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ABSTRACT 

Macdonald's sporozoite rate model for a mosquito popu-. 

lation was examined by investigating how each term influenced 

the value of s, the sporozoite rate. The sporozoite rate 

was found most responsive to p, 'the probability of survival 

for one day for a random mos qui lo. Gillies and Wilkes 

(1965) suggested that p is not a constant with respect to 

time as Macdonald assumed, but rather a time-dependent func-

tion. To further investigate this assumption, data for 

three mosquito populations collected by Gillies and Wilkes 

in 1965 were analyzed. A new time-dependent model was pro-

posed for the survival curve. This model was incorporated 

into Macdonald's sporozoite rate equation to develop a more 

generalized form. The new sporozoite rate equation was 

tested with Gillies' and Wilkes' field values. The results 

indicated. that the new survival curve model was an acceptable 

substitution to place in Macdonald's model. More field 

tests are necessary to further evaluate its reliability. 
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I. INTRODUCTION AND BACKGROUND 

A. Malaria - Etiologic Agent 

Malaria is a parasitic infection of vertebrates, caused 

by several species of protozoa (a phylum of acelluar animals) 

belonging to the genus Plasmodi~m (Garnham, 1966). The 

species of Plasmodium that naturally infect man are ~· vivax, 

~· falciparium, ~· malariae, and P. ovale (Garnham, 1966) • 
I 

All four species demonstrate parallel life cycles although 

each causes a clinically distinct disease. 

The life cycle of Plasmodium (See Figure 1) is comp~ex. 

It alternates between sexual and asexual generations. 
I 

The dif-
1 

ferent generations of the parasite require two different hosts, 

invertebrate and vertebrate. Sporogony, the mitotic gen~ra-

tion of sporozoites occurs in the invertebrate host. This is 

termed the "extrinic" cycle. This work will deal with the 

genus of mosquito, Anopheles and its interaction with the 

vertebrate, man. 
~~~~--;:--~..... man r- (asexual development) ~ 

parasites para ites 
l ----- 't • _ mosqui o 1q--~~~-

( sexual development) 

1. Intrinsic cycle (asexual generation) 

When an infected mosquito feeds on a vertebrate host, 

it releases sporozoites into the blood of its host. The 

sporozoites congregate in the liver and enter the liver 
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cells. At this time, sporozoites are designated tissue 

schizonts and mitotically multiply extensively, for 5 to 

15 days, depending on the species. After the schizont matures 

it ruptures its host cell and releases many new individuals, 

termed "merozoites" into the blood stream (Coatney et al., 

1971) . "The progeny of the final schizont of this exo-

erythrocytic cycle (from a single sporozoite of Plasmodium) 

may be numbered in less than a hundred, in several thousands 

or in millions, according to the genus of the parasite" 

(Garnham, 1966). 

Depending on the species of Plasmodium, the merozoites 

will act one of two ways. The merozoite may enter another 

liver cell and continue to multiply or the merozoite may enter 

a red blood cell (rbc); phagocytes destroy merozoites they 

capture. A merozoite inside a rbc continues with asexual 

multiplication. However, this time, the asexual growth will 

prod.uce 36 or less new merozoites. (Number produced are 

species specific.) When a schizont reaches maturity the rbc 

membrane ruptures and releases a new brood of merozoites. 

These merozoites will follow one of two courses of development. 

The.merozoite may penetrate another rbc and repeat the previous 

cycle or it may develop into a gametocyte. The rbc's con-

taining gametocytes continue to circulate in the blood, 

waiting for a mosquito to ingest them in its next meal and 

~epeat the cycle over again (Garnham, 1966). 



Figure 1. 
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2. Extrinsic cycle (sexual generation) 

An Anopheles mosquito bites an infected person. Gameto-

cytes are contained in the blood meal, which is held in the 

mosquito's stomach for digestion. Once in the stomach, the 

gametocytes mature into "respective" male and female gametes. 

A male and female gamete fuse producing a zygote. After 

elongation and becoming motile,. the zygote, now designated 

as an "ookinete", moves to the stomach wall, penetrates 

it and forces until it rests between the outer membrane 

and the inner epithelial cells. Then the ookinete develops 

as an oocyst. The oocyst increases in size, due to the 

numerous sporozoites developing within it. Finally,. the 

oocyst ruptures, releasing the sporozoites into the mosquito's 

body cavity. Once released, the sporozoites migrate to the 

salivary glands where they are released with salivary secre-

tions (some of which are anticoagulants), at the next blood 

meal. The duration of the extrinsic cycle is temperature de-

pendent. This has much epidemiologic significance, as will be 

shown in Table 1 (Garnham, 1966). 

3 .' '.l'he clinical disease 

There are no obvious symptoms displayed by a host, 

while the parasite is inthe liver. After an "incubation" 

period, the schizonts release billions of merozoites; simul-

taneously into the bloodstream. Clinical symptoms then ap-

pear. Parasitaemaia becomes patent and cycles of chills, 

fever and sweating occur. These cycles are believed to 

"'-·' ., .. 



,•, Table 1. Information on species of Plasmodiurn infective to humans (Garnham, 1966) 

Species of 
Plasmodiurn. 

P. vivaxa 
(most. 
common) 

P f 1 . . b • a cipariurn 

P. malariaec 

d P. ovale 

Location 

world-wide distribution, 
flourishes best in 
temperature climates 

thrives best in hot climates, 
mainly confined to the tropics 

·and subtropics, can be found 
in temperate zones 

spotty, found in tropics and 
temperate zones 

found in tropics and sub-
tropics, irregular 

Clinical disease 
iil man 

rarely fatal disease, 
uses young rbc's 

most lethal form, 
often fatal if not 
treated 

mild, tenacious fever, 
uses aging rbc's 

mild infection of 
short duration 

Sporozoite development 

9 days at 24-25C 
16 days at 20C 

10 days at 25C 
23 days at 20C 

15-20 days at 25C 

14 days at 27C 

aP. vivax has the ability to withstand therapy, remains chronic, causing severe anaemia. 

bP. falcipariurn multiplies and interferes with blood flow, blocking capillaries and passages, 
at 40-55 days sporozoites become noninfectous, less common in people with sickle cells. 

cP. malariae develops with difficulty in mosquitoes, persists because remains latent in blood 
for years and then shows up much· later, has been known to infect chimpanzee. 

dP. ovale tendency for prolonged latency before attack. 
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be caused by the release of a toxin along with the merozoites 

(Jones, 1967). Notice the relationship between temperature 

change and merozoite release (Figure 2). The loss of 

numerous rbc's due to merozoite invasion, may cause anemia 

if sufficiently massive. Plasmodial infection leaves the 

victim typically in a weakened state and predisposed to .. ' 

other infections. Some cases become chronic (Jones, 1967). 

B. Epidemiology: The Important Factors 
in Malaria Distribution 

The geographic distribution of human malaria is limited 

by several factors. It requires certain species of Anopheles, 

man and a suitable environment for transmission. Suitable 

environment for transmission means suitable habitat for man 

and mosquitoes at a suitable temperature for parasite de-

velopment. The different plasmodia need different 

temperatures for optimum development in the mosquito (see 

Table 1 for specifics). These temperatures restrict malaria 

to the tropic, subtropics and temperate zones. Another re-

quirement for transmission is contact between mosquito and 

available gametocyte carriers. And later, contact between 

mosquitoes and a susceptible human population. 

For wide geographic malaria distribution, the mosquito 
' 

must be an "efficient" vector. Efficient mosquito vector 

populations depend on suitable environmental conditions. 

The mosquito larvae are aquatic and they require water. 
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98~F 

~ Primary attack 

" ... 

Interval, 
doy5, week5, 

or monrhs 

'-.:__ .. • -, RelopH! ' " . ... ' ' .. '• 
-- -~-- - --- - --- --;~.!.--------.. -;IT:;;.------- - - ------- - --;L,---

<iiiii;;---~ ~ ~ ,;;;;;;; • ' ~ /~ :: . .,, ., "---. ~-9-1/: 
@-+ ~~·~@ @ E)(oerythrocytic 

Schizogony in liver 

Life cycle of fJ[asmodiunl viva:t:. Gamctocytes are taken wjth blood into the 
mosquilo's stornach, "·here fertilization occurs. Oncysts form in the v.·all of the stomach 
an<l li11erat.e sporozoilr,!': which invade the ~nlivary gland. When injected into a human 
hoi-;t, the sporozoites enler liver cells, whf'rc sevt•n.d eyelet' of schizogony occur, result-
ing after some dayi; or weeks in a prin1ury ullal'k of n1alaria, Synchronized at 48-hour 
intervals, the attack is characterized by ~chizogonic cycles in the blood. The cyc1cs 
include chills, fever. sv.:cating, and evenlual rccovr.ry. After an interval varying fron1 
days to months. relapse may occur because of the l'ontinued presence of exoerythrocytic 
Sl·ag:rs in the liver. Relapse is characterized by thr. ~amc symptoms and blood forms as 
were seen in the prin1ary attack. 

Figure 2. The clinical disease (Jones, 1967) 

/ 
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water may be an irrigation ditch, a pond, a puddle, or even 

a hoofprint filled with water. The different species 

flourish in different habitats. Some prefer shade, some 

prefer sunshine. Any change in the environment may 

alienate one species and encourage another. 

1. The vector 

There are 3100 known species of mosquitoes (Culicidae) 

in the world today (Knight and Stone, 1977). More species 

are continually being identified as taxonomic difficulties 

are resolved. A total of 401 species and subspecies have 

been described in the genus, Anopheles (White, 1979). Of 

these, more than 80 species of Anopheles are known to be 

involved as vectors for the malaria parasite in man (White, 

1979). "Only about 60 species, however, are sufficiently 

closely associated with man to rank as important vectors, or 

carriers of disease. Generally, a continent or group of 

countries has no more than 10 different species of Anopheles 

that act as vectors, and often no more than one or two 

species are the main transmitters of malaria" (Alvarado and 

Bruce-Chwatt, 1962). 

The Anopheles mosquito is the known vector of human 

malaria (White, 1979). Transmission will depend on the 

species and the choice of meals available. Species demon-

strate different feeding preferences. A mosquito's 

preference for human blood is recorded as the "human blood · 



10 

index", earlier known as the "anthropophilic index." The 

human blood index is dependent upon the species considered,. 

the area collected, and the sampling. occasion (Garrett-

Jones, 1964). 

a. Life cycle of 

deposited singly or in 

the mosquito The eggs are 
I 

batches (depending on the species) 
' 

by a female mosquito in water or in a spot where water 

will reach later. Once the egg is in the water, it hatches 

and a larva emerges. The larva's main function is to eat 

and grow. It feeds on organic debris in the water. It re-

quires atmospheric oxygen for respiration (Daly et al., 

1978). Complete metamorphosis occurs and the adult mosquito 

emerges. 

b. Adult males The adult male mosquito does not 

feed on blood; instead, it lives on various plant 

juices.· Its primary function is to fertilize the female. 

Because the male mosquito plays no direct role in trans-

mission of Plasmodium, it will not be discussed further. 

c. Adult females An adult female mosquito requires 

blood, with its quantities of protein, for the production of 

fertile eggs. "A normal mosquito meal (of human blood), 

would consist of from forty to fifty million cells, anyone 

of which, it will be recalled, might contain another whole 
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animal, plasmodium" (Harrison, 1978). While the mosquito 

is sucking up blood, it releases saliva, with its anti-

coagulants in little bursts. 

The adult female can become inseminated after 24 to 

48 hours of emergence (White, 1979). After copulation, 

the sperm pass into the spermathecae, a storage organ for 

sperm. At each ovulation, some of the sperm are released 

to fertilize the eggs as they pass on their way out of the 

oviduct. Usually, there are enough sperm furnished with one 

mating to fertilize the eggs for the lifetime of the 

mosquito, making it unnecessary to mate a second time. 

For each blood meal, one brood of eggs will develop. 

The size, color and formation of the brood depends on the 

species and the environment. 

d. Potential A mosquito has tremendous reproductive 

potential. It can produce a large number of offspring in a_ 

short time. Because of this potential it is difficult to 

destroy any mosquito population by diminution of sheer 

numbers, without a thorough, intensive and complete attack. 

This was demonstrated during the construction of the Panama 

Canal. 

Mosquitoes are also very adaptable insects. They 

are small in size and cryptic. The mosquitoes generation 

time is shovt. They can adapt easily to a changing 
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environment, some·i:.imes with concomitant genetic changes. 

For this reason, some mosquito species have evolved a 

high order of resistance to pesticides. 

2. Immunity in man 

After an acute attack of malaria, the human body may 

develop a partial immunity. This immunity is temporary,. 

low level and specific to the plasmodium strain. It will 

continue for the length of time that the few remaining 

parasites in the blood stimulate the immune system (Garnham, 

1966). After repeated, chronic infections a higher level of 

immunity may result. The higher level of immunity is evi-

dent by fewer and milder clinical symptoms from an infec-

tion; parasitaemia and gametocytaemia become suppressed. 

This, too, is of great·epidemiological significance. 

C. Modeling 

1. History 

Progress in modeling epidemic diseases started in the 

19th century. Before this time, required mathematical 

techniques were developing along with a precise hypothesis 

for disease. The models were proposed to help clarify 

existing biological concepts and to aid in the explanation 

of major observable phenomena. The first modeling began 

with curve-fitting data and then predicting from the curve. 
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Table 2. History of malarial advancement (Garnham, 1966) 

400 BC Hippocrates,"the father of medicine", studied in Egypt first 
malariolist; he recognized and clinically described fevers 

1717 

1775 

1820 

1831 

1880 

1897 

1898 

1898 

1911 

1926 

1948 

Later Greek and medieval physicians did little to advance 
knowledge 

Lancisi - origin of diseases, and insect arising from marshes 
(i.e., a relation between marsh and occurrence of malaria) 

'' 
Torti - all fevers are not ma+arial, quinine only effective 
on malarial infection; diagnostic tool 

Pelletier and Caventou - 2 French chemists isolated the active 
principle from quinine 

Boyle - swamp theory: " .• heat and moisture combine to 
excite the deadly principles of malaria, which are wafted in 
the early morning like smoke or steam over the streets of 
the nearby town to infect the inhabitants" 

Lavern noted strange forms in the blood; observed exflagellation 
malaria - a parasite in the blood 

Maccallum - discovered sexual nature, deduced male and female 
parasites; observed fertilization 

Ross, an Englishman, observed sporogonic cycle in avian 
malaria and transmission to healthy sparrows 

Bignami, Italian, infected a human volunteer with !'.· falciparium; 
Grassi, Italian, infected subject with Anopheles; demonstrated 
complete malaria cycle 

First malarial mathematical model offered by Ross 

James and Shute - large scale treatment of syphilis with 
malaria, good opportunities for human research on malaria 

Short and collaborators demonstrated incubation stage, or 
eryth~ocytic cycle in liver of humans 
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In 1911, Ross presented the next step in modeling. He 

designed a structured mathematical model for malaria using a 

set of basic.parameters. His model was the first to use a 

well-organized mathematical theory as a research tool in 

epidemiology (Bailey, 1975). 

The more significant attempts to model malaria are 

covered in Chapter 17 of Bailey's "The Mathematical Theory 

of.Infectious.Diseases". For a discussion of these models, 

the reader should refer to Bailey. These models attempt to 

deal with the human population, while considering immunity, 

Superinfection and seasonal variations. 

2. Inoculation rate 

To compare the levels of intensity of malaria between 

different areas, several indices were used to help evaluate 

the malaria transmission between people and mosquitoes 

(SW;:J.roop1 19661. One important index is the inoculation 

rate. The inoculation.rate is the proportion of a population 

re'ce:!-ving infective inocula in one day (i.e.' the risk of 

infection for an individual, assuming homogeneity of risk 

over the subject population). This rate .can be estimated in 

the field in two ways; one method is by a parasitological 

survey of the human population and the other by entomological 

measurements_ (Swaroop, 1966). To estimate the inoculation 

rate by parasitolc;igical means, the parasite rate is measured 
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in children of two years or younger, because they may not 

have developed an immunity (Macdonald, 1950). The ento-

mological approach estimates the density of infective 

Anopheles, relative to man. This requires the measurement 

of the sporozoite rate (s), the estimation of the number 

of bites by Anopheles per indiv~dual per day (ma), and the 

measurement of the number of these bites that are infective 

(b) . The entomological inoculation rate is equal to the 

product of (ma) (s) (b) (Macdonald, 1952). 

3. Macdonald's sporozoite rate 

"It (sporozoite rate) is very commonly measured in 

field survey and the direct object of malaria control by 

imagocides is its reduction to negligible levels. Though 

there have been mathematical working on its constitution it 

is curious that there is no generally accepted basis of 

theory or observation relating it to the factors on which it 

depends, and showing how it would be expected to vary with 

changes in these factors . . the immediate object of the 

present study (Macdonald's) is to create such a theory. The 

factors affecting the rate are first considered and they 

are then brought together into a general relation expressed 

as a formula" (Macdonald, 1952). 

Before developingMacdonald's'formula for sporozoite 

rate, first it is necessary to define symbols and state basic 
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assumptions for the model. The symbols are defined by 

Macdonald (1952) as follows: 

a = the average number of blood meals on man taken by a 
mosquito in a day 

p = the probability that a mosquito will survive 
through one day 

n = the time in days taken for the completion of the 
extrinsic cycle (of t.he parasite) in the m6squi to 

x = the proportion of bites on man which are infective 
to the mosquito (1952); the proportion of the 
people affected (1957) 

s = the proportion of mosquitoes with sporozoites in 
their salivary glands 

Macdonald made several assumptions for the sporozoite 

model. He considered the case of stable malaria, where 

the prevalent state of malaria is one of equilibrium. The 

mosquito and human population are assumed constant, with the 

number of births equalling the number of deaths and with 

generations that constantly overlap and with a migration 

that is negligible. The human population provides a constant 

source of infection for the mosquito and the mosquitoes 

feed randomly among the people. The contacts between the 

mosquitoes and infectious people (ax) are normally 

distributed (Poisson) (Muench, 1959). 

Mosquitoes once infected with sporozoites are 

considered to remain infected for their lifetimes (Macdonald, 

1973). There are cases where this assumption was found to 

be incorrect. The probability of survival through one day 
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for a mosquito is considered a constant. Macdonald (1952) 

reasoned that the daily hazards of life should fall equally 

on all mosquitoes regardless of age, and also a mosquito 

should not die of degenerative causes until two or three 

months of age. 

Macdonald developed his formula for the sporozoite 

rate algebraically. Dr. Armitage published the same formula 

about a year later using calculus. His development allowed 

for a continuous function with respect to time. This is the 

development I will review. 

"Infection Rate in. 
Mosquitoes" 

Suppose the probability of a mosquito surviving t 
days is e-vt, so that, in Macdonald's notation, p = e-v 
and v = -logeP· Assuming that the mosquito population 
is stationary, births being balanced by deaths, the 
proportion of mosquitoes alive at any moment which 
were born between t and t+dt days ago is 

ve-vtdt . ( 1) 

Let n be the length of the extrinsic cycle, a the 
mean number of men bitten be one mosquito in a day, 
and x the proportion of people infected. Then, for 
t>n, a mosquito aged t days will have had t-n days 
on which it might have fed on human beings, in order 
to be infective by the present time. The probability 
that in an interval of t-n days a mosquito bites at 

. least one infected person is 
-ax(t-n) 1-e (2) 
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The proportion of infected mosquitoes is, therefore, 
from (1) and (2), 

s = 

= ( 3) 

-vn axe 
ax+v 

This expression for the infection rate in 
mosquitoes is the same as that derived by Macdonald 
(1952) by a rather different method. In both deriva-
tions a constant value of x is assumed, but it would 
be reasonable to use this formula for s even if x 
were changing moderately, using the value of x which 
prevailed rather more than h days before (Armitage, 
1953) . 

There are other possible points of variation to consider 

also. The Anopheles species vary among themselves. Certain 

species may be more susceptible to different strains of 

parasites (Garnham, ~966). The Anopheles blood meal 

preference, i.e., the anthropophilic index, depends on 

the local situation and the relative availability of dif-

ferent hosts. Ambient temperature will strongly affect 

the value for n, and the minimum number of days necessary 

for extrinsic development before a mosquito is infective. 

These points can affect the overall value of s for any 

particular Anopheles species. 

Despite its ambiguity, the formula for the sporozoite 
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rate is a valuable tool to have. It shows the relative im-

portance of each factor and how they fit together to form the 

sporozoite rate, which is a sizable influence in determining 

malaria incidence (Macdonald, 1952). Field estimates can 

be obtained for s, n, a, and p. Then, with the help of the 

sporozoite formula, a value for x can be estimated, because 

it is not easily measured by itself. The value for x, when 

calculated using the sporozoite model shows a fair degree of 

correspondence with the value of x obtained by another 

method according to the experimental results of Davidson and 

Draper, 1953. Further comparisons between the sporozoite 

calc_ulated x, and other values of x for an area showed that 

the calculated x may not represent the actual situation 

(Garrett-Jones and Shidrawi, 1969). Another indication of 

lack of precision in the sporozoite rate model is pointed 

out in estimates of Anopheles survival rate. Gillies and 

Wilkes (1965), demonstrated a lack of agreement between 

measured results and calculated estimates from the epi-

demiological analysis of the sporozoite rate. 

In this work, Macdonald's ''sporozoite rate" model 

will be examined, beginning with an investigation of the 

assumptions of the model. Next, the possibility that 

mortality risk may increase with vector age is explored, 

as was suggested by Gillies' and Wilkes' data. If this is so, 
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then,; can Gillies' and Wilkes' date be modeled in a form 

that can be usefully incorporated into Macdonald's formula? 
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II. METHODS AND ANALYSIS 

A. Justification for Macdonald's Model 

We can derive Macdonald's model by another means. Begin by 

assuming that the death rate of an insect population can be 

modelled according to what is termed a Poisson process. A Poisson 

process explains the generation pf discrete events (deaths) 

in a continuous interval (time). It is based on two assump-

tions; first, in a short time interval of length, h, the 

probability for one occurrence (death) is approximately vh, 

where v describes the intensity of the process, i.e., a 

larger value of vindicates more deaths, and a smaller.value 

of v indicates fewer deaths. The probability of two or more 

occurrences is negligible; secondly, we assume that events 

are mutually independent. That is, the occurrence of any 

one event in an interval has no effect on and is not affected 

by the occurrence of an event in another interval. 

A Poisson process, with intensity parameter v, can 

describe the probability that k events occur in the time 

period (O,q) by 

P (k events in the time 
period (0,q)) 

v = intensity/time 

k -vq = (vq) e 
k! 

k =number of events;= 0,1,2, ... 

q =units of time (Larson, 1974). 
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For the case of the death of an insect, let p equal the 

probability of survival for one day, that is the probability 

of zero deaths for one day. Then, k = 0 I q = 1 day and p = 

p (0 deaths in 1 day) -v Macdonald assumed that the = e . 
probability of surviving one day was constant, -v a e 

Given .that the probability of surviving for one day is 
-v a constant, e , then the probability of surviving for t days 

. -vt is e This can be demonstrated using conditional 

probability. 

P(surviving t days) =P (surviving from t-1/alive at t-1) 
to t 

x P (surviving t-1 days) 

= e-v x P(surviving from1alive at) 
t-2 to t-1 t-2 

x P (surviving t-2 days) 

-v -v -v = (e ) x (e ) x (e ) ..• 

P (surviving from1alive at) 
0 to 1 days t=O 

x p (alive at t=O) 

n=t -vt II -v = e = e 
n=O 

This can also be based on the assumption of a negative 

exponential survival curve (Bailey, 1975 and Gross and 

Clark, 1975). 
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Once the survival curve S(t) is determined, the death 

density function f(t) can be obtained; f(t) = -S' (t). This 

can be used to determine the proportion of mosquitoes alive 
-vt between the time t and t+dt, (ve dt). 

Proof: The probability of living from day 0 to day t -vt = e 

1 -vt The probability of living from day t to +00 - e 

Determine the proportion of mosquitoes alive between 
time t and t + dt. 

limit (1-e-vt) 
dt+O 

_ (l-e-v(t+dt)) 
dt 

= (1-S(t))' = -S' (t) = ve-vtdt 

Next, we determine the probability of at least one 

infective feed. Consider a feed to be infective or non-

infective. Then, we use the Poisson process to model the 

probability of an infective feed. If we define an event 

to be an infective feed, then the probability of no in-

fective feeds, equals; 

· 0 ·-vq 
P(O) = (vqb!e = e-vq = e-ax(t-n) 

v ~ i~tensity/time = ax 
q = units of time 
(t-n) = the length of time infective. 

Then, the probability of at least one infective feed is 

equal to one minus the probability of zero infective feeds; 
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1 - -ax(t-n) e . 

The proportion of infected mosquitoes (s) is equivalent 

to the probability of an infective bite times the proportion 

of mosquitoes alive at any moment. We use n as a lower limit 

as this is the zero time for the mosquito to become in-

fectious. 

s = 

= 

Therefore, 

Joo ve-vt(l-e-ax(t-n))d~ 
n 

-vn axe 
ax+v 

Since p -v = e v = -logep; by substitution 

s = 
n axp 

This is the same model as derived by Macdonald (1952). 

The variables a and p are intrinsic to the mosquito popu-

lation, while x and n are extrinsic to the mosquito popu-

lation. x is intrinsic to the human population and n 

is intrinsic to the environment and the strain of 

parasite. 
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B. Influences on s 

To further investigate Macdonald's model, we examine 

how each term will influence the value of s, the sporo-

zoite rate. This can be done by scrutinizing the first 

and second derivatives of s with .:respect to each variable., 

while holding the other terms constant. The first deriva-

tive defines the slope of the line. Using s as a function of 

each variable, a positive first derivative would indicate 

that the value of s increases with the increasing value of the 

variable. A negative value for the first derivative results 

in the value of s decreasing with the increasing value for 

the variable. The second derivative indicates the type of 

concavity, that is, whether the rate of change is increasing 

or decreasing. A negative value indicates that it will take 

increasing amounts of the variable for each equivalent amount 

of increase in s to occur. A positive value can be interpreted 

as requiring a smaller change in the variable to create each 

successive equivalent increase in s. Then, the second 

derivatives can be compared to determine which variable 

has the largest effect on the value of s, i.e., which 

rate of.change increases most rapidly. 

As stated in the introduction, the calculated value of s 

and the measured value for s do not agree. The possibility 

that this is due to the choice of the wrong survival curve 
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will be examined using data from Gillies andWilkes (1965). 

The first question is whether Macdonald's choice of a simple 

exponential survival distribution closely models the data. 

Secondly, we examine presumptive mortality, i.e., the 

mortality rate per age interval, to see if it models the 

data. Then, if the survival distribution and the pre-

sumptive mortality indicate that another model may fit 

better than an exponential, we attempt to define this model. 

c. Gillies and Wilkes Paper 

The paper by Gillies andWilkes (1965) is a study of the 

age composition of natural mosquito populations. Female 

mosquitoes are aged by counting the dilatations on the 

ovarioles. One dilatation indicates 1-parous, two dilata-

tions, 2-parous and so on. The determination of the exact 

age of older mosquitoes cannot be considered highly accurate, 

because of degeneration of follicles and because not every 

ovariole participates in each cycle. To help relate 

physiological age to calendar age, laboratory-reared females 

of ~· gambiae were marked and released at Muheza. The numbers 

recaptured were recorded. Thirty-two out of sixty were nulli-

parous or pregravid. After plotting the recaptured data, 

they found it took three to four days for the first gonotrophic 

cycle and approximately three days each for the later cycles. 
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The sampling of mosquitoes was from November 1962, to 

January 1964, in two areas of Tanzania. ~· gambiae and 

A. funestus populations were sampled at Muhuza and ~· gambiae 

at Gonja. ~· gambiae was found to be an homogenous population 

at 'Muheza. However, the ~· gambiae population at Gonja had 

species A and B present. The area had an average tempera-

ture ranging from 73 6 F in July to 81.5°F in March. There 

was an average rainfall of 50 inches, and a high humidity 

year-round. 

The data collected are in three main development 

groups, pregravid, nulliparous and parous (Table 3). The 

pr~gravid and nulliparous groups require evaluation to 

Table 3. Age groups of mosquitoes 

pregravids first, partial blood meal (day 1 or 2 of age) 

riulliparous 

parous 

gravid· 

( 

never laid eggs (day 0-5) 

laid one or more batches of eggs ( days 6-oo) 

bearip.g mature, ready to lay, eggs (a portion 
of the "gonotrophic cycle") 

~ ovaries "at rest" no yolk ~ 

yolk deportation blood meal 

t ovaries mature, increase ~ 
in size 

temperature dependent process, 2-3 days between 
oviposition 
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determine if they are significantly different from the parous 

group. Gillies and Wilkes excluded the pregravid group be-

cause it consisted of freshly-fed females only. It is un-

like the other age groups, which have two or three stages -

fed, halfgravid, or gravid. Therefore, it does not repre-

sent a comparable sample. Also, the interval between the 

first and second blood meals is only one or two days, while 

all the other later feeds are three days apart. Again, this 

will affect the sample. The decision to not include the 

pregrav.id group will be followed in this work. 

They also evaluated the nulliparous group and found 

more nulliparous ~· funestus resting indoors by day than were 

caught biting indoors at night. It was concluded that nulli-

parous females have a greater tendency to leave after feeding 

than do parous females. Records of parous rate, for A. gambiae 
' - . 

at Kihurio in the Pare district, sampled indoors and out, 

indicate that significantly more nulliparous females rest 

indoors than out. Detinova (1962) found good evidence 

that a high proportion of nulliparous females rest outside, 

so that house catches are not a proper representation. 

Hamon, ,Chauvet and Thelin (1961), and Gruchet (1962), found 

nulliparous females of both A. gambiae and A. funestus to be 

more common in outdoor resting sites. The result's are too 

conflic~ing to establish a comprehensive picture of the 

resting habits of nulliparous females. Therefore, they will 
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be disregarded in analysis. 

D. Weighted or Unweighted Results 

The age composition for ~· gambiae at Ganja was 

statistically stable as were the A. funestus and ~· gambiae 

populations at Muheza. (Table 4). The slight difference at 
' I • Gonja was due mainly to a lower fraction of pregravids in 

housecatches in the dry season. This is possibly due to 

seasonal changes in resting habits. 

Table 4. Age composition 

~- gambiae at Ganja 
1-parous and younger 

hot (wet) season 
cool (dry) season 

A. gambiae at Muheza 

hot (wet) season 
cool (dry) season 

A. funestus at Muheza 

72.7% 
67.2% 

63.0% 
64.0% 

hot season (Nov.-April) 58.7% 
cool season· (May-Oct.) 58. 8% 

3-parous and older 

11.5% 
16.3% 

22.7% 
20.0% 

24.2% 
23.1% 

The age composition is a result of the total of callee-

tions of the population over a period of ti~e. Assuming 

each month to be of equal value in determining the overall 

age composition, then ideally every month the same number 
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of ~· gambiae and ~· funestus would be collected; unfortunate-

ly this is not the case. The population size (or numerical 

count) changes with the different seasons from large to 

small to large, and so forth. It was noted, however, that the 

changes in age composition were slight; that is, the propor-

tion in the' population did not change, only the numbers. 

Gillies and Wilkes used weighted values for the age 

composition because the numbers of mosquitoes caught per 

month varied with the different months of a year. Two 

hundred or more females were dissected each month, except 

when that number could not be caught. Some months the numbers 

of mosquitoes were so large that it was impossible to dissect 

all the mosquitoes collected. As many as possible were dis-

sected. To determine if the error in the weighted case is 

la,rger than the error in the unweighted case, we begin with 

a ~et of trial data (Table 5). 

Table 5.. Trial set of data 

Total catch abundance/ 1000 
half month 800 

500 
300 
200 
180 

Number 
dissected 

500 
425 
400 
300 
200 
180 

Percent of catch 
dissected 

50% 
53 
80 

100 
100 
100 
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Assume each dissected group has a set amount of error, 5%. 

Then, calculate the proportion of the total that each age 

group is; i.e., Pij - # i th age group h . · th - w ere 1 is e - # dissected in catch' 
age group and j is the catch. 

To calculate weighted = 
# for the age group 

+ ••• + 
26 

where ck = total catch abundance/# houses; k = 1 to 26. 

Given that Pik has a 5% error, to multiply it by Ck will 

magnify this error if the number dissected is less than 

the total caught. Example: the number caught is 1000, the 

number dissected is 500; therefore, the proportion dissected 

is equal to 50 percent; Pijck has an error of five percent 

times two or a ten percent error. Error magnification is 

smaller when the proportion of catch is large. The number 

calculated for each age group cannot be more precise than 

the least precise of its terms, that is to say, if one term 

has ten percent error and the other terms less than ten 

percent error, then the answer itself will have at least 

ten percent error. Compare this with the unweighted case, 

wehre again Pij is calculated. The number for an age group 

is computed as: 

# for age I 

where nk is equal to the total number of dissected mosquitoes. 
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The error term is not magnified, so it is equal to 5 percent. 

In this work the unweighted data were used, because they 

should have the least amount of error. 

Another question to address is, how significant is the 

fact that the number of mosquitoes collected in some months is 

too large to dissect completely? Assuming the number sampled 

is greater than or equal to two hundred, then we can apply the 

central limit theorem. It states; "If n is large, then 

~ has approximately a standard normal distribution, or x 
>.,/ID. 
hi1s api;>roximately a normal distribution with mean and standard 

deviation a/In" (Ott, 1977). 

Since there was no significant change in age composition, 

it will be assumed that the population was in equilibrium. 

Therefore, sampling continuously for a length of time, 

despite changes in the sample size, shall be considered a 

fiar representative sample method where no weighting is needed, 

E. Determining a Better Model for 
the Survival Curve 

1. Life table evaluation 

Life tables are one way of expressing a quantitative 

description of some particular population during some chosen 

period of time. They present the data in a form that is 

convenient for comparison between populations and times. 

A time-specific life table can be used if it is justified 
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to assume a steady population (Southwood, 1978) . 

The time-specific life table consists of seven columns. 

They are defined by Southwood (1978) and Gross and Clark 

(1975), as follows: 

ll z - Age interval, the period of life between 2 
exact ages z is the center of the interval, in 
this case z = the number of oviposi tions 

2) l(z) - the number of individuals surviving at 
the beginning of the age interval, i.e., the 
number collected of age z 

3) d(z) - the number dying during the age interval 
(1 (z) - 1 (z+l)) 

4) L (.z) - number alive between z and 

z+l _ l(z) + l(z+ll 
- 2 

5) T(z) - number alive in this and all subsequent 
z 

intervals = E L(z) 
t=O 

6) e(z) - the expectation of life, remaining for 
_ T(z) 

individuals of age z. - l(z) 

7) q(z) - the mortality rate per age interval, 
presumptive mortality, i.e., the proportion 

dying = d(z) 
ITzT 

A time-specific life table presents the age structure of 

a population at a point in time. Table 6 is a time-specific life 

table for the simulated population distribution of Macdonald, 

where N(t) = N
0
e-vt. Tables 7, 8 and 9 are time-specific 

life· tables for the three different populations in Gillies' and 



'.l'able 6. Simulated population: N (t) -vt = N
0

e v = . 5 ' 
z 1 (z) %S(z) cl ( z) L (z) T (z) e(z) q ( z) 

1 1000.00 100.00 393.47 803.26 2044.19 2.044 .393 

2 606.53 60.65 238.65 487.20 1240.93 2.046 .393 

3 367.88 36.79 134.75 300.50 753.73 2.049 .366 

4 23) .13 23.31 97.80 184.23 453.23 1.944 .419 

5 135.33 13.53 53.25 108.70 269.00 1.988 .393 

6 82.08 8.21 32.29 64.94 160.30 1.953 .393 
w 

7 49.79 4.98 19.59 40.00 95.36 1.915 .393 "'" 
8 30.20 3.02 11.89 24.26 55.36 1.833 .394 

9 18.31 1.83 7.20 14.71 31.10 1.699 .393 

10 11.11 1.11 4.37 8.93 16.39 1.475 .393 

11 6.74 .67 2.65 5.42 7.46 1.107 .393 

12 4.09 .41 2.04 2.04 



Table 7. A. gambiae at Ganja 

<; 1 (z) %S ( z) d ( z) L (z) •r ( z l e(z) q (z) 

1 766 100.00 35.51 82.24 170.21 1.702 .355 

2 494 64.94 33.94 47.52 87.97 1.364 .526 

3 234 30.55 13.97 23.56 40.45 1.324 .457 

4 127 16.58 10.80 11.29 16.89 1.019 .651 

5 46 6.00 3.91 4;04 5.60 . 933 . .652 

6 16 2.09 1.70 1.24 1.56 .746 .813 

7 3 .39 .26 .26 .32 .820 .667 
w 

8 1 .13 .13 .06 
U1 

.06 .461 1.00 



Table 8. A. funestus at Muheza 

z 1 ( z) %S(z) d(z) L ( z) T (z) e (z) q (z) 

1 815 100.00 14.36 92.82 249.41 2.494 .144 

2 698 85.64 33.98 68.65 156.59 1.828 .397 

3 421 51.66 18.65 42.34 87.94 1.702 .361 

4 269 33.01 16.81 24.61 45.60 1.381 .509 

5 132 16.20 7.87 12.27 20.99 1.296 .486 

6 68 8.34 5.89 5.40 8.72 1.046 .706 w 

"' 7 20 2.45 1.22 1.84 3.32 1.355 .498 

8 10 1.23 .49 .99 1.48 1.203 .398 

9 6 .74 .62 .43 .49 .662 .838 

10 1 .12 .12 .06 .06 .so 1.00 



Table 9. A. 9:ambiae at Muheza 

z l(z) %S (z) d (z) L (z) T (z) e(z) q (z) 

1 804 100.00 33.09 83.46 21S.94 2.1S9 .331 

2 S38 66.91 26.86 S3.48 132.48 1.980 .401 

3 322 40.0S 13.S6 33.27 79.00 1.972 .338 

4 213 26.49 10.20 21.39 4S.73 1.726 .38S 

s 131 16.29 S.S9 13.SO 24.34 1.494 .343 

6 86 10.70 7.S9 6.91 10.84 1.013 .709 w ..... 

7 2S 3.11 2.11 2.06 3.93 1.26 .678 

8 8 1.00 .2S .88 1.87 1.87 .2SO 

9 6 .7S .so .so .99 1.32 .667 

10 2 .2S 0 .2S .49 1.96 

11 2 .2S .13 .18 .24 .96 .S20 

12 1 .12 .12 .06 .06 .so 1.00 
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Wilkes' paper. Also added to the tables is S(zl, a normal-

ized l(zl, l(z) 11101 1, so that the percentage in each age group 

for the different survival distributions can be compared 

without equal numbers. For comparison, %S(zl, the expected 

life, e(zl, and presumptive mortality, q(zl, have been 

graphed versus the number of ovipositions. Graphs of e(z) 

and q(zl are used to check the fit of the model for S(z). 

If %S(z) = e-vz is plotted on semilog paper, it should 

yield a straight line, as shown in Figure 3. Semilog plots 

of %S(zl from Gillies' and Wilkes' data are shown in Figures 

5, 6 and 7. The data can be modeled by a straight line. 

However, the values for six parous and older age groups 

fall below the line. The older age groups are important 

to consider in the sporozoite rate, because a mosquito can 

be infectious only after n days. Consider an average 

value for n to be equal to 4 or 5 parous. Graphically, the 

%S(z) semilog plots suggest that the data may be better 

modeled. Next, examine the expectation of life plot, e(z), 

for a simple exponential, S(z) = e-vz, as shown in Figure 4. 

The value for e(zl remains constant for the younger age groups 

and then gradually drops with increasing age. Plots of e(zl 

for the three populations (Figures 8, 9, 10) from Gillies' and 

Wilkes' data have a decidedly linear trend. The plot in Figure 

4 of presumptive mortality q(zl for the S(z) = e-vz case, 
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reveals a constant value for all number of ovipositions. The 

plots for the populations of Gillies and Wilkes of q(x) 

(Figures 8, 9 and 10) show linear trends. Examination of 

the plots for %S(z), e(z), and q(z), all show a disagreement 

between expected and observed curves. Therefore, we will 

attempt to describe the curves with a different model. 

2. New model proposal 

A straight line is the easiest curve to manipulate 

and therefore the most common type used in curve fitting. 

Macdonald's use of semilog paper to plot %S(t), was to 

suggest the use of such a straight line. Examination of 

this straight line fit revealed some discrepancies. We then 

consider nonlinear regression to develop a better model. 

General types of common curves.to consider are polynomials· 

and exponentials or logarithmics (Steel and Torrie, 1960). 

To find a better model, let us begin by considering the semi-

log plots of· %S(t) in Figures 5, 6 and 7. The curves could 

possibly be fit as a graphed polynomial, using two lines. 

The first part of the curve, that is, the survival of the 

younger age groups, defining one line, and a se.cond line 

defining survival of the older age groups. However, a 

graphed polynomial requires some rationale for changing 

curves, and for defining at what point the curves change. 

To say survival rate between the older and the younger age 

. I 

l 
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groups is so drastically different to require a second 

curve to describe the older age group, is in direct 

conflict with Macdonald's assumption of constant mortality. 

Also, the definition of an old and a young age groups 

may vary with each location, and each individual's judgment. 

Since the point where the curves change varies between 

the populations, and the rationale for changing curves is 

lacking, another curve may better represent the data. 

Consider defining the %S(z) curve on semilog paper 

by a quadratic. This would require the addition of a 

squared term to the linear equation. The squared term 

would cause a more rapid fall in the curve as the number 

of ovipositions increased. This is observed in Figures 

5, 6 and 7. To determine if the addition of a squared 

term adds significantly to the curves' fit, the models 

were evaluated statistically. This was done using SAS 

(Statistical Analysis Systems) on the IBM computer at 

Iowa State University. The sample results and their interpre-

tation follows. 

Type I SS is a sequential sum of squares. The first 

entry (x1 ) accounts for a certain amount of variation in the 

model. The second entry (x2/x1 ) accounts for the amount of 

variation, due to x 2 after all variation due to x 1 is removed. 

This pattern continues for the number of variables given. 
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Table 10. Sample computer run 

I SS F- PR>F Type IV SS F- PR>F Source Type values values 

variable xl (xl) (x1;x2 ,x3 ) 

variable x2 (x2/x1l (x 2;x1 ,x 3 ) 

variable X3 (x3/x1 ,x2) (x3/x1 ,x2) 

The F-values for each Type I SS is given in the next column 

of the printout. This is followed by the probability of 

rejection because of the F-value. To be 95% certain that the 

variable in question does contribute to the model, the 

value in the PR>F column, should be .0500 or less. If PR>F is 

.0500 or less, we can declare the variable a significant 

term in the model. A value of .0100 or less indicates a 

highly significant term. 

Type IV SS lists the variation due to each variable 

after variation due to the other variables is accounted for. 

If values in this column are compared, it can be determined 

which term, or terms would best describe the data. The 

F-value and PR>F are included to aid in recognizing the sig-

nificance of each term. The PR>F column can be evaluated 

as indicated in the Type I SS discussion. 



so 

Also included in the computer printout are estimates 

of the coefficients for the terms. From these estimates 

we can construct a reasonably accurate equation describing 

thr data. Data for the ordinate are in the form ln %S(z). 

At z = 1, the y-intercept will be ln (100%) because S(l) 

was set equal to 100%. The exact location of the inter-

cept at z=O is dependent on the other coefficients. The 

computer results for the populations will aid in determining 

if a quadratic equation will satisfactorily model the data. 
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III. RESULTS AND DISCUSSION 

A. Influences on Sporozoite Rate 

The first and second derivatives, with respect to s, 

are listed in Table 11. Field values for a, x, p, s and n 

range as follows: 

.l<a<.5 

.005 < x < .1 

9 < n < 20 

.5<p::_.90 

. 001 < s < .10 (Macdonald, 1973, Davidson and Draper, 
195~, Garrett-Jones and Shidrawi, 
1969, Gillies and Wilkes, 1965). 

Subsitution of these values into the first and second 

derivatives yields a positive or negative answer. 

Table 11. Results for the first and second derivatives with 
respect to s 

First derivative Second derivative 

ds 2 p) d 2 s s 32(ln p) s (-ln 
dx = 2 ~ = 2n n 3 x ap dx x ap 

ds s 2 (-ln p) d 2s s 32(ln p) 
da = 

da2 = 2 n 3 2n a x p a xp 

ds s(ln p) - ------"' d 2 s s(ln p)2 
dn = 

d~2 
= 

ds s _s_) d 2 s (n-11 (n+l) (s) 2n-l ( 2) 
dp = -(n + 

dp2 
= + n+2 s p n axp p axp 

2s 3 
+ a2x2p2(n+l) 
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The first derivative of s with respect to x has a posi-

tive value. Therefore, it can be expected, that as the 

value for x increases, so will the value of s. In other 

words, as the number of infective bites to the mosquito, x, 

increases, the proportion of mosquitoes with sporozoites 

in their glands will also increase. The second derivative 

has a negative value; this indicates that the rate of change 

in the sporozoite rate will decrease with each increasing 

value for x. That is to say that it will take increasingly 

larger amounts in the proportion of infective bites to cause 

each corresponding increase in the sporozoite rate. These 

phenomena were observed and discussed in the series of 

papers published by Macdonald (1973). 

The first derivative with respect to a, is also found 
' I 

toj be positive so s will increase as a increases. From this, 

it can be predicted that as the number of blood meals on man 

per day increase, so does the value for the sporozoite rate. 

This phenomena was reported by Davidson (1955) • The second 

derivative is negative; this indicates a decreasing rate 
· ds 

of change (da) with an increasing value of a. Therefore, 

the sporozoite rate will increase at a slower rate for 

each corresponding increase in the number of blood meals 

taken per day by the mosquito. This was commented on by 

Macdonald (1973). 

The first derivative, with respect ton, is negative. 



53 

This shows that as the length of time for the parasite to 

co~plete its cycle (n) increases, the sporozoite rate 

decreases. This is reasonable, because as n increases, 

the number of mosquitoes surviving n days decreases. With 

decreasing numbers of mosquitoes to carry sporozoites, the 

sporozoite rate will decrease. The positive value for the 

second derivative indicates that as n increases, the change 

in the sporozoite rate increases with each equal change in 

n. This can be verified, because with cooler weather, the 

value for n increases, along with an increasing drop in s. 

This was reported by Macdonald (1973). 

The first derivative of the sporozoite rate, with 

respect to p, is more complex than the other first derivatives. 

Evaluation yields a positive value, so that as the value for 

the probability of survival, p, increases, so does the 

value of s. This was suggested by Wan son, Wolfs and Lebied 

(1947). Considering the positive value of the second 

derivative, it can be expected that increases in p also 

result in larger increases in the sporozoite rate. This 

was observed and reported by Macdonald (1973). 

Let us determine which variable causes the largest 

increase in the spor9zoite rate. Begin by separating the 

first derivatives into two groups: those that cause s to 

increase with their increase, the positive group and those that 

cause s to decrease with their increases, the negative group. 
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ds It is only necessary to consider the positive group, dx' 
ds ds da and dp" Next, examine the second derivatives for this 

group. Locate increasing variables that cause an increasing 

amount of change in s. There is only one term with this 

effect, p. Therefore, increases in p should cause the 

largest increases in s. Substitution of actual numerical 

values yields the same result. 

B. Evaluation of the Proposed 
Hodel 

The survival curves from Gillies' and Wilkes' mosquito 

population were modeled as quadratic equations: ln %S(z) = 
b 1 z2 + b 2 z + b 3 . These equations were submitted for analysis 

via SAS. The results of analysis are contained in Tables 

12'-14. The interpretation follows the table. 

Table 12. Computer results for A. gambiae at Gonja 

Source Type I SS 

TIME 39.170 

SQTM 1.215 

F-
val ue PR>F 

1737.62 .0001 

53.92 .0007 

F-
Type IV SS value PR>F 

0.079 

1.215 

3.51 0.1197 

53.92 0.0007 

The Type I SS value for TIME, and SQTM indicate that 

thesecare highly significant variables for the proposed 

model. Type IV SS values reveal that for this population, 
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SQTM, the squared time term, offers a better fit by itself. 

The addition of TIME, the linear term does account for some 

variability, but not a significant amount after variability 

due to SQTM is removed. A combination of linear and squared 

terms, i.e., a quadratic, offers a better model than either 

term by itself. In this case the quadratic form describes the 

data significantly better than a linear form. 

Best Model for 
Population: ln %S(Z) 2 = 4.88 - .2Qz - .085z 

Table 13. Computer results for A. funestus at Muheza 

. Source . Type I SS F-value PR>F Type IV SS F-v.alue PR>F 

TIME 

SQTM 

44.324 792.14 0.0001 

1.431 25.59 0.0015 

0.106 

1.431 

l.'90 0.2105 

25.59 0.0015 

Values of Type I SS suggest that TIME and SQTM are both 

significant. To further determine their significance, ob-

serve the Type IV SS. The SQTM variable offers the best 

model by itself, but TIME helps model the curve more than 

in :the first case. Final choice for description of. data. 

is the quadratic form. 

Best Model for 
Population: ln %S (Z) 2 = 4.894 - .16Z - .05z 
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Table 14. Computer results for A. gambiae at Muheza 

source Type I SS F-value PR>F Type IV SS F-value PR>F 

TINE 61.298 499.97 0.0001 1.935 15.79 0.0032 

SQTM 0.168 1.38 0.2710 0 .168 1.38 0.2710 

In this case, values for Type ! SS shows TIME is sig-

nificant in the fit. Further investigation via Type IV SS 

reveals that addition of .the SQTM term does not add sig-

nificantly to the fit of the model. For this population, a 

linear description is adequate. 

Best Model for 
Population: ln %S(z) = 5.322 - .5z 

The second-order term added significantly to the model 

of the curve in two out of three populations. Let us compare 

the semilog plots of %S ( z) between the proposed model, S ( z) = 
-(bz2+bz) 

e 1 2 (see Figure 11) and the survival plots from 

Gillies and Wilkes (Figures 5, 6 and 7). The plots compare 

favorably. A special case for this model is when the 

second-order term is not significant, then the model 

becomes Macdonaldls survival curve, S(z) = e-b2 z The 

decrease in S(z) due to the second-order term can be a 

resultant of the environment. A harsher environment may 

cause the survival rate to decrease more rapidly with age. 

The rate of decrease for the survival rate is increased by 
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the significance of the second-order term. 

To model the curve, each value for z and for S(z) 

was given equal weight. The S(z)-values for the younger 

age groups have less error than the S(z)-values for the 

ola'er age groups in the sample population. This difference 

in variability is due to the number of samples used to 

determine each S(z)-value. We must also consider the dif-

ficulty in deciphering the age of the older age groups. 

The size of the samples for the older age groups is such 

that the addition or loss of. a mosquito to a group can 

noticeably alter their S(z)-values. Look at the figures 

(Figures 8, 9 and 10) from Gillies' and Wilkes' data for 

expected life e(z),.and presumptive mortality q(z); 

notice the more erratic pattern in the older individuals. 

From the e(z) and q(z) figures one can recognize trends. 

We will further examine the fit of the proposed 

model by comparing presumptive mortality q(z), for the 

proposed model (see Figure 12) with q{z) for the actual 

populations (Figures 8, 9, 10). When plotted, q(z) for 

the.proposed model yields a linear trend. The plot of q(z) 

for ~· gambiae at Muheza (see Figure 10) yields the 

line closest to a constant as would be expected by Macdonald's 

model. The %S(z) semilog plot indicated that the~· gambiae 

popl1lation at Muheza was closest to Macdonald's simple 
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exponential model. The slope of the line in the q(z) plot 

may be varied by the mortality rate. This rate may vary 

from population to population or from environment to 

environment. 

In Macdonald's simple exponential model, the expected-

life plot remained fairly constant and stable, especially 

in the younger age groups (see Figure 4). Expected life 

values for the proposed model (see Figure 12), steadily 

dropped, beginning with the younger age groups. Examination 

of the three sample populations (Figures 8, 9, 10), also 

shows a drop for expected life values, beginning with the 

younger age groups .. Therefore, the e(z) distribution 

supports the proposed model. All three types of examination 

indicate that the proposed model is a reasonable hypothesis 

for the sample populations . 

. The area under Macdonald's survival curve is larger than 

the area under the proposed survival curve. As time 

progresses, the proposed survival curve drops more rapidly 

than Macdonald's survival curve and the area difference be-

tween the two curves increases. Since the proposed model more 

closely represents most actual biological survival curves; 

Macdonald's survival curve will overestimate any population 

that is better modeled by a quadratic equation than a linear 

one. use of the linear equation can result in inflated s 
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values for these populations. The proposed survival curve 

for mosquitoes should result in more accurate values for 

s. To further evaluate the proposed survival curve 

model, more testing with other mosquito populations is 

necessary. 

c. Effect of the New Survival Curve 
on Sporozoite Rate 

2 -(b1 z + b 2zJ 
Accepting that the survival curve, S(z) = e 

-vt is a more complete description than S(t) = e , we can 

then obtain a more generalized sporozoite equation. 

We start by defining a new death density function f(z); 
2 -(b1 z +b2 zJ 

f(z) = -S'(z) = -(-2b1 z-b2 )e Multiplying f(z) 

times the probability of infective feeds will give us a 

new formula for s, the sporozoite rate. We integrate 

this quantity from n to infinity with respect to time. 

Then, 

(1-e-ax(t-n) )dt 

where b 1 and b 2 are coefficients describing the survival 

curve for the population. Also, t = g1 z + t
0

; where z = 
physiological .age, i.e. the number of ovipositions, g1 = 
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Table 15. Simulated data set for proposed model S(z) = - (b1 z +b2zl e 

- (b z2+b z) 
N (z) =Ne 

l 2 
N 1000, bl .085, b2 .200 = = 

0 0 

z l (z) %5 (z) d (z) L (z) T (z) e (z) q (z) 

l 1000.00 100.00 24.80 87.60 216.27 2.163 .248 
2 752.01 75.20 27.49 61.46 128.67 1. 711 .366 
3 477 .11 47. 71 22.17 36.62 67.21 1.409 .465 

4 255.38 25.54 14.01 18.54 30.59 1.198 .549 
5 115.32 11.53 7.14 7.96 12.05 1..045 .619 
6 43.94 4.39 2.98 2.90 4.09 .932 .679 

7 14.12 1.41 1.03 .90 1.19 .844 . 730 "' 8 3.83 .38 .30 .23 .29 "' .765 • 770 
9 .88 .08 .06 .05 .06 . 75 .807 

10 .17 .02 .02 .01 .01 .50 1.00 
11 .03 .00 
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days between z and z+l parous, t = time in days, and t 0 = 
initial age of the mosquito at the start of the gonotrophic 

cycle. In- Gillies' and Wilkes' case, t = 3z + 1, the 

variables a, x, and n remain as defined by Macdonald. After 

integration, we arrive at 

where, 

In Gilles and Wilkes case 

dl 
bl 

dl bl/9 = = 2 
(g l) 

2blt0 + glb2 -2blt0 = 3b2 
d2 = 2 d2 = 9 (gl) 

2 2 
3b2t0 b1<tol -g1b2to bltO -

d3 = d3 = 9 2 (gl) 

This can be recognized as a function containing a cumu-

lative normal distribution, which is "a convenient tool in 

modeling random experiments. It can be used to find proba-

bilities of events defined in terms of its corresponding 

random variables" (Hood, Graybill and Boes, ·1963). We can 

evaluate ~ via the cumulative normal distribution tables. 

' ' 
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Many biological phenomena have been analyzed this way. 

At Muheza, Gillies and Wilkes measured n = 13, a= .33, 

s = .0235 and calculated x = .092 for A. funestus and 

x = .1135 for A. gambiae. These values for a, x, and n are 

substituted into the new sporozoite model, along with the 

coefficients b 1 and b 2 for ~· funestus. The calculated value 

of s for A. funestus is .0113. This value for s is not un-

reasonable. The difference between the measured and calcu-

lated s may easily be due t9 the calculated value of x being 

incorrect. Next, the values of a, x, n, and the coefficients 

b 1 and b 2 for the ~· gambiae population at Muheza were 

substituted. The calculated value for s is .13386, which is 

a high value. The value of b 1 for this population is small 

compared to b 2 , causing the term evaluated by the cumulative 

distribution to increase. 

Also, because of the small value of b 1 , with respect to 

b 2 , the value for the c 1 and 1TI'7d:1 terms become very large. 

The accuracy of this s value is therefore questionable. 

The new sporozoite model allows calculations of a 

reasonable sporozoite rate, when the survival curve for the 

populatiop. is significantly better modeled by a quadratic 
' t • 

equation than by a linear equation. The linear equation 

for the survival curve gave a questionable result for the 

sporozoite rate calculated by the new model. The proposed 

,.;;;,, .: .. 
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Sporozoite model appears to be reasonable. 

Macdonald's model attempted to relate a number of 

factors affecting the sporozoite rate. The factor n is 

dependent on the temperature and cannot be controlled . 

. Factors a and x are dependent on the contact between man 

and mosquito. The factor p was assumed by Macdonald to be 

constant with respect to time. For the proposed model 

p is a function of time. The new sporozoite model with p 

as a function of time appears acceptable, however, it 

requires more testing to further evaluate its validity. 



66 

IV. CONCLUSION 

Macdonald's model was examined for validity. Results 

from mathematical investigations were substantiated with 

several biological examples. The survival curve for 

three populations of mosquitoes was evaluated, and it was 

fqund as Gillies and Wilkes had surmised, that the survival 

rate can change with age. A better model for 
-(b1 z2+b2 z) 

this phenomena 

was found to be S(z) = e substitution of this 

survival curve into Macdonald's original s model yielded a 

new sporozoite model, s = c 11rr/d1 (l-~(/2d1 (n+c2 ))). This 

model was examined with data available from Gillies' and 

Wilkes' 1965 paper. Results from the model reveal that this 

is an acceptable model if the 
- (b z2+b z) :r 2 S ( z) = e It is a 

survival curve is of the form 

questionable model 

not significant with respect to b 2 , so that S(z) 

if b 1 is 
-\b z) 2 = e 

is used to represent the survival curve. Further evaluation 

in the field is necessary to prove its usefulness. 
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