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GENERAL INTRODUCTION 

Preservation of water quality has become a national priority and is the 

focus of many environmental and grassroot organizations at the local, state, 

and federal levels. Groundwater pollution can come from two sources: non

point and point. Greenhouse production practices produce point source 

pollution, which has been largely overlooked in the past due to the small 

acreage involved. Recently, however, attention has focused on the greenhouse 

industry because of the its intensive use of fertilizers and chemicals. Several 

countries in Europe have already implemented strict regulatory policies for 

their horticultural industries due to published research reports indicating the 

industry's high potential for groundwater pollution (Gassman, 1993; Molitor 

1990). The focus of this effort is the reduction of nitrate-nitrogen and pesticide 

concentrations entering the groundwater. Concentrations of these compounds 

have been reported in the groundwater supply of large areas of the United 

States (Duffy and Johnson, 1988; Richardson, 1991) and European countries .. 

The United States greenhouse crops industry is expecting increased 

regulations involving the quality and quantity of the effluent entering the 

ground water system. Regulatory measures may be minimized if 

methodologies are developed which reduce the amount of fertilizers and water 

which are used in crop production. Several investigators have reported 

modifications of existing alternative production methods (Weatherspoon and 
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Harrell, 1980; Wilfret and Harbaugh, 1977; Lieth and Burger, 1989), which 

reduce the quantity and improve the quality of the effluent. Benefits 

associated with these drip-irrigation and subirrigation systems are reduced 

labor due to automation (George et al., 1989), reduced water usage (Elliot, 

1990; Evans et al., 1989), reduced fertilizer usage (Elliot, 1990; Evans et al., 

1989). and a more uniform application of the irrigation water and fertilizer 

leading to a more uniform crop. The major disadvantage of these alternative 

systems when compared to the traditional top-water system is the initial cost, 

which can be two to three times higher than standard expanded metal 

benching. The improved labor and material usage efficiency can improve the 

profitability of the products produced and offset the initial construction cost of 

these systems. 

The overall objective of this study was to develop a zero-leachate 

production system using a combination of resin encapsulated, controlled-release 

fertilizer and irrigation method for chrysanthemum production. This study is 

presented in two sections. The first section is concerned with the effects of this 

system on development of the plant growth and quality. The second section is 

concerned with the chemical properties of the growing medium environment 

and the effluent chemical properties and nitrate concentrations. 

Explanation of Thesis Format 

This thesis consists of two manuscripts suitable for publication in 
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HortScience Journal. A comprehensive literature review and a general 

summary of the research are included. References cited in the introduction 

and general literature review follow the general summary. The arrangement of 

the papers follows the guidelines set forth by the American Society of 

Horticultural Science publication manual. 



4 

REVIEW OF LITERATURE 

Fertilizer Types 

Controlled-release fertilizer and liquid fertilizer are the two principal 

types of fertilizer available for use by the greenhouse crops industry. 

Controlled-release and liquid fertilizers have been shown to influence plant 

quality (Bivines and Kofranek, 1961; Simpson, 1975). Highest plant quality 

has been produced in production systems utilizing top-water irrigation and a 

fertilizer combination of controlled-release fertilizer and liquid fertilizer or 

solely liquid fertilizer (Simpson, 1975; Kofranek and Lunt, 1962; Bivins and 

Kofranek, 1961). Kofranek and Lunt (1961) described chrysanthemum plants 

of equal quality being grown with either liquid or controlled-release fertilizer 

with the only difference being the plants produced with controlled-release 

fertilizer were harvested three to five days earlier. Liquid and controlled

release fertilizers have produced similar developmental characteristics of 

chrysanthemum plants, like dry matter, elemental accumulation, and 

appearance (Sharma and Patel, 1978). 

Type of fertilizer applied has influenced the nitrogen concentrations in 

the effluent. Controlled-release fertilizers have a higher nitrogen load in the 

eflluent at the first half of the cropping cycle than liquid fertilizers, but still 

reduced the total amount of nitrogen lost over the production cycle by 50% 

(Hershey and Paul, 1982). 

Patel and Sharma (1977) tested fourteen controlled-release fertilizers 
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and discovered that nitrogen release rates varied among fertilizers and that 

sulfur-coated urea (36-0-0K) and Osmocote 18N-2.6P-9.8K had the most 

desirable nitrogen release pattern for 90 day floricultural crops. Sulfur-coated 

urea and Osmocote fertilizers had nitrogen release rates of7%N and 9.1%N, 

respectively, during the first week and continually released adequate nitrogen 

concentrations through the first two months after fertilizer incorporation (Patel 

and Sharma, 1977). Resin-coated fertilizers, like Osmocote, have been well 

documented as the controlled-release fertilizers that produce the best quality in 

Euphorbia pulcherrima (Tayama and Carver, 1992), Chrysalidocarpus lutescens 

Wendl (Yahata and Murakami, 1988), and Brassaia actinophylia Endl. 

(Conover and Poole, 1983). 

Methods of controlled-release fertilizer application, which include top

dressing, incorporating, and depositing, can influence the growth of the crop. 

Incorporation of the controlled-release fertilizer can reduce the quantity of 

required fertilizer by 35% (Waters, 1963) or by 50% (Oertti and Lunt, 1962) 

and increase the plant quality of 'Iceberg' chrysanthemum (Waters, 1965). 

However, incorporation has also been known to reduce the average flower 

diameter in potted chrysanthemums (Simpson et al., 1975). 

Leachate quality is linked to the placement of the controlled-release 

fertilizer. Incorporation of the controlled-release fertilizer affects the 

concentration of nitrogen in the leachate. Furuta (1976) reported that the 

nitrate runoff concentrations could be reduced to similar background 
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concentrations present in tapwater by incorporating the controlled-release 

fertilizer, but Cox (1993) shows that incorporation of controlled-release 

fertilizer increased the nitrate concentrations in the leachate. Cox (1993) also 

showed that the predominant nitrogen form in the leachate was the nitrate 

form. 

Irrigations System Interactions With 

Fertilizer Types 

Irrigation methods influence plant growth as well as the amount of 

water and fertilizer lost into groundwater systems. Irrigation systems are 

divided into three categories: top-water, drip, and subirrigation. 

Weatherspoon and his coworkers (1980) reported that as much as 90% of the 

applied solution in a top-water system can be leached into the groundwater. 

This system results in applied N losses ranging from 12% to 48% (Hershey and 

Paul, 1982). Nitrate-nitrogen loss can be reduced by using a drip irrigation 

system combined with controlled-release fertilizer, but effluent concentrations 

above the 10-ppm nitrate federal drinking water standard (U.S. Environmental 

Protection Agency, 1982) can be lost to the groundwater system (Rathier and 

Frink, 1989). 

Subirrigation systems are gaining popularity because these systems can 

be a closed loop, which reduces labor, fertilizer, and water usage (Roberts, 

1993; Hamrick, 1989). Subirrigation systems provide water to the plant by 
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capillary action. These systems have the potential of being completely closed 

(recirculated), thus virtually eliminating any potential pollution problems from 

fertilizer components of the effiuent. Problems occur when residues of 

nutrients and pesticides accumulate in the effluent. Ruijs and Os (1991) 

reported that a closed system can reduce fertilizer discharge by 65%, but 

effluent must not need complete disinfecting to be environmentally and 

economically feasible. Fertilizer components that are collected in the effluent 

would be reapplied to the plant thus reducing the initial concentrations of 

fertilizer (Koch and Holcomb, 1983). Due to the upward water movement of 

subirrigation and no downward leaching, fertilizer components can cause 

distinct soluble salt stratification within the growing medium. Guttormson 

(1969) reported that pots placed in a subirrigation systems using liquid 

fertilizer can have five times greater concentration of salts in the upper zone 

than the lower zone of the growing medium after ten weeks in the production 

cycle. Yelanich and Beirnbaum (1990) reported that increases in medium 

electrical conductivity from 1.0 to 8.7 mS resulted in reduction of height, fresh 

weight, dry weight, and leaf and bract area in Euphorbia pulcherrima 'V-14 

Glory.' The reduction in growth parameters has been linked to the reduction of 

C allocated to leaf growth (Brugnoli and Bjorkman, 1992). Salinity of the 

growing medium has also been known to reduce chlorophyll a and b 

concentrations in citrus leaves(Alva and Syvertsen, 1991). 

Guttormsen (1969) also observed that increasing the N and K supplies 
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lead to lower pH readings in the growing medium due to K replacing H on 

some of the collodial complexes. But pH differences were not observed 

between the upper and lower halves of the growing medium in the same 

fertilizer treatment (Guttormsen, 1969). 

The large volumes of nutrient solutions in current subirrigation systems 

can be eliminated by combining the technologies of subirrigation and 

controlled-release fertilizer. Kovacic and Holcomb (1981) found that placement 

of controlled-release fertilizer (top-dressed or incorporated in the medium) in a 

capillary mat system (subirrigation system) did not influence growth of 

Kalanchoe blossfeldiana plants. However, Payne and Adam (1980) reported 

that the placement method directly influenced the quality of African violet 

plants in a capillary mat system. They also observed the lowest plant quality 

from bottom deposits of controlled-release fertilizer and the highest from top 

dressings. Plant development and quality are also influenced by type of 

controlled-release fertilizer. Resin-encapsulated controlled-release fertilizers 

like Osmocote have been shown to be the best type of controlled-release 

fertilizer for use in a controlled-release fertilizer-subirrigation system (Kovacic 

and Holcomb, 1981). Incorporated and topdressed Osmocote fertilizers, at the 

manufacturer's recommended rate, produced the tallest and heaviest kalanchoe 

plants in a subirrigation (capillary mat) system (Kovacic and Holcomb, 1981). 
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Summary 

The type of fertigation systems used for production of floriculture crops 

will influence plant development, water usage, and groundwater pollution. 

Strict water quality regulations in European countries and in certain states of 

the United States may alter fertigation for greenhouse crops by mandating 

reduced fertilizer levels lost to the environment. Potential concentrations of 

pollutants can be reduced through the usage of drip or subirrigation systems 

and/or controlled release fertilizers. Further reduction in the amount of water 

and fertilizer used can be implemented by using a closed irrigation system 

implementing both drip irrigation or subirrigation and controlled-release 

fertilizer. Closed systems must be closely monitored for salts, chemicals and 

pathogens because any additions to the irrigation water will be reapplied to the 

growing medium at every irrigation cycle. Recirculated water can greatly 

influence the chemical characteristics in the growing medium and ,thus, alter 

plant development. Saline medium conditions have been shown to reduce shoot 

dry weight, height, chlorophyll a and b concentrations, flower quality, and alter 

plant elemental accumulations. A proper combination of irrigation system and 

fertilizer type can help the grower reduce the production costs of the product 

while creating a cleaner environment for the grower and the consumer. 
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Abstract. Rooted'Iridon' chrysanthemum (Dendranthema grandiflora Tzvelev.) 

cuttings were transplanted into pots filled with an artificial growing medium. 

Osmocote 12N-4.4P-13.9K at 0.87, 1.75,3.5, and 7.0 g CRF/pot was deposited 

directly below the cutting before transplanting. Plants were subirrigated or 

top-watered using deionized water. Shoot height was reduced as fertilizer 

concentrations increased. Shoot dry weight was reduced by 8% in the 

subirrigated plants. Shoot diameter was maximized at 5.0 and 4.5 g CRF/pot 

in the top-watered and subirrigated plants, respectively. Visual plant quality 

decreased for subirrigated plants as the controlled-release fertilizer rates 

increased. Days to flower, number of flowers, and flower diameter was not 

influenced by the treatments, but flower dry weight was altered by CRF rate. 

Elemental accumulations ofN, P, K, Ca, and B were influenced by irrigation 

treatment and CRF rate. Mg and Mn was altered by only CRF rate. 

Interactions were shown in the accumulation of P, K, Ca, B, and Zn. 

The traditional chrysanthemum production method of top-watering with 

liquid fertilizer can result in 90% loss of the applied liquid solution through 

misapplication (Weatherspoon and Harrell, 1980). Nitrogen in irrigation water 

can contribute to groundwater pollution (McAvoy, 1994) and increase 

production costs (Roberts, 1993). 

Several production systems can reduce nitrogen runoff without 

influencing plant development. Controlled-release fertilizers (CRF) have 
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produced satisfactory plants of Saintpaulia ionantha Wend. 'Ulli' and 'Lisa' 

(Payne and Adams, 1980), D. grandiflora Tzvelev. (Maynard and Lorenez, 

1979), and Euphorbia pulcherrima Willd. (Maynard and Lorenez, 1979). Use of 

CRF at similar rates as in liquid irrigation systems reduces the potential lose 

of fertilizer components into the environment by increasing the crop's nutrient 

recovery (Maynard and Lorenz, 1979; Hershey and Paul, 1982). Systems using 

specific CRF (i.e. Osmocote) and subirrigation have produced plants of 

acceptable quality when using Osmocote at manufacturer's recommended rates 

or higher (Kovacic and Holcomb, 1981). However, the growing medium in 

subirrigation systems can accumulate higher levels of soluble salts and have 

greater salt stratification (Guttormsen, 1969) than top-watering systems due to 

the lack of leaching from the top of the growing medium. High soluble salt 

levels can reduce the quality factors of height, fresh and dry weight, and leaf 

and bract area of E. pulcherrima CYelanich and Biernbaum, 1990). Payne and 

Adam (1980) observed that the placement of the CRF altered the plant quality 

of Saintpaulia ionantha Wend. in a subirrigation system. Information is 

limited on the influences of subirrigation and CRF on chrysanthemum 

development. 

Our objective was to determine the effects of deposited resin-coated CRF 

in a closed subirrigation (zero-leachate) system and a top-water (traditional) 

irrigation system on growth and quality of chrysanthemum. 
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Materials and Methods 

Plant material and experimental manipulation. Rooted 'Iridon' cuttings 

(Yoder Brothers, Barberton, Ohio) were planted on 10 Oct. 1993 into 10-x 5-cm 

pots (volume = 390 ml, 4-in azalea pot) filled with 1 Sphagnum peat: 1 

horticultural perlite (by volume) amended with dolimitic limestone at 2.5 kg/m3 

of medium. The pH of the growing medium was 6.0. Electrical conductivity 

(EC) of the medium was <0.1 dS/m. Before the rooted cuttings were 

transplanted into dibble holes, preweighed quantities of CRF were placed into 

the bottoms of the holes. Four rates of Sierra Chrysanthemum Mix Osmocote 

12N-4.4P-13.9K (Grace-Sierra Horticultural Products, Milpitas, Calif.) were 

used: 0.87, 1.75, 3.5, and 7 g Osmocote/pot. The plants were top-watered with 

150 ml of a 350 mg N/liter solution of 20N-4.4P-16.8K Peat-lite (Grace-Sierra 

Horticultural Products) to establish an initial nutrient charge in the medium 

before the CRF was activated and to provide the moisture for capillary action. 

The pots were placed into 52- x 26- x 6-cm black, vacuum-formed flats 

and spaced on 1.82- x 1.21-m ebb-and-flow benches in a glasshouse kept at 21 ± 

4C. Each pot received 230 cm2 of bench space. The ebb-and-flow benches were 

white, molded plastic trays with perpendicular grooves that allowed the 

irrigation water to contact the bottom of every pot simultaneously. Pots for the 

top-water treatment were placed into flats with no drainage slots so the 

leachate would not enter the ebb-and-flow irrigation water. Plants were 

irrigated when growing medium of over 50% of the pots from each treatment 



14 

appeared dry, every 2 days for the first 10 weeks and once daily thereafter. 

Irrigation tanks were calibrated to 38 liters and refilled after every cycle. Each 

cycle for the subirrigated plants filled the bench for nine min and the water 

remained the bench for an additional 10 min before being drained. 

Approximately 0.7 cm of the growing medium. was in direct contact with the 

irrigation water. Average leaching fraction (volume leached! volume applied) 

for the top-water treatment was 0.24 with a range from 0.18 to 0.34. Irrigation 

water for both treatments was deionized. 

Photosynthetically active radiation, which was measured by using a LI

COR LI-183A Quantum. Meter (LI-COR, Lincoln, Neb.), was 126 JlIllol/s1 m 2 at 

the start of the experiment and averaged 132 J.1IIlol/s1m 2 during the growth 

period. Incandescent lamps were used to provide long days of 18 h by night 

interruption from 0100HR to 0700HR. On 26 Oct., all of the plants were 

pinched by removing 1 em of the youngest stem growth, and short days of 9 h 

were started and maintained throughout the experiment by using black, 4-mil 

polyethylene sheeting. Plants were disbudded on 22 Nov. 

Plant development. Plant height from top of medium. was measured at 

maturity when 60% of the flowers had ray petals perpendicular to the stem. 

Shoot dry weight was determined after the shoot was cut at the medium 

surface, washed in a solution of Alconox (Alconox, New York, N.Y.), rinsed 

three times in deionized water, and dried in an oven at 20C for a minimum. of 

72 h. 
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At maturity, the plants were measured or rated for these various quality 

attributes: diameter at the widest portion of the shoot, height from top of 

medium to top of shoot, bud and flower number, mature flower dry weight, 

total number of flowers per plant, leaf chlorophyll concentrations by ethanol 

extraction (Knudson et al., 1977), and overall plant quality. Quality was rated 

on a visual scale from 1 (lowest) to 5 (highest) based on several ornamental 

qualities, such as overall appearance, flower display and foliage display. The 

upper seven leaves from shoots that developed from axillary buds and 

terminated with a bud or flower were analyzed for essential element 

concentrations at the termination of the experiment. Tissue samples were 

ground to pass through a 40-mesh screen and analyzed for inorganic metal 

content by ICAP spectroscopy for P, K, Ca, Mg, Mn, Fe, Cu, B, and Zn. 

Nitrogen was determined by the Kjehdahl N procedure. 

Statistical Design and Analysis. Three completely randomized blocks 

were arranged in a split-plot design. The CRF rate was the major factor, and 

irrigation method was the subfactor. An experimental unit was the mean of 

the plants from three randomly selected pots within a treatment. Statistical 

analysis included analysis of variance and regression by SAS statistical 

software (SAS Institute, Cary, N.C.). 
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Results 

Plant Characteristics. The interaction of CRF rate and irrigation method 

significantly influenced the shoot height (Table 1). Height of the plants 

decreased linearly as the rate of CRF increased for both irrigation treatments 

(Fig. 1). At the lowest CRF rate of 0.87 g/pot, height of plants in both of the 

irrigation treatments was the tallest at 22 cm. Rate of decrease in height of 

subirrigation was 1.6X greater than for top-watered plants (slope of -1.18 and -

0.71, respectively). 

Irrigation method significantly influenced accumulation of dry matter 

(P=0.06), but CRF rate and the interaction of CRF rate and irrigation method 

was not significant (Table 1, Fig. 2). CRF rate maximized dry matter 

accumulation at 4.6 and 4.1 g/pot in the top-water and subirrigation 

treatments, respectively. The dry matter accumulation was reduced by 10% in 

the subirrigated shoots compared with the top-water treatment (from 4.08 g to 

3.66 g, respectively). 

Plant diameter was influenced by both CRF rate and irrigation method, 

but their interaction was not significant (Table 1). Most the difference in 

diameter due to CRF rate for subirrigated plants is expressed in the 0.87 to 

1.75 g/pot rate, with a maximum diameter of 22.4 cm (Fig. 3). There was no 

further increase in plant diameter with rates >1.75 g/pot. Diameter of top

watered plants was maximized at 25 em with the 4.3 g/pot rate. 

Only irrigation method influenced the concentration of chlorophyll a 
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(Table 1). Irrigation, CRF rate and their interactions did not influence the 

concentration of chlorophyll b (Table 1). Chlorophyll a concentrations were 

9.67 and 9.42 JIg ChlImg for top-water and subirrigation methods (data not 

shown). Mean chlorophyll b concentration was 9.34 JIg ChlImg dry weight. 

Irrigation, rate of CRF and their interaction did not significantly alter 

the flowering characteristics of the days to flower, flower number, and the 

diameter of mature flowers (Table 2). Mean flowers per plant was 3.84, days to 

flower across the treatments was 82.5 days, and mature flower diameter of top

watered and subirrigated plants was 6.80 em. 

Mean flower dry weight was influenced by CRF rate (Table 2), but dry 

weight was not significantly influenced by irrigation method or the irrigation x 

CRF rate interaction. CRF rates >3.50 glpot significantly reduced flower dry 

weight (Fig. 4). 

CRF rate, irrigation treatment and their interaction influenced plant 

quality (Table 1). The quality of subirrigated plants decreased linearly with 

increasing CRF rate (Fig. 5). For subirrigated plants, the plant quality 

decreased by 0.31 for every gram of CRF used. The quality of top-watered 

plants was not influenced by the CRF rate. The mean plant quality of top

watered plants was 4.54. 

Nutrient Analysis. Top-watered plants have higher concentrations of P, 

Ca and B when compared with foliar concentrations of subirrigated plants 

(Table 3, 4 and 5, Fig. 6 and 7). For both irrigation methods, P and B 
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concentrations increased with CRF rate. Concentrations of P and B were 1.5X 

and 2.5X greater in the top-water treatment than the subirrigation treatment. 

Ca concentrations in top-watered plants was not effected by CRF rate, but the 

CRF rate and subirrigation treatment depressed Ca concentrations at CRF 

rates >1.75 gJpot (from 2.5% to 2.1%). 

The reverse was true for N, K and Zn foliar concentrations (Table 3, 4 

and 5, Fig. 6 and 7), where subirrigation treatment has 1.13X and 1.6X more K 

and N, respectively, than top-watered plant. Increasing CRF rate increased 

foliar K and N concentration linearly with both irrigation treatments. But for 

Zn concentrations, increasing CRF rates depressed Zn concentrations with top

water treatment and increased with the subirrigation treatment. 

Irrigation method did not effect the foliar concentrations of Mg and Mn 

(Table 3, 4 and 5, Fig. 6 and 7). CRF rate maximized Mg concentrations at 

0.6% at the 1.75 g rate, while Mn concentration maximum of 312 pgJg was 

reached with 7.50 gJpot. 

Foliar concentrations of Fe (196 pg/g dry wt) and Cu (14 pg/g dry wt) 

were not significantly influenced by irrigation method, CRF rate and their 

interaction (Table 4). 

Discussion 

Height (Fig. 1) and dry weight (Fig. 2) of the shoot were influenced by 

the irrigation and CRF treatments. Height decreased as the CRF rate 
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increased in both of the irrigation methods, while dry weight measurements 

expressed quadratic relationships with CRF rate. Reductions in height and dry 

weight were observed by Yelanich and Biernbaum (1990) in Euphorbia 

pulcherrima grown in top-water and subirrigation systems. They found height 

and dry weight decreased as the medium EC increased from 1.0 to 8.7 dS/m. 

In this project, the mean EC of the growing medium ranged from 0.3 to 2.2 

dS/m over the duration of the experiment (Bruning, ----). As the mean EC of 

the growing medium increased, shoot heights decreased (r=-.99). The decrease 

in osmotic potential from the additional salts could have reduced the water 

availability to the plant and limited the water available for cellular expansion. 

Dry weight reductions with CRF at rates >3.5 g CRF/pot could have resulted 

from decreased allocation of carbon to leaves as Brugnoli and Bjorkman (1992) 

reported. Another possible explanation is a high nitrate environment the 

plants were grown in due to the fertilizer containing 60% nitrate-nitrogen. 

Kraus and Kraybill (1918) observed a suppression of dry matter accumulation 

in tomatoes in a high nitrate environment. 

CRF rates influence on plant diameter in this study is consistent with a 

study showing the widest chrysanthemum plants resulted from high rates of 

CRF in a top-water system (Tayama and Carver, 1992) (Table 1). Subirrigation 

did not influence this relationship in our project. Our study showed a 

maximum plant diameter with top-watering of 25 cm with the 3.75 g CRF/pot 

rate. However, maximum diameter in subirrigated plants was 22.8 cm, which 
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occurred at the same CRF rate of 3.75 g/pot but was 9% lower than the top-

water diameter. 

Irrigation method and CRF rate did not change the average number of 

flowers per plant (Table 2). These data do not agree with a previous report 

that chrysanthemum flower numbers increased as 12N-4.4P-13.9K CRF rates 

increased to 7.9 kg CRF/m3 without a continuous liquid fertilizer feed of 200 

mg Nlliter (Tayama and Carver, 1992). This discrepancy may be explained by 

the nitrogen levels not dropping below a critical flowering threshold. Critical 

threshold of 100 mg Nlliter has been observed in impatiens and marigolds by 

Jacques et al. (1992). 

We expected flower diameter, number of flowers and mature flower 

diameter (Table 2) to be influenced by irrigation and CRF rate due to higher 

concentrations of all of the nutrients. Since these flowering characteristics 

were not affected, fertilization appears to have been adequate in all treatments. 

The lack of treatment effect on days to flower in this study is supported by 

Kovacic and Holcomb (1981), who reported CRF rate did not affect the days to 

flower in Kalanchoe blossfeldiana PoeHn. 'Pixie'. 

CRF rate did significantly alter the flower dry weight (Fig. 4). The rate 

influence on the flower dry weight may suggest that the 7.0 g CRF/pot, which 

accounted for most of the dry weight change, is showing the signs of excess 

fertilizer. Kraus and KraybiH (1918) indicated a high-nitrate environment can 

reduce the dry weight of plants due to carbohydrate concentrations becoming 
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the limiting factor, which would explain the flower dry weight reduction. 

Leaf chlorophyll b concentrations were not significantly different among 

treatments, but irrigation influenced chlorophyll a. Our chlorophyll b 

concentration results were unexpected. Foliar chlorophyll concentrations 

decline in response to stressful environments, like salinity in the growing 

medium of Prunus salicina L.leaves (Ziska et al., 1990). Environmental 

conditions, such as light levels, have been reported as causing differences in 

chlorophyll concentrations as light levels increased or decreased (Anderson et 

al., 1991) and could mask any treatment differences present in this study. 

Quality (Fig. 5) of subirrigated plants was reduced as the CRF rate 

increased, while the top-watered plants were similar in quality across all of the 

CRF rates. The reduction of plant quality in the subirrigation system is likely 

due to excess soluble salts in the root environment that was not present in the 

top-water system. 

Influences of CRF rate and irrigation method on elemental accumulation 

can be explained in several ways. The reduction in Ca and P by subirrigation, 

compared with top-water treatment, could be due to the more thorough 

saturation of the growing medium with the irrigation water than in the top

watering treatment. Higher N and K concentrations in the subirrigated plants 

than in top-watered plants at the same CRF rate could be related to the lack of 

leaching among subirrigated plants. K concentrations could be the same for 

both irrigation treatments due to the lower shoot dry weight in the 
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subirrigated plants than the top-watered plants (Fig. 2). CRF rate effects could 

also be due to the concentration of nutrients in the growing medium (Bruning, 

----), but Waters (1965) did not observe rate effects on N and Ca concentrations 

in field-grown spray chrysanthemums. This discrepancy could be due to the 

field production in Waters' study and the glasshouse production in artificial 

growing medium in this study. Field soil can contain more elements on the 

exchange sites at the start of the experiment and rain water could leach some 

of the salts out of the root zone. Leaching was not a factor in the subirrigated 

pots in our study. Significant interactions between irrigation methods in 

nutrient accumulation could be explained by the lack of leaching in the 

subirrigation method and the buildup of soluble salts. Salt concentrations in 

the growing medium have been known to influence foliar accumulations of Ca, 

K, and Mg in citrus trees (Alva and Syvertsen, 1991). 

Interestingly, irrigation method has an effect on those elements taken up 

primarily as anions (P and B). These elements were higher in shoot 

concentrations from top-watered plants than plants subirrigated. Elements 

taken up as cations (K and Zn) were higher in shoot concentrations from 

subirrigated plants than plants top-watered. The exception was Ca. 

We conclude that combinations of deposited CRF and subirrigation can 

influence plant quality by altering the height, dry weight, and shoot diameter 

of a chrysanthemum crop. Quality of subirrigated plants will be altered by the 
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rate of CRF use. Most flowering characteristics, except for flower dry weight, 

are not influenced in a system using CRF and subirrigation. CRF and 

subirrigation could reduce production costs by reducing fertilizer by as much as 

50% of the current recommended rates, water, and chemical growth regulator 

usage. CRF rate in a subirrigation system will significantly influence several 

important plant growth characteristics of the chrysanthemum. 
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Table 5 Regression equations and coefficient of determination for the 
elemental foliar concentrations in figures 6 and 7. 

Element Regressionz r 

N conceIl.rw=0.18x+4.92 0.78 
conceDsUB=0.11x+5.31 0.64 

P conceDtrw=0.14x+ 1.05 0.88 
conceDsUB=0.09x+0.91 0.77 

K conceIl.rw=0.57x+ 1.88 0.95 
conceDsUB=0.49x+2.66 0.75 

Ca conceIl.rw=-O .06X2=0 A8x + 1.99 0.76 
conceDsUB=0.02x2-0.25x+2.56 0.88 

Mg concen=-0.01x+0.55 0.35 

Mn concen=17.8x+200.9 0.56 

B conceIl.rw=6.13x+55.62 0.73 
conceDsUB=2.42x+59.97 0.42 

Zn concen'lW=-2.08x+41.41 0.47 
conceDsUB=3. 74x+30.37 0.41 

Zconcen'lW and concenSUB corresponds to top-water and subirrigation treatments, 
respectively. 
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Fig. 1 Shoot height at final harvest for the top-water and 
subirrigation methods across CRF rates. Linear regression 
equations are shown below corresponding irrigation treatment. 
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Fig. 2 Total shoot dry weight at final harvest across irrigation 
methods and CRF rates. Points on graph represent means 
of CRF treatments. Quadratic regression equations are 
shown below corresponding irrigation treatment. 
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Fig. 3 Shoot diameter across irrigation treatment and CRF rate. 
Quadratic equations are shown below corresponding 
irrigation treatment. 
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Fig. 4 Mature flower dry weight across the CRF rates. 
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Fig. 5 Visual quality of shoot at final harvest for top-water and 
subirrigation methods across CRF rates. Quality ratings are 
based on a scale of 1 (lowest) to 5 (highest). Linear regression 
equation given for subirrigation method. Slope for top-water 
method was nonsignificant. 
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Fig. 6 N, P, K, Ca, and Mg (% dry weight basis) in chrysanthemum 
leaf tissue at termination of experiment. 
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Abstract. Rooted'Iridon' chrysanthemum cuttings were transplanted into 10-

cm pots filled with a soilless medium. Preweighed amounts of 12N-4.4P-13.9K 

controlled-release fertilizer, which were 0.87, 1.75, 3.50, and 7.00 g CRF/pot, 

were deposited directly below the cutting. The pots were spaced into either an 

ebb-and-flow or top-water irrigation system. The pH of both of the growing 

medium zones was lowered to 4.5 at the termination of the experiment by the 

higher CRF rates. Subirrigation reduced the pH of the upper zone by 9%. EC 

readings and nitrate-nitrogen concentrations in the upper 1.8 cm of the 

growing medium increased as much as 4 times above the other zones measured 

in both the subirrigation and top-water systems. Nitrate-nitrogen 

concentrations in the root zone of both irrigation treatments were similar. 

Concentrations of soluble salts and nitrate-nitrogen in the leachate and 

irrigation water was reduced by the subirrigation method by as much as 16x. 

Nitrate-nitrogen concentrations in the recirculated water of the subirrigation 

method were below 13 mg/l for every sample analyzed. 

State and federal governmental agencies are investigating degradation of 

water quality from groundwater pollution. Due to the intense use of chemicals 

and fertilizers in greenhouse production, this industry's contribution to the 

groundwater pollution is being monitored. Researchers are investigating the 

effects of zero leaching or closed systems have on plant growth. Problems 

associated with these types of systems are that the stratification of high soluble 
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salts concentrations in the growing medium (Guttormsen, 1969). These high 

concentrations have been known to reduce shoot dry weight (Yelanich and 

Biembaum, 1990; Brugnoli and Bjorkman, 1992), shoot height (Yelanich and 

Biembaum, 1990), leaf area (Yelanich and Biembaum, 1990) and chlorophyll a 

and b concentrations (Alva and Syvertsen, 1991). Commonly leached ions, like 

nitrate and potassium, are retained in the medium for plant usage and not 

introduced into the environment. Retention of these ions have reduced the 

concentrations of fertilizers required for the crop and water usage required for 

the traditional leaching. Water usage is also reduced by applying the water 

used more efficiently and the water remaining after an irrigation cycle is stored 

and utilized in the next irrigation cycle. Introduction of any contaminants in 

the irrigation water into the groundwater system is eliminated. 

The objectives of this study were to determine the influence of controlled

release fertilizer concentrations on the chemical properties of the growing 

medium and effluent in a zero-leachate subirrigation system and the 

traditional top-water system. 

Materials and Methods 

Plant material and experimental manipulation. Rooted 'Iridon' cuttings (Yoder 

Brothers, Barberton, Ohio) were planted on 10 Oct 1993 into 10-cm diameter 

pots with a depth of 5-cm (volume=390 ml) filled with the prepared growing 

medium. The medium consisted of 1 Sphagnum peat: 1 horticultural perlite 
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(by volume) amended with dolimitic limestone at 2.5 kg/m3
• The pH of the 

growing medium was 6.0. Electrical conductivity (EC) of the medium was <0.1 

dS/m. Before the rooted cuttings were transplanted into the dibble holes, 

preweighed quantities of CRF were poured into the bottoms of the holes. Four 

rates of Sierra Chrysanthemum Mix Osmocote 12N-4.4P-13.9K (Grace-Sierra 

Horticultural Products, Milpitas, CA) were used: 0.87, 1.75, 3.50, and 7.00 g 

CRF/pot. All plants were top-watered using 150 ml of a 350 mg Nil solution 

from a 20N-4.4P-16.6K Peat-lite fertilizer (Grace-Sierra Horticultural 

Products) to establish an initial nutrient charge in the medium before the CRF 

was activated and to provide moisture for the capillary action for the 

subirrigated pots. Pots were placed into a 52- x 26- x 6-cm black, vacuum

formed flats and spaced (230 cm2/pot) on 1.82- x 1.21-m, ebb-and-flow benches 

located in a glasshouse kept at 20±4C. Ebb-and-flow benches consist of a grid 

of perpendicular troughs that allow the water to contact every pot's bottom 

simultaneously. The irrigation water would enter the pot through its drainage 

holes and be pulled up the column of growing medium by capillary action. The 

irrigation water was in direct contact with 0.7 cm of the growing medium. 

Irrigation water entered the bench for a nine min period and remained in the 

bench for an additional ten min. Photosynthetically active radiation, which 

was measured using aLI-COR LI-183 (LI-COR, Lincoln, Neb.), measured 126 

}llll0l/slm2 at the initiation of the experiment and averaged 132 }llll0l/slm2 at 

foliage level for the weekly measurements over the duration of the experiment. 
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Pots for the top-water treatment were placed into flats with no drainage slots 

so the leachate would not enter the ebb-and-flow irrigation water. Plants were 

irrigated when the growing medium appeared dry, every 2 days on average. 

Irrigation tanks were refilled after every cycle. Average leaching fraction 

(volume leached by volume applied) for the top-water treatment was 24% with 

a range from 19% to 34%. Irrigation water was deionized and had a pH of 

5.63. Incandescent lamps were used to provide long days of 18 h by night 

interruption of from 0100 HR to 0700 HR. On 26 Oct., all of the plants were 

soft-pinched by removing 1 cm of the youngest growth and short days of 9 h 

were started using black, 4-mil polyethylene sheeting and continued for the 

duration of the experiment. The plants were disbudded on 22 Nov. 

Medium and water quality. The growing medium samples were tested for pH, 

EC, and nitrate-nitrogen concentration after dividing the growing medium into 

two zones, the upper zone and root zone. The upper zone consisted of the 

upper 1.75 cm, which contained few roots, and the root zone contained medium 

profiles from the remaining medium around the CRF deposit. These samples 

were frozen at -20C and thawed for 24 h before being analyzed. Saturated 

extracts were preformed according to NCR-13 guidelines (Warncke, 1988) 

except the pH was measured in the leachate and not the slurry. Nitrate 

concentrations were measured using a nitrate ion-specific electrode (Hach 

Company, Loveland, Colo.). Media leachate samples of 5-ml were diluted into 

20-ml of the standard extracting solution and stirred with magnetic stirrers as 
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the readings were collected. Leachate from the top-water treatment and stock 

solution from the ebb-and-flow benches were collected after every irrigation 

cycle, which occurred every two to three days. Samples of irrigation water 

were pooled for every week of the experiment. Liquid samples were analyzed 

for EC, and nitrate concentration. Nitrate-nitrogen samples were analyzed 

with the same procedure as the saturated media extract samples. Due to a 

handling error, leachate samples for week 8 were lost. 

Statistical Analysis. Three completely randomized blocks were arranged in a 

split-plot design. The CRF rate was the whole plot and irrigation method was 

the split plot. An experimental unit consisted of the average reading from 

three randomly selected pots. Statistical analysis included analysis of variance 

and regression where appropriate. SAS statistical software (SAS Institute, 

Cary, N.C.) was used to analyze the data. 

Results 

Properties of the Growing Medium. pH of the growing medium zones 

was significantly altered by the treatment factors of irrigation, CRF rate, and 

week as well as all the interactions except the week *irrigation and 

week*irrigation*rate in the root zone (Table 1, Fig. 1 and 2). The pH of the 

upper zone of the top-watered medium was 1.lx the pH of the upper zone of 

the subirrigated medium (Fig. 1). CRF rate linearly decreased the overall pH 

of the growing medium to a pH reading of 4.5 as the rate increased to 7.00 g 
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CRF/pot (Fig. 1 and 2). The top-water treatment reduced pH in the upper zone 

over the eleven week period for only rates >3.50 g CRF/pot (Fig. 1). While with 

subirrigation, all CRF rates lowered the pH of the growing medium's upper 

zone (Fig. 1). Similar to the upper zone, the pH of the root zone was decreased 

by CRF rates >3.5 g/pot. But with subirrigation, there was a marked contrast 

between the upper and lower zone. Only CRF rates >3.50 g CRF/pot lowered 

medium pH over the duration of the experiment. 

EC of the medium was altered by the interactions of CRF rate, irrigation 

treatment, and week except for the week*irrigation and week*irrigation*CRF 

rate in the root zone (Table 1, Fig. 3). Soluble salt levels increased from 1.1 to 

4.5 dS/m as the CRF rate increased from 0.87 to 7.00 g CRF/pot (data not 

presented). Subirrigation increased the mean EC readings in the upper zone of 

the growing medium compared to the upper zone of the top-water treatment, 

but the EC of the root zone for both irrigation treatments was similar at 0.45 

dS/m. 

Interactions significantly altered the nitrate-nitrogen concentrations in 

the upper zone of the growing medium, but only the main effects of CRF rate 

and week and their interaction influenced the nitrate-nitrogen concentrations 

in the root zone (Table 1, Fig. 4). Average nitrate-nitrogen levels in the upper 

zone of the top-watered and subirrigated medium increased from 45 to 600 mg/l 

and 173 to 2013 mg/l, respectively, as the CRF rate increased from 0.87 to 7.00 

g CRF/pot (Fig. 4). Nitrate-nitrogen concentrations in the samples increased 
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over 11 times from the 0.87 to the 7.00 g CRF/pot when comparing the 

subirrigation method to the top-water method. Concentrations of nitrate

nitrogen was identical in the root zones of both irrigation treatments. 

Properties of the Leachate and Recirculated Water. CRF rate, irrigation 

method, week and their interactions significantly influenced the accumulation 

of soluble salts in the leachate or recirculated water (Table 2, Fig. 5). 

Recirculated water in the subirrigation treatment did not accumulate any 

soluble salts (EC<0.10 dSlm) during the first 10 weeks of the experiment for 

the lower three rates of the CRF (data not shown). The 7.00 g CRF/pot rate in 

week 11 of the subirrigated method registered an average EC reading of 0.13 

dS/m. Average EC readings in the top-water leachate (Fig. 5) increased by 5.2x 

as the CRF rates increased from 0.87 to 7.00 g CRF/pot. The first three weeks 

of the top-watered medium shows a large loss of soluble salts by the higher EC 

values in the the top-water leachate. After this period, the similar EC readings 

within a CRF rate show the development of a steady-state release of salts from 

the CRF (Fig. 5). 

Nitrate-nitrogen concentrations was significantly altered by CRF rate, 

irrigation method, week and all of their interactions (Table 2, Fig. 6). 

Subirrigation reduced the average nitrate-nitrogen content of the irrigation 

water through the entire production cycle by 30x when compared to the top

water irrigation method (3 mg/l in subirrigation and 30 mg/l in top-water). 

Higher rates of deposited CRF increased the average (across the weeks) 
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concentrations of nitrate-nitrogen in the top-water water samples from 21 mg 

nitrate/liter at the 0.87 g CRF/pot application to 226 mg nitrate/liter in the 

7.00 g CRF/pot application (Fig. 6). The nitrate-nitrogen concentration in the 

recirculated water over the duration of the experiment ranged from 0 to 7 

mg/liter as the CRF rate increased from 0.87 to 7.00 g CRF/pot. 

Total nitrate-nitrogen collected in the leachate differed from the 

accumulation in the recirculated water. The recirculated water accumulated 

<1% of the N applied, while the top-water leachate accumulated up to 53% of 

the applied nitrogen in the 7.00 g CRF/pot rate. The three lower CRF rates in 

the top-water system lost an average of 39% of the N applied in the leachate. 

Discussion 

The pH decrease in the upper medium zone of the subirrigated medium 

10% was not expected. Past experiments by Guttormsen (1969) observed a 

significant soluble salt stratification when using a subirrigation systems, but 

he did not observe any significant pH stratification. Subirrigation caused an 

average reduction of 0.8 pH units from the upper zone to the root zone (Fig. 1 

and 2). Possible explanations are a buildup of ammoniacal-nitrogen and excess 

potassium in the upper zone, but both of these explanations are not supported 

by the data. Increased concentrations of ammoniacal-nitrogen should have 

increased the pH gradient in the higher rates of CRF, but the pH gradient in 

the subirrigated growing medium of 0.8 units was greater than the average pH 
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difference of 0.2 in the top-water treatment. 

EC readings of the medium extract show the accumulation of "excess" 

nutrients of the upper zone of the subirrigation and top-water treatments (Fig. 

3). Gradients of salts did exist in the top-water treatment due to the effects of 

evaporation of water, but zonal differences were reduced due to the downward 

movement of the irrigation water and removal of soluble salts in the leachate. 

The upper zone of the subirrigated growing medium did not have this leaching 

effect and a greater gradient developed. This salt accumulation could influence 

the postharvest life of the plant based on information reported by Crater 

(1992), which showed that low fertilizer charges in the medium extended the 

longevity by 10 to 14 days. 

The high nitrate-nitrogen concentrations in the upper zone of the 

subirrigated medium (4x > than the upper zone of the top-watered medium) 

corresponds to the high EC readings in this zone. This buildup was expected 

due to the lack of leaching in the subirrigated pots. The surprising data were 

the similar nitrate-nitrogen concentrations in the root zone of both of the 

irrigation treatments for the duration of the experiment (Fig. 4). This 

similarity was unexpected due to the different irrigation water movement in 

the two irrigation treatments. Even with similar nitrate-nitrogen in the root 

zone, nitrogen concentrations in the foliage was influenced by irrigation method 

(Bruning, ----). This contradiction may be due to ammoniacal-nitrogen present 

in the growing medium from the CRF. 
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The leaching effect in the top-water treatment could be seen in the EC of 

the top-water leachate (Fig. 5). EC readings increased dramaticly as the CRF 

rate increased, while CRF rate did not induce any soluble salt accumulation in 

the recirculated water in the subirrigation treatment. The capillary action of 

the subirrigation system did not allow any leaching of soluble salts from the 

growing medium. 

Concentrations of nitrate-nitrogen in the leachate or recirculated water 

was dramaticly affected by irrigation treatment and CRF rate. Subirrigation 

reduced the concentrations of nitrate in the irrigation water to levels 

acceptable to the E.P .A. drinking water standards of 10 mg/liter across the 

duration of the experiment. Nitrate levels in all of the top-water treatment 

exceeded the E.P .A. nitrate standards during the first four weeks of the 

production cycle in all of the rates, while the 3.50 and 7.00 g CRF/pot rates 

exceeded the E.P.A. standards for the entire production cycle (data not shown). 

Nitrate concentrations could have been elevated in the early portion of this 

study (up to week four) by the initial fertiligation with liquid fertilizer. 

Crops produced in a subirrigation and CRF system will develop 

stratification of soluble salts within the growing medium. This salts can 

accumulate to harmful levels if not monitored closely. Rate of CRF fertilizer 

application can be reduced by 75% of the manufacturer's recommended rate to 

produce a similar plant quality as the traditional, top-water system. This 
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reduction of quantity and form of fertilizer application will greatly reduce the 

potential of ground water pollution that is present in the traditional production 

method. 
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Fig. 1 Weekly pH readings of the upper zone of the 
growing medium across duration of experiment. 
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Fig. 2 Weekly pH readings of the root zone of the 
growing medium across duration of experiment. 
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GENERAL SUMMARY 

A wide diversity of alternative production systems are being investigated 

to prevent groundwater pollution. Several of these systems have shown 

promise in reducing the amount of nitrate-nitrogen entering the environment. 

The controlled-release fertilizer and ebb-and-flow (subirrigation) system 

appears to be a practical production method in chrysanthemum production. 

This system greatly reduced the accumulation of soluble salts, especially 

nitrate-nitrogen, in the waste water. Any accumulation of saIts was 

recirculated to eliminate the introduction of these saIts into the environment. 

The elimination of the liquid fertilizer irrigation water reduces the problems of 

storing and disposing of these nutrient solutions, which contain significant 

concentrations of groundwater polluting compounds. 

Due to the lack of leaching of the salts, application rates of CRF is more 

sensitive in the subirrigation system than the traditional top-watering system. 

Rates for chrysanthemum production should be reduced by at least 50%. Salt 

accumulation in the growing medium becomes highly stratified and the EC 

readings in the root zone should be closely monitored or plant quality could be 

reduced. Subirrigation does appear to change the pH gradient within the 

growing medium. Flowering characteristics of chrysanthemums are not 

influenced by this system as long as the deposited controlled-release fertilizer 

rates were in an acceptable range. 

Other growth characteristics were influenced. Shoot height was reduced 
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with increasing controlled-release fertilizer rates, while shoot dry weight 

remained similar for several of the fertilizer rates. Accumulations of certain 

nutrients, like K, P, Ca and Zn, were influenced by the rate of fertilizer 

application and the type of irrigation method. Subirrigation increased some 

the concentrations of some of these nutrients and reduced other nutrient 

concentrations. 

From the data collected for this study, the combination of controlled

release fertilizer and subirrigation could be implemented in an automated 

operation without reducing plant quality. This system would reduce the 

production costs due to reduced water, fertilizer, and labor usage, while greatly 

reducing the potential of additional groundwater pollution from compounds in 

the leachate water and misapplied irrigation water. 
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