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INTRODUCTION 

Shortly after the discovery of X- rays it became apparent 

that there were possible harmful effects of these radiations . 

Ever since then, shielding against penetrating r adiation has 

been a matter of concern and study . 

With the advent of nuclear chain reactors , this problem 

of radiation shielding was magnified greatly. No longer was 

science dealing with the relatively low source strengths of 

radioactive materials, but now the intensities of available 

radioactive sources were increased many times . Consequently, 

larger and more effective shields had to be developed . 

This increased importance of shielding has been 

responsible for extensive study of gamma radiation attenuati on 

during the past decade . The attenuation of gamma radiation 

is of prime importance because of its characteristic nature . 

All types of radiation are present in the nuclear reactor; 

but the charged particles, by virtue of the electric charge , 

interact strongly with the atomic electrons of the matter 

through which they pass , and very quickly lose their energy . 

Thus it is the neutral particles, such as neutrons and gamma 

rays, that pose the major shielding problem . 

The studies of the attenuation of neutrons and of gamma 

rays are very similar; however, in performing the calcula-

tions, the differing characteristics of each particle must 

be taken into account . In particular, a rather consequential 
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difference between gamma ray and neutron problems lies in 

the nature of the cross sections involved . Cross sections 

for gamma ray processes are smooth functions of both energy 

and atomic number . On the other hand , neutron cross section 

curves often exhibit resonance structure, in which both 

total cross sect i on and angular distributions change drasti-

cally over narrow energy regions . Another dissimilarity 

between these two particles is due to the fact that the gamma 

ray dose is nearly proportional to the energy flux while the 

fast neutron dose is more nearly proportional to the number 

flux . Goldstein (6) and Fano , Spencer and Berger (4) 
consider further the details on the discrimination of these 

two problems . 

The objective of this thesis is involved with the 

attenuation of gamma rays . Three methods have been exten-

sively employed in calculating the attenuation of gamma 

radiation in matter . These are the method of successive 

scattering, the method of moments and the method of random 

sampling, more commonly called the Monte Carlo method . 

cursory description of the Monte Carlo technique and of the 

method of moments will be presented in this thesis . The 

method of successive scattering, however , will be presented 

in some detail, since it is the technique employed in this 

investigation . 

The method of successive scattering has been successfully 
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applied to infinite- slab geometry by G. H. Peebles (13) . 

This investigation is concentrated upon finite spherical 

geometry . Because of the inherent mathematical complications 

of this geometry, only first order scattering will be consi -

dered in this investigation . Number density ratios , as well 

as energy densi t y rat ios , of first order scatter ing to zero 

order scattering will be calculated f or various materials , 

source energies , and dimensions . 
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LITERA~URE REVIEW AND DISCUSSION OF THEORY 

It is beyond the scope of this investigation to present 

an extended description of the various processes by which 

gam.~a rays interact with matter . The subject is treated in 

detail in a number of standard references and the present 

discussion is only an outline to supply a suitable background 

for the investigat i on . Among the numerous references on 

the fundamentals of gamma ray interaction processes are a 

large number of papers , reports and books . The latter 

include Segre (14) , Friedlander and Kennedy (5) , and Kaplan 

(9); all of whom present a rather straightforward approach . 

Other useful presentations have been given by Fano (3a , 3b) , 

White (17) , Bethe and Ashkin (1) , Goldstein and Wilkins (7) , 

Goldstein (6), Snyder and Powell (15) , and Davis son and 

Evans (2) . Although somewhat more difficult, the classic 

reference for a basic understanding of the fundamental 

phe~omena is the t~eatise by Heitler (8) . Each contains an 

excellent presentation on gamma ray attenuat ion, covering 

all aspects of the problem and including considerable data . 

The Interactions of Gamma Rays with Matter 

Even upon restricting the energy range to the region of 

interest , from 100 kev to 4 Mev, there is a large variety of 

mechanisms by which photons can interact with matter . Table 

1 lists these various modes of interactions in order of 
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relative importance for attenuation calculations in this 

energy range . 

Table 1 . Gamma ray interaction processes 

A. Pri mary 

1 . Photoelectric effect 

2 . Compton scattering 

3. Pair Production 

B . Secondary 

4. Coherent (Rayleigh) Electron scattering 

5 . Annihilation radiation 

6 . Fluorescence radiation 

7 . Bremsstrahlung 

8 . Thomson scattering from the nucleus 

9 . Delbruck or Potential scattering 

10 . Multiple Bragg scattering 

11 . Nuclear interactions 

a . photoeffects 

b . scattering 

12 . Radiative corrections to lower order processes 

The various secondary processes listed in Table 1 are 

only of minute importance; therefore, no further discussion 

concerning these processes will be presented . This is 

particularly true in the energy range with which this 
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investigation is concerned . The three primary modes of 

interactions listed in Table 1 , however , contribute over-

whelming ly to the majority of photon interaction in this 

energy range , thus it is felt that a brief explanation of 

these modes should be presented . 

Photoelectric effect 

In the photoelectric effect , an incident photon transfers 

all of its energy to one of the atomic e l ectrons which is 

then ejected from the atom . The energy of the emitted 

electron is equal to the incident photon energy l ess the 

ionization energy of t he electron . Thus , this mode of 

interaction is characterized by the fact that it has a 

threshold energy ; i . e ., it can occur only when the energy of 

the incident photon is greater than the binding energy of 

the electron . However , for photon energies very l a r ge in 

comparison to the electron ionization energy , the photo-

electric effect becomes relatively unimportan t . Since the 

binding energy incr eases rapi dly as Z increases , the photo-

electric effect becomes more prominent for heavy elements . 

Hei tler (8) states that this cross section is propor t~onal 

to z5 , while Goldstein (6) contends that it i s between z4 

and z5 . Thus for the heavier elements the photoelectric 

effect predominates . In fact , for uranium it provides one-

half the total absorption coefficient for photon energies 

up to 620 kev as indicated by Goldstein (6 ) . 
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The importnnt characteristic of this type of photon 

interaction is that the photon is absorbed, and thus does 

not contribute to the photon number density leaving the medium 

in which the interaction takes place . This is an important 

characteristic of t hi s mode of interaction, and it will be 

considered further in the investigation . 

Compton scattering 

Whereas the photoelectric effect is an absorptive 

process , the Compton effect does not result in the destruction 

of the photon . Rather , the Compton effect is a scattering 

process which alters the direction and the energy of the 

incident photon . This is the source of the major difficulty 

in calculating gamma ray attenuation . 

The Compton effect is the result of photons interacting 

with essentially free electrons . The photon collides with 

the free electron resulting in a scattered photon whose 

energy is equal to the energy of the incident photon less 

the kinetic energy of the scattered free electron . Kaplan (9) 

presents the standard treatment of Compton scattering and 

covers the main features quite adequately . This approach 

yields the following relationship for the energy hv' of a 

scattered photon in terms of the incident photon energy hv 

and the angle of scattering s= 

hv ' = h (1) 
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This relationship may be expressed in terms of wavelengths 

since } ~ = c . Thus 

or 

1 
~= 

A ' m c 0 
h 

1 
J ( 2) 

( 3) 

These C~~pton relationships take particular ly s i mple 

form if the photon wavelength A and the energy, h~ = E, are 

e xpressed in units of the Compton wavelength 

h/m0 c = 0 . 02426 ~ 

and the electr on r est mass ener gy 
2 m0 c = 0 . 5110 Mev , 

respectively . In these units , the relation between the 

change in photon wavelength and the angle of scattering is 

simply 

>.. '- >.. = 1- cosa . (4) 

Exp r esse d in terms of e n e r gy Equation 4 appears as 

E ' E 
= l+E ( l- cos~ ) ( 5) 

In order to calculate the contribution of Compton 

scattering to the attenuation of photons , it is necessary to 

calculate the probability that such an occurrence will take 

place . This probability was derived on the basis of 
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relativistic quantum mechanics by Klein and Nishina and is 

covered quite thoroughly by Leipunskii, Novozhilov and 

Sakharov (11) . The Klein Nishina formula for the total 

scatter ing cr oss section per electron is 

2 E2- 2E- 2 2+8E+9E2+E3 a (E) = nr [ 3 ln(l+2E)+2 2 2 ) . 
c o E E (1+2E) 

(6) 

Besides the total cross section, it is also necessary 

to know the differential cross section for scattering; i . e . , 

the cross section with respect to unit solid angle . This 

i s expres s ed by the formula of Klein and Nishina 

where r
0 

i s the classical electron radius 

r = 2 .82 x 10- l3 
0 cm . 

(7) 

Equation 7 may also be expressed in terms of Compton wave-

lengths as 

dac = ~ r~ (-tr-)2[-tr + f +2 ( A- A' )+(A- A' )2] 

(8) 

The Dirac delta function , 6(l+A-A 1 -cos3) , has been introduced 

into Equation 8 in order to satisfy the condition expressed 

by Equation 4. 
In the preceding discussion , it was shown that the 
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cross section per atom varied as Z . From the above equations , 

it can be seen that the total cross section is also dependent 

upon the incident photon energy . Data given by Goldstein (6) 

illustrate that Compton scattering predominates over the 

energy range being i nvestigated . Even for an element as 

heavy as uranium, the Compton effect forms the major part 

of the total absorption coefficient from 0.6 to 5 Mev . 

Pair oroduction 

In pair production all the energy of the incident photon 

is transformed into the creation of an electron pair , an 

electron and a positron . The total kinetic energy of the 

pair is equal to the energy of the incident photon less the 

rest mass of the pair ; i . e ., twice the rest mass of an 

electron . Pair production, therefore, has a threshold energy 
2 of 2m

0
c or 1 . 022 Mev . Goldstein (6) presents a brief 

discussion of this phenomenon indicating the increasing 

effect of Z on the amount of pair production . For more 

details on this process of photon interaction, reference 

should be made to Kaplan (9) , Leipunskii , Novozhilov and 

Sakharov (11) and Fano , Spencer and Berger (4) . 

Gamma Ray Absorption Coefficients 

Consider a beam of incident photons of flux density I 
0 

passing through an absorber of thickness x . The number of 

collisions made in a path length dx by photons passing in a 
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unit time through a unit cross sectional area of the beam is 

I andx, where 0 is the collision cross section and n is the 

number of atoms per unit volume . By substituting t he 

absorption coefficient µ , equal to n 0 , this value becomes 

Iµdx . If these collisions are purely absorptive, this 

number of collisions must be exactly equal to the decrease 

in the flux density I over the distance dx 

- dI = Iµdx . (9) 

The solution to this differential equation is Lambert's law 

(10) 

From the considerat ions of the preceding section, the 

total photon cross section to be used in attenuation calcu-

lations is given by the sum of the cross sections for the 

photoelectric effect, Compton scattering and pair production : 

(11) 

Thi s total cross section is usually described as the mass 

absorption coefficient µ, and is expressed in units of 
2 cm /gm . Numerous tables of absorption coefficients are in 

existence based in varying proportions on calculations and 

measurements in narrow beam geometry . Probably the most 

important of these are those compiled by Snyder and Powell 

(15), Latter and Kahn (10) and G. R. White (17) . The latter 

is the more recent and is believed to contain values accurate 

to within two per cent . For the purpose of this investiga-

tion total linear absorption coefficients µT were used. 
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The data sour ce employed for these various attenuation 

coefficients is U. S . Atomic Energy Commission (16) . 

Methods of Cal culating Gamma Ray Attenuation 

The well known Boltzmann transport equation is satisfied 

by the distr ibution function for gamma rays . The transport 

equation is simply the balance of photons in six- dimensional 

phase space (r , n_, E) . In the stationary case , the number 

of photons in the element of phase space volume dV = 
drd Q dE should remain constant . The most straight forward 

approach to the derivation of the transport equation i s to 

consider the various processes by which photons enter and 

leave the element of phase space volume dV . 

First of all , it i s necessary to consider the migration 

of quanta from an element of volume of ordinary space dr, due 

to their motion . The flux through a unit area , the normal 

of which lies in the direction of .0., is expressed by N(r , .Q, 

E)d.Q dE; thus the variation in the number o: photons in 

unit time in the volume dV as a result of their fr ee motion 

has the form 

div [ Q N(r , SL , E)J drdf2. dE (12) 

Photons may disappear from this volume element of phase 

space by absorptive interactions with matter . The loss of 

photons in dV per unit time due to this process is 

µ ( E) N ( r, SL , E) d;,d fl dE , ( 13) 
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where u(E) is the linear absorption coefficient . 

The volume e l ement dr may contain a source of photons 

with energy E and direction of motion along Q . Thus in the 

equation of balance , a term must be introduced to take into 

account the photons born within the phase space volume 

element in unit time from the source : 

s ( r , n , E) drd ..a. dE , (14) 

where S(r,.Q,E) is defined as the number of photons emitted 

by the source in unit time in a unit volume around the point 
-determined by the radius vector r in a unit energy interval 

around the energy E and in a unit solid angle around the 

direction of .Q . 

Finally, photons from the phase space volume element 

dV ' = drd .Q.1 dE 1 may be scattered , by the Compton effect, into 

the phase space volume element dV = drd.D._dE . The energy of 

these photons changes from E ' to E and the direction of 

motion , from _Q• to fl . This transition of photons from 

dV ' to dV is expressed as 

n0 a( .Q' ... .Q , E '-+ E)d _ITdEN(r , Q' , E ' )d .Q. 1 dE 1 dr', (15) 

where a( SL' - SL , E '-+ E) is the differential cross section for 

the transition of photons from the state (r , fl' , E') to the 

state (r , Jl, E) and n is the number of electrons in unit 
0 

volume . The total number of photons arriving at dV as a 

result of Compton scattering is thus 
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00 

nodrd Jl dE s d SL I J dE ' a( TI.1 -S2_, E 1 
... E)N(r , Q 1 ,E 1 ) . (16) 

4n E 

In the stationary state , the number of photons leaving 

the volume element dV equals the number of photons entering 

this volume element. Thus the sum of Equations 14 and 16 

must equal the sum of Equations 12 and 13 . Divi ding all 

terms by dV , one obtains the transport equation 

div[ TI_ N( r , fl_ , E) ]+ µ(E)N(r , .Q , E) 

00 

= n 0 J d ..QI J dE 1 a ( 52 I - n , E I - E ) N ( r , TI. I , E 1 ) 

4n E 

+ S(r ,n_, E) ( 17) 

Equation 17 is the most general form of the Boltzmann 

transport equation for photons . Further modifications in 

the form of the equation depend upon the source and medium 

geometry . Leipunskii , Novozhi l ov and Sakharov (11) investi-

gate a variety of source types and scattering medium 

geome tries . 

A dir ect s olution to the integro- differential transport 

equation has been under severe investigation for the past 

three decades ; however , no "quick and dirty" method of 

solving this equation has been found as of yet . 

A dir ect numeri cal integration .of the time independent 

Boltzmann transport equation has been attempted ; however , 

it requires integration over at least six variables 
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(e . g . , r,E ,51) and threatens to tax the capabilities even of 

the largest electronic computers . However, in the course of 

much investigation, three numerical techniques have been 

developed which approximate solutions to the transport 

equation . These techniques are the method of moments , the 

.:onte Carlo method and the method of successive scattering . 

The highlights of the method of moments and of the Monte 

Carlo method wi ll be discussed only briefly since they are 

not involved in this investigation . For further details , one 

should refer to Leipunskii, Novozhilov and Sakharov (11) , 

Fano , Spencer and Berger (4) and Goldstein (6) . 
The method of moments 

Most of the theoretical results for multiple scattering 

of photons have been obtained by employing the method of 

moments to generate a numerical solution to the transport 

equation . The principal results of the calculations are 

given by Goldstein and Wilkins (7) . 
It should be noted that this numerical technique 

employed for the solution of the transport equation is 

applicable only to infinite homogeneous media and simple 

types of geometry for the source. 

Essentially, the method of moments is based on the fact 

that the i ntegro-differential transport equation for the 

gamma ray distribution function may be transformed into a 

system of coupled integral equations for the space-angle 
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moments of the distribution function . A numerical solution 

of the system of equations can be obtained with the aid of 

an electronic computer and the moments so derived are used 

to reconstruct the gamma ray distribution function . 

The Monte Carlo method 

Unlike the method of moments , the Monte Carlo method may 

be applied to problems with any kind of geometry , including 

cases of propogation of photons through finit e medi a . For 

this reason , the main results of the determination of the 

transmission coefficient s of photons through slabs and the 

reflexion coefficients (albedo) from various media have been 

obtained by this part icula r method . 

The essence of the Monte Carlo method lies i n the fact 

that the complex statistical process of the transmission of 

a photon through matter may be considered as a succession of 

a finite number of r a ndom e l ementary processes (e .g . , free 

motion over a certain path, disappearance through pair pro-

duction or photoelectric effect, Compton scattering in a 

definite direction, etc . ) . I f the probability of each of 

these occurrences is determined and a list of random numbers 

is available , the trajectory of a particular photon i n the 

medium unde r investigat ion may be reproduced step by step . 

On reaching the stage at which the photon disappears or is 

transferred to a state in which one is interested (e .g ., the 

photon crosses the boundary of the scattering medium) the 
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trajectory of the next photon is investigated . If a suffi -

ciently large number of photon trajectories are investigated 

in this ma nner , a photon distribution function according t o 

energy, angle or some other variable may be ~inally obtained . 

The difficulties arising from the Monte Carlo applica-

tion to the solution of the Boltzmann transport equation lie 

in the expressions given for probable errors . To minimize 

the probable error , one must generate an extremely large 

number of photon trajectories . Goldstein (6) states that for 
- 6 penetrations of 10 , the starting sample of photon trajec-

tories would have to be of order of 108 to 109, requiring 

many hours of computer time . To r esolve this dilemma , 

different types of artificial methods have been worked out by 

which the number of trajectories may be reduced without 

increasing the probable error . 

Although the Monte Carlo method involves large amounts 

of computer time, its value is nevertheless without question . 

In particular , it seems to be one of the few practical means 

known for solving problems involving multiple layers , the 

present outstanding gap in shielding theory . 

The method of successive scattering 

The method of successive scattering has been success-

fully applied to the case of infinite slab geometry by 

Peebles (13 ) . The principle involved is relatively simple 

and will be described in detail . 
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The probability that a photon will be transmitted 

through a slab of finite thickness but infinite extent is 

~he sum of the probabilities that it will be transmitted with 

no scattering, with one scattering, with two scattering, 

etc . Generally , the first few scatterings are sufficient for 

accurate determina~ions of total transmission if the slab in 

question is thin ; however , if the slab is thick, an excessive 

number of scatterings is required for great accuracy . 

The probability that a photon will be transmitted through 

a slab with exactly k collisions may be expressed as the 

product of four probabil i ties : (1) exp( - u a) , the probability 
0 

that the photon will travel a distance a in the material 

without interaction, where Uo is the total linear absorption 

coefficient of the source energy; (2) u0 da , the probability 

that an interaction will take place in da at a ; (3) pda/µ0 , 

the probability that the photon will surv~ve that collision 

and scatter into a new path, where p is the electron de~sity 

and da is the Klein Nishina differential cross section per 

electron ; and (4) Nk- l ' the probability that the photon will 

continue through the slab suffering exactly k- 1 collisions 

before its emergence from the slab . Thus , for small values 

of k , one can write 

(18 ) 

where Nk is defined as the probability that the photon will 

be t r ansmitted through the slab with exactly k collisions . 
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The diagram illustrated in Figure 1 serves to clarify the 

derivation of this equation. 

The probability that a photon will be transmitted 

without suffering an interaction is 

(19) 

where X is the slab thickness in mean free paths (calculated 

at the incident energy) and y is the cosine of the angle 
0 

between the normal to the slab and the incident path . 

Equation 19, in conjunction with Equation 18, yields N1, the 

probability that the photon suffers exactly one collision 

as it is transmitted through the slab . Iteration of this 

technique yields values for N2, N3, N4, etc . Obviously, 

this technique involves a considerable amount of work, 

since at each step , Nk- l must be known for a sufficiently 

wide range of three parameters-- slab thickness, incident 

energy and incident angle . However , the considerable amount 

of generated information justifies the large amount of time 

involved in using this numerical technique . 

The application of similar arguments may be employed 

to generate values for Ek, the expected energy transmitted 

in the beam after exactly k collisions. The equation for 

Ek is very similar to that for Nk, in particular 

dE = k exp(-µ0 a) ·µ0 da · pda/µ0 ·Ek_1 . (20) 

Peebles (13) has generated much data employing this 

technique . He has calculated values of Nk/N0 and Ek/E
0 

for 
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kC 

Figure 1 . A diagram showing the probabilities associated with 
the transmission of a photon and clarifying the 
deri vation of Equation 18 . 
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Nk= probability of transmission 
with exactly k scattering 

X = thickness of slab in mean 
free paths 

0 
0 
'--~-'-~~==:..l.4..~'"":'-=-="'---~~-=:::i...::..~:t.....:..~1_____;t.__~L_~I 

1 2 3 4 5 7 9 10 11 12 

Figure 2 . 
Number of collisions, k 

Graphical representation of the calculated and 
estimated behavior of Nk/N0 with res~ect to k in 
the case of a photon of energy 5 m0 c normally 
incident on a lead slab . 
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infinite l ead and iron slabs of various thicknesses and for 

various source strengths and incident path angles . Although 

this investigation is limited to first order scattering only , 

Peebles has performed calculations for first , second and 

third order scatterings . His results have been reproduced 

in a graphical manner in Figure 2 . 
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FI RST ORDER SUCCESSIVE SCATTERING METHOD 

APPLIED TO SPHERICAL GEOMETRY 

The equations generated by the application of the 

successive scatter ing technique take different forms for 

differen t properti es of the system . Thus before attempting 

to derive the necessary equations for attenuation calcula-

t i ons , the physical properties of the system must be defined . 

This investigation is concerned with the derivation of 

for mulas yi elding N1 and E1 for a monoenergetic , isotropic 

point source in fini te spherical geometry . Only first order 

scattering will be considered . 

Pr obabiliti es Expressed in Spherical Geometry 

In an analogous manner to Peebles' treatment of the 

infinite slab case , the derivation of dN1 and dE1 will result 

from the product of four probabilities . Figure 3 serves to 

define the variables i nvolved in this problem as well as 

to indicate a typical path of a first order scattered photon . 

The probability P1 that a photon emitted from the source 

will travel a distance a before interacting in the sphere is 

exp( - µ0 a)a2sin9d9dQ 
pl = 2 

4na 
(21) 

P2 is defined as the probability that the photon will suffer 

a collision in da at a distance a from the source . mhe form 

of this pr obability is 
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Figure 3 . The path of a photon suffering a s cattering 
collision at a and scattered by angle S· 
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(22) 

The probabi lity P3 that the photon survives the collision 

and i s scattered into a scattering angle s is expressed as 

(23) 

where p is the electron density and da is the Kl ein N~shina 

differ ential cr oss section . From Equation 8 

1 2 A )2 ' A I 2 da= 2 r
0

(rr Ctr + ~ + 2(1..- 1.. 1 )+(1.. - "A 1
) 0 (1+1..- 1.. 1 - coss)d.Q , 

(24) 
where d .Q i s a n element of unit solid angle . For simplifica-

t i on , ~ (). , ). ' ) i s defined as 

(25) 

thus P3 be comes 

p ft h. , A I ) 6 ( 1 +A_ - A_ I - c 0 s s ) d_Q 
(26) 

IJO 

Finally , the probability that the photon will continue 

from the point of collisi on to the surface of the sphere i s 

(27) 

where µ is the attenuation coeffic i ent of the scattered 

photon , and b i s the distance from the point of scat:ering 

to the surface of the sphere . 

The product of P1 , P2 , P3, and P4 yields the desired 

expression s for dN1 
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exp( - µb) (28) 

Integration of this equation yields the following expression 

2n n R exp( - u
0
a)sine 

N1= J an_ J a~ J de J da [ 4n · pK(A,A') 
total O o O 
solid 
angle (29) 

The variable cp, by nature of the geometry of the problem, may 

be eliminated by i ntegrating directly over ~; thus 

n R 
N - " an aa J 1-

total 0 0 
solid 
angle ·exp (- µb)] ( 30) 

The variable e may be eliminated by considering Figure 3 and 

employing the sine law . Thus 

8 = 8 - s ( 31) 

and 

s = arcsin[~ sin(n- s)J = arcsin[~ sins1; (32) 

therefore, 
. [a . e = s - arcsin R sins] . (33) 

The r elationship between d8 and ds is not qui te as easily 

acquired; however , an investigation of Figure 4 will help 

clarify the problem . From the definition of the sine of an 



/ 
/ 

/ 
/ 

/ ~ 

---bdl=' 
J 

R 

li'jr,ur·c Ii . The r·c:lationship between d9 and d~ . 
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angle , the followi ng r elat ionship is der ived : 

bdg = sin(~ - c) = cose , ade c:. ~ 
(34) 

or 
a dg = b cos 8 de . ( 35) 

Differ entiation of Equation 31 yi elds 

de= Mds +Mdg = de - dg (36) 
0 s 0 c: 

since 0 8/os and - 0 9/0s equal one . Thus 

de = d13 - ~ cos8 de , (37) 

or , after appropriate simplifications have been perfor med 

ae = bds (38) b+a coss 

Now consider the variable Sl . As is seen in Figur e 5, 

J d .Q 
to tal 
solid 
angle 

2n 
= J dcp ' 

0 
( 39) 

As in the treatment of the cp variable , cp ' may be direc t ly 

integrated because of the symmetry of the problem. Thus 

J dSl 
total 
solid 
angle 

( 40) 

Consider at this point the Comp t on relationship between the 

scattered photon wavelength A1 and the angle of scattering 

8, expressed by Equation 4. By differentiating this equation, 
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Fi gure 5 . The relationship between d Sl and dA ' . 
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one obtains 

(41) 

The substitution of Equation 41 into Equation 40 yields a 

r elationship between d Sl. a nd dt.. 1; in particular , 

t..+2 

s d Jl = 2n s df.. 1 , (42) 
total A. 
solid 
angle 

where the limits of integration over the A, variable have been 

derived from Equat i on 4. 
The substitution of Equations 42 , 38 and 33 into Equation 

30 yields the f o llowing expression for Nl : 

A,+2 TI R 

N -1- s dA. ' s ds s da[n exp( - µ0a) · sin[~ -arcsin(~ sins)} 
A. 0 0 

As Equation 43 indicates , N1 is expressed in terms of four 

variables-- a , b , A. 1, ands . The variable b may be elim~nated 

quite easily by application of the sine law; i . e . , 

b R = sin e sin( n- s) (44) 

The substitution of Equation 33 into Equation 44 and simpli -

fication of the resulting equation yields the following 

relationship between b, a and s : 

b = R[cos[arcsin(~ sins)} - ~ cossJ . ( 45) 
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Now consider the variable s and the Dirac delta function 

0(l+A- A1 -cosg) . If a function f(x ,y, z) exists such that 

f(x , y , z) = J dx J dy J dz fg(x ,y, z) 0[h(x, y , z)]} (46) 

then an equivalent expression for f(x , y , z) is 

( ) g(x y,z) 
f x, y , z = I dx I dy r I oh/oz I 1 , ( 47) 

where g(x, y , z) and 0h/0z are evaluated at z such that h(x , y , z) 

equals zero . The application of this property of the Dirac 

delta function to Equation 43 results in the elimination of 

the s variable . The form of the function h in Equation 43 is 

( 48) 

thus 

oh/os = s in s , (49) 

and setting Equation 48 equal to zero yields 

(50) 

The application of the Dirac delta function property 

and the substitution of Equation 45 into Equation 43 yield 

an expression for N1 in terms of only two variables , a and A' · 

In particular, the equation for N1 is 

A+2 R 
N1= J dA'J da n exp(-µ0a) · sin[13-arcsin(~sins)J · p1{(A ,A' ) · 

0 
a R[cos(arcsin(asin2D - ~cos2] 

exp[ - 11R(cos(arcsin(Rsin9))- ~coss)J . R R , 
R [cos (arc sin (~sins)) J·l sins I 

(51) 
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where s = arcos(l+A - A' ) . Simplification of Equation 51 

yields 

R 
da n exp - (µ0a+µR[cos(arcsin(~sins)) - ~cossJ) 

[cos[arcsin(~sins)J- ~coss}2 
· p~(A ' A ' ) · 

cos[arcsin(~sins)} 
J 

wher es= arcos( l +A - A' ) . 

(52) 

E1 equals the product of the energy of the scattered 

photon E 1 and the number density N1 of the scattered photon . 

Since the units employed are the Compton unit of wavelength 

and the e l ectron rest mass energy unit of energy, E 1 is 

the reciprocal of A 1 • Thus the form of E1 is 

A+2 R 
E1= J dA ' J da ~ , exp - (µ0a+uR[cos(arcsin(~sins))- ~cossJ) 

A 0 

cos[arcsin(~sins)} 
(53) 

Numerical Integration 

The analytical integration of Equations 52 and 53 would 

prove to be extr emely difficult if not impossible . Therefore, 

for the purpose of this investigation, a numerical integration 

technique was employed . In particular recourse was made to 

Simpson ' s rule treated quite adequately by Wylie (18) . 

Simpson ' s rule for a single integral equation may be 
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expressed as 

xj+2 
hx 

dxf(x) = ~ [f j + 4f j+l + f j+2 ] , 
xj 

(54) 

where f j = f(xj) , f j+l= f(xj+l) and f j+2 = f(xj+2 ) , and hx 

is the distance between two adjacent points on the x- axis . 

In the case of a double integral equation, Simpson ' s rule 

is applied over both variables ; i . e ., 

or 

xj+2 Yk+2 

, dx J dy f(x ,y ) 
xj yk 

xj+2 Yk+2 
J dx J dy f (x,y )= 
xj yk 

xj+2 

~ £ . f~ [fk + 4rk+l+ fk+2JJ, 
J 

+l6fk+l ·+1+4fk+l j+2+fk+2 .+4rk+2 . ·1+fk+2 ··21· , J J , J , JT , JT 
(55) 

A better comprehension of the numerical integration technique 

employed i s acquired by considering Figure 6 . 

Generally speaking , the smaller the values of h and x 
hy , the greater the accuracy of the approximation . However, 

when applying this technique, one must consider the amount 

of computer time required as well as the accuracy desired . 

If one is integrating over a relatively large region; i . e ., 

the grid contains a large number of points , and the 

numerical solution indicates signs of convergence , one may 

adopt a criterion for the selection of the values of hx and 
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r.-~~~~~~o~~~~~~~~ 

fk+l , j 

0 f 0 
fk , j+l k+l , j+l fk+2 , j+l 

fk+2' j+2 

Figure 6 . Simpson 1 s rule applied to double integration . 

o~~~~-o~~~~-<1---.. 

f 1 , 1 

0 0 Cf 2 J - 2 f 2 OJ- 1 f 2 ,J I f2 , 1 f 2 2 f 2 , 31 , , , 

f 3 , 1 f 3, 2 ii 

L l I I 
0 0 0 0 I , 4, 1 

;;> 

I I 1 4 2 , 
I 

0 0 ! f 5 , 1 f 5 2 I I 
'o 0 0 0 

b I 

Figure 7 . Iterated double integration Si mpson 1 s rule . 



hy by considering the trend of convergence . For instance , 

the value of h may be halved repeatedly until it appears x 
that the solution has converged and that further halving 

of hx contributes a negligible amount to the solution . 

Once this has been done for h , the procedure is then x 
repeated for hy . 

Should the range of integration be such as to include 

more than three points along each of the variable axes , 

Simpson ' s rule is merely repeated in the following manner 

xn Yn J dx J dy f (x,y) = 
x3 Yn J dx J dy f(x , y) f(x,y)+ . . . 

xl Y1 xl Y1 

Yn 
dx I ay r ( x , y ) , (56) 

and 
xn Yn 
J ax I ay 

x3 Y3 
f(x , y) = J dx J dy f(x , y) + f(x , y) + ... 

xl Y1 

x5 Y3 X5 Y5 x3 Yn 
+ J dx ; dy f(x , y) + J dx J dy f(x , y) + J dx dyf(x, y)+ 

X3 yl X3 Y3 

X5 Yn xn Y3 
... + dxJ dy f (x, y) + ... + I dxJ dy f(x , y) 

X3 Yn-2 x n-2 Y1 
x Y5 x Yn n n 

+ f dx f dy f(x , y)+ ... + I dxJ dy f(x , y) . (57) 

Yn- 2 Y3 x n - 2 Yn- 2 
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The application of Simpson ' s rule to each of the double 

integral terms on t he right hand side of Equation 57 then 

yields 
J 

xn Yn h h 
J dx, dy f(x , y) = --§-Y '\:"" 

f1 , 1+ . L 
J=3 , 5 , 7 , ... 

x l Y1 
J - 1 

[2(fk 1+f1 j)+4fk . ] + I 
, , , J j =2,4, 6 , ... 

K- 1 

[4(f1 j+fk 1 )+16fk .1+ I 
, , , J k=2 , 4 , 6 , ... 
K J - 1 

+ I I 
k=3 , 5 , 7 ' ... j =2 , 4 , 6 , ... 

K 

I 
k=3 , 5 ' 7 ' ... 

K- 1 

I 
k=2 , 4 , 6 , .. . 

J 

I 
j =3 , 5 , 7 , ... 

Bf, . K, J 

(58) 

The application of this numerical technique to N1 and 

E1 resulted in the grid illustrated in Figure 7 . It was 

decided that the cr iterion for the most appropriate choice 

of values for hA , and ha should be that the change in the 

numerical solution for N1 for any value of h and h , be a A 
less than one per cent of the value of N1 calculated for the 

preceding values of ha and hA ,. 

The initial value of h was defined as the radius of a 
the sphere in mean f r ee paths divided by 40 . 0 . This choice 

of ha was completely arbi trary but as further investigation 

showed this was a proper choice since further division of ha 

was entirely unnecessary . The value of hA '' however, 



created somewhat of a problem . It was intuitively obvious 

that the contribution of backscattering to N1 would be 

almost negligible . Also , it was expected that the major 

contribution to N1 would result from scattering angles of 

the order of zero degrees . Thus, the value of hA , should 

be quite small in the neighborhood of s = 0, but for s 
greater than 90 degrees , a somewhat larger value of h 1 A 
would be more appropriate . It was therefore decided that 

the grid should be split in half and the function be 

evaluated at each point in the upper half of the grid . 

Then , the lower half of the grid was to be halved again and 

the funct i on evaluated at each point in the upper half of 

this portion of the grid . This subdivision process was to 

be continued until convergence to within one per cent was 

achieved . After a few tests for convergence , it was found 

that this subdivision process along the A 1 variable had to 

be repeated ten times . 

The comouter program 

A computer program was compiled for the purpose of 

solving Equations 52 and 53 by means of the iterated 

Simpson ' s rule , Equation 58 . The program was written in 

such a way that solutions for N1 and E1 could be calculated 

for a variety of cases . This investigation was concerne6 

with four different scattering media; namely, water, iron, 

lead and uranium . For each of these media , N1 and E1 were 
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calculated for a variety of spherical radii , ranging from 

1 to 20 mean free paths , and a variety of incident photon 

energies ranging from 1 to 8 m
0

c2 . 

Coupled to the main program is a Lagrange ' s interpola-

tion subroutine . Wiley (18) presents a rather extensive 

discussion on Lagrange ' s interpolation formula and reference 

should be made to his work for further detail . The purpose 

of the subroutine is to calculate the value of the attenua-

tion coefficient µ for the scattered photon . The subroutine 

is supplied with pairs of data points as shown in Table 6 . 
All data supplied to the subroutine were taken from U. S . 

Atomic Energy Commission (16) . 

It is generally more instructive to calculate number 

density ratios , N1/N
0 

and energy density ratios E1/E
0

, where 

N0 and E
0 

refer to non- scattered photons . Thus the program 

was composed so as to generate these ratios as well as N1 and 

E1 . The results of these calculations have been tabulated 

and are presented in Tables 2 through 5. 



Table 2 . First order scattering attenuation calculations for H20 

Ener~) Radius Nl NO Nl/No El EO El/EO 
(m0 c (mfp) 

( xl0-3~ (xl0- 3) 

1. 0 1 .0 5 .64 (10- 3) 3 .68(10- 1 ) 15 . 3 3 . 48 (10- 3) 3 .68(10- 1) 9 . 46 
3 .0 1 .24 (10- 3) 4 . 98(10- 2 ) 25 .0 8 .63(10- 4) 4 .98(10- 2 ) 17 . 3 
5 .0 1. 86 (10- 4) 6 .74 (10- 3 ) 27 .6 1 . 38 ( 10 - L~ ) 6 .74 (10-3) 20 .5 
8 .o 9 . 44 (10- 6 ) 3 . 35 ( 10- 4) 28 .1 7 .51 (10- 6 ) 3 . 35(10- 4) 22 . 4 

12 .0 1. 69 (10- 7 ) 6 . 14(10- 6 ) 27.5 1 . 42 (10- 7) 6 .1 4(10- 6 ) 23 .1 
16 .0 3 .00 (10- 9 ) 1 .12 (10- 7) 26 .7 2 .60(10- 9 ) 1.12(10- 7 ) 23 . 1 
20 .0 5 . 33(10- 11 ) 2 .06 (10- 9) 25 . 9 4 .72 (10- 1 ) 2 .06(10-9) 22 .9 

LU 

2 .0 1 .0 3 . 35 ( 10- 3) 3 .68 (10-1) 9 .12 3 . 45 (10- 3 ) 7 . 36 (10- 1 ) 4 .69 OJ 

3 .0 6 . 42 (lo- 4 ) 4. 98 (10- 2 ) 12 .9 8 .13(10- 4) 9 . 96 (10- 2 ) 8 .17 
5 .0 9 .17(10- 5 ) 6 .74 (10- 3) 13 .6 1 . 29 (10- 4 ) 1 . 35(10- 2 ) 9 .58 
8 .o 4 .62(10- 6 ) 3 . 35 ( 10_ l~) 13 .8 7 .07(10- 6 ) 6 .71(10- 4) 10 .5 

12 .0 8 . 35 ( 10- 7 ) 6 .14(10-6 ) 13 .6 1. 35 ( 10- 7 ) 1 .23 (10- 5 ) 11. 0 
16 .0 1 .50 (10- 9 ) l.1? (10-7) 13. 3 2 .51 (10- 9) 2 .25 (10-7 ) 11. ? 
20 .0 2 .67(10- 11 ) 2 .06(10- 9) 13.0 4 .60 (10-11 ) 4 .12 (10-9 ) 11. ? 



Table 2 (Continued ) 

Enc r~) Radius Nl NO Nl/No El EO El /EO 
(mfp) (m c 

(xl0- 3) (xl0- 3) 0 

4.0 1.0 1.68(10- 3) 3 .68 (10-1 ) 4 .57 2 . 97 ( 10- 3) 1 .47 2 .02 
3.0 2 .84 (10- 4) 4. 98(10- 2 ) 5 .70 6 . 7 0 ( 10 - l~ ) 1. 99 ( 10- l ) 3, 36 
5 .0 3 ,92(10- 5 ) 6 .74(10- 3) 5 .82 1.04(10- 4) 2 .70(10- 2 ) 3 ,87 
8.0 1 . 92 (10- 6 ) 3. 35 ( io- 4) 5 .71 5 .60(10- 6 ) 1. 34 (10- 3) 4. 17 

12 .0 3 , 35(10-8 ) 6 .14(10- 6 ) 5 .46 1. 04(10- 7) 2 .46 (10- 5) 4 .25 
16 .o 5 .84 (10- 10 ) 1 .12 (10- 7) 5 .19 1 .89 (10- 9) 4 .50 (10- 7 ) 4 .20 
20 .0 1 . 02 (10- 11 ) 2 .06 (10- 9) 4 .95 3, 39(10-11 ) 8 . 2l~( 10- 9) 4 .11 

VJ 

7 . 60(10- 4) 
\0 

8 .o 1 .0 3 .68 (10- 1 ) 2 .07 2 . 36 ( 10- 3) 2 .94 .802 
3.0 1 .16 (10- 4 ) 4 .98 (10- 2 ) 2 . 34 5 ,09(10- 4 ) 3,98 (1 0- 1 ) 1 .28 
5 .0 1 .54 (10-5) 6 .74 (10-3) 2 .29 7 . 62 (10- 5) 5 , 39 (10- 2 ) 1. 41 
8 .o 7 .06 (10- 7) 3. 35 ( io- 4) 2.10 3 .80 (10- 6 ) 2 . 68(10-3 ) 1. 42 

12 .0 1 . 12 (10- 8 ) 6 .14(10-6 ) 1 .82 6 . 36(10- 8 ) 4 .. 92 (10- 5 ) 1. 29 
26 .0 l ,75 (10- 10 ) 1 .12(10- 7) 1. 56 1 .03 (10- 9 ) 9 .00(10- 7 ) 1.15 
20 .0 2 .76 (10- 12 ) 2 .06 (10-9) 1. 34 1 .68(10- 11 ) i. 65 (10- 8 ) 1. 02 



Table 3 . First order scattering attenuation calculations for Fe 

Energy Radius Nl NO Nl /No El EO E /E 
2 1 0 

(m
0

c ) (mfp) (xl0- 2) (xl0- 2) 

1. 0 1. 0 3 .14(10- 2 ) 3 .68(10-1 ) 8 .53 1. 92 ( io- 2 ) 3 .68(10- 1 ) 5 .23 
3 .0 6 .17 (10- 3 ) 4 .98 (10- 2) 12 . 4 4. 37(10- 3) 4. 98(10- 2 ) 8 .78 
5 . 0 8 .93(10- 4) 6 .74(10- 3) 13 . 3 6 .83(10- 4) 6 .74(10-3) 10 .1 
8 .o 4 .50(10- 5 ) 3 .35(10- 4) 13. 4 3 .66 (10-5 ) 3 . 35 ( 10- 4 ) 10 .9 

12 .0 8 .04(10- 7) 6 .14(10-6 ) 13 .1 6 .87(10- 7 ) 6 .14(10-6 ) 11.2 
16 .0 1. 42(10- 8 ) 1 .12(10-7) 12 .7 1. 25 (10- 8 ) 1 .12(10-7 ) 11.1 
20 .0 2 .52(10- 10 ) 2 .06(10-9) 12 .2 2 .26 (10- 10 ) 2 .06(10-9) 10 .9 

~ 
0 

2 .0 1 .0 1 .91(10- 2 ) 3 .68(10-1 ) 5 . 18 1 . 95 (10- 2 ) 7 . 36(10-1 ) 2.65 
3 .0 3 . 40(10- 3) 4 .98(10- 2 ) 6 .83 L~ . 36 ( 10 - 3 ) 9 .96(10- 2 ) 4. 37 
5 .0 4 .75(10- 4) 6 .74(10- 3) 7 .04 6 .75(10- 4) 1. 35(10- 2 ) 5 .01 
8 .0 2 . 33(10- 5 ) 3 . 35 ( lo- 4) 6 .94 3 .59(10- 5 ) 6 .71(10- 4) 5 . 36 

12 .0 4 . 08(10- 7) 6 .14(10-6 ) 6 .64 6 .68(10-7) 1 .23 (10- 5 ) 5 . 43 
16 .o 7 .12(10- 9 ) 1.12(10-7) 6 . 3? 1.21(10- 8 ) 2 .25(10-7) 5 . 36 
20 .0 1. 2L~( 10- lO) 2 .06(10-9) 6 .03 2 .16(10- 10 ) 4 .12 (10-9) 5 .24 



Table 3 (Continued ) 

Energy Radius Nl NO Nl/No El EO El /EO 2 (m c ) (mfp) (xl 0- 2) (xl0- 2 ) 0 

4 .o 1 .0 1 .01(10- 2 ) 3 .68 (10- 1 ) 2 .76 1. 77 (10- 2 ) 1 . 47 1. 20 
3. 0 1 .69 (10- 3) 4 .98 (10- 2 ) 3. 40 3 .98 (10- 3) 1 . 99(10- 1 ) 2 .00 
5 .0 2 . 34(10- 4) 6 .74 (10- 3) 3. 48 6 .25 (10- 4) 2 .70 (10- 2) 2 . 32 
8 .o 1 .16 (10- 5 ) 3. 35 (10- 4) 3 . 44 3 . 39 (10- 5 ) 1 . 34(10- 3) 2 .53 

12 .0 2 .05 (10- 7 ) 6 .14(10- 6 ) 3 . 33 6.43 (10- 7 ) 2 . 46(10- 5 ) 2 .61 
16 .o 3 .61 (10- 9) 1 .12 (10- 7) 3. 21 1.18 (10- 8 ) 4.50 (10-7) 2.62 
20. 0 6 . 37(10- 11 ) 2 .06 (10- 9 ) 3. 09 2 .14(10- 10 ) 8 . 24 (10- 9) 2.60 

+::-
f-' 

8 . o 1. 0 5 . 48(10-3) 3.68(10- 1 ) 1. 49 1.59 (10- 2 ) 2 . 94 .539 
3. 0 9 . 30 (10- 4) 4 .98 (10-2 ) 1 .87 3.84 (10- 3) 3 .98 (10- 1) .965 
5 .0 1 . 33 (10- 4) 6 .74(10- 3) 1. 97 6 .29 (10- 4) 5 . 39(10- 2 ) 1.17 
8 .o 6 .68(10- 6 ) 3 . 35(10- 4) 1 . 99 3 .51(10- 5 ) 2 .68(10- 3) 1 . 31 

12 .0 1 . 18 (10- 7 ) 6 .14 (10-6 ) 1. 92 6 .67(10-7) 4 .92(10- 5 ) 1. 36 
16 .o 2 . 04 (10-9) 1 . 12 (10-7 ) 1.81 1 .20 (10- 8 ) 9 .00(10- 7 ) 1. 33 
20 .0 3. 47 (10- 11 ) 2 .06 (10-9) 1 .68 2 . 11 (10-10 ) 1 .65(10-8 ) 1. 28 



Table 4 . First order scattering attenuation calculations for Pb 

Ene r· ~· y Radius Nl NO Nl/NO El Eo E1/EO 2 (m c ) (mfp) (xl0- 2) (xl0- 2) 0 

1. 0 1.0 1 . 40 ( 10- 2) 3 .68 (10- 1 ) 3 .81 1 .01(10- 2) 3 .68 (10- 1 ) 2 .76 
3 .0 2 .18(10- 3) 4. 98 (10- 2) 4 . 38 1.82(10-3) 4 .98 (10- 2) 3 .66 
5 .0 3 . 0 4 ( 10 - l~ ) 6 .74(10- 3) 4 .52 2 . 66 ( 10- 4) 6 .74(10- 3) 3.95 
8 .o 1. 52(10- 5 ) 3 .35 (10- 4 ) 4 .54 1. 38( 10- 5 ) 3. 35 ( 10- 4) 4 .10 

12 .0 2 .74(10-7 ) 6 .14(10- 6 ) 4 . 47 2 .54(10- 7 ) 6 .14(10- 6 ) 4 .13 
16 .0 4 .93(10- 9) 1. 12(10-7) 4 . 38 4 .63(10- 9 ) 1. 12(10-7) 4 .12 
20 .0 8 .90(10- 11 ) 2 .06 (10-9) 4 . 32 8 . 44 (10- 11 ) 2 .06 (10- 9) 4.09 

~ 
[\) 

2 .0 1 .0 1 .05(10- 2 ) 3 .68( 10- 1 ) 2 .85 1.36(10-2 ) 7 . 36(10- 1) 1.84 
3 .0 1. 88(10- 3) 4 .98(10- 2 ) 3 .78 2 .84(10- 3) 9 .96(10- 2 ) 2 .85 
5 .0 2 .67( 10- 1~) 6 . 7l~(10-3) 3 .97 4. 30 ( 10_ l~) 1. 35 (10- 2 ) 3.19 
8 .o 1 . 32(10- 5 ) 3 .35(10- 4) 3.94 2 .23(10- 5 ) 6 .71(10- 4) 3. 33 

12 .0 2 .32(10-7 ) 6 .14(10- 6 ) 3 .T( 4 .06(10- 7 ) 1 .23 (10- 5 ) 3. 31 
16 .0 4 .04 (10- 9) 1.12(10-7 ) 3.59 7 . 23 (10- 9 ) 2 .25 (10- 7 ) 3. 21 
20 .0 7 .04(10-] 1 ) 2 .06 (10-9) 3. Ln 1 .28 (10- 10 ) 4 .12(10-9) 3.11 



Table 4 (Continue d) 

Ener·gy Radius Nl NO Nl/No El EO El/EO 
2 (m

0
c ) (mfp) (xl0- 2) (xl0- 2) 

4 .0 1 .0 7 ,74(10- 3) 3.68 (10- 1) 2 .10 1. 64 (10- 2 ) 1 . 47 1. 12 
3 .0 1 .53(10- 3) 4 .98(10- 2) 3 .08 4.01(10- 3) 1 ,99 (10- 1 ) 2.01 
5 .0 2 . 34(10- 4 ) 6 .74(10-3) 3 .48 6 .65 (10- 4) 2 .70(10- 2 ) 2. 47 
8 .o 1 .26 (10- 5) 3. 35 ( 10- 4) 3. 74 3 .80 (10-5 ) 1 . 34(10- 3) 2.83 

12 .0 2 . 35(10- 7 ) 6 . 14(10-6 ) 3 ,83 7 . 47(10- 7 ) 2 . 46 (10-5) 3.04 
16 .o 4 .26 (10- 9) 1 .12(10-7) 3,79 1. 40 ( 10- 8 ) 4.50(10-7) 3.10 
20 .0 7 .61(10- 11 ) 2 .06(10-9) 3 ,69 2 ,55 (10- 10 ) 8 . 24 (10-9) 3,09 +:-w 

8 .0 1 .0 5 ,79(10- 3) 3.68 (10- 1 ) 1.57 1 .84 (10- 2) 2 . 94 .624 
3.0 1 . 37 ( 10- 3) 4 .98(10- 2 ) 2 .74 5 . 46 (10- 3) 3 ,98 (10- 1 ) 1. 37 
5 .0 2 . 39(10- 4) 6 .74(10- 3) 3,55 1 .04(10- 3) 5 , 39(10- 2) 1. 93 
8 .o 1 .54(10- 5 ) 3 , 35(10- 4) 4 .60 7 , 17(10-5 ) 2 . 68 (10- 3) 2 .67 

12 .0 3 ,70(10- 7 ) 6 .14(10- 6 ) 6.02 1. 80 (10- 6 ) 4 .92 (10- 5 ) 3.66 
16 .o 8 .64 (10-9 ) 1.12(10-7) 7 .68 4. 30(10-8) 9 .00 (10- 7 ) 4.77 
20.0 2 .00 (10- 10 ) 2 .06 (10-9 ) 9 ,69 1.01(10- 9) 1 .65 (10-8 ) 6 .11 



Tab l e 5 . Fi rs t order scattering attenuati on calculations for U 

Ener gy Radius Nl NO Nl/NO El EO El /EO 
2 (m

0
c ) (mfp ) (xl0- 2 ) (xl 0- 2 ) 

4.0 1. 0 1 .06 (10- 2 ) 3 .68 (10- 1) 2 .89 2 . 32 (10- 2) 1 . 47 1. 58 
3 .0 2 .07 (10- 3) 4 .98 (10- 2) 4 .16 5 ,55 (10- 3) 1. 99 ( 10-l) 2.78 
5 .0 3.15 (10- 4) 6 .74(10- 3) 4. 67 9 ,10 (10- 4) 2 .79(10- 2) 3. 38 
8 .o 1 .67 (10-5 ) 3 , 35 (10- 4) 4 .97 5 . 12 (10- 5 ) 1 .34(10- 3) 3 .82 

12 .0 3 .08 (10-7 ) 6 . 14 (10- 6 ) 5 .01 9 ,89 (10- 7 ) 2 .46 (10- 5 ) 4 .02 
16 .o 5 , 49 (10- 9) 1 . 12 (10-7) 4 .88 1 .82 (10-8) 4 .50 (10- 7 ) 4.04 
20 .0 9 .66 (10- 11 ) 2 .06 (10- 9) 4 .68 3. 27 ( 10- 10.) 8 .24 (10-9) 3 ,97 

~ 
~ 

4.5 1. 0 1 .03 (10- 2) 3 .68 (10- 1 ) 2 .81 2 . 44(10- 2 ) 1 .66 1.47 
3 .0 2 .13(10- 3) 4 .98 (10- 2) 4 .28 6 .22 (10- 3) 2 .24(10-1 ) 2 .77 
5 . 0 3 . 40 ( 10- 4) 6.74 (10- 3) 5 .05 1. 08 (10- 3) 3 ,03 (10- 2 ) 3 ,56 
8 .0 1. 94 ( 10- 5 ) 3 . 35 (10- 4) 5 .80 6 .64 (10- 5 ) 1 .51(10-3) 4 . 40 

12 .0 4 .05 (10-7 ) 6 .1 4(10- 6 ) 6 .59 1. 47 (10- 6 ) 2 .76 (10- 5 ) 5 . 31 
16 .o 8 , 39 (10- 9 ) 1.12 (10-7) 7 . 46 3 .18 (10-8 ) 5 .06 (10- 7 ) 6 .27 
20 .0 1 .76 (10- 10 ) 2 .06 (10- 9) 8 .56 6 . 90 (10- 10 ) 9 . 28 (10- 9) 7 . 44 



Table 5 (Continued) 

Energy Radius Nl NO Nl/No El EO El/EO 2 (m c ) (mfp) (xl0- 2) (xl0- 2) 0 

5 . 0 1 .0 1. 00(10- 2) 3.68(10- 1) 2 .73 2 ,53(10-2) 1 .84 1. 38 
3 .0 2 .18(10- 3) 4 .98(10- 2) 4. 38 6 . 91(10- 3) 2 . 49(10- 1 ) 2. 78 
5 .0 3 .69(10- 4) 6.74(10-3) 5 . 48 1 .29(10- 3) 3. 37(10- 2) 3.81 
8 .o 2 . 35 (10-5 ) 3. 35(10- 4) 7 .00 8 .92(10- 5 ) 1.68(10- 3) 5 . 32 

12 .0 5 .87(10-7 ) 6 . 14(10- 6 ) 9 ,55 2 . 40(10- 6 ) 3,07(10- 5 ) 7 .82 
16 .0 1.52(10- 8) 1. 12 (10- 7) 1 . 35 6 .53(10- 8 ) 5 ,63(10-7 ) 11.6 
20 . 0 4 .08(10- 10 ) 2 .06(10-9) 1 .98 1 .81(10-9) 1 .03(10- 8 ) 17 .6 

+=-\.Jl 

5 .5 1 .0 9 ,69(10- 3) 3.68(10- 1) 2 .63 2 .60(10- 2 ) 2 .02 1. 29 
3. 0 2 . 20 (10-3) 4.98(10- 2 ) 4 . 41 7 , 49(10- 3) 2 .74(10-1 ) 2 .74 
5.0 3 .89 (10- 4) 6 .74(10- 3) 5 ,77 1 . 47(10- 3) 3,71(10- 2) 3,97 
8 .o 2 .68(10-5) 3, 35(10- 4) 7 ,99 1.11(10- 4) 1.84(10- 3) 6 .04 

12 .0 7 .54(10- 7 ) 6 . 14(10-6 ) 1 .23 3. 37 ( io- 6 ) 3 ,38(10- 5) 9 ,98 
16 .o 2 . 18 (10-8 ) 1 .12(10- 7) 1 .94 1.02 (10- 7) 6 .19(10-7 ) 1. 65 
20 .0 6 . 46(10- 10 ) 2 .06 (10- 9) 3.13 3.10(10- 9) 1.13(10- 8 ) 2 .73 



Table 5 (Continued) 

Energy Radius Nl NO Nl/No El EO El/EO 
2 ( rn

0 
c ) (rnfp) (xl0- 2) ( xl0- 2) 

6 .o 1. 0 9 .29(10- 3) 3 .68(10- 1) 2 .52 2 .64(10- 2) 2 .21 1.19 
3 .0 2 . 14(10-3) 4 .98(10- 2) 4. 30 7 ,76(10- 3) 2 ,99(10- 1) 2 .60 
5 .0 3.84(10- 4) 6 . 7L~(l0- 3 ) 5 .70 1 .54(10- 3) 4.04(10- 2) 3.82 
8 .0 2 .68(10- 5) 3 . 35 (10- 4) 7 ,99 1 . 18(10- 4) 2 .01(10- 3) 5 ,85 

12 .0 7 . 49(10- 7 ) 6 .14(10-6 ) 12 .2 3,51(10- 6 ) 3,69(10- 5 ) 9 ,53 
16 .o 2 .11(10-8 ) 1 .12(10-7) 18 .7 1 .02(10- 7) 6 .75(10-7) 15 .1 
20 .0 5 ,94(10- 10 ) 2 .06(10- 9) 28 .8 2 .94(10-9) 1 .24(10- 8 ) 23 .8 

~ 
0\ 

8 .o 1 .0 8 .15(10-3) 3 . 68 (10- 1 ) 2 .22 2 . 65(10- 2) 2 .94 .901 
3.0 1 . 92 ( 10- 3) 4 ,98(10- 2) 3.86 7 .80 (10- 3) 3 ,98(10- 1 ) 1. 96 
5 .0 3 .42(10- 4) 6 .74(10- 3) 5 .08 1 .51(10- 3) 5 , 39(10- 2 ) 2 .80 
8.o 2 .31(10- 5 ) 3 ,35(10- 4) 6 .89 1. 08( 10- 4) 2 .68(10- 3) 4.03 

12 .0 6 .04(10_r() 6 .14(10-6 ) 9 .82 2 .91+(10- 6 ) 4.92(10-5 ) 5 .98 
16 .o l ,55(10-8 ) 1.12(10- 7) 13 .8 7 ,74 (10- 8 ) 9 .00(10- 7 ) 8 .59 
20 .0 3 ,99(10- 10 ) 2 .06(10-9) 19 . 4 2 .01(10-9) 1 .65(10-8 ) 12 .2 
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DISCUSSION OF RESULTS 

For the purpose of data investigation, the attenuation 

calculations generated by the program were plotted and are 

illustrated in Figures 8 through 15 . 

Consider the lighter materials first; namely , water and 

iron . The number density ratios , N1/N0 , are seen to decrease 

with inc~easing source energy in both cases . Also , it can 

be seen that the curves reach a maximum value in the range 

of 3 to 8 mean free paths . For larger values of R, the value 

of N1/N0 is seen to decrease as R increases, the rate of 

decrease being larger in the case of the lower source energy . 

Similar conclusions may be reached concerning E1/E0 

for water and iron ; the only discrepancy being that the curves 

of E1/E
0 

are somewhat smoother . That is , E1/E
0 

reaches its 

maximum value at larger values of R than did N1/N0 , and its 

rate of decrease is somewhat smaller than in the case of 

Nl/No · 

The above conclusions may be aptly applied to the 

heavier materials lead and uranium only for the lower source 

energy cases . In the case of higher source energies , the 

curves are seen to change shape drastically with increasing 

source energy . For the largest value of the source energy, 

namely 8 m c2 , N1/N and E1/E are seen to increase contin-o 0 0 

uously with increasing values of the parameter R. This 

behavior for larger values of source energies in the case 



Figure 8 . Number density ratio of water as a func~ion 
of sphere radius for 1 , 2 , 4, and 8 m

0
c 

incident photons . 



(dJW)H 
00 81 91 t,1 01 01 8 9 t? 0 0 
I I I I I I I I 0 

0 
o0 wg 

000WtJ ~------------------------------

z 
0 · 1 1--' 

............ z 
0 

........... 
>< 
1--' 
0 

I 
r\) 

oow0 
0 - ~ · 1 

6t, 



Figure 9 . Energy density ratio of water as a function 
of sphere radius for 1, 2 , 4 and 8 m c2 

0 incident photons . 
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Figure 10 . Number density ratio of iron as a f~nction of 
sphere radius for 1 , 2 , 4 and 8 m c incident 

0 photons . 
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Figur e 11 . Energy density ratio of iron as a func~ion 
of sphere radius for 1, 2 , 4 and 8 m0 c 
incident photons . 
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Figure 12 . Number density ratio of lead as a function 
of sphere radius for 1 , 2 , 4 and 8 m

0
c2 

incident photons . 
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Figure 13 . Energy density ratio of lead as a func~ion 
of sphere radius for 1 , 2 , ·4 and 8 m c 
i ncident photons . 0 
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Fi gure 14 . Number density ratio of uranium as a function 
of sphere radius f or 4, 4 .5, 5, 5 .5, 6 and 
8 m0 c2 incident photons . 
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Figure 15 . Energy density ratio of uranium as a 
function of 2sphere radius for 4, 4 .5, 5, 5 .5, 
6 and 8 m

0
c incident photons . 
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of the heavier material may be explained quite readily by 

examining the curves illustrated in Figure 16 . The data for 

these curves have been taken from U. S . Atomic Energy Commission 

(16) , and are presented in Table 6 . 

As is obvious from an investigation of the total linear 

absorption coefficient curves, the value of µ reaches a 

minimum in the cases of lead and uranium, but not in the 

cases of water and iron, within the source energy range 

under investigation . This is the general behavior of the 

total linear absorption coefficient as a function of energy; 

i . e . , µreaches a minimum value and then increases with 

increasing energy . Had the energy range been extended some-

what , µ for iron and water would have also reached a minimum, 

and similar curves for N1/N
0 

and E1/~0 would have been 

produced for these materials . The conclusion to be drawn 

from Figure 16 is that in the cases of lead and uranium, µ 

is seen to be almost constant over the energy range from 2 to 

5 Mev, corresponding to the range from 4 to 10 m
0

c 2 . This 

constant behavior of µ , not found in the cases of water and 

iron , is responsible for the behavior of N1/N
0 

and E1/E
0 

in 

the cases of lead and uranium in the energy range from 4 
2 to 8 m

0
c . 

Values of N1/N
0 

and E1/E
0 

for uranium have been calcu-

lated for intermediate source energies between 4 and 8 m
0

c2 . 

An investigation of Figures 14 and 15 indicates that N1/N
0 

and E1/E0 reach maximum values in the vicinity of 5 ,5 m
0

c2 
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for large values of R. As the source energy is further 

increased , however , these values a r e seen to decrease . 

Finally, it should be mentioned that in all cases, the 

value of E1/E
0 

i s found to be less than that for N1/N0 . This 

is to be expected since the energy of the scattered photon 

must be less than that of the incident photon , from Equation 

5 . Thus, since E 1 is less than E, and E1 = E 1 N1 and E
0 

= EN0 , 

(59) 

Table 6 . Total linear absorption coefficients in cm2 for 
photon energies in the range of 100 kev to 5 Mev 
for H20, Fe , Pb and U 

Energ) (cm - 1 ) 
(Mev H20 Fe Pb u 

5 .0 0 .0301 0 .2460 0 . 4831 0 .8340 
4.o 0 .0339 0 .2594 o . 4763 0 .8228 
3 .0 0 .0396 0 .2837 0 . 4774 0 .8322 
2 .0 0 .0493 0 .333 0 .5182 0 .9051 
1 .5 0 .0575 0 . 3812 0 .5806 1 .025 
1 .0 0 .0706 0 . 4677 0 .7757 1 . 416 
o .8 0 . 0786 0 .5219 0 .9480 1 .780 
0.6 0 .0896 0 .5989 1.293 2 .543 
0 .5 0 . 0966 0 .6508 1 .644 3. 291 
0 . 4 0 .106 0 .7223 2 . 359 4 .843 
0 . 3 0 . 118 0 .833 4 .037 8 . 452 
0 .2 0 .136 1 .085 10 .16 21 .88 
0 . 15 0 . 149 1 . 438 20 .87 45 .25 
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FURTHER APPLICATIONS 

This investigation has only considered the number 

density ratios and the energy density ratios of first order 

scattering to zero order scattering for a variety of 

scattering media, incident photon energies and sphere radii . 

The possibilities of further research on this problem is 

unlimited . Higher order scattering calculation would y_eld 

a very good approximation to number build-up factors and 

energy build- up factors for a variety of materials in finite 

geometry . Also , this technique of calculating the attenuation 

of photons by matter could be applied to layer type problems, 

where the scattering medium is a succession of concentric 

spherical layers of different materials . 

Finally, the method of successive scattering may be 

aptly applied to the attenuation of neutrons in matter . 

Although this would involve very complex functions because 

of the characteristic nature o~ the scattering cross section 

o~ the neutron, research in this area would be invaluable. 
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APPENDIX : FLOW DIAGRAMS OF THE MAIN PROGRAM 

AND THE SUBROUTINE 



Figure 17. Flow diagram of the main program . 
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Read in parameters : source energies , 
\ ' s , µ

0
' s , R' s , p ' s , r

0
, weighting 

factors and pairs of data point s for 
the interpolation subroutine . 

Calculate the natural logarithms 
of the pairs of data points and 
feed these results to the sub-
routine . 

Call interpolation 
subroutine and evaluate 

µ 

Evaluate and print out 
El ' Eo , El/Eo , Nl , No , 

N1/No 

Yes 

a= a+ha 
A'=A' +h , x 



Figure 18 . Flow diagram of the Lagrange ' s interpolation 
subroutine . 
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