 

important. MDMV, SCMV, and JGMV are indistinguishable from 

each other when infected host plant tissue is examined under 

the electron or light microscope. Particle length, 

morphology, stability in sap, and longevity in detached 

leaves do not differentiate these viruses . Classically, 

plant virologists have attempted to clarify virus family 

relatedness based on biological and physical factors such as 

longevity in vitro, thermal inactivation point, dilution end 

point, sedimentation coefficients, and buoyant densities. 

MDMV-A and MDMV-B, which are the most economically 

significant strains, have the same longevity in vitro, 

thermal inactivation point, and dilution end point (124). 

MDMV-A and MDMV-B also have the same sedimentation 

coefficient of 170 ~ 5 S {124). Buoyant densities of the two 

are also similar (e.g., 1.3432 and 1.3427 for MDMV-A and 

MDMV-B, respectively) {124). Physical appearance of the 

bands in sucrose gradients does vary: MDMV-B appears as a 

narrow band, whereas the MDMV-A band appears to be much 

broader {124). 

The use of differential hosts to distinguish viral 

strains has been explored (33). Although significant 

differences in symptoms are seldom observed {117), strains 

can be occasionally differentiated provided that the host is 
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healthy and environmental conditions are uniform (48). 

Rosenkranz (99) demonstrated that grasses native to 

Mississippi were unable to be used as differential hosts for 

MDMV-A and MDMV-B because many of the grasses were 

susceptible to both isolates (87). With the exception of 

MDMV-0 infecting oats, the various MDMV viruses have hosts 

similar to those of MDMV-A (123). MDMV-B can be 

distinguished from other MDMV strains by using differential 

hosts (52,106). Shukla et. al. (117) also classified MDMV-B 

as a strain of SCMV. These studies have been useful in 

dividing the MDMV strains into johnsongrass-infecting (such 

as MDMV-A) or the johnsongrass non-infecting (such as MDMV-

B) groups (117). 

Cross-protection has been used to define related 

strains of viruses (75). Cross protection is the protection 

of a plant from infection by a severe virus strain by prior 

infection of the plant with a mild strain of the same virus. 

In general, related strains of a virus cross-protect; 

unrelated virus strains do not. MDMV-A, however, did not 

prevent MDMV-B from multiplying when both were inoculated 

onto sorghum (106). This supports the placement of these 

two viruses in different groups upon reclassification. The 

inherent problem of cross-protection is that the viruses 

must first be classified as to their relatedness. 

Additionally, MDMV-A and MDMV-B both cause mosaic symptoms 
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and dwarfing, so it is difficult to differentiate between 

each virus in a host. cytoplasmic inclusion bodies have 

been used to differentiate MDMV viruses (53). Although 

Mernaugh et. al. (78) suggested that the formation of 

inclusion bodies was due to a host plant response to viral 

infection, more recent data show that the proteinaceous 

inclusion body has homology to both a putative RNA-dependent 

RNA-polymerase or a viral encoded protease (14). In 

addition, Hammond et. al. (41) reported that the inclusion 

protein was not related serologically to the coat protein . 

Jensen et. al. (55) isolated a 65.8-kilodalton inclusion 

protein from MDMV- infected sorghum. The inclusion protein 

isolated from SCMV, was used as an immunogen which was 

administered to rabbits, and the resulting antisera did not 

react with MDMV-A inclusion proteins. Recent findings by 

Shukla et. al . (111,113,116) suggest that cross-reactivity, 

as defined by serological tests, may be due to 

mischaracterization of the antibody rather than serologic 

relatedness. 

Recently, there have been a number of attempts to 

distinguish strains of MDMV based on the amino acid 

composition and peptide sequence of their capsid protein 

(108). In 1970, Gillaspie et. al. (32) purified four 

strains of SCMV and showed that it was possible to 

differentiate strains based upon their amino acid 
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composition. Several strains of the same potyvirus elicited 

similar peptide profiles when separated by using high 

performance liquid chromatography (110). When tryptic 

digests of the coat protein of four strains of SCMV (SC, BC, 

JG and Sabi) were analyzed, the related strains SC, BC, and 

Sabi had a high sequence homology (95-100%) whereas the JG 

strain of SCMV had a sequence homology (66%) similar to that 

of other potyviruses (51-62 %) (110). When compared with the 

coat protein of members of the potyvirus group, the SCMV 

protein subunit was found to be comprised of approximately 

289 amino acid residues for SCMV and 264 amino acid residues 

for MDMV (81). 

Another way in which strains of MDMV have been defined 

is by using immunochemical analysis of peptide fragments. 

Shukla et. al. (114,115) analyzed overlapping peptide 

fragments of the coat protein and concluded that the core 

region of the coat protein is conserved among most 

potyviruses. The N-terminus region of the capsid protein 

contained the virus- or strain-specific sequences, and was 

also immunodomminant . 

Nucleotide sequence analysis and hybridization of viral 

genomes ( 3 ) is another useful technique recently utilized in 

the taxonomy of potyviruses. Frenkel et . al . (30) attempted 

to differentiate watermelon mosaic virus-2 from soybean 

mosaic virus-N based on nucleotide sequences of the 3 ' 
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untranslated regions of the viral genome. They concluded 

that the nucleotide sequences were closely related, which 

suggested that each was a strain of the same virus. It was 

previously noted by Yu et. al. (133} that the differences in 

amino acid sequence, based on peptide analysis (and 

therefore nucleotide base changes}, occurred in the N-

terminal residues, thus suggesting that the 3' end of a 

potyvirus genome could be analyzed to discern genetic 

relatedness. However, the nucleic acid sequence homology 

throughout the entire genome is not extensive. When a 

computer comparison of nucleotide sequence of the genome of 

tobacco etch virus and tobacco vein mottling virus was 

performed (3), matches of the sequences occurred in only 

seven of more than 15 nucleotide sequence sections that were 

analyzed. 

The use of specific polyclonal (PcAb} and monoclonal 

(McAb} antibodies in various serological techniques has also 

been applied extensively to differentiate between virus 

strains. In general, an antibody specific for an antigen 

(e.g. a virus or virus protein} binds a particular site on 

the antigen (epitope} with a binding constant which ranges 

from k= 10-4 to 10-10 M ( 94} . Thus, antibody-antigen 

reactions are very specific and have the potential to be 

useful diagnostic tools. When the antibody binds to the 

antigen in a solution or other medium, a precipitate may be 
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formed. This precipitation reaction is the basis of the 

microprecipitin test (128) and the Ouchterlony gel diffusion 

test (5,85). These methods have limited usefulness because 

concentrations of both the antibody and antigen must be 

optimal (precipitation may not occur if the antibody or 

antigen is in excess or is limited), or the optimal 

antibody-antigen concentration (the zone of equivalence) 

requires a large quantity of immunoreagent, which in some 

instances, is not practical. In addition, detection of the 

precipitate is subject to visual assessment and therefore 

variation and lack of sensitivity. False positives can 

occur when cellular components cause non-specific 

aggregation (75). Lastly, in Ouchterlony tests, rod-shaped 

particles may not diffuse as freely in agar as the 

icosahedral viruses, without the use of some modifying agent 

such as SDS, pyridine, pyrollidone, etc. Therefore, the use 

of either of these tests may not clarify strain 

relatedness. To circumvent these problems, researchers 

attempted to attach either the virus or the antibody, 

non-specifically to a solid phase support. These techniques 

include immunoblotting (both Western blotting (125) and dot 

immunoblot assay (24,42,66,67)), enzyme-linked immunosorbent 

assay (ELISA) (15,18,44,57,58,60,63,95,129), serologically 

specific microscopy (1,2,4,22,23,41,84,102), and 

radioimmunoassays (RIA) (31,43). 
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In the immunoblotting techniques, nitrocellulose or 

nylon membranes are the most common solid phases. The 

membranes are used to non-covalently bind the protein to 

which a specific antibody conjugated to an enzyme then 

combines. The combination produces an insoluble product, 

which becomes visible after the addition of substrate. A 

disadvantage to this technique is that there may be an 

inadequate transfer of the protein from the gel to 

nitrocellulose (125). Another problem with this technique 

is that non-specific binding can occur between antibody and 

basic viral coat protein domains which bind to RNA during 

encapsidation (24). Hibi and Saito (42) attempted to 

demonstrate that dot immunoblotting of TMV was more rapid 

and convenient than ELISA, but instead, found that the dot 

immunoblot assay was 5-10 times less sensitive than when 

photometric measurements were used to assay the results. In 

contrast, Lanham et. al. (6 7 ) performed dot immunoblot 

assays on various MDMV strains and reported that dot 

immunoblot assays were three-fold more sensitive than 

ELISA. Using dot irnmunoblot, MDMV-A, MDMV-B, MDMV-D, MDMV-

E, MDMV-F, and MDMV-0 were compared and the results were 

analyzed by regression analysis (66). MDMV-A, MDMV-B, MDMV-

E, and MDMV-0 were serologically distinct (66). MDMV-D and 

MDMV-F could not be distinguished from MDMV-A, whereas MDMV-

0 showed distinct differences from all the other 
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strains (66). Again, these data support the 

reclassification of MDMV viruses. 

Serologically specific microscopy has been used 

extensively for identifying where a virus is replicating or 

located within the host (22) or identification of the group 

of viruses infecting a plant (4,23); however, it has seen 

limited use in strain differentiation (1,2). This technique 

is useful only if the antibody or antigen can be 

differentially labelled, as all members of a virus group are 

morphologically similar when observed under the electron 

microscope. 

The ELISA technique uses either beads or various types 

of plastic microtitration plates for a solid phase. In 

1977, Clark and Adams (18) first utili zed this technique for 

the detection of plant viruses and reported a sensitivity to 

1 ng/ml of virus. This technique can be accomplished in two 

ways; the direct binding of the viral particle to the plate 

(24), or capture of the viral antigen by antibody 

immobilized on the plate (e.g. dsELISA (double-sandwich 

enzyme-linked immunos orbent assay (18,58)). After proper 

incubation and blocking of the solid phase, an antibody 

specific for viral antigen is added (primary antibody). The 

primary antibody may b e conjugated to an enzyme directly; 

or, a secondary antibody conjugated to an enzyme, but 

specific for the pri mary antibody, can be added (indirect 
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ELISA). Advantages of the ELISA include : i.) the test is 

rapid, ii.) high sensitivity, iii.) easy virus 

identification (18), iv.) either purified or crude extracts 

of virus can be used, v.) high degree of reproducibility 

(63,71), and vi.) this test is quantitative. Disadvantages 

of the ELISA can include: i.) reduction of the binding 

affinity of directly labelled antibody used in an ELISA 

(63), ii.) potential non-specific reactions in the outer 

wells of a microtitration plate (71), iii.) interference of 

endogenous host plant enzymes (71), and iv.) polystyrene 

plates from different sources vary in reproducibility. 

Both the direct and indirect ELISA have been evaluated 

for the detection of plant viruses. For assaying purified 

virus, Lommel (71) recommended the use of the indirect 

ELISA, and suggested using the double sandwich (ds) ELISA 

for detection of virus in crude extracts. In 1978, Koenig 

(63) described differentiation of closely related viral 

antigens by ELISA. In 1988, Jones et. al. (58) developed a 

dsELISA that could differentiate many of the strains of 

MDMV . They concluded that there was a high degree of 

serological relatedness between MDMV-B and SCMV-A. 

The radioirnmunoassay (RIA) was first used for the 

quantitation of plant viruses by Ball in 1974 (5) . The 

assay was performed by coating centrifuge tubes with 

specific antibody. Next, a specific amount of radiolabelled 
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antigen (virus), and an unknown amount of unlabelled 

antigen, were added to the coated tubes. As the unlabelled 

antigen competed with the labelled antigen, the amount of 

radioactivity bound to the tube was reduced. By using 

appropriate unlabelled standards, the quantity of virus in 

an unknown sample could be determined. Another variation 

utilized the basic principle of ELISA but substituted a 

radiolabelled primary or secondary antibody (31). 

Advantages to this technique include: i.) low background 

(Ghabrial et. al. [31]), showed a reduction of background 

values of 60-88% compared to gamma-globulins labelled with 

alkaline phosphatase), ii.) high sensitivity (31), and iii . ) 

rapid detection. Disadvantages include limited shelf life 

of radiolabelled compounds, depending on the isotope used, 

and the necessity for expensive equipment to assess the 

reactions. Because the sensitivity of the RIA is even 

greater than the ELISA, this technique may also be efficient 

for analyses of strain relatedness. Hill et. al ., in 1984 

(43), used the RIA to effectively differentiate and 

determine relatedness of MDMV-B and lettuce mosaic virus 

(LMV), using this technique to differentiate group 

relatedness. 

Signature Analysis 

Plant viruses have been classically named and defined 
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by the host from which they were originally isolated and the 

resulting symptoms. With the advent of molecular biology 

techniques, plant viruses are continually being reclassified 

(e.g., 114). Many plant viruses cause severe economic loss, 

and clarifying their relatedness has become important. 

However, many data have been generated about plant viruses, 

but few attempts have been made to standardize the 

techniques by which these data are generated. To aid in 

data management and clarify viral relatedness, a method was 

developed for use with animal viruses, called signature 

analysis (83,126,130). This analysis system appears to be 

equally applicable to plant viruses. 

Signature analysis is a technique that combines the use 

of a panel of monoclonal antibodies and an antigen/ antibody 

assay (in the present research an RIA). The panel of 

antibodies is reacted with different viruses or virus 

strains and/ or isolates. The binding affinity for each 

monoclonal antibody combination is obtained, and a computer 

program is used to align and statistically analyze the data. 

Antibody-antigen reactions are specific. The 

combination of hydrogen bonds, Van der Waals, and 

hydrophobic interaction provide maximal binding energy (94). 

These attractive forces decrease in energy as the distance 

and variation of the ideal complementary binding area 

increases, resulting in an increase in the repulsive forces. 
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Therefore, affinity of an antibody molecule is directly 

affected by variations in composition and shape of an 

epitope (8). This principle is used in signature analysis. 

If the binding of an antibody molecule to an epitope 

can be characterized, conserved or similar epitopes on 

related virus strains can be characterized by using the same 

antibody. The binding curve of the known antibody-antigen 

interaction can then be compared with that obtained using 

uncharacterized antigens. This is one of the basic 

principles involved in signature analysis. Characterized 

antibodies are reacted simultaneously with antigen to 

generate a binding curve that reflects both the frequency of 

the epitope and the affinity of the antibody to that 

epitope. This method discerns the antigenic relatedness of 

viruses (127). 

Signature analysis provides discrimination superior to 

information obtained with the use of polyclonal antibody 

(PcAb) or monoclonal antibody (McAb) alone. Once McAbs have 

been prepared to a virus, it is a relatively straight-

forward procedure to characterize the antibodies (using an 

ELISA), and select antibodies for use in signature analysis. 

Signature analysis is a relatively rapid assay which 

incorporates known techniques. Like any technique utilizing 

antibody, signature analysis has a great deal of 

specificity, because the antibody-antigen reaction can 
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detect differences in epitopes varying by only 2-3 amino 

acids (94). signature analysis, like any RIA, can detect 

virus in very low concentrations. This permits the use of 

virus-infected host plant material which, for certain 

viruses, may contain low concentrations of virus. In 

addition, the use of sap from virus-infected tissue helps 

assure that the integrity of the virus, which may often be 

altered by purification procedures, is maintained. This 

assay is not limited by the shape of the virus particle, and 

the antibody-antigen reaction can be measured directly or 

can be detected by the reaction of iodinated avidin with an 

antibody labelled with biotin. The reagents are relatively 

inexpensive and many strains of a virus can be assayed at 

once. Additionally, iodinated avidin is available 

commercially, reducing the hazards that would be encounterd 

by having to directly label antibody with free 1 ~I. 

However, the use of iodinated-avidin can introduce greater 

error than that obtained by the use of directly labeled 

antiviral antibody. Although disadvantages of this 

technique exist, including the need for characterized McAbs, 

the use of expensive gamma counters, and the need for the 

computer statistical program, it is a very effective method 

of discerning strain and viral relatedness. 
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MATERIALS AND METHODS 

Source and Maintenance of Virus Isolates 

Virus isolates were obtained from Dr. Stanley Jensen, 

Department of Plant Pathology, University of Nebraska. The 

isolates, strains MDMV-A, MDMV-B (Ial88), KS-1 (Kansas State 

strain-1), OHI0-0, NeB2, and Minn-11, were chosen because 

they were not serologically cross-reactive, based on 

examination of cytoplasmic inclusion body proteins (55,56). 

Each virus isolate was propagated in Zea mays L. cv. Golden 

Bantam, Sorghum cv. Bugoff, and Sorghum cv. Dekalb E59+. 

The symptomologies of the viruses were observed on each 

host. Subsequently, each virus was propagated on the host 

which exhibited the most severe symptoms. MDMV-A and OHI0-0 

were propagated in Bugoff; MDMV-B was propagated in either 

Bugoff or Golden Bantam; and KS-1 and Minn-11 were 

propagated in Dekalb E59+ . NeB2 was propagated in Golden 

Bantam. 

Purification of MDMV-A and MDMV-B 

Purification of either strain was performed according 

to Hill et al (45). Purified virus was resuspended in 0.1 M 

ammonium citrate (pH 6 . 0). Virus concentration was 

estimated using the extinction coefficient for tobacco etch 

virus, A(0.1%/280)=2.4 (89). 
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Polyclonal Antibody Preparation 

Four New Zealand white rabbits were inoculated with 

increasing concentrations (from 0.5 mg to 2 mg) of either 

purified MDMV-A or MDMV-B emulsified at a 1:1 ratio in 

Freund's incomplete adjuvant, over a one to three month 

period (see Table 1). Antisera were tested periodically for 

immunoreactivity to the heterologous and homologous antigen 

by indirect ELISA (57). After three months, the antisera 

cross-reacted with virus isolates that were not homologous. 

The antisera were collected and stored at - 10°C until use. 

Monoclonal Antibody Preparation 

Hybridomas used for this work were obtained from the 

collection of J.H. Hill and D.P. Durand, Department of 

Microbiology, Immunology and Preventive Medicine, Iowa State 

University. They were generated by F.E. Jones according to 

the procedure described by Jones (57), and had been stored 

at -100°c. The McAbs used in this project were as designated 

by Jones et al (58). Briefly, the first two letters of the 

antibody designation represent the virus used as an 

immunogen (e.g., MDMV-A (MA) or MDMV-B(MB)). The third 

letter designates the irnrnunoglobulin class (IgM (M) or IgG 

(G)) and the numeral represents the clone number of the 

hybridoma. The McAb's used in these experiments include: 

MAG-1, MAG-2, MAG-3, MBG-1, MBG-2, MBG-3, MBG-4, MBG-5, and 
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Table 1. Immunization schedule for New Zealand white rabbits, 
immunized via intermuscular injection in a total 
volume of 2.0 mls, with antigen emulsified in 
Freund's incomplete adjuvant 

Rabbit # AntigenCAgl Cone. of Ag 

97 H, 98 H 1-14-88 Bled for assaying none 
2-5-88 MDMV - A 0.5 mg 
2-12-88 " 1.0 mg 
2-19-88 " 1.0 mg 
2-25-88 Bled for assaying 
3-2-88 MDMV - A 1. 5 mg 
4-4-88 Bled for assaying 
4-14-88 MDMV - A 2.0 mg 
4-21-88 Bled for assaying 

100 H, 101 H 1-14-88 Bled for assaying none 
2-5-88 MDMV - B 0.5 mg 
2-12-88 II 1.0 mg 
2-19-88 " 1.0 mg 
2-25-88 Bled for assaying 
4-4-88 " 
4-21-88 " 
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MBG-6. Dr. Stanley Jensen, Department of Plant Pathology, 

University of Nebraska, generously donated three McAbs in 

ascites fluid, designated as JEN-A, JEN-B, and JEN-0. 

The frozen hybridomas were immediately placed into a 

37°C incubator to thaw. The suspended cells were aseptically 

transferred to a sterile 15-ml centrifuge tube (Corning 

#25310) containing 49% Dulbecco's modified Eagle medium 

(DMEM) ( 57, 58, 127) (DMEM, Sigma #D-5648, St. Louis, MO) , 40% 

conditioned media (DMEM that had supported the growth of the 

mouse myeloma cell line Sp2o for 2-3 days, and had been 

collected and centrifuged at 1000 rpm), 10% horse serum 

(Hyclone #A-1115-L, Logan, Utah) and 1% 200 mM L-glutamine 

[Sigma #G-7513)), the resulting medium was called DMEM-R. 

The cells were sedimented by centrifugation at 225 x g in a 

13-inch (33-cm) swinging bucket rotor at room temperature 

(22°C) for 10 min. The pellet was resuspended in 

approximately 10-ml of DMEM-R and cells were transferred to 

wells in an a-well tissue culture plate (Corning #25810) 

that was incubated in an incubator under 5 % co2 at 37°C. 

After several days, the medium turned orange to yellow and 

the cells were resuspended in DMEM-G (DMEM; Sigma D-5648) 

containing 10% horse serum (Gibco #2 30-6050 AJ, Grand 

Island, New York), 1% 200 mM L-glutamine (Sigma #G-7513) and 

1% antibiotic (Pen-Strep (10,000 U/ ml Penicillin G and 

10,000 ug/ ml Streptomycin); Gibco #600-5140-PG). After 
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additional incubation, growth occurred throughout the entire 

well and the cells were resuspended in DMEM-G and 

transferred to 25 cm2 T-flasks (Corning #25100). 

The hybridomas were observed daily and, when the color 

of the medium turned orange to yellow (indicating pH 

change), the DMEM-G was replaced with fresh DMEM-G. For 

antibody production, the hybridomas were grown in DMEM-G 

without changing the medium for 10-12 days. The medium was 

then collected and the cells were removed by centrifugation 

as previously described, and frozen at 4°C. The cell culture 

supernatants of MBG-1, MAG-2, MAG-3, MBG-2, MBG-5, MAG-1, 

MBG-4, MBG-6, and MBG-3 (designated henceforth as flask 

medium) were assayed for McAb by indirect ELISA. After 4-5 

weeks growth in culture, each hybridoma was cloned via the 

method described by Van Deusen and Whetstone (127). 

Monoclonal antibodies were obtained from flask media 

approximately 10 days old or from ascites fluid. Ascites 

fluid was produced by an intraperitoneal injection of 

approximately 1.0 x 103 hybridoma cells, suspended in 0.1 M 

sodium phosphate buffered saline (PBS, pH 7.3) into a Balb/c 

mouse that had been injected interperitoneally with 0.1 ml 

of 2,6,10,14-tetramethylpentadec ane (pristane) three to four 

weeks prior to the hybridoma injection. After 10-12 days, 

the swelling from the resulting tumor wa s pronounced. A 

sterile 18-gauge, 1 1\ 2-inch needle (B-D #5196, Rutherford, 
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New Jersey), was inserted into the peritoneal cavity to 

collect the ascitic fluid. The fluid was collected and 

centrifuged at 1000 x g for 10 min at 22°C to sediment the 

cells. The supernatant was decanted and assayed for 

specific McAb activity, then stored at -20°C. 

Immunoglobulin class and subclass were determined by 

the protocol and reagents supplied by the MonoAb-ID EIA Kit 

(Zymed Laboratories Inc., #90-6550, San Francisco, CA). 

Purification of Antibody 

Immunoglobulin G was the only antibody class used. All 

McAb and PcAb tested were purified by a two-step procedure. 

First, 1 ml of the antibody solution was added to an 

Affi-gel blue CM column (Bio-Rad #153-7304 Richmond, CA) . 

The Aff i-gel blue column was prepared by homogeneously 

suspending the affi-gel blue in 0.1 M PBS (pH 7.3), and 

slowly dispensing approximately 3 ml into a plastic, 

disposable 5 ml syringe (B-0#5603) plugged with glass wool. 

The column was equilibrated with 100 ml of running solution 

(0.1 M KH2P04 [Fisher #P382-500] and 0.02 % NaN3 [Fisher 

#S227I-25]) . The column bound the albumin and serum 

proteases, which allowed other ascitic proteins to elute in 

the void volume. The void volume was collected separately 

and the column restored by eluting the proteases and 

albumins with 10 ml of a higher concentration salt solution 
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(0.1 M KH2P04 , 0.15 M NaCl, and 0.02% NaN3), pH 7.3. The 

column was then equilibrated with the running solution by 

passing approximately 25 ml of the solution through the 

column. 

Purified antibodies were obtained by passing the affi-

gel blue void volume through a Bio-Rad protein A column 

(#153-6153) connected to a fractionator and U.V. recorder. 

A protein-A column was prepared by homogeneously suspending 

the protein-A solution and pipeting 5 ml into a column. The 

column was equilibrated with 100 ml of binding solution 

(0.05 M Na2HP04 [Fisher #8374-500) , containing 0.02% NaN3), 

pH 8.0, for McAbs and pH 7.3 for PcAbs. The ascitic or 

serum preparation was then diluted equally with binding 

solution and applied to the column in 3 ml amounts. The 

void volume was discarded, and the column was washed with 25 

ml of binding solution until the resulting peak dissipated. 

The antibodies were then removed by adding enough elution 

solution (1.0 M acetic acid pH 2.0, Fisher #A490-212) to re-

establish a baseline. The column was then regenerated by 

using 0.5 M phosphate buffer (pH 7.3). The pH of the 

resulting fraction was adjusted to 7.2 with 1 N NaOH, and 

was assayed for the presence of specific antibody by ELISA. 

The protein content was estimated using E0· ix = 1. 4. Antibody 

was stored at -10°c until use. 
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Biotin-Labelling of Antibody 

Biotin-labelling of antibody was performed essentially 

as described by Bayer et. al. (6) and described by Jones et. 

al. (57): Biotinyl-N-hydroxysuccinimide ester (Sigma 

#M-1759) was dissolved in dimethylformamide (Fisher #0119-

500) at 1 : 100 v/v and 10:1 mole/mole biotinyl-N-

hydroxysuccinimide ester to protein ratio. 

Enzyme-Linked Immunosorbent Assay 

ELISAs were performed essentially as outlined by Clark 

and Adams (18) and Jones et. al. (58). Three basic types of 

ELISAs were performed in these experiments. All ELISAs 

included a series of wash steps with wash buffer (O.l M Tris 

HCl (Sigma #T3253], pH 7.5, 0 . 15 M NaCl [Fisher S271-500, 

Pittsburgh, PA] and 0.01% Tween-20 (Fisher Tl64-500]) after 

each reaction step. The wash procedure included first 

expelling the reaction fluids and then filling each well 

with wash buffer. The wash buffer was then removed by 

grasping the plate by its sides, and flicking the plate via 

a quick wrist movement. The procedure was repeated for all 

wells a total of three times. The final wash included 

filling the wells with wash buffer and allowing it to 

incubate at 22°C for three minutes. For each reaction step, 

plates were incubated for 1 h at room temperature (22 °C ) in a 

humidified chamber, with the exception of the substrate 
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step, where plates were incubated 45 minutes at 37°C . Unless 

otherwise stated, all reagents were added at 50 ul/ well. 

Results of the different ELISAs were expressed as a P/ N 

ratio . P/ N ratios are defined as the average absorbance, at 

410 nm, in the presence of antigen, divided by the average 

absorbance, at 410 nm, in the absence of antigen (126) . The 

plot was then expressed as the P/ N ratio vs. the antibody or 

antigen dilution. 

Before each type of ELISA was used experimentally, the 

concentrations of immunoreagents used in the ELISA were 

optimized. Optimization involved examining the 

concentration of each reactant to generate a concave or 

sigmoidal curve when plotted as dilution vs. absorbance, at 

410 nm. The concentration yielding the maximum P/ N ratio 

was chosen for the assay . 

The indirect ELISA was used to determine recognition, 

by McAb or PcAb, of virus antigen in the form of purified 

virus or in sap from virus-infected tissue. Antigen 

suspended in anti-protease buffer (APB, 0.05 M potassium 

phosphate buffer (pH 7.3) with 10 mM EDTA and 10 mM PMSF) (50 

ul/ well) was added to the wells of rows A-C and E-G of a 

Microtiter plate (Dynatech Immulon II, Dynatech # 011-010-

3450) through column 11. The wells in column 12 received 

APB. Wells of rows D and H contained healthy host plant sap 

suspended in APB, equal w/v ratio, excluding the wells of 
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column 12. After incubation and washing, the wells were 

blocked with blocking buffer (wash buffer containing 3% 

gelatin [EIA purity grade reagent, Bio-Rad 170-6537, 

Richmond CA]) (200 ul/well). After incubation and washing, 

twofold dilutions, in blocking buffer, of either McAb or 

PcAb were performed in separate tubes, and 50 ul quantities 

were added to each well in rows A-H, excluding the wells of 

column 11. Blocking buffer was added to wells of column 11. 

After incubation and washing, anti-rabbit IgG (Sigma #R-

2004) or goat anti-mouse IgG (Sigma #M-9902) conjugated with 

alkaline phosphatase were diluted 1:1000 in blocking buffer 

and added to each well. After incubation and washing, 50 ul 

of P-nitrophenol phosphate (Sigma # 104-105 ) at a 

concentration of 1.0 mg/ ml diluted in substrate buffer (10% 

diethanolamine [Sigma D-8885], containing 0.01 % MgC12·6H20 

[Fisher M33-500]) pH 9.0, was added to each well and the 

plate was incubated at 37°C. After 45 minutes, the reaction 

was stopped with 3 N NaOH (Fisher #S318-500) (50 ul/ well) 

stop solution . The reaction products were read at 410 nm 

(Dynatech plate reader #011-93-0-0500). 

In the double-antibody sandwich (ds) ELISA, serial 

dilutions or a specific concentration of a capture antibody, 

diluted in coating buffer (0.05 M Na2co3 [Fisher S263-500] pH 

9.6), was added to the wells of rows A-Hof a Microtiter 

plate, excluding wells in column 12, to which only coating 
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buffer was added. After incubation and washing, all wells 

were blocked as described previously. After incubation and 

washing, either purified virus or sap from virus-infected 

tissue (diluted in APB in equal w/v ratio, and strained 

through 2 layers of cheesecloth), was added to the wells of 

rows A-C and E-G, excluding the wells of column 11. Wells 

in rows D and H received healthy plant sap suspended in APB, 

equal w/v ratio. The wells of column 11 received APB 

without antigen. After incubation and washing, signal 

antibody, diluted in blocking buffer, was added to the wells 

of rows A-H, excluding the wells of column 10. Blocking 

buffer was added to the wells of column 10. Most often, the 

signal antibody was directly labelled with biotin. After 

incubation and washing, avidin-alkaline phosphatase (Sigma 

#A-7294) (0.25 ug/ml) was added to all wells. After 

incubation and washing, substrate, as described previously, 

was added to each well. The plates were incubated at 37°C 

for 45 min. The reaction was stopped by adding 3 N NaOH (50 

ul/well), and the reaction products were determined 

spectrophotometrically at 410 nm. 

A competition ELISA was also used. Purified MDMV-A, at 

a concentration of 5 ug/ml in APB was added to the wells of 

rows A-H through column 11. APB was added to the wells of 

column 12. The plates were incubated and washed. In the 

consecutive competition ELISA, serial dilutions of the 
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competing antibody (unlabelled) were prepared in blocking 

buffer in sterile plastic vials. After blocking and 

washing, 50-ul quantities of each dilution were added to 

wells of rows A-F, excluding the wells of column 11. 

Blocking buff er was added to the wells of rows G and H and 

column 11. After incubation at room temperature on a 

platform rocker and subsequent washing, the biotin-labelled 

antibody (diluted in blocking buffer} at an optimized 

concentration (which varied for each antibody, depending 

upon the efficiency of labelling or the affinity of the 

antibody), was added to the wells of rows A-H, excluding the 

wells of column 10. The wells of column 10 received 

blocking buffer. After incubation at room temperature for 1 

h on a platform rocker and washing, avidin-alkaline 

phosphatase (Sigma #A-7294, 0.25 ug/ ml} was added. After 

incubation and washing, the substrate was added as described 

previously. After 45 min incubation at 37°C, the reaction 

was stopped with 3 N NaOH (50 ul/ well), and the reaction 

products were determined spectrophotometrically at 410 nm. 

In the simultaneous competition ELISA, antigen was bound to 

the wells of the plate as described for the consecutive 

ELISA. After incubation and washing, the plates were 

blocked with blocking buffer. Unlabelled antibody was 

diluted in blocking buffer in separate sterile tubes. 

Optimized labelled antibody was then added to each tube 
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containing the unlabelled antibody plus blocking buffer. 

This mixture of labelled and unlabelled antibody was then 

added to the wells of rows A-H, excluding wells in column 

11 . Blocking buffer was added to the wells of column 11. 

The plate was then incubated at room temperature on a 

platform rocker for 1 h. After washing, avidin-alkaline 

phosphatase (Sigma #A-7294, 0.25 ug/ml) was added to all 

wells. The plate was incubated, washed, and substrate was 

added as described previously. After 45 min incubation at 

37°C, the reaction was stopped with 3 N NaOH (50 ul/well) and 

the reaction products were determined spectrophotometrically 

as described. 

The data generated by both types of competition ELISAs 

were expressed as the percent maximum absorbance. The 

percent maximum absorbance is defined as the absorbance 

generated by the labelled McAb in the presence of competing 

antibody, divided by the absorbance of the labelled antibody 

with no competing antibody and multiplied by 100 . 

Determination of Antibody Concentration in Ascites 
Fluid 

Ascites fluids were used as the antibody source for 

competition ELISAs. To determine the antibody protein 

concentration in ascites fluid, wells of rows A-H i n two 

Microtiter plates were coated with 50 ul/ well of mouse McAb 

IgG (2 ug/ml) purified from ascites fluid, except wells in 
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column 12 (which received 50 ul/well of 0.1 M PBS). The 

plates were incubated and washed. After blocking the wells, 

as described previously, the plates were incubated and 

washed. The first plate was used to generate the standard 

curve by performing serial dilutions of a purified, 

unlabelled mouse McAb (MBG-2, 2 ug/ ml, 50 ul/ well) in 1:1000 

dilution in blocking buffer of goat anti-mouse IgG (Sigma 

#M-9902) conjugated with alkaline phosphatase. The anti-

mouse IgG plus MBG-2 solution was added to the wells of rows 

A-H, excluding column 11. Wells of column 11 received 

blocking buffer containing a 1:1000 dilution of anti-mouse 

IgG conjugated with alkaline phosphatase. The plate was 

incubated at 22°c for 1 h and, after washing, substrate was 

added (as described previously) to all wells. The plates 

were incubated at 37°C for 45 min and the reaction products 

were analyzed spectrophotometrically on a Dynatech 

platereader (#011-93-0-0500) at 410 nm. Wells from column 

11 demonstrated that the plate-adhered antibody would react 

with the labelled anti-mouse IgG if there were no competing 

a ntibody in solution. Wells from column 12 demonstrated 

that the anti-mou se antibody specifically bound to the mouse 

immunoglobulin that had adsorbed to the plate. Therefore, 

the anti-mouse IgG bound to the purified antibody in 

solution, before it bound to the plate-adsorbed antibody. 

The results were plotted as antibody concentration (mg/ ml) 
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vs. absorbance. 

The second plate, which had wells coated with mouse 

immunoglobulin as in the plate described above, was used to 

quantify the concentration of antibody in the ascites 

fluid. Each sample of ascites fluid was initially diluted 

1:50, and then serially diluted in a 1:1000 dilution of 

rabbit anti-mouse IgG conjugated to alkaline phosphatase in 

blocking buffer, and 50 ul of each dilution was added to the 

wells of rows A-H, excluding wells in column 11. Wells in 

column 11 received 50 ul/ ml of a 1:1000 dilution of the 

anti-mouse IgG conjugated to alkaline phosphatase in 

blocking buffer. Washing, substrate, and spectrophotometric 

analysis of the plate were performed as for the standard 

curve. Wells in column 11 demonstrated that the anti-mouse 

IgG must be present in order to generate a signal. Wells in 

column 12, because they did not receive competing antibody, 

demonstrated that the anti-mouse IgG specifically bound to 

the plate-adsorbed mouse antibody. The absorbances were 

compared to the standard curve, and the concentration of 

antibody in ascites fluid was interpolated from the curve . 

Signature Analysis 

After analyzing the results of the competition ELISAs, 

a panel of apparently non-competing McAb' s was selec ted for 

use in the signature analysis . First, an RIA was performed 
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to optimize the concentrations of capture and signal 

antibodies. To optimize the concentration of capture 

antibody, 50-ul quantities of serial dilutions of the 

capture ant ibody (from ascites fluid) were adsorbed onto the 

wells of rows A-H of a remov-a-well Microtiter plate 

(Dynatech Immulon II #011-010-6302) excluding the wells of 

column 12. Wells of column 12 received 50 ul/well coating 

buffer. The plate was incubated for 1 h at 22°C in a humid 

chamber. After washing, the plate was blocked with 200 

ul/well of modified blocking buffer (3% gelatin [Bio-Rad # 

170- 6537) dissolved in coating buffer). The plate was 

incubated for 1 h at 22°c and washed. Purified MDMV-A (5 

ug/ ml, 50 ul/well) in APB was added to the wells of rows A-

G, excluding the wells in row H and column 11. The wells of 

row H contained healthy sorghum (c.v. Bugoff) plant sap in 

APB (50 ul/well). The plate was incubated for 1 h at 22°C . 

A 1:32 dilution of a biotin-labelled, combined PcAb from 

rabbits 97, 98, and 100 was added to the wells of rows A-H, 

excluding the wells in column 10. The wells of column 10 

received blocking buffer. The plate was incubated for 1 h 

at 22°C. Avidin labelled with 125I (Amersham, Arlington 

Heights, Il, code #IM.236, 100 uci, 2.22 x 108 dpm) was then 

added to each well (20,000 cpm/ well). After incubation on a 

platform rocker at 22°C for 1-2 h, the plates were washed and 

each well was transferred into a plastic vial . The vials 
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were placed into a Tracor model 1171 (Tracor analytic, 

Chicago, Il) gamma counter. The window setting suggested by 

the manufacturer for counting 1~I was used. The resulting 

cpm were calculated into a signal (sap from vi rus-infected 

tissue, wells of rows A-G) divided by noise (healthy plant 

sap, wells of row H) (P/N) response and were then plotted 

against McAb dilution. A 100-fold higher concentration than 

the maximum P/N ratio, was utilized for optimal capture McAb 

concentration. 

Optimization of the signal McAb was performed as that 

used to optimize the capture antibody. A 1:200 dilution of 

MBG-1 was performed in blocking buffer, and added to wells 

of rows A-H, excluding wells of column 12. Wells of column 

12 received coating buffer. After incubation and washing, 

the plate was blocked with 200 ul/ well of modified blocking 

buffer. After incubation and washing, purified MDMV-A and 

sap from healthy plant tissue was added in the same manner 

as described above. Serial 1:2 dilutions in blocking buffer 

of biotin-labelled McAb were performed in separate tubes. 

After incubation and washing, 50 ul quantities were added to 

the wells of rows A-H, excluding the wells of column 10 . 

Wells of column 10 received blocking buffer. The plate was 

then treated as per the protocol for capture antibody, 

described previously. P/ N ratios of all antibody 

concentrations were examined, and the concentration of the 
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one antibody which yielded the lowest P/N ratio was selected 

as the standard concentration (0.3 mg/ ml) for the signature 

assays. 

To perform a signature analysis RIA, the capture 

antibody (MBG- 1) was added to the wells (50 ul/well) of rows 

A-H of a Remove-a-well™ Dynatech II Immulon plate, at a 

1:500 dilution in coating buffer through column 11. Coating 

buffer was added to the wells of column 12 (50 ul/ well). 

After incubation and washing, the plates were blocked with 

modified blocking buf fer (200 ul/ well). The isolates 

MDMV-A, MDMV-B, NeB2, and Minn-11, were prepared from 

infected tissue by grinding the tissue in an equal w/ v ratio 

of APB, and straining the mixture through 2 layers of 

cheesecloth. Non-infected sorghum and maize were prepared 

in the same manner. The resulting sap were collected in 

sterile tubes, and were serially diluted in APB buffer. 

After incubation and washing, 50-ul quantities of the Ag 

(infected tissue sap) were added to wells of rows A-C, and 

E-G, excluding wells in column 11 . Wells in column 11 

received 50 ul/well APB. Wells in rows D and H received 50 

ul quantities of either the non- infected sorghum or maize. 

The plates were incubated overnight at 4°C with rocking. 

After washing, signal antibody diluted in blocking buffer 

(0.3 mg/ ml) was added to wells of rows A-H, excluding column 

10. Blocking buffer was added to the wells of column 10 (50 
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ul/well). The plates were incubated for 1 h at 22° C with 

rocking. After washing, iodinated avidin was added as 

described previously. Each tube containing 1 well was 

counted for 2 min or 10,000 cpm. To compare data from 

different infected plant sap preparations, the data were 

analyzed statistically by a signature analysis computer 

program, first described by Wang et. al. (134) in 1983 and 

modified by the ISU Statistics Department. The program 

generates binding profiles, represented as graphed curves ( 

ln P/N ratio vs. dilution of antigen [log base 2)) for each 

antibody. These curves were collectively called signatures. 
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RESULTS 

Growth Conditions of the Virus Isolates 

Optimum growth of each virus isolate was dependent on 

greenhouse temperatures within the range of 70-80°F. There 

was some difficulty growing the virus-infected plants in the 

summer (Dr. Stan Jensen, personal communication) . 

Greenhouse temperatures above 90°F appeared to cause rapid 

decreases in infectious virus titers. 

Production of Cross- reactive PcAb 

Table 2 shows the results of reactions between rabbit 

PcAb and purified or sap containing homologous and 

heterologous virus as measured by an indirect ELISA . 

Rabbits that were immunized with MDMV-A produced antibodies 

that were more cross-reactive than those immunized with 

MDMV-B. The last immunization, with 2 .0 mg/ ml MDMV-A, 

(dated 4-24 - 88, Table 2) did not inc rease either antibody 

titer or cross-reactivity. Because the amount of virus in 

infected sap cannot be quantified , Table 2 lists the 

immunoreactivity of PcAb as either recognizing the antigen 

(+) or not (-). Figure 1 shows the P/ N ratio curves that 

were obtained when six different strains of MDMV were 

serially diluted. The PcAb generated P/ N ratios greater 

than 20 when combined with MDMV-A, MDMV-B, NeB2, and Minn-
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Table 2. Cross reactivity of PcAb against purified (P) MDMV-A 
and MDMV-B (5 ug/ml, 50 ul/well); and host plant sap 
containing virus (is) of MDMV-A, MDMV-B, OHI0-0, KS-
1, Minn-11, and NeB2; at various times, as assayed 
by indirect ELISA 

Virus (Ag) Date 

PMDMV-A 1-15-88 
PMDMV-B 

PMDMV-A 2-26-88 +++C 
PMDMV-B ++ 
isMDMV-A + 
isMDMV-B + 
isOHI0-0 + 
isKS-1 + 
isMINN-11 + 
isNEB2 ++ 

PMDMV-A 4-5-88 ++++ 
PMDMV-B ++++ 
isMDMV-A + 
isMDMV-B + 
isOHI0-0 + 
isKS-1 + 
isMINN-11 + 
isNEB2 ++ 

4-24-88 same 

Rabbits8 

98 100 

+++ ++ 
++ ++ 

+ 
+ + 
+ 
+ + 
+ 

++ + 

++++ ++ 
+++ ++ 

+ 
+ + 
+ 
+ + 
+ 

+++ + 
responses 

101 

+ 

+ 

+ 

+ 

+ 

+ 
as 4-5-88 

8 rabbi ts were designated according to the animal quarter 
protocol which assigns a consecutive number to each animal 
(Table 1) . 

brabbits 97 and 98 were immunized with MDMV-A and rabbits 100 
and 101 were immunized with MDMV-B. 

c++++ 
+++ 

++ 
+ 

Very high recognition (O.D. 410 >0.75) 
high recognition (O.D. 410 0.50 - 0.74) 
moderate recognition (O.D. 410 0 . 25 - 0 .49) 
recognition (O.D. 41 0 0.10 - 0.24) 
no discernable recognition (O.D. 410 <0 .10) 



Figure 1. P/N ratios obtained from indirect ELISAs of PcAbs, 
reacted with serial dilutions of six MDMV isolates. 
The response is recorded as the P/N ratio vs. 
reciprocal of antigen dilution. Six virus 
preparations of sap from virus-infected host plant 
tissue (NeB2, MDMV-B, MDMV-A, Minn-11, KS-1 and 
OHI0-0) were serially diluted, added to the wells of 
an Immulon II Microtiter plate and incubated 
overnight on a platform rocker at 4°C. A 1: 1000 
dilution of PcAbs (combined from rabbits 97, 98 and 
100; 50 ul/well) was added and the plates were 
incubated at room temperature (22°C) for 1 h. A 
1: 1000 dilution of anti-rabbit IgG alkaline 
phosphatase conjugate (50 ul/well) was added and 
plates were incubated at room temperature for 1 h. 
Substrate (1 mg/ml, 50 ul/well) was added and the 
plates were incubated at 37°C for 45 minutes. The 
reaction products were spectrophotometrically read 
at 410 nm. 
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11. The PcAb generated P/N ratios less than 12 when 

combined with strains KS-1 or OHI0-0. This could be due to 

greater recognition by the PcAb to MDMV-A, MDMV-B, NeB2 and 

Minn-11, or that these strains were in high enough 

concentration to be detected by the PcAb. KS-1 and OHI0-0 

were either not recognized well by the PcAb or the strains 

were low in concentration in the infected host tissue. 

Again, because the reaction is a concentration-dependent 

response, no attempt was made to define the PcAb's 

immunoreactivity for each strain of virus. 

Optimization of Double Sandwich ELISA Signal and 
Capture PcAb 

To use the PcAbs to screen McAbs for cross-reactivity, 

it was necessary to optimize the ELISA system. Antisera 

from rabbits 97, 98, and 100 were combined and purified. 

Figure 2 demonstrates the optimization of capture antibody 

using purified MDMV-A (5 ug/ ml; 50 ul/ well), healthy sorghum 

tissue amended with 5 ug/ ml of purified MDMV-A (50 ul/well), 

and sap from MDMV-A-infected tissue. The greatest response 

was obtained with purified MDMV-A (P/ N ratio maximum of 88) . 

The response decreased (P/ N ratio maximum of 38) when 

purified MDMV-A was added to healthy sorghum sap. Values 

obtained using sap from MDMV-A-infected sorghum tissue, were 

all <20, but some P/ N ratios of >10 were obtained. The 

optimal concentration of capture antibody was either a 



Figure 2. P/N ratios obtained from a dsELISA, using serial 
dilutions of PcAb capture antibody cocktail tested 
with MDMV-A. The response is recorded as the P /N 
ratio vs. reciprocal antibody dilution. A capture 
antibody comprised of PcAbs from rabbits 97, 98 and 
100, were combined, serially diluted and added to 
the wells of a Immulon II Microtiter plate. 5 ug/ml 
of purified MDMV-A, healthy sorghum sap amended with 
5 ug/ml of purified MDMV-A, and sap from MDMV-A-
infected host tissue was added (50 ul/well). Biotin 
labelled PcAb pooled from the final bleedings of 
rabbits 97, 98, and 100 was added at a 1:2 dilution 
(50 ul/well). Avidin-alkaline phosphatase (5 ug/ml, 
50 ul/well) was then added. After the addition of 
p-nitrophenyl phosphate and incubation at 37°C for 
45 min, the reaction products were read 
spectrophotometrically at 410 nm. 
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1:1024 or a 1:2048 dilution, depending upon the MDMV-A 

preparation used. Therefore, a 1:1000 dilution of the 

combined antisera was used in subsequent experiments. 

To determine the optimal dilution of signal antibody to 

use, similar procedures were followed. Figure 3 shows the 

P/ N ratios obtained when three MDMV-A preparations were 

assayed in the presence of different concentrations of 

signal antibody labelled with biotin. The greatest response 

was obtained with purified MDMV-A (P/ N ratio maximum of 

107). The response was decreased (P/ N ratio maximum of 80) 

when healthy sorghum sap amended with purified MDMV-A (5 

ug/ ml) was used. Values obtained using sap from MDMV-A-

infected host tissue, were all <60. Based on Figure 3, the 

dilution of 1:32 biotin labelled PcAb was chosen for 

subsequent use, because at that dilution a satisfactory 

signal was generated without expending an excess amount of 

antibody. 

Cross-reactivity of McAb 

The cross-reactivities of McAbs were first assayed by 

directly adsorbing the virus isolates onto the wells of 

Microtiter plates, and then detecting the viruses by using 

an indirect ELISA. Figure 4 shows the immunoreactivities of 

each McAb with purified MDMV-A and MDMV-B (5 ug/ ml) in an 

indirect ELISA . Ascites fluid was used as the source of 



Figure 3. P/N ratios obtained from the optimization of signal 
antibody prepared from combined PcAb labelled with 
biotin. The response is recorded as P/N ratio vs. 
the reciprocal antibody dilution. A dilution of 
PcAb (1:1000) from the final bleeding of rabbits 97, 
98, and 100 was added to the wells of an Immulon II 
96 well Microtiter plate. 5 ug/ml of purified MDMV-
A, healthy sorghum sap amended with 5 ug/ml of 
purified MDMV-A, or sap from host MDMV-A-infected 
sorghum tissue was added ( 50 ul/well) . Serial 
dilutions of biotin labelled PcAb combined from the 
final bleedings of rabbits 97, 98, and 100 was added 
to each well ( 50 ul/well) ; 50 ul/well of avidin-
alkaline phosphatase was then added. After the 
addition of p-nitrophenyl phosphate and 37°C 
incubation for 45 min, the reaction products were 
read spectrophotometrically at 410 nm. 
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Figure 4. a. P/N ratios of the interactions of 12 McAbs 
against purified MDMV-A (5 ug/ml) as detected 
in an indirect ELISA. The response is 
recorded as the P/N ratio vs. antibody at 1:50 
dilution of ascites fluid. Wells of an 
Immulon II 96 well Microtiter plate were 
coated with 5 ug/ml purified MDMV-A (50 
ul/well). A 1:50 dilution of ascites fluid 
containing McAb (JEN-A[A], JEN-0 (O], JEN-
B[B], MBG-l(Bl], MAG-2[A2], MAG-3(A3],MBG-
2(B2], MBG-5[B5], MAG-l[Al], MBG-4[B4], MBG-
6(B6], or MBG-3(B3]) were adsorbed to wells of 
the antigen-coated plate and the antibody-
antigen combination was detected with a 1:1000 
dilution of anti-mouse IgG conjugated with 
alkaline phosphatase (50 ul/well). After the 
addition of substrate and incubation at 37°C 
for 45 min, the reaction products were read 
spectrophotometrically at 410 nm. 

4. b. P/ N ratios of the interactions of 12 
McAbs against MDMV-B (5 ug/ml) in an indirect 
ELISA. The response is recorded as the P/N 
ratio vs. antibody at 1:50 dilution of ascites 
fluid. Wells of an Immulon II 96 well 
Microtiter plate were coated with 5 ug/ml 
purified MDMV-B (50 ul/well). A 1:50 dilution 
of 12 McAb containing ascites fluids was 
adsorbed to wells of the antigen-coated plate 
and the antibody-antigen combination was 
detected with a 1:1000 dilution of anti-mouse 
IgG conjugated with alkaline phosphatase (50 
ul/ well). After the addition of substrate and 
incubation at 37°C for 45 min, the reaction 
products were read as above. 
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McAbs; a l:SO dilution was chosen as the initial dilution, 

with 1:2 serial dilutions used thereafter. Both Figures 4 

and S are plotted at the McAb dilution of l:SO. Inasmuch as 

the initial antibody concentration of each ascites fluid was 

unknown, the P/N ratio generated by reaction of a single 

McAb with the purified preparations of MDMV-A and MDMV-B 

cannot be directly compared to the P/N ratios of other 

McAbs. P/N ratios of McAbs MBG-3, MBG-6, MBG-4, MBG-1, JEN-

O, JEN-B, displayed immunoreactivity, but with very low P/N 

ratios. JEN-A displayed a relatively high P/ N ratio (P/N=9 

and 10) against both MDMV-A and MDMV-B. MAG-1, MAG-2, and 

MAG-3 displayed high immunoreactivities (P/N ratios >10) 

with MDMV-A. MAG-2 generated a very high P/ N ratio (almost 

30) when MDMV-B was used as the antigen, and MAG-1 also 

yielded a high P/N ratio of about lS with MDMV-A. In 

general, McAb's generated against MDMV-A yielded higher P/N 

ratios to both viruses, than McAbs generated against MDMV-B, 

as shown in Figure S. Figure S also directly compares the 

P/N ratios generated by the McAbs in a dsELISA and indirect 

ELISA . Figure 4b and Figure Sb are the results of indirect 

ELISAs with purified MDMV-B and MDMV-A, respectively. There 

is no difference between Figure 4a and Figure Sb. Some of 

the McAbs generated a greater signal when the virus was 

captured by PcAb (as demonstrated by the response of JEN-A, 

JEN-B, MBG-S, MBG-4, and MBG-6) than when the virus was 



Figure 5. a. P/N ratios of the interaction of 12 McAbs 
with purified MDMV-A (5 ug/ml, 50 ul/well) 
captured by PcAb as detected by a dsELISA. 
The results are expressed as the P/ N ratio vs. 
antibody at a 1:50 dilution. A 1:1000 
dilution of PcAb combined from the final 
bleedings of rabbits 97, 98, and 100 were 
added to the wells of a 96 well Immulon II 
Microtiter plate and incubated for 1 h at room 
temperature. Purified MDMV-A (5 ug/ml) was 
added to the plate at 50 ul/well, and 
incubated for 1 h room temperature. A 1:50 
dilution of 12 McAbs containing ascites fluid 
JEN-A[A], JEN-B(B], JEN-0(0], MBG-l[Bl], MAG-
2[A2], MAG-3(A3], MBG-2[B2], MBG-5(B5], MAG-1 
[Al], MBG-4(B4], MBG-6[B6], and MBG-3(B3] was 
added to wells. A 1:1000 dilution of anti-
mouse IgG conjugated to alkaline phosphatase 
was added (50 ul/ well). After the addition of 
p-nitrophenyl phosphate and incubation at 37°C 
for 45 minutes, the reaction products were 
read spectrophotometrically at 410 nm . 

5 . b. P/ N ratios of the interactions of 12 
McAbs against purified MDMV-A (5 ug/ ml), as 
detected in an indirect ELISA. The response 
is recorded as the P/ N ratio vs. antibody at a 
1:50 dilution. Wells of an Immulon II 96 well 
Microtiter plate were coated with 5 ug/ ml 
purified MDMV-A (50 ul/ well). A 1:50 dilution 
of ascites fluid containing McAb (JEN-A [A], 
JEN-0 (O J , JEN-B [BJ, MBG-1 [Bl], MAG-2 [A2], 
MAG-3 (A3], MBG-2 (B2], MBG-5 (B5], MAG-1 
[Al], MBG-4 [B4], MBG-6 [B6], and MBG-3 [B3]) 
were adsorbed to the wells of the antigen-
coated plate and the antibody-antigen 
combination was detected with a 1:1000 
dilution of anti-mouse IgG conjugated with 
alkaline phosphatase (50 ul/ well). After the 
addition of substrate and incubation at 37°C 
for 45 min, the reaction products were read 
spectrophotometrically at 410 nm. 
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direct ly adsorbed to the wells of a microtiter plate. 

Because each McAb reacted with purified MDMV-A or MDMV-

B to some extent, each McAb was tested against sap from 

virus-infected tissue. Since the antigen concentration of 

sap from virus-infected tissue was unknown, the data 

indicate only if a reaction occurred or did not occur . Host 

tissue infected with isolates representing MDMV-A, MDMV- B, 

Minn-11, and NeB2 were recognized by all 12 McAbs (Table 3). 

MBG- 2 and JEN-A were the only two McAbs to recognize strain 

KS - 1 . OHI0-0 was only recognized by MBG-1, MAG-2, JEN- 0, 

MAG-1, MBG-5, and MAG-3. Because KS-1 and OHI0-0 were not 

recognized well by PcAb (Figure 1) and recognized minimally 

by only two McAb (Table 3), they were not analyzed by 

signature analysis. OHI0-0 has been reclassified as 

johnsongrass mosaic virus, and KS-1 is a member of the MDMV 

group. Had the antibodies generated more than a minimal 

response, the data would have been useful to clarify 

relatedness. 

Quantitation of Antibody Protein Concentration 

The protein concentration of each McAb preparation was 

determined for the use in the competition ELISA. Without 

such an analysis, competition could occur due to artifacts 

such as protein-protein interactions induced by protein 

excess . To determine the protein concentration of each 
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Table 3. Cross-reactivity and recognition of plant sap from 
host tissue infected with isolates representing 
strains of MDMV-A, MDMV-B, OHI0-0, KS-1, Minn-11, 
and NeB2, by 12 McAb' s, as assayed by indirect 
ELISA. 

McAb IgG subclass A8 B 0 K 11 NeB2 

MBG-1 2b +b + + + + 
MAG-2 2a + + + + + 
JEN-A 2a + + + + + 
JEN-0 NTC + + + + + 
JEN-B NT + + + + 
MAG-1 2a + + + + + 
MBG-4 2a + + + + 
MBG-6 3 + + + + 
MBG-3 1 + + + + 
MBG-5 1 + + + + + 
MBG-2 2a + + + + + 
MAG-3 2a + + + + + 

8 sap from host plants infected with virus isolates representing 
MDMV-A (A), MDMV-B (B), OHI0-0 (0), KS-1 (K), Minn-11 (11), and 
NeB2. 

b = + recognition. 
- no detectable recognition. 

cnot tested. 
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antibody preparation, a standard curve was generated by 

using a known amount of mouse IgG adsorbed to the wells of a 

Microtiter plate. Serial dilutions of an unlabelled, but 

quantified amount of mouse IgG in a buffer containing anti-

mouse IgG conjugated with alkaline phosphatase (Figure 6), 

were performed. Therefore, low absorbances were generated 

when labelled anti-mouse IgG combined with the high 

concentration of mouse IgG in solution. High absorbance was 

obtained when the concentration of mouse IgG in solution was 

low, and the anti-mouse IgG combined with the plate-adsorbed 

mouse IgG. This generated a standard curve, from low 

concentrations of competing solution antibody, to high 

concentration of competing solution antibody. When an 

unknown amount of antibody in ascites fluid or flask media 

was added to the dilutions of labelled anti-mouse IgG, 

absorbances were determined which reflected the amount of 

labelled anti-mouse that was free to bind to the plate-

adsorbed mouse IgG. Thus, the protein concentration for 

each competing monoclonal antibody preparation was 

interpolated from the standard curve by c omparing 

absorbances. Each antibody concentration was multiplied by 

the dilution factor, which provided an estimate of protein 

concentration of the antibody in flask media or ascites 

fluid (Table 4). This procedure made purification of the 

antibody preparation unnecessary. As expected, flask medium 



Figure 6. A standard curve to determine the 
concentration of IgG in ascites fluid or flask 
medium. A standard curve was generated by 
allowing known concentrations of an unlabelled 
mouse McAb to compete with known 
concentrations of the same mouse McAb directly 
adsorbed to the wells of a Microtiter plate. 
A mouse McAb (2 ug/ml, 50 ul/well) was 
adsorbed to the wells of a Microtiter plate. 
Serial dilutions of a mouse McAb (2 ug/ml) 
were performed in separate tubes containing 
blocking buffer with a 1:1000 dilution of goat 
anti-mouse IgG conjugated with alkaline 
phosphatase, and were added to each well at 50 
ul/ well. P-nitrophenyl phosphate (1 mg/ ml, 50 
ul/ well) substrate was added to each well, and 
incubated for 45 at 37°C. The reaction 
products were read spectrophotometrically at 
410 nm. 
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Table 4. Protein concentrations of McAb-containing asci tes 
fluid or flask media, calculated from the standard 
curve generated in Figure 6 

Antibody 

Jensen A 
Jensen 0 
Jensen B 
MAG-1 
MBG-4 
MBG-6 
MBG-2 
MBG-3 
MBG-5 
MBG-1 
MAG-2 
MAG-3 

Point on 
Standard 

Source Curve x Dilution 

ascites 1. 34 x 1600 
ascites 1. 80 x 400 
ascites 1.82 x 400 
ascites 1. 68 x 1600 
flask 0.58 x 100 
ascites 1. 7 x 400 
ascites 1.19 x 3200 
ascites 2.03 x 3200 
ascites 1. 71 x 3200 
flask 1. 28 x 10 
ascites 2 .36 x 3200 
ascites 2.23 x 3200 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

Protein 
Concentration 

2.144 mg/ml 
0.72 mg/ml 
0.72 mg/ ml 
2.688 mg/ ml 
5.8 ug/ml 
0.68 mg/ml 
3.81 mg/ml 
6.496 mg/ ml 
5 .472 mg/ml 
12.8 ug/ ml 
7.552 mg/ml 
7.136 mg/ml 
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had a significantly lower antibody protein concentration 

than ascites fluid. Ascites fluid varied in antib ody 

protein concent rat ion from 0.7 mg/ml for MBG- 6 to 7.6 mg/ml 

of MAG-2 , flask media varied between 6.0 to 13.0 ug/ml. 

Competition ELISAs 

To characterize the specific immunoreactivit y of the 12 

McAbs, competition ELISAs were performed. Figures 7-12 

demonstrate results of simultaneous and consecutive 

competition ELISAs using biotin-labelled JEN- A as the 

labelled, competing antibody. Third degree polynomial 

regression analysis was used to draw the graphs. Schmajohn 

et . al . (103) reported that unlabelled antibody which 

inhibited 50% of the binding of labelled antibody could be 

considered as binding to similar or overlapping epitopes . 

In the simultaneous competition (Figure 9), MBG-6 appeared 

to compete with JEN-A for a similar or overlapping epitope. 

All other antibodies did not compete. In the consecutive 

competition ELISA (Figures 10,11,12), MBG-6 did not appear 

to compete. 

JEN-0 and JEN-B were eliminated from use in the 

signatures since the source was limited (these antibodies 

were provided by s. Jensen in very small quantities) and the 

response by each antibody was low. MBG-2 was eliminated 

because attempts to label it with biotin were not 



Figure 7. Simultaneous competition ELISA of four 
different unlabelled McAbs, JEN-A (7.a) , JEN-0 
(7.b), JEN-B (7.c), and MAG-1 (7.d), against a 
constant concentration (11 . 6 ug/ ml, 5 0 
ul/ well) of biotin-labelled McAb JEN-A. 
Assays were performed in Immulon II 96 well 
Microtiter plates. Wells were coated with 
purified MDMV-A at 5 ug/ ml, 50 ul/ well. Data 
are mean values of two replications. Results 
are expressed as the percent maximum 
absorbance of unlabelled McAb vs. dilution of 
antibody . 
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Figure 8. Simultaneous competition ELISA of four 
different unlabelled McAbs, MBG-5 (8.a), MBG-1 
(8.b), MAG-2 (8.c), and MAG-3 (8.d), against a 
constant concentration (11.6 ug/ml, 50 ul/well) 
of biotin-labelled McAb JEN-A. Assays were 
performed in wells of an Immulon II 96 well 
microtiter plates. Wells were coated with 
purified MDMV-A (5 ug/ml, 50 ul/well). Data 
are the mean values of at least two 
replications. Results are expressed as percent 
maximum absorbance of unlabelled McAb vs. 
dilution of antibody. 
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Figure 9. Simultaneous competition ELISA of three different 
unlabelled McAbs, MBG-2 (9.a), MBG-3 (9.b), and MBG-
4 (9.c) and MBG-6 (9.d) against a constant 
concentration (11.6 ug/ml, 50 ul/well) of biotin-
labelled McAb JEN-A. Assays were performed in wells 
of an Immulon II 96 well microtiter plates. Wells 
were coated with purified MDMV-A (5 ug/ml, 50 
ul/well). Data are mean values of at least two 
replications. Results are expressed as percent 
maximum absorbance of unlabelled McAb vs. dilution 
of antibody. 
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Figure 10. Consecutive competition ELISA of four different 
unlabelled McAbs, JEN-A (10.a), JEN-0 (10.b), 
JEN-B (10.c), and MAG-1 (10.d), against a 
constant concentration (11.6 ug/ ml, 50 ul/ well) 
of biotin-labelled McAb JEN-A. Assays were 
performed in wells of an Immulon II 96 well 
Microtiter plates. Wells were coated with 
purified MDMV-A (5 ug/ ml, 50 ul/ well). Data 
are mean values of at least two replications. 
Results are expressed as percent maximum 
absorbanc e of unlabelled McAb vs. dilution of 
antibody. 
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Figure 11. Consecutive competition ELISA of four different 
unlabelled McAbs, MBG-5 (11.a), MBG-1 (11.b), 
MAG-2 (11.c), and MAG-3 (11.d), against a 
constant concentration (11.6 ug/ml, 50 ul/well) 
of biotin-labelled McAb JEN-A. Assays were 
performed in wells of Inunulon II 96 well 
microtiter plates. Wells were coated with 
purified MDMV-A (5 ug/ ml, 50 ul/well). Data 
are mean values of at least two replications. 
Results are expressed as the percent maximum 
absorbance of unlabelled McAb vs. dilution of 
antibody. 
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Figure 12. Consecutive competition ELISA of four different 
unlabelled McAbs, MBG-2 (12.a), MBG-3 (12.b), 
MBG-4 (12.c), and MBG-6 (12.d), against a 
constant concentration (11.6 ug/ml, 50 ul/well) 
of biotin-labelled McAb JEN-A. Assays were 
performed in wells of Immulon II 96 well 
Microtiter plates. Wells were coated with 
purified MDMV-A (5 ug/ml, 50 ul/well). Data 
are mean values of at least two replications. 
Results are expressed as percent maximum 
absorbance of unlabelled McAb vs. dilution of 
antibody. 
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successful. MBG-6 was eliminated because of the competition 

with JEN-A in the simultaneous competition. Therefore, 8 

McAbs (MAG-1, MAG-2, MAG-3, MBG-1, MBG-3, MBG-4, MBG-5 and 

JEN-A} were selected for the signature analysis. 

Optimization of RIA System 

Based on the data that MBG-1 generated in Figures 4-12, 

it was chosen as the capture antibody. Ascites fluid 

containing MBG-1 antibody was used as the capture antibody 

for MDMV-A The optimal dilution of MBG-1 was 28 or 1:256. 

Biotin labelled PcAb was used as the signal antibody (1:32 

dilution) (Figure 13). Therefore, a 1:200 dilution of MBG-1 

ascites fluid was used as the capture antibody concentration 

in subsequent double sandwich RIAs. 

To allow comparisons of each McAb P/ N ratio in the 

signature analysis, each McAb was purified, labelled with 

biotin, and quantified. Serial dilutions of each biotin-

labelled antibody were tested in a double sandwich 

radioimmunoassay using a 1 : 200 dilution of MBG-1 as capture 

antibody and 5 ug/ ml of MDMV-A (Figure 14). Iodinated-

avidin was used for detection. Table 5 summarizes the P/N 

ratios of the dilution curves and lists the calculated 

protein concentrations. MAG-3 generated the lowest response 

(undiluted at the midpoint) with the greatest amount of 

protein (0.3 mg/ ml). Therefore , each biotin-labelled McAb 



Figure 13. P/N ratios obtained from the optimization of 
dilutions of ascites fluid containing McAb, 
using MBG-1 as a capture antibody in a 
dsELISA. The results are expressed as the P/N 
ratio vs. MBG-1 dilution. Mouse McAb MBG-1 
(Bl) in ascites fluid was serially diluted and 
adsorbed to the wells of an Im.mulon II 
Microtiter plate (50 ul/well). Purified MDMV-
A (5 ug/ml, 50 ul/well) was then added to each 
well. A 1:32 dilution of PcAb combined from 
the final bleeding of rabbits 97, 98, and 100 
and labelled with biotin, was added at 50 
ul/well. Avidin-alkaline phosphatase was 
added at a concentration of 1 ug/ml, 50 
ul/well. After the addition of p-nitrophenyl 
phosphate and incubation at 37°C for 45 
minutes, the reaction products were read 
spectrophotometrically at 410 nm. 
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Figure 14.a. P/N ratios obtained from 4 mouse McAbs 
labelled with biotin and used as signal 
antibodies in a dsRIA. The results are 
expressed as the P/N ratio vs. reciprocal 
antibody dilution. A 1:200 dilution of 
ascites fluid containing MBG-1 (50 ul/well) 
was adsorbed to the wells of a 96 well Immulon 
II remove-a-well Microtiter plate. MDMV-A 
(5ug/ml, 50 ul/well) was added. Serial 1:2 
dilutions of McAb, JEN-A (A), JEN-0 (0), MAG-
2(A2), and MBG-4 (B4) labelled with biotin, 
were performed, and added at 50 ul/well. 
Avidin conjugated with 125I was added to each 
well at 20,000 cpm. The wells were counted on 
a Tracor Analytic gamma counter for 2 minutes 
or 10,000 cpm. 

14.b. P/N ratios obtained from 3 mouse McAbs 
labelled with biotin and used as signal 
antibodies in a dsRIA. The results are 
expressed as the P/N ratio vs. 
reciprocal antibody dilution. With the 
exception that serial dilutions of 
McAb, MBG-6 (B6), MBG-3 (B3), and MBG-5 
(BS) labelled with biotin, were 
performed, and added at 50 ul/well, the 
assay was completed and read as 
described above. 

14.c. P/N ratios obtained from 3 mouse McAbs 
labelled with biotin and used as signal 
antibodies in a dsRIA. With the 
exception that serial 1:2 dilutions of 
McAb, MBG-1 (Bl), MAG-2 (A2), and MAG-3 
(A3) labelled with biotin, were 
performed, and added at 50 ul/well, the 
assay was completed and read as 
described above. 
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Table 5. Initial protein concentrations of labelled McAb, 
their respective concentrations at the maximum P/N 
ratio generated in Figure 14 

McAb 

MAG-1 
MAG-2 
MBG-3 
MBG-1 
JEN-A 
MBG-4 
MBG-5 
MAG-3 

dilution at 
highest 
P/N ratio 

1:2 
1:64 
1:4 
1:8 
1:500 
1:16 
1:4 
UNDILUTED 

initial protein 
concentration 

mg/ml 

0.0807 
2 . 74 
0.136 
0 . 943 
1. 09 
0.95 
0.236 
0.342 

calculated 
protein 

concentration 
at midpoint 

mg/ml 

0.0404 
0.043 
0.034 
0.118 
0.000218 
0.059 
0.059 
0.342 
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was standardized to a 0.3 mg/ml concentration, to ensure 

that equal amounts of antibody were used for the signature 

analysis. 

Signature Analysis 

Figures 15-18 show the binding profiles of McAb's MAG-1 

(Abl), MAG-2 (Ab2), MAG-3 (Ab3), MBG-1 (Ab4), MBG-3 (Ab5), 

MBG-4 (Ab6), MBG-5 (Ab7) and JEN-A (Ab8) when tested with 

Agl (MDMV-A), Ag2 (MDMV-B), Ag3 (Minn-11) and Ag4 (NeB2) in 

a double sandwich radioimmunoassay and analyzed by the 

signature analysis statistical program. All eight epitopes 

were present on each MDMV virus isolate. The signatures 

shown in Figures 15 and 17 appeared to be related. Figures 

16 and 18 also show relatedness to each other. However, 

each set of signatures suggested that each virus isolate 

could be differentiated by a unique antigenic signature. 



Figure 15. Signature analysis of MDMV-A. Results are 
presented as the natural log (ln) P/ N ratio 
vs. the dilution of Agl (log base 2). McAb 
MBG-1 (1:200 dilution of ascites fluid, 50 
ul/well) was used as the capture antibody. 
Serial dilutions of Sorghum (cv. Bugoff) sap 
infected with MDMV-A (AG=l) were added to 
wells (50 ul/well) of a remove-a-well Immulon 
II Microtiter plate. After incubation 
overnight at 4°C with gentle rocking, 8 McAbs 
(0.011 mg/ ml, 50 ul/well): MAG-1 (Ab=l), MAG-2 
(Ab=2), MAG-3 (Ab=3), MBG-1 (Ab=4), MBG-3 
(Ab=S), MBG-4 (Ab=6), MBG-5 (Ab=7), and JEN-A 
(Ab=S), labelled with biotin, were added. 
After incubation, I 125- avidin was added to each 
well at 20,000 cpm. Wells were counted on a 
Tracor Analytic gamma counter for 2 minutes or 
to 10,000 cpm. 
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Figure 16. Signature analysis of MDMV-B. Results are 
presented as the ln P/N ratio vs. the dilution 
of Ag2 (log base 2). McAb MBG-1 (1:200 
dilution of ascites fluid, 50 ul/well) was 
used as the capture antibody . Serial 
dilutions of Sorghum (cv. Bugoff) sap infected 
with MDMV-B (AG=2) were added to wells (50 
ul/well) of a remove-a-well Immulon II 
Microtiter plate. After incubation overnight 
at 4°C with gentle rocking, 8 McAbs (0.011 
mg/ml, 50 ul/well): MAG-1 (Ab=l), MAG-2 
(Ab=2), MAG-3 (Ab=3), MBG-1 (Ab=4), MBG-3 
(Ab=5), MBG-4 (Ab=6), MBG-5 (Ab=7), and JEN-A 
(Ab=8) labelled with biotin, were added. 
After incubation, I 125-avidin was added to each 
well at 20,000 cpm. Wells were counted on a 
Tracor Analytic gamma counter for 2 minutes or 
to 10,000 cpm. 
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Figure 17. Signature analysis of Minn-11. Results are 
presented as the ln P/N ratio vs. the dilution 
of Ag3 (log base 2). McAb MBG-1 (1:200 
dilution of ascites fluid, 50 ul/well) was 
used as the capture antibody. Serial 
dilutions of Sorghum (cv. Dekalb) sap infected 
with Minn-11 (AG=3) were added to wells (50 
ul/well)of a remove-a-well Immulon II 
Microtiter plate. After incubation overnight 
at 4°C with gentle rocking, 8 McAbs (0.011 
mg/ml, 50 ul/well): MAG-1 (Ab=l), MAG-2 
(Ab=2), MAG-3 (Ab=3), MBG-1 (Ab=4) I MBG-3 
(Ab=S), MBG-4 (Ab=6), MBG-5 (Ab=7}, and JEN-A 
(Ab=8) labelled with biotin, were added. 
After incubation, I 1n-avidin was added to each 
well at 20,000 cpm. Wells were counted on a 
Tracor Analytic gamma counter for 2 minutes or 
to 10,000 cpm. 
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Figure 18. Signature analysis of NeB2. Results are 
presented as the ln P/N ratio vs. the dilution 
of Ag4 (log base 2). McAb MBG-1 (1:200 
dilution of ascites fluid, 50 ul/well) was 
used as the capture antibody. Serial 
dilutions of Zea mays L. (cv. Golden Bantam) 
sap infected with NeB2 (AG=4) was added to the 
wells (50 ul/well) of a remove-a-well Immulon 
II Microtiter plate. After incubation 
overnight at 4°C with gentle rocking, 8 McAbs 
(0.011 mg/ml 50 ul/well): MAG-1 (Ab=l), MAG-2 
(Ab=2), MAG-3(Ab=3), MBG-1 (Ab=4), MBG-3 
(Ab=5), MBG-4 (Ab=6), MBG-5 (Ab=7), and JEN-A 
(Ab=S) labelled with biotin, was added. After 
incubation, I 125-avidin was added to each well 
at 20,000 cpm. Wells were counted on a Tracor 
Analytic gamma counter for 2 minutes or to 
10,000 cpm. 
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DISCUSSION 

Rabbits were immunized with purified MDMV-A or MDMV-B, 

members of the potyvirus group of plant viruses. Antisera 

were produced by the immunization schedule listed in Table 1. 

Rabbit serum samples were assayed throughout the immunization 

protocol for immunoreactivity with purified homologous or 

heterologous MDMV-A or MDMV-B; or host plant material 

infected with virus, by indirect ELISA (Table 2). During 

succeeding immunizations with increasing concentrations of 

antigen, the recognition of purified heterologous antigen 

increased. Potyviral capsid protein contains strain-

specific, immunodominant sequences at the N-terminus, and 

strain-non-specific, homologous sequences in the core region 

(114). It is likely that, because antisera cross-reactivity 

to heterologous antigen increased as the immunization 

protocol proceeded, fewer immunodominant regions and 

therefore strain non-specific sequences of the capsid protein 

were recognized by the rabbit's immune system, resulting in 

increased recognition of the heterologous antigen. The data 

of Shukla et. al. (114) suggest that almost any member of the 

potyviruses could be used as an immunogen to generate strain 

non-specific, cross-reactive antisera, because all 

potyviruses examined contain strain non-specific regions on 

the coat protein. However, when the PcAb antisera made in 

this study were tested against potyvirus SMV no reaction was 



89 

observed (data not shown). Also, the same antisera did 

cross-react with potyviruses traditionally classified in SCMV 

subgroups (MDMV-A, MDMV-B, and MDMV-0), but that are now 

classified as different viruses. Therefore, the regions in 

the coat protein to which the antibodies reacted, must be 

directed at some strain-related sequence. 

Immunization protocols and selection criteria for 

producing PcAb or McAb must be designed to produce antibodies 

to defined epitopes {116,117). The polyclonal antisera may 

have shown a broader spectrum of reactivity (i.e. recognized 

other potyviruses), if immunization time had been extended, 

the concentration of the immunizing antigen increased, or if 

the preparation of the immunizing antigen was unstable during 

storage. Even though the immunizing antigen was purified, 

the purification procedure may not have removed all proteases 

in the preparation; these could have caused denaturation of 

the tertiary structure of the virus coat protein, resulting 

in antibodies to other than those of a native conformation. 

Serial dilutions of pooled PcAb were reacted with 

extracts of host plant tissues infected with MDMV-A, MDMV-B, 

Minn-11, OHI0-0, NeB2, or KS-1, and assayed by indirect 

ELISA. The object of this experiment was to demonstrate 

specificity of PcAb for the various virus strains. As the 

PcAb concentration was reduced, fewer antibodies were 

available to combine with virus, and the resulting signal 
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decreased . This suggests that the PcAb recognized the 

various strains. The P/ N ratios with the various PcAb, shown 

in Figure 1, are not directly comparable because the initial 

concentrations of antigen were unknown. 

OHI0-0 and KS-1 reacted poorly with PcAbs and McAbs 

(Table 3). These low P/ N ratios may have been due to weak 

antibody b i nding because the conserved region of the capsid 

protein contained few epitopes shared with the other viruses. 

Alternatively, virus strains KS-1 and OHI0-0 may not have 

been in sufficient concentration in infected host plant sap 

to generate large P/N ratios. OHI0-0 is now classified as 

johnsongrass mosaic virus (JGMV) {108). OHI0-0 has been 

demonstrated to have distinct serological properties by 

Lanham et. al. (65,66) and Shukla et. al. (107,108,110). 

Because of either this distinct serological property, the 

concentration, or some other factor which resulted in low P/ N 

ratios, no conclusions could be made from these results. 

P/N ratios (in Figure 2 and 3) differed when PcAbs 

reacted with purified virus, sap from virus-infected host 

plant material, or healthy plant material amended with 5 

ug/ ml purified MDMV. Healthy sap containing 5 ug/ ml purified 

MDMV-A did not generate the same P/ N ratio as purified MDMV-A 

at the same concentration. This has been demonstrated 

previously (5 7 ). A sap component may have inhibited the 

antibody-antigen reaction, or proteolytic activity may have 
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compromised the integrity of either the antibody or the 

antigen. Host plant material infected with virus generated a 

lower P/N ratio when reacted with PcAb than when PcAb was 

mixed with healthy plant sap to which antigen (5 ug/ml) was 

added. The antigen concentration of the host plant material 

infected with virus was unknown. Thus, the host plant 

material infected with virus may have contained less antigen 

than healthy plant sap to which a known amount of antigen (5 

ug/ml) was added. 

Dilutions of ascites fluid were the source of antibody 

shown in Figures 4 and 5. P/ N ratios were compared for each 

antibody using purified MDMV-A (5 ug/ ml, 50 ul/well) and 

MDMV-B (5 ug/ml, 50 ul/well). The P/ N ratios for different 

antibodies demonstrated different reactivities to each virus 

isolate. Thus, the P/ N ratios reflected the degree to which 

the McAb combined with the antigen. In general, antibodies 

generated against MDMV-A recognized both purified MDMV-A and 

MDMV-B to a greater extent (as shown by P/N ratios) than 

those generated against MDMV-B. Because strain-specific 

sequences are thought to be located at the N-terminal, 

immunodominant regions of the coat protein, it is not 

unreasonable to expect that McAbs would bind to that region. 

The data obtained by using both the PcAb (Table 2) and the 

McAb (Figures 4 and 5) suggest that animals immunized with 

MDMV-A generated fewer strain-specific antibodies than those 



92 

generated by animals immunized with MDMV-B. The affinity of 

a McAb for its epitope, or the frequency of an epitope for 

the antibody, cannot be ascertained from these data. The P/N 

ratios may have differed because of different antibody 

concentrations in the different ascites fluids, or because 

the affinities of the McAbs for the antigen differed. 

PcAb contains multiple antibodies to multiple epitopes. 

Figures 5a and 5b suggest that little difference existed 

between the PcAb and McAb when used as the capture system for 

antigen, although some McAbs displayed a decreased P/N ratio 

when the antigen was captured by PcAb. Hill et. al. (43) 

suggested that decreases in McAb signals, when captured with 

PcAb, were because both the PcAbs and McAbs were specific for 

the same or similar epitopes. Thus, the PcAb may mask the 

existence of a McAb's epitope. Also, if there is a decreased 

signal, the epitope to which the McAb is specific is probably 

present in limited numbers. It appears that both the PcAb 

and McAb were both directed against conserved, strain non-

specific epitopes (Figures 4 and 5 and Table 2). 

The P/N ratios of some of the McAbs in Figure 5a, where 

the antigen was directly bound to the plate, were higher than 

those depicted in Figure 5b, where antigen was captured onto 

the plate with bound PcAb. Also, some McAbs responded better 

to antigen captured by PcAb rather than bound directly to the 

plate. Therefore, in the optimal double sandwich system the 
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capture antibody could be either a PcAb or McAb. 

Nevertheless, the capture antibody should be an antibody with 

a unique epitope so that McAbs which recognize dissimilar 

epitopes, could then combine. Table 3 shows those McAbs that 

either react with (+) or do not react with (-) the six MDMV 

isolates. OHI0-0 and KS-1 did not generate a response with 

most of the McAbs, but it is not known whether the low 

response was due to lack of recognition or too low 

concentrations of virus. If the lack of signal was because 

the antibody did not recognize the strain's epitopes, then 

these strains would hav e generated useful information in the 

signature analysis. However, inasmuch as the PcAb responded 

poorly to these strains, there was no obvious control to 

which the McAb's response could be compared. Thus, these two 

strains were not chosen for the signature analysis. 

Antibody concentrations in flask media and ascites fluid 

varied greatly (Figure 6); however, flask media contained 

less antibody than ascites fluid. Bayer et. al. (6) reported 

that the protein concentrations of ascites fluid varied from 

2 to 20 mg/ ml. The antibody containing ascites fluid in this 

experiment varied in protein concentration from 0.68 mg/ ml to 

7.552 mg/ ml. 

The results of the competition assays also demonstrated 

recognition of antigens by the McAbs. JEN-A was used as the 

labelled McAb to demonstrate competition with itself (as a 
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control); 11 different McAbs were used in the consecutive and 

simultaneous competition ELISAs. Purified MDMV-A (0.5 ug/ml) 

was chosen as the antigen. True competition occurs when an 

antibody combines with a competing antibody's epitope. 

However, if a competing antibody binds in close proximity, 

resulting in a physical obstruction and/or stearic hindrance, 

or a conformational change in the antigen, binding of the 

labelled antibody may be reduced or excluded. Also, an 

antigen may oscillate between two or more conformations (94). 

Thus, if an antibody i s specific for antigen conformation #1, 

it may not bind to the antigen conformation #2. In the case 

of this panel of antibodies, competition did occur between 

JEN-A and MBG-6 in the simultaneous assay (Figure 8). No 

competition was observed between JEN-A and MBG-6 in the 

consecutive assay (Figure 11) . MBG-6 appeared to have some 

affinity for the epitope, as evidenced by no competition 

occurring in the consecutive assay, but JEN-A had a greater 

affinity than that of MBG-6, because when placed 

simultaneously in the well, JEN- A binds. Competing antibody 

may have been able to overcome stearic hindrance or bind to 

existing similar epitopes in the consecutive assay because 

more time was available to replac e one equilibrium of 

antibody-antigen interaction with another. If an unlabelled 

antibody combined with MDMV-A with a greater affinity than 

the labelled JEN-A antibody, a percent maximum absorbance 
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greater than 100% would be generated; this occurred in these 

competition experiments. 

The optimal dilution of MBG-1 used as a capture McAb for 

the RIA was approximately 3 log10 lower than that of the 

optimal capture PcAb in the ELISA system. PcAb sera had a 

higher antibody protein concentration than that of MBG-1. 

Polyclonal antisera contain antibodies specific for many 

different epitopes, whereas MBG-1 ascites fluid contained 

antibody specific for only one epitope. Therefore, the PcAb 

sera contains antibody for multiple epitopes on the capsid 

protein, which may result in a higher P/ N ratio than that 

obtained for MBG-1. 

The dilutions of labelled antibody are listed in Table 5 

and graphically shown in Figure 14. To label an antibody 

with biotin, biotin is covalently coupled to amino groups in 

an antibody molecule. Up to eight biotin groups can be 

coupled to an antibody molecule without substantial 

inactivation (94). Low initial protein concentrations {MAG-1 

contained 0.0807 mg/ ml) resulted in low dilution factors (the 

maximum P/ N ratio occurred at a 1:2 dilution). High protein 

concentrations (JEN-A contained 1.09 mg/ ml) resulted in a 

high dilution factor (the maximum P/ N ratio occurred at a 

1:500 dilution, data not shown). The difference in the 

signal generated by these antibodies may also have been due 

to either labelling efficiency or antibody affinity. Each 
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McAb was screened for signal ability with purified MDMV-A, 

and may not have a high affinity for that antigen. To select 

the standard protein concentration for all signal antibodies 

to be used in signature analysis, antibody with the highest 

protein concentration at the maximum P/N of the dilution 

curve (MAG-3) was used to determine the standard 

concentration. 

MDMV-A (Agl), MDMV-B (Ag2), Minn-11 (Ag3), and NeB2 

(Ag4) were the four viruses analyzed by signature analysis. 

Eight McAbs were used to simultaneously generate binding 

profiles for each antigen. The collective binding profiles, 

or "signatures", represent the panel of McAb's relative 

affinity for a particular epitope and the frequency of that 

epitope. A signature is generated by plotting the Ln P/N 

ratio on the Y axis, against the dilution of antigen (log 

base 2) on the X axis. A statistical program (iterative 

least squares) aligns the unknown antigen concentration of 

each strain to all the antibody responses at this 

concentration. Therefore, it is possible to collectively 

compare the antibody binding profiles of each strain of virus 

and to align different replications of antigen at diverse 

concentrations to each other. Different binding profiles 

generated by the same antibody to each viral capsid protein 

reflect the relative affinity of that antibody for an epitope 

on the antigen and the relative frequency at which the 
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epitope occurs. The signatures of each virus were 

transferred onto transparencies, and coincidence of 

signatures were observed by placing one transparency over the 

other and physically aligning the transparencies along the X 

axis. Statistical quantitation of differences between the 

binding profiles was not generated by the set of programs 

used in this study. The signatures were assessed visually to 

determine whether they were coincident. 

A comparison of the signatures of the four MDMV viruses 

revealed that each virus possess epitopes on their capsids 

that reacted with all 8 different McAbs, because P/N ratios 

were greater than zero for the 8 McAbs. As mentioned above, 

purified virus of other strains were not available. 

Therefore, the low response of the McAbs to virus in plant 

sap could not be attributed to either lack of recognizable 

epitopes or the lack of the appropriate concentration of 

virus in plant sap . If experiments would have been performed 

with a positive control of purified virus, the results might 

have indicated that these antibodies were, in fact, strain 

non-specific. This would have permitted the use of 

additional strain-specific antibodies, resulting in more 

complete, differential signatures. 

At low dilutions of healthy plant material containing no 

virus (negative sap) , unexpectedly high readings were 

observed (data not shown). The controls indicated that 
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iodinated-avidin bound non-specifically to one or more 

healthy plant sap components (perhaps endogenous biotin), but 

not to the plastic of the Microtiter plate. The advantage of 

working with iodinated avidin, used in this study, was that 

the hazard associated with 1ar-avidin is less than that of 

having to label immunoglobulin with free 1251. Direct 

labelling of immunoglobulin requires the use of high levels 

of radioacitivity. In addition, the use of labelled avidin 

avoids decreases in antibody activity associated with direct 

iodination, and labelled avidin can be used with different 

classes of antibody. However, direct labelling of antibody 

with 125-I would possibly decrease the non-specific binding to 

host plant material that I encountered, and therefore reduce 

the background. 

The inherent problem with the binding profiles generated 

in this experiment lies in the selection of antibody. The 

McAb's selected for signature analysis cross-reacted with 

each virus. Thus, there was no strain-specific epitope, 

which would have been useful in clarifying strain-

relatedness. These antibodies would only be useful to 

demonstrate that a virus isolate was a strain of SCMV, JGMV, 

or MDMV, but does little to decipher unique capsid epitopic 

composition. 

Using signature analysis, the curves generated by the 

panel of McAbs were aligned by the computer program to an 
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antigen dilution of 218 • The dilution series of Abl (MAG-1) 

in trial 1 appeared to increase instead of decrease. The 

signature program aligned the concentrations of the different 

virus preparations to compensate for this unusual curve, 

which then stretched the dilution series out to 218 • The 

nature of the signature program was such that had the data 

been equal to the other two trials, the alignment of virus 

concentration would have occurred with less shifting in the 

right axis, resulting in less stretched, more definitive 

curves. 

The curves generated by signature analysis may represent 

the linear portions of sigmoidal curves. However, the virus 

antigen concentrations may have been too low or too high to 

truly reflect the epitopic uniquenesses or similarities. The 

data generated by these antibodies suggest that each epitope 

was present in similar relative frequencies and that each 

antibody had similar relative affinities to each epitope. 

The data generated in this research suggest that Agl 

(MDMV-A) and Ag3 (Minn-11) could both be strains of MDMV. 

This is supported by the fact that Minn-11 can infect 

Johnsongrass (53). Precautions, such as washing hands 

between the different virus rooms i n the greenhouse, were 

taken so that there were no mixtures of virus during 

propagation. Thus, the similarity that exists between Agl 

and Ag3 is a real reflection of epitopic similarity. The 
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binding curves of Ab7 (MBG-5), and Abl (MAG-1) demonstrate 

the only readily observed differences between these strains 

in this study. For Agl and Ag3, each antibody generated 

curves within the same Ln P/ N (0.1-2.0) ratio, suggesting 

similar antigenic composition. Because a statistical program 

is not yet available to evaluate differences between the 

signatures, it is not known whether the differences in the 

curves generated by antibodies 2, 3, 4, 5, and 8 are 

significant. 

Based on the curves generated and presented in figures 

15-18, it appears that both Ag2 (MDMV-B) and Ag4 (NeB2) are 

strains of SCMV. Although the binding curves of Ab2 (MAG-2), 

Ab5 (MBG-3), Ab6 (MBG-4), and Ab8 (JEN-A) appeared visually 

different, the natural log of the P/ N ratios were in the same 

range (0.1-3.0). However, when Agl and Ag3 are compared with 

Ag2 and Ag4, the P/ N ratios differ greatly, and the curves 

for each set of viruses are not similar . The curves 

generated by this panel of McAbs appear to suggest that the 

viruses tested are all related, but that Agl and Ag3 are 

strains of one virus and Ag2 and Ag4 are strains of another 

virus. This supports the data generated by analyzing 

serological cross reac tivity of cytoplasmic inclusion bodies, 

where each of the isolates contained cytoplasmic inclusion 

bodies which did not cross react with each other (53). 

Further experiments must be performed using other 
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corn- or johnsongrass-infecting viruses. However, the data 

generated in this study reinforce the classification scheme 

proposed by Shukla et. al. (115). 

MBG-1 was used as the capture antibody in the 

signatures. If epitopes recognized by MBG-1 were limited to 

a small portion of the repeating protein subunit of the 

capsid protein, then MBG-1 would not have been able to be 

used as a signal antibody. However, MBG-1 generated a signal 

at least as well as the other signal antibodies, implying 

that the epitope was not limited to a small portion of the 

capsid surface. 

The potential exists for signature analysis to be able 

to elucidate subtle antigenic differences between strains of 

certain viruses. Wands et. al. (130) showed that such 

differences can be detected in hepatitis B surface antigen. 

Although the data in these experiments are limited, it 

suggests that strain relatedness has been established. 

Additional experiments must be done to overcome the lack or 

over-abundance of antigen in the infected plant sap (as 

evidenced by low P/ N ratios) . The usefulness of the 

signature analysis program is limited only by the presence of 

antigen in such overwhelming or small amounts that a curve is 

not generated (as in Ag3). It is necessary, therefore, to 

overcome antigen concentration limitations . If the antigen 

concentration is too low, a method of increasing the 
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concentration of antigen in infected sap must be found. The 

volume of sap containing antigen added to each well could be 

increased, or the number of times a plate was coated with 

infected sap could be increased. However, both methods were 

unsuccessfully attempted in this research (data not shown). 

A method must be found to block the binding of iodinated 

avidin to the healthy sap components. The use of purified 

antigen is an option which was not explored in this study 

because purification procedures may alter the antigenic 

integrity of a virus. Also, the antigen must be in 

sufficiently high concentration for purification, which it 

was not. Performing a semi-purification of sap via several 

ultracentrifugation steps may help reduce the high 

background. The easiest way to overcome excessively high 

concentrations of antigen in plant sap is to dilute the sap 

to an even greater extent than 1:250 or start with a higher 

dilution of sap followed by serial dilutions. If that is not 

effective, then the application of a smaller volume of the 

infected sap to the plate may be an alternative. 

The signal generated by the McAbs must be increased even 

further. Directly iodinating the antibody may increase the 

signal by eliminating the non-specific binding that occurs 

with iodinated avidin. Signal would also increase if the 

system could be amplified in some way (e.g., use carbon 

polymers when labelling the antibody with biotin, to 
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eliminate stearic hindrance and make the biotin more 

accessible to the avidin) or use higher affinity antibodies. 

Cell fusions performed in this research resulted in 

hybridomas that were characterized in a preliminary manner 

(see Appendix 1) . Those hybridomas could be cloned and the 

resulting antibodies could then be epitopically defined by 

competition ELISAs. Some of these antibodies might be 

against strain-specific epitopes because the strain-specific 

N-terminus is immunodominant. If so, these antibodies could 

be used for signature analysis to further elucidate strain 

differences. Shukla et. al. (116) developed a rapid 

screening assay which identified virus specific PcAbs. He 

incorporated the use of electro-blot immunoassays where PcAb 

which are directed to the N-terminus region of the coat 

protein recognized the native protein. The same PcAb did not 

recognize the core protein with the N-terminus removed. The 

immunoassay would be very helpful when s c reening antibodies 

for their use in signature analysis. 

The potential exists for detection of subtle antigenic 

differences between strai ns of virus by signature analysis. 

With an appropriate panel of antibodies, the relatedness of 

unknown field isolates could be defined. The antigenic drift 

of a given virus strain could be traced by the use of this 

technique; perhaps even its geographic origin could be 

determined. Virus/ vector specificity studies may be enhanced 
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in that strain definition could be more precise. Further 

clarification of strain relatedness would also be useful in 

developing resistant strains of maize, sorghum, or sugarcane. 

In conclusion, the data generated in this study support 

the reclassification of MDMV-A as member of the MDMV group of 

potyviruses and MDMV-B as a member of the SCMV group of 

viruses, as proposed by Shukla et. al. (109). Isolates NeB2 

and Minn-11 can also be defined as a member of the SCMV group 

of viruses, and a member of JGMV group, respectively, based 

on the signatures generated in this study. 
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APPENDIX 1 

The following are results generated by hybridomas immunized 
and created as per the methods described in materials and 
methods. MDMV-B ( 5 ug) was used as the immunogen in the 
mouse. MDMV-A or MDMV-B (5 ug/ml, 50 ul/well) were directly 
adsorbed onto the wells of a Microtiter plate. Plate media 
was used as the antibody source. Anti-mouse IgG conjugated to 
alkaline phosphatase was used as the signal. 

Name of Ab MDMV-A 

51-E + 
52-C 
54-D 
54-G 
55-E 
56-C + 
510-C 
510-B 
510-F 
4-10 
4-llC 
4-2c 
4-3G + 
4-4C 
4-5F 
4-6 
4-60 
4-6E + 
4-6G + 
4-7G 
4-8G 
4-8F 
4-9B + 
1-2 
1-E + 
l-3C 
2-7E 
2-8E 
2-8F 
2-9G + 
2-lOE + 

MDMV-B 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Name of Ab MDMV-A MDMV-B 

1-50 - + 
1-5G - + 
1-6B + + 
1-6G - + 
1-7B - + 
1-7C - + 
1-70 + + 
1-7E - + 
17-F + + 
1-8B + + 
1-llE - + 
1-llG - + 
3-9G - + 
3-2C - + 
3-20 - + 
3-5B - + 
3-8B - + 
3-8E + + 
2-2B - + 
2-2C + + 
2-40 + + 
2-50 - + 
2-5F + + 
2-60 - + 
2-9B - + 
2-70 + + 
2-7G - + 
2-8E - + 
2-9C - + 
2-lOC - + 
2-lOF - + 


