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CHAPTER 1. INTRODUCTION 

In reality, no record ing is the pe rfect replica of the original data because of the 

degradation properties of the recording ys tem or the e m·ironment. These degrada-

tions in the recording can be either sys tematic ( ·patial ). uch as blurring due to opt ical 

system aberra tions (phase distortions) , atmospheric turbulence ( random rnriations in 

the refractive index of t he medium between t he object and the imaging system ). rel-

at ive motion bet ween the objec t a nd the imaging system. d iffraction limitedness a nd 

nonli nearity of the detec tor . or stat istical. s uc h as noise and measurement errors . For 

example , electron micrographs are often degraded by the spherical abe rration of t he 

elect ron lens and medical radiographic image are of low resolution and contra t due 

to the nature of the X-ray imaging y terns. 

Recovering a high quality image from a degraded recording is the primary purpo e 

of the Image Restoration. For thi s purpo e many restoration schemes were posed an d 

applied extensively with some degree of success during t he past. 

In thi s research, we a re primarily concern ed with the restoration of images de-

graded by 

l. Blur which might be de termini stic. stochastic, known or unknown. and 

2. Additi ve noise. 
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In particular , we applied inverse filter, pseudoinverse filter (least- squares ), constrained 

least- squares filter and ·wiener filter in frequency domain to est imate the original real 

images. A new restoration scheme, developed from constrained least -squares , was 

presented to restore images degraded by a stochastic blur function. The estimation 

accuracies of the restoration schemes were compared in terms of mean- quare error. 

The estimation of the blur function of imaging systems from the degraded images was 

presented. For the purpose of illustration, the blur function was first measured from 

the degraded image directly, then this function was used in the restoration. Finally. 

application of total least squares [9] to the image restoration was discussed and the 

mean-square error values of one dimensional restoration result s were given. 
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CHAPTER 2. GENERAL REVIEW OF IMAGE RESTORATION 

Mathematical Model of a General Imaging System 

For the convenience of analy is, any physical system is usually represented by 

a mathematical model if some features of the given system are known . Since cap-

turing an image is a physical phenomenon, imaging systems can also be represented 

by a mathematical model. For that purpose. what a person needs is to know some 

properties of the given imaging sys tem. Considering the knowledge of these proper-

ties, .Jain [1.5] and Andrews and Hunt [2] represented a typical imaging system in a 

mathematical model as shown in Fig . 2.1. This model mainly consists of an image 

formation model, a detector/ recorder model and a noise model, and can be expressed 

mathematically as 

tt(.r .y) = g ~ w(x,y)) - n(x,y) ( 2 .1 ) 
DO 00 

w(.r,y) = j j h( :c,y;p.q )u(p,q)dpdq (2.2) 

n(x.y) = f [g(w(x,y))]ni(,r,y) - n 2 (.r,y) . ( 2.3) 
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In this model, the original image u(x . y ) lies in the object plane and the recorded 

image u(.r,y) lies in t he image plane. The continuous variable (x,y) represents the 

location of an image point on eit her plane and t1(.r,y) (or i•( x.y)) represents the 

intensity level of t he image at point (,r.y). h(x.y;p.q) is the impulse response of 

the li near image formation system. In image processing terminology. the function 

h(x,y;p,q) is called point spread function (PSF ) since it is the image in the image 

plane due to an ideal point source at location (p, q) in the object plane. The PSF 

is called space invariant if the value of h( :r:, y; p, q) depends only on the location 

differences, i.e., 

h(x, y; p, q) = h( ,r: - p, y - q) . (2.4 ) 

Ot herwise h(x. y; p, q) is called space variant. w(,-r:. y) is called a blurred image which is 

a superposition of the original image weighted by the PSF . The functions f and 9 are 

usually nonlinear, representing respectively sensor nonlinearity and signal-dependent 

noise fu nction . The term n(x , y) is t he addition of image-dependent noise compo-

nent f [g(w(,-r:,y)) ]n i(:r:.y) and image independent random noise component n 2(x,y) . 

Suppose that 

1. T he sensors are operated in linear region (f is linear) 

2. PSF is space invariant, and 

3. The noise has only an image independent random component. 

Eqs.(2.1)-(2.3) reduce to 

00 = 
t'(x,y) = j j h(x - p, y - q)t1(p,q)dpdq + n(x .y ) (2.5) 

-oo -oo 
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Here we used n(,r.y) in lieu of n 2( ;r:,y) for the simplicity of notation . 

In order to restore the images by digi tal computers, the mathematical model of 

imaging system should be in the discrete variable form (difference equation ). An-

drews and Hunt :2J (see also [.5 ]) showed that when sampling the continuous variable 

functions uniformly. the model can be reduced to discrete varia ble form. Moreover, 

if t he sampled functions h(m . n ), u(m,n) , and v(m . n) are periodic with a period 

( JY!. N) in spatial coordinates. the model of the imaging sys tem can be written as [2, 

5, 14. 18]: 
.Vl - l N - 1 

t•( m, n) = L L h ( m - i. n - j )11( i, j) -r n ( m . n ) ( 2.6 ) 
i = O j = O 

where the sizes of u( m, n ), h( m, n) and t'( m, n) are KxL, IxJ . and Mx~. respectively. 

The overlap in t he indiYidual periods of the convolution term in Eq. (2.6 ) can be 

avoided by choosing JI 2 E + I - 1, _V ~ L - J - 1 and padding the functions 

h(m,n) . u(m.n) with zeros so that their sizes are equal to i\IxN. In the following 

pages. the sizes of t he sampled functions are assumed to be MxN. 

In order to write Eq. (2 .6 ) in vector matrix form for the convenience of processing, 

Hunt )4] first ordered the image lexicographically by stacking the consecutive rows 

into a column vector , yielding 

v = Hu + n ( 2. 7) 

where v , u and n a re vectors of dimension MNxl. KLxl and M:\Txl , respectively. 

When the dimensions of v and u are equal , H becomes a block circulant matrix con-

sisting of J\11 2 blocks and each block is a circulant matrix of size ~x~. Again , Hunt :14] 

demonstrated that the circulant and block-circulant matrices can be diagonali zed by 

one dimensional and two dimensional di screte Fourie r transforms, respect ively. Fol-
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lowing his approach, H can be written as: 

H = Wnw-1 (2.8) 

or 

(2.9) 

and 

I = ww-1 (2.10) 

where D is a diagonal matrix whose elements D (k , k) are related to the two dimen-

sional discrete Fourier transform (2D-DFT ) of the extended point spread function 

h( m, n) and W is an unitary matrix of size VI:h.VL whose columns are the eigen-

vectors of H . Furthermore. it can be shown that the transpose of H is equal to 

(2 .11 ) 

where D* is the complex conjugate of D . Using the diagonalized form of H . Eq. (2.7 ) 

yields 

v = wnw-1u + n. (2 .12 ) 

Multiplying both sides of Eq. (2 .12 ) by w - 1 , we have 

(2 .13 ) 

where w -1 v . w -1 u , w - 1 n are vector s of dimension YINxl. After rearranging 

the elements of these vectors and the matrix D into 2D-DFT representation V (k , l), 

[ (k,l), .V(k ,l) and H (k,l). respectively. Eq. (2.6) can be wri tten as 

l .( k.l ) = H(k.l )U(k .l) - N(k,l ) (2.H ) 



where the 2D-DFT is given by r.s ] . 

Jf - 1 .v - 1 
"\"" "\"" ? ( k m I n ) Z(k,l) = LL .:(m,n)e-J-rr TT-:::; (2.1.5 ) 
m=O n=O 

for Z = V, [', _V or H in Eq. (2.14) and :: = v, u, n or h in Eq. (2.6 ). Similarly, 

the spatial domain functions can be obtained by usi ng two dimensional inverse OFT 

(2D-IDFT) 
1 ,\l - lN-1 

"\"" '""' ? (km In) .:(m.n) = -- L L Z (k,l) c/-" r.,r+:.: . 
J.J .V k=O l=O 

(2.16 ) 

Problems with the Image R estorat ion 

Image restorat ion can be stated as a deconvolution problem or the problem of sep-

arating two convolved signals in the presence of additive noise . Examining Eq. (2.6) 

with known PSF uncovers two problems; the equation can be either singular at worst 

or ill-conditioned at best '. 2]. Singularity means there is no inverse t r ansformation 

for a solution, in other words. the solution does not exist. On the other hand, ill -

conditioned refers to t he existence and uniqueness of a solution, but small changes in 

the recorded image v cause large changes in the original image u. From the matrix 

theory, condition of a matrix is determined by a condition number which is defined 

as the ratio of the largest eigenvalue to the smallest eigenvalue of the matrix . The 

larger the condition number, t he higher the ill-conditioned behavior . Consequently. a 

solution to Eq. (2.6) can be expected to be close to the original image if the condition 

number of His small. 

A set of solut ions to Eq. (2.6) can be found by using either statistical or deter-

ministic approaches . However , the selection of the proper solution within the solution 
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set will be anothe r problem. The best one from the solu t ion set can be selected by 

using some optimization cri teria. 

When the PSF is unknown, it should be determined by eit her measurement or 

som e parameter est imat ion methods. Of course, the uncertainity of the resulting PSF 

will be a new question to be answered . 

In summary. the purpose of image restoration is to estimate the original image u 

from the degraded image i• such that the estimated image u is as close to the original 

image u as possib le. subject to a suit.ably chosen opt imality cr iterion. 

Pre vious Work in Image Restoration 

~Iany studies in digital image processing resulted in a variet y of image restoration 

algori thms in the past. Early image restoration methods appeared in continuous 

variable form. For example. a typical optical imaging system wa often represented in 

the for m of Eq. ( 2.5 ). Hel trorn [12] stated the opt ical rest oration problem as find ing 

an estimate ii. that is a linear function of t he degraded image l ' and then minimizing 

the mean-square error ( :\ISE) 1 between the original image u and its es timate ii. 

In [12]. the images 11. u and t he noise n were assumed to be tochastic proces es 

with known properties in the presence of deterministic PSF h. Slepian [22: approached 

the same problem by conside ring P SF h as a stochas t ic process with known charac-

terist ics . The foregoing two approaches yielded a two dimensional linear Wiener filt er 

that depends on the power spectrum of the noi se and the original image. In t he case 

of stochastic PSF , the resulting Wiener filte r also included the second order statistical 

1 A1SE = E[f u(m , n ) - u(m.n) 2 ] . 
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characte ristics of the PSF. lepian' wo rk howed that if the :\ISE is small enough. 

at least one of the restored images is bound to be good. In addit ion. Helstrom 12: 

came up with t he d igital for m of the \Viener filter when he considered the pro blem 

in di scre te vari able form ( Eq. (2.6)) for digital im age restorat ions . 

The ·implicity. flexibili ty and the pO\\·er of digital computers a re the main reasons 

for d isc rete image restoration . 2\loreoYer. the developments in the theory of di crete 

mathematics allowed the irn·ent ion of different new restoration algori t hms. 

The fir t digital image restoration tech niques we re applied at the .Jet Propulsion 

Laborato ry ( .JPL ) in the early 1960 in the program to land a man on the moon ·2·. 

It was decided to land an unmanned craft which could analyze and take pictures of 

the su rface of the moon for later wo rk. The degradation propert ie of the camera 

placed on the craft forced the usage of t he image restoration. Consequen t ly, .J PL 

measured the degradation properties of t he cam er as before they were launched and 

then removed. as much as possible, the degradations from the received moon images 

by means of some i mage processing techn ique . 

The degrad ation properties of the camera or any imaging system can ba ically 

be rep resented by Eq . ( 2.7 ) in Yecto r-matrix form . The solution ii can be achie\·ed 

as a linear fu nction of v in the sense of min imum MSE ( i'vL\ISE ). similar to the case 

in contin uous rnri able form [2. 12: . When the stat ist ical proper ties of the noise n are 

unknown and even t he PSF is spatially vari ant , a solut ion is still possible by means 

of linear least- quares . Linear least-squares requi res the norm of the residual vector 

v - Hu to be minimized. Since there is no restriction o n the values of the est imate 

ii , t hi s approach was called u nconstrained resto ration rl ]. T he unique solut ion was 
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given as the multiplication of v by t he pseudoin,·erse matrix of H ) 0. 16 . 23 . . 

:\Iascare nhas and Pratt [ l 7] p resented computer simulations of the unconstrained 

restorat ion for underdetermined and overdetermined image observation m odels (i.e., 

the size of u is g reater than that of u in overdetermi ned case and is less than that 

of u in underdetermined case) . In each case, a Gauss ian shaped PSF with specific 

variance was chosen to blur the images. Gaussian white noise with different vari ances 

wa a lso added to the resulting blurred images . . 'ome round-off e rrors were observed 

inherently in the computations be tween the original images and the estimated one, 

even tho ugh there was no additive noi e component n in Eq. (2.1). :\ curve was 

drawn to relate the condition number of mat ri x H to the changes in the rnriance of 

the Gaussian blur and the size o f v . The condition numbe r determines the singu larit y 

of a matrix. The larger the condition number , the higher the ingularity o f matrix 

H . Fo r the case of high condition number of H . Eq. (2. / ) will be exte rmely d ifficult 

to o lve and the so lution b ecomes unstable. 

One poss ible solution to Eq. (2 .7) with ·ingular matrices is to use ingu lar Value 

Decompo ition (S VD ) of H in the calculation of the pseudoinverse of H 2. 1.5. l . 

26]. It was o bse rved that the singular ,·alues of the higher orders approach zero and 

cause the unstability of the solu tion (since the inYerse of singular rnlues determines 

the pseudoinverse of H ). In o rder to come up wi t h a n a ppropriate solut io n, Pra tt [1 ] 

ugges t ed a sequential algorithm in the calculation of the p seudoinve rse of H that 

can be t erminated before reaching the ·ingularity of H which cause unstability. 

[ n fo rtunately t he propo eel SVD image restoration was found to be computationally 

inefficient . In addition to that. the pseud oin verse res torat ion for a moderate degree of 
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blur was observed to be wore than the re to ration for les blur. However. thi trend 

didn't continue; the restoration for severe blur \\·as found to be better in a subjecti,·e 

ense than for moderate blur . 

When the PSF is spatiall y invariant a nd t he associated matrix H is a square 

block circulant matrix, 2D-DFT approximation of block circulant matrices can be 

applied to the pseudoinYer e of H . Then the re ·ulting filter in the frequency domain 

is called an il1\·erse filter _2. 1.5. 1 . due to being the imerse of the 2D-DFT of the P 'F. 

However, it was stat ed that. in practice. the fourier tran form of the P F drop off 

rapidly a a function of the di tance from the origin of t he frequency plane. Therefore. 

t he inver e filter also suffered when the Fourie r transform of the P F become zero 

o r close to zero . 

O ne uggest ion given ,1.5 was to et t he inve rse fi lter to zero wheneve r the mag ni-

tude of the 20-DFT of P 'Fi s less than a suitably chosen positiYe thre hold. Another 

reasonable uugestion give.n 2J was minimizing some linear operator on the re tored 

image u. while keeping the norm of the re idual Yector v - Hu the same a that of 

the noi e \·ector n . This is known as the con trained least-square method. The linear 

operator i allowed to ha,·e an additional control o\·er the restoration proce s. It was 

demonstrated r21 that the re ultin.e; filter can be either \ \" iener filter or pseudoim·er e 

filter depending on the selection of the linear operator. 

In l{. the li near operator was chosen a::. the econd o rder difference matrix be-

cause it was de irable that the so lution {1 sat isfy ome kind of smoothness measure and 

the norm of second difference of the olution wa found to reflect that mea ure. Con-

sequently, the lagrangian minimization method yielded a linear fi l ter with a lagrange 
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multiplier as a parameter. The opti_mum value of this multiplier was determined iter-

ati\·ely ' 14]. The main difficulties of constrained least-squares estimation were found 

to be the determination of the norm of the noise term in Eq. (2 .7) and the initial 

value of the lagrange multiplier in the iteration. However, t he norm of the noise term 

can be estimated from the degraded image a posteriori and the convergence of the 

iteration can be made independent of the choice of the initial value of the lagrange 

multiplier. 

Again, Frieden :6J discussed Backus-G ilbert method which minimizes the linear 

combination of the norms of the outp ut noi se term and the residual ,·ector v - Hu. 

The foregoing restoration algorithms were based on linear least-squares and 

mean-square error methods that do not yield estimated images with positive inten ity 

values at each pixel. However incoherent imaging systems are known as having non-

negat ive P SFs . inputs and outpu ts. Consequently, a method based on a maximum 

entropy concept was developed to yield nonnegati,·e solu tions [2. 1.), 1 . 32; . 

In the restoration of images by the maximum ent ropy method, the normalized 

original image is treated as a probability density function and the entropy of the 

normalized est imated image is maximized while keeping the norm of v - Hu and the 

norm of the noi se term n equal. The experimental result s showed that thi s method 

yielded sharper restorations and enhanced small points on the degraded images. 

Among a rnriety of others, Bayesian methods are important res toration tech-

niques when a priori information about the original image is known. In Bayesian 

estimation (2. 6], the a posteriori probability den ity function of the original image 

is maximized. That is to say, maximizing the probability density function of the 



14 

original image u given the degraded image v gives the maximum a poste riori esti-

mate of u . If the o riginal image u i as urned to be deterministic. the maximization 

proces yie lds a maximum likelihood es timate. [f the imagin g system is linear and 

additive noise is a Gaussian white process , the maximum likelihood est imation re-

duces to the least-squares solution and the maximum a posteriori estimate reduces 

to the M.'vISE ("Wiener filter) est imate for the Gaussian distributed original image 

u _27]. The Bayesian image re toration method can usually yield better re ult s by 

incorporating a priori information about the original image. 

In fact. the number of constraints in the foregoing res toration methods can be 

increased. A restoration method with more than one const raint wa addre ed by 

[:31]. In [31]. Youla and 'v\'ebb presented ome of the applications of signal recon , truc-

tion ( e peci ally tomographic image reconstruction and extrapolation of bandlimited 

signals) by sequential projection onto convex set s (POC'S). The theory behind POC'S 

is based on a priori construction of constraints on the olution. I t was hown that if 

the constraints form a conwx set. then a set of feasible solutions sati fying all con-

straint s can be found iterati\·ely. An optimal solution among all feas ible olut ions i 

the n searched. 

Trussell and C ivan lar [2.5, applied the concept of POCS to the restoration of 

the ignals. They were basically interested in dete rmining a set of appropriate con-

straints, but not the optimality of the solu tion . As a result of this study, it was tated 

that the examination of the stat is tic of the noise can yield an important set of con-

s traints and the fidelity of the solution increases with the number of const raints. For 

example. when the PSF is stochastic. finding a olution to Eq. (2.i' ) becomes more 
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difficult. C'ombettes an d Trus ell ,--1: ] recently studied this special form of problem 

using t he P OC'S concept. They determined a new set of constraints by considering 

the s tatistical properti es of the P S F. As expected, the diameter of feasible solution 

set was increased due to the uncertainity of t he PSF. 

The ill-condi t ioned problem was refor mulated by Ross ~ 20] . and called regular-

ization. so that a solut ion which is not only le s sensitive to the -mall perturbations 

in the data v but a l o clo·e to the original data u can be found . However . the 

regularization proce s yields a solution as a function of a variable. called the reg-

ularization parameter. Ros introduced an iterative fast algorithm for obtaining a 

feasib le solution an d es tab lished a criterion for determining an opt imum value for the 

regu larization pa rameter . 

Another digital image restoration method which has received much atten tion 

1n the literature is Kalman Filtering (I\.F ). \Veil known as a great success in one 

dimensional signal processing. KF is basically known as optimal linear estimator 

minimizing the ::\ISE . :Je\·ertheless KF is different from the Wiener fil ter in the en e 

of es timat ing t he data recursively after the new observation . 

In 1977 , Woods a nd Radevan [30] (see also Biemond [3]) extended the conven-

t ional one dimen ional I\:F to two dimensions. Requiri ng high dimensional matrice . 

the direct extension of KF \\'as found to be computationally very inefficient. In or-

der to improve the computational efficiency. the a uthors introduced a Kalman strip 

processor that u pdates one line in the image at a time, and a Kalman scalar proce -

so r that updates one point in t he image at a t ime. I t was shown that the proposed 

t echniques are compu tationally att ractive and applicable to t he nonst a t ionary images 
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degraded by space vari ant PSFs. I t was ho ped that the non linear models with s pace 

rnriant PSFs could be treated using similar tec hni q ue -. 

Little work on the re~toration of image degraded by a tochast ic P F 1n the 

presence of additi ve no i ~e can be found in t he literat ure. As we mentioned at t he 

bep;inning . Slepian 22 dealt with the o lution of Eq. (2.5 ) when the P . Fi tocha tic. 

His app roach y ielded the \\.ie ner filter a~ a function of the second order st at ist ic of 

the PSF. Late r Wa rd and Saleh ·2s] developed two iterati ve nonlinea r me thods based 

on modification of the \\.iene r filter and the minimum \·aria.nee unbia ed e timation 

techniq ues. The met hods were both nonl inear and iterati,·e becau e the unarnil abi lity 

of t he co rre lation matrix of the object im age used in W iener filter requires iterati,·e 

e tima tion fro m the de~raded image. The proposed methods were te~ ted o n one 

dimension al sig nals ass uming t he PSF a nd additive noise we re uncorrelated. A~ 

a result. the minimum ,·ariance unbiased es timation. deri,·ed from maxm11zmg the 

probability fun ct ion. was obsen·ed to y ie ld better resu lL. 

O n t he ot he r hand . two papers dealing wit h the res tora tion o f s t ochast ically de-

o- raded image recently appeared. In the fir s t paper. Guan and \\'a. rd 11] extended 

t he modified iterat ive \Yiene r filte r. deve loped earli er by Ward and ' aleh ) ·, in t o 

two dimensio na l par ametric form. The calcu lat ion were carried o u t in the frequency 

domain by using block circulant matri x app roxima tion of the mean value of a s t ochas-

tic P F matrix. T he re toratio n re ult of t he mod ified v\:i ener filt e r in an iterative 

fas hion were observed to be both inex pensive and better than those of the li near 

Wie ner filt er and the Backu -Gilbe rt technique in the ense of :\ I 'E . 

Ward and aleh )9 modified the Backus-Gilbert technique fo r res toration of im-
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aae dearaded b\· a stocha tic PSF. The de,·eloped method wa::i ba ed on t he weiahted '=> 0 • 

uperpo it ion of a ~ mall number of shifted \'ersion of the distorted image. \\"ith this 

property. the resulting filter was linear and similar to the finite impulse res ponse 

filte r. The weight::. in the superposition were determined by opti mizi ng a combined 

measu re of the reso lution and noise. Compared wit h bot h t he V/iener filter requiring 

the knowledae of the en emble a\·erage power spect rum of the image. and the min-

imum variance unbiased e timator. requiring extensi\·e computations, the proposed 

method yielded better re tored images. 

·tockham et al. 24 add ressed the problem of deconvolving two ·ignals when 

both are unknown. This approach was called blind deconrnlution. He re the extent 

of one of the signals was as u med to be considerably mall er than the other. For 

example. in the resto ration of con\·entional acou , tic recordings . the wa\·eform span 

of the acoustic signal is longer than the extent of the impul e response of the record-

ing mechanism. The auth9rs developed homomorphic filtering and power spectrum 

es timation scheme~ to recover the original speech . For the purpose of illustration. un-

known blurs from the degraded images were eliminated by using the theo re tical results 

cle\·eloped for one dimensional restoration. For images of large dynamic range. the 

homomorphic filtering approach was ob en·ed to pro\·ide smoother result s compared 

with the power · pectrum estimation method. 

Finally in terms o f application areas. current literature ~ 2. 4. 1.5, 31 re\·eal that 

diaital image restoration method are extens i\·ely u ed in medicine (diagnostic X-ray . 

cell biology. anatomy. phy iology); in physics (plasma diagnos tics . ultrahigh- pressure 

hockwave~. solid state phenomena ); in nondest ructi \·e testing ( \·isual quality control 
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inspection. acous ti c holography ); i~ weathe r fo recasting (obse rrntion of vi ible cloud 

features from weat h er satellites ); in resource explo rat ion ( two dimensional sei smic 

signal processing); and so on. 

Statement o f the Proble m 

Digital image restoration is mainly concerned with recovering the original image . 

gi \·en the degraded image and ome knowled!?;e about the properties of the degrada-

tions. In thi s thesis . we focus on images t hat are modeled by a linear hift invariant 

system . namely 

v = Hu - n ( 2.17 ) 

where v is the ob erved or recorded image, u is t he original image, n is Gaussian 

noise vector with zero mean and unco rrelated element s and H i a block circu lant 

P SF mat rix . 

Conseque ntly. by knowing v an d the tati t ical characteristic of n . our primary 

goal is to restore u for the following ca es : 

a) Deterministic PSF matrix which is known . 

b) Stochastic PSF matrix wit h known mean and variance. 

c) Deterministic PSF matrix which is unknown. 

In the fo llow.ing sec tions . the above cases will be considered separately. In conside ring 

cases described by (a ) and (b) a bove . various exist ing algo rithms will be a ppl ied to 

restore t he real images degraded by computer generated determini stic or s tocha·t ic 
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P SF and addi t ive Gaussian white noise. However. m (c) the un known P F wi ll be 

determined fro m a systematically degraded image. 
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CHAPTER 3. METHODS AND RESULTS OF DIGITAL IMAGE 

RESTORATION 

In the first ection. we in t roduce the digitization procedure and O'ive the tati tical 

propertie · of the test image · to be used in computer imulations. 

In the econd section. we primari ly study the perfo rmance of everal exi ting 

image re toration technique for image blurred by the known determini ti c P F 

and corrupted by additive signal-independent noi se. The restoration res ult for each 

method were O'iven for the purpo e of compari on. 

I n the third section. we propose a new method under the framework of the 

con tra ined least-squares technique to re tore images blurred by the tocha tic P 'F 

and corrupted by additive signal-independent noise. The proposed metho d requires 

the signal-to-noise rat io of the degraded image to be le s than an a priori known value. 

If thi condition is atisfied. the imulation result s show that ou r method outperform 

other exiting technique in te rm of average mean- quare error ( .-\~ I 'E )1 . In t he 

fourth sect ion. we attempt to estimate the PSF of imaging systems from the degraded 

image before a specific re toration technique is applied. 

l -l \I E - l "K - 1 "L-1 ( ( ) • ( ) )2 • • ~ - .\J.V--'m =O~n=O ti m . n - u m.n . 
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Fi~ure 3.1: Ori,ginal image: a) Picture of a girl . b) X-ray fi lm of tibia 

Figure :L2: Sys tematically blurred image~ : a) X-ray film of phalanges. b ) Blurred 
dots to measure the PSF of X-ray imaging ~y::> tem 
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D escrip t io n of Test Images in Compu ter Simulat ions 

Fig. 3.1 shows a standard picture of a gi rl and an X-ray film of a tibia representing 

the original image for the computer simulat ions . The simulations were performed 

in a Hewlett- P ackard HP 9000/360 series computer. F ig. 3.2 shows systemat ically 

degraded X-ray film of p halange and the dots to be used for t he deter mi nat ion of 

t he P 'F of the imaging system. Thee picture were digitized into the images of 

lOOxlOO pixels with bit inten ity quantization by mi nimizing the tradeoff between 

the re olution and the size. 

Fig. 3.l a. standard test image used often in the literature. has an ave rage gray 

leve l ofl 7 .1 O,avarianceof2 32.627andanenergy( u 2 )of3A5 E- . Fig.3.lb 

has an average of 131.79 , a variance of 7001.04l and an ene rgy of 2.-1:37£ ...1- . 

In order to blur the original images in Fig. 3.1. a symmet ric Gaussian shaped 

function h( m. n) was selected as the PSF: 

( 3. l ) 

where Eis a scaling factor which normalizes h(m.n), i.e ~m~rih(m . n) = l. The 

program. i\ I AIP\1. given in Appendix . was used to perform the degradations due to 

blur and signal-independent. additi ve noise. The routines (Eq. (2.6) in the patial 

domain and Eq. (2.14) in the frequency domain) were implemented by calling 2D-

DFT sub rou ti ne FFT and Gaussian random noi se subroutine NO R.VIAL. Fig. 3.3 

represents the blurred forms of images in Fig. 3.1 when the chosen PSF is of ize 19xl9 

with rnriance 4.0. With this select ion of PSF, the size of convolution in Eq. (2.6) i less 

t han 12 xl2 (2; = 12 ) so that the wraparound effects due to t he conrnlution process 



Figure :3.3: Images b lurred by Gaussian 5haped PSF of rnriance ·LO 

are pre\·ented. Fig. :3...J is the noi e added form of F'ig. '.3.3. He re the noi-.e of \·ariance 

100 is g;enerated u ing the -.ubroutine .\OR:\IAL that creat e uncorrelated. ze ro mean 

Gaussian numbers \\·ith unity \·ariance. Corresponding signal- to-noi e ratio · ( ' \R )2 

of Fig. :3 ...!a and Fig.:3. lb are 1 l.42 db and l . l.5 db. res pectiwly. ln the following 

sections . Fig. 3. l will be the degraded image to which the re toratio n chemes will be 

applied. 

Res toration o f Noi y Image D egraded by D etermini tic PSF 

In t his section. we present the res ult of the restored images ba~ed on im·er e 

filtering;. \Viener filtering and constrain t least-:-quare filtering . We also u e :\:\I. 'E 

as an objective quality mea::-ure to compare the performance of the aforementioned 

2 ' .\R i defined as the rati o of the variance of the original image to that of the 
ignal-independent noi e. 



2-l 

Figure :3 . ..J.: :\oisy form of blurred ima~es in Fig. 3.3. :\oi e rnriance i - 100 

re ·torat ion met hod __ 

Inve r se Filtering 

Based on Eq. (2.1 ). minimizing v Hn '.:!with respect to u in the lea~ t- quare 

sense yields a elution ~i\·en by 10. 16. 23· 

( :3.2 ) 

\\'hen t he P F matrix H is a square matrix and non~ingular, Eq. ( :L2 ) reduces to 

( :3.3 ) 

Again. app roximating the block circul ant matrix H by the 2D-D FT. Eq. (3.:3) wi ll be 

( k.l) - \ '( k . l ) 
( H(k. l) 
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where C(k,l) . \"(k.l) and H (k .l ) are the 2D-DFT of the estimated image u(m,n). 

degraded image t'(m,n) and the PF h(m.n), respectively. Program l\IAIN2 in Ap-

pendix implements t he inverse fi l tering routine in the frequency domain by sett ing 

U(k,l) = 0 wheneve r H (k,l) [2 is a less-than-suitably chosen quantity to eliminate 

excessively large erro r when H (k . l) is close to zero. Fig. 3 .. 5 represent s the re tored 

form of images in F ig. 3.4. It i clear that the in\'erse filtering routine recovers much 

of the details by causing additional effect - alonP" the edges. 

Wiener Filtering 

A sume that the resto red image is a linear operation on the degraded image, 

i.e .. u = Hv. and the original image and ignal -independen t noise are the samples of 

two dimensional random processes with zero mean and known covariance mat rices. 

Minimization of mean square error E u - u 2 ] yields the Wiener filter ~ 2. !.'.>, l ]. 

For a general nonlinear image model with space-\·ariant blur, the linear operator can 

be gi ven by ll : 
- l H = Cuv (Cvv ) ( 3.4) 

where Cuv is the cross covariance matrix between the original and degraded images 

and Cvv is the covariance matrix of the degraded image. If the imaging -ystern 

the linear model given by Eq. (2 .7 ). the linear function reduces to :2. 1.5, l ] 

( 3 .. 5) 

where C u and Cn are the covariance matrices of the original image and noise procces 

respectively. In order to obtain a rapid Fourier computation . the circulant approx-

imation to Cu. Cn and H is assumed '21. Then Eq. (3 .. 5) can be expressed in the 
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H• ( k. l) if ( k. l) = -----:---,--,-
H ( k. l) 2 _ C'n(k ,I J 

(' u ( ~', / ) 

(3 .6) 

where C'u(k , l) and Cu( k.l) a re the power pect ra o f the orio-in al image and the noi e. 

respect ively. 

Quite often . original image ha\·e nonze ro means. [f the original image ha non-

st at ionary mean . \\'e cannot use the circulan t ap proximation. and Eq. (3 .6 ) can not 

be app li ed. However . if the original image has tat iona ry mean, m . t he n the re tored 

image ( (k . l ) in the frequency domai n is give n by [15 

((l; . l) = H (J.· . l)( \ '(l; . l) - H (k.l) .\I(J.·,l)) - .\l(J.-,l) ( 3. 7) 

whe re Jl (J.·. l ) i· the 20 -DFT of the mean of the o riginal image. m . To obtain the 

final restored image . Eq. (3 .6 ) or Eq. (3 .1 ) is thus computed by the 20-fDFT. 

Fig. 3 .6 re pre e nts the images in Fig . 3 .-l resto red by t he \Vi ene r fi l ter ro u t ine 

in program ~IAIN2 \\' hen the images are a sumed to ha\·e zero mea n . Ho\\'en·r. ou r 

expenence hows that \\'i ener filt er for no nzero mean images ( Eq. 3. 7) can yield 

·moother images with reduced dy namic range a nd increased A~I E. 

Con st raine d-Lea t Squ are Fil ter 

T he co nstr a ined least-square fi lter is based on t he minimization of a linear fun c-

t ion of the o riginal image uch t hat t he norm o f t he re ulting residual \·ector i eq ual 

to t ha t o f the noise vector 14. T he filt er can be const ruct ed according to: 

~I i n imize I Qu j 2 

ubject to v - Hu j2 = n 2 
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Fig;ure :3.5: Re toration of Fig.:3.4 bv In,·e r~e Filter. Threshol<l = 0.06: 
(a) .--U L E = .):3-t .. 3l. (b ) A .\/SE :3.').5.-±21 

Fig;ure 3.6: Res toration of Fip;.3.4 by \Viener Filter. ~oise variance is 100: 
(al AJISE = 164 .. ).50. ( b ) .·-LU SE 229..f 0 
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where Q i a linear operator. [sin~ the lagrange optimization method. thee timate 

can be g i \·en by [l{ 

( 3. ) 

where r i the in verse of the lagrangian parameter to be determined to atisfy the 

const r ai nt and n I i the norm of the noi e \·ector which may b e known a priori or 

which can bee timated from the ·mooth regions of the degraded image. Cnder the 

circular approximation . Eq. (:3 . ) can be writ.ten in fr equency domain as ll-±1 

(' ( k. l) = __ H_· (_k_. l_) \_-(_I.· ._L_) _ 
H (l.-,l) 2 ~1 Q(k.l) 2 

( 3.9) 

Hereafter the residual \·ector. r = v - H u. in the frequency domain can be written 

a 

) Q(k .l ) 2 \'(k.l) 
R(k.l) =I H (k . l) 12 ..._ , Q(k.l) 2 

( 3.10) 

where R(l.-. l) i the 2D-DFT of t he residual r(m. n ). If the norm of the residual \·ector 

r i equal to that of the noise \·ector n . then u = u . In fact. the norm of the re idual 

can be calculated in the frequency domain by mean of P ar eval' theorem as 

.\I - l S - l l ,\,f - l .V - I 

r 12= LL r(m.n) 2=\v L "--' R(l.'.l) 2. 
m=O n=O • f · i.·=0 l=O 

(3.11) 

Ioreover. it was shown [141 that 1
1 r· 12 is monotonically increa ina a a function of -, . 

Hence. there i only one \·alue of/ that satisfies the con traint. This o ptimal rnlue 

of -1 can be found by using optimization techniques uch as the :\ewton-Raphson 

method :1. The A"ewton-Raph on method is an it e rati ve proce s of finding a root of 

a funct io n /(:r), star ting from an in i tial estimate. T he procedure can be ummarized 

as [7] 
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START initial g uess .r 1 

DO WHILE I .r2 - x 1 [~ Tolerance Value 1, OR 

/ (,r 2 ) __: Tolerance Value 2, .-\ ND j' (.r 1 ) ± 0.0 

E:\DDO 

Application o f the :\e\\'t on -R aphson method requires the derivative of the function 

f (J) = r 2 - n [2 . Fro m Eqs . (3.10 )-(3 .11 ), the derivative of j(J) with respect 

to / can be gi ven by 

I l .\[ - l N - 1 / Q ( "" l) 2 

f (/)= .\LYE E ( H (k. l) ~ - 1 Q( k .l) 2 ) 3 . 
( 3.12 ) 

As a result of foregoing exp lana ti ons. the const ra ined least-squares image re toration 

is impleme nted in the di sc rete frequency domain. Also . examining Eq. (3.9) reveals 

that the selection of the linear fun c ti on Q resu lts in different form s of fi lt ers as shown 

below. 

1. Q = 0 or / = 0 result in the inverse filt er. 

2. Q = C~ 112
C~1 2 m inimi zes the effective noi se to sign al rat io of the estimat ed 

image a nd y ields the Fo uri e r \Viener filt er given by Eq. (3 .. 5) . 

3. Q = I minimizes the ene rgy of the rest ored image yielding the p eudoinverse 

filter. 
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Figure '.3 .7: Re toration of Fig. '.3...1 by P seudoim·er e Filt e r: (a) .-.\.\!SE = .5.56 .0 3. 
I - 5 .. 56 E - :2 at ! iterations. ( b) A.\! ~ E = l2-!.093, "f . 71 E - :2 at 
.5 iteration 

-! . \\" hen Q represenb the ·econd order derirnti,·e operator 1-1 t he re ulti ng e ti · 

mate ati fie the -,moothness measure. 

At th is p oi nt. we are interes ted in implementing only the lat two fo rm ::. . since we 

ha,·e already introduced t he re-.ult of the fir st two . F ig. 3. 7 and F ig . 3. represent the 

images in Fig. :3 A res tored by a p e udoinve rse filter and a second o rde r de ri,·at ive filt e r. 

re pect i vely. :\ I Al l\2 yield Fig. :3.1 when n 2 is 3000000 wi t h t ole rance 1000 a nd 

the initial value of / i 0.01 with t ole rance l.OE-6 . . ' imila rly. Fig. :3. a and fi g . 3. b 

a re ob tained when n 2 i::. 2'.300000 and 1.500000. respec ti ,·ely. wit h tolerance 1000 

and the initi al rnlue of; is 0.0001 wit h t olerance L.OE-6 .. \ s expected. the econd 

order derivative o pe rator rout ine y ie lded smoother res ult s than t he p ·e udoim·erse 

fi lt er . 
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Figure 3.c : Restoratio n of Fig . 3 .-! by econd O rder Diffe re_nce F ilte r: 
(a) .-LU S E = 499. 29. / = 0.-1 23 at 6 ite ra t io ns . (b ) .·UL'£ --: 26.5 .0 9. 
) = 0 .:3c 2 a t I iteratio ns 

R estoration of Noisy Images D egrad ed by Stochastic PSF 

P SF · o f real imaging systems usually ha\'e un cert a inities d ue to t he e nvironmen-

tal or the syste m at ic effect s . For example . X-ray im aging systems, scan ning micro-

scopes a nd rn icrodensiometers are known to have blur functions with uncertani ties 

: -l ~ . If the uncertainity in the P 'F ma trix H i addi tive and confined to t he size of 

t he PSF. the linear shift invari ant sys t em in the prese nce o f additi ve noi se can be 

wri t t en as 

(3 .13) 

or 

v = Hu - n ( 3.14) 
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n = N 1 u 1 11 2 ( 3 .1.)) 

where the matrix H is the mean of the tochastic P S F matrix H. and the matrix N l 

rep re ents t he vari a tions about it mean H. The following a ssumptions a re made: 

1. The matrix N 1 consis t s of uncorrelated e lement s wit h rnriance O'i. 

2. The signal-independent additiH• noi e \·ector 11 2 has uncorrelated elements with 

. ? \·an ance a2 . 

3. The elements of N 1 and n 2 are uncorrelated. 

[n the following, we st udy the v\:iener filter developed in '. 2 ~ and pro po e a new 

technique based on the convention al const rained -least squares filter fo r this restoratio n 

problem. Also, for the purpose of perfo rma nce compari son . the conventional Wiener 

filt e r (Eq. (3 .7)) a nd const rained leas t quares filt er (Eq. (3.9)) were implemented. 

i mulations how that our.algorithm can y ield better results in the sen e of A:\IS E. 

W iene r Fi ltering 

Ward and aleh ·2 ~ propo eel a technique for restoration of the image degraded 

by a stochastic P SF based on the Slepian 's wor k [22]. yieldi ng a linear function 

(:3 .16) 

and 

(3.17 ) 



Figure :~.!J: Stochastical ly blurred images. rr~ - 0.002.) 

Figure 3 .10 : :..-oi:,y form of tochast ica.Jl y blurred images . a; - 100 
.... ... - -
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where the expectat ion in Eq. (3.16) is over u and the expect ation in Eq. (3 .17 ) is 

o \·er N 1 and 11 2. Eq. (3 .16 ) is simi la r to the convent ional Wiener filter in Eq. (3 .. S). 

excep t fo r the expectation operatio n. E [C 11 ] . Since we ass umed that t he uncertainity 

in the PSF is uncorrelated wi th original image and signal-independent additive noi se, 

Eq. (3 .16 ) reduces to :2c 

where O'i and O'~ are the vari ances of uncertainity in the PSF and additive noise, re-

spect ively. l- sing the 2D-DFT app roximation of the block ci rculant matrices, Eq. 3.1 6 

can be written as [11 ] 

H ( k.l ) = if• ( k,l) 
( 3 .1 ) 

where I, J is the ize of the PSF and C'u( k . l ) and Cn (J,.,. l ) are the power spectra of the 

original image and the noise . repec t ively. Since t he images in real life have nonzero 

mean. t he mean of the o ri ginal image JJ( k. l) in frequency domain should be included 

in the fi n al form 

{ '( k.l ) = H (k ,l)( \ .(k,l) - H(k,l) JJ ( ~· .l )) + JJ ( k.l ). 

Experimental Results 

We consider H is a block circulant matrix representation of a Gauss ian function 

with vari an ce .f .0 and size I = J = 19 . N 1 is a block circulant matrix represen-

tation of a two dimen sional Gaussian white noise process with element of vari ance 

O'f = 0.0000062.5 . and n 2 is the ad dit ive Gaussian noise vector whose elements are 
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Figure :3.11: Restoration of Fig. 3.lOa. o-~ = 0.00000625 and a~ = lOO: 
(a) Con,·entional Wiener filter, A. J l SE Ll ·5.066. (b ) \ Iodified 
\ \ 'if'nf' r filter . . -UI S£ - 636.2, 0 

uncorreleted haYing rnriance 17~ = 100. Program \L\Il\1 implements the foregoing 

conditions on the original image in Fig. 3.1. Fig . :J,!.l shows the image blurred by 

stochas ti c P F and Fig. :LlO shows the noisy form of Fig. 3.9. Hence, in the following 

page . Fig. 3.10 repre ent the degraded image to be re tored. 

\\'e first u ed the com·entional \\' iener filter (Eq. (:3.6)) that yielded Fig. 3.llaand 

Fig. 3.12a as the re. tored image in Fig. 3.10. \\'hen Eq. (:3.1 ) i used. Fig. 3.llb and 

Fig. 3.12b result. Compared with the conventional \Viener filter re ults. the modified 

\Viener filter result are more dear and moother with lower .-\l\I E ,·alue . 
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Figu re 3.12: Restoration of Fig. '.3.lOb . o-i = 0.0000062.) anq o-~ - 100: 
(a) Con \·entional Wiener filter . ...l.JL..,. E 276.-1.06: ( b) :\ Iodified 
\\"i ener filter. ...lJ[ SE 2.)9.'.390 

The Pro posed A pproach 

first of all. we reviewed the method by C'ombettes and Trus ell [4. which was 

related to our work. The basic idea behind their work is to construct a closed convex 

et based on the tati-tics o f the re idual signal and then apply the projections onto 

convex et ·( PO C'. ) method 31" to obtai n a fea ible re tored image. 

'uppose that the statisti cs of the PSF matrix H are known. the residual \·ector 

can be defined by v - Hu where u represent::, the re torecl image. It i clear that if 

the original image is perfectly recovered ii = u , then v Hu = n 2 . . \ lthough n 2 is 

unknown. it tatistics a re generally available from the Aat regi ons of the degraded 

image. Therefore. it is rea ·onable to ha\·e the ample tatistics of the residual vector 

in agreement with those of the n 2. 



Assuming the knowledge of fl and the second o rd er characteri s tics of uncertainity 

in the P F. C'om bette and Tru sell 4 fo rmed a con -traint based on the re idual 

\·ector 

r = v Hu. (3 .19) 

\\' hen the est imate ii i equal lo the o riginal image u . the re -idual becomes 

r = N1 tt - n2; (3 .20 ) 

thus 

(3 .21 ) 

1nce the orig inal image u . the uncer tainily N 1 and add iti\·e no ise n 2 are a urned 

to be unco rrelat ed. 

(3 .22) 

From the inequali ty 

( 3.23) 

it can be shown [4 ' that 

( 3 .24 ) 

whe re 
/ - ! J - 1 

3 = £ N1 2: = 2:2:£[ N i( i . j) 2· . (3 .2.5) 
•=O 1= 0 

Therefore , the conventio nal cons trained lea t-square problem is modified to 

.\Ii nimize Qil 2 

ubject to v - Hu 2 = E n 2 
2] - J u 2 
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where Q i a linear operator. l si~g t he method of lagrange multipl ier and block 

circulant approximation of P F matrix H. the estimate can be given by 

H' (k,l) \ .(k,l) 
(3.:26 ) 

fl (J..·.l) 2 - 1 Q(k,l) 2 -J 

Compared with the Eq. (3.9 ). this est imat e has an ext ra parameter 3 introducing the 

effect of the uncertainity in th P SF. Howeve r, 3 in Eq. (:3 .26) has a deregulari zation 

effect due to negative ign r9. 2:3]. 

In orde r to ove rcome the aforement ioned deregularization effect . we modify the 

con\·entional constrained least-.;;quare problem by incorporating the stat i tical infor-

mation about N 1 and n2 in a differe nt way. i\otice that Eq. (3 .13) can be written 

as 

v Hu - NL u = 11 2 . ( 3 .:27 ) 

Given the estimate u the perturbated residual \·ector t can be defined as 

( 3 .:2 ) 

It is obvious that if u = u then E = n 2. S ince the perturbated residual vecto r and 

noise vector are ra ndo m. it is reasonable to seek an es timate u such that the a\·erage 

value of the squared-norm of the perturba t ed residual \·ector € matche with that of 

the noi e \·ector n 2 . ...\ suminu all components of n2 a re u nco rrelated with zero mean 

and variance G'L it follow that 

E 2' l/ ,. 2 11 2 = .. rr2. (3.29 ) 

Hence. t he conventional constrained least-squares problem can be stated as 

"\Iinimize Qu 2 
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Subject to E _ v - Hu - N tU 2 ] = E'. n 2 2
] . 

Assuming that the uncer tainty matrix N1 has zero mean elements. the lefthand ide 

of the const raint can be further simplified and the con traint becomes 

(3 .30 ) 

~ow. Eqs. (3 .19 ). (3.2-!) and (3.'.30) yield 

Thus. the lower a nd upper bound s of the residual vector r are determined. Since 

v - Hu 2 _ 0. the propo ed method can be app lied if and only if the degraded 

image sat i fy t he requirement: 

E I N 2] , E [ n 2 11
2] _ 

L - I u 112 

That was the reason why we cho ea? = 0.002.5. 

Returning to the optimizat ion p roblem. a traightforward lagrangian m1mm1za-

tion yields 

(3.31 ) 

Assume that all the element of N1 are uncorrelated with rnriance ui. Eq. (3.31) can 

be further reduced to 

( 3.32 ) 

where/ = * and .A is a lagrange multiplier. Compari ng with t he convent ional con-

st r ained least- square fi l ter fl{. Eq. (3.31 ) has an additional term. E N'fN 1 ; , which 

accounts for the statistical characteristics of the perturbations in the PSF. 
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Since H. N 1 and Q are block circulant matrices. the 20-DFT can be appl ied 

and Eq. (3.32) can be written as 

{ ( k. l) = ___ fl_· (_k_, t_p_· (_k_, l _) --
H ( k . l) 2 - ; Q ( '-· , l) 2 - I Jui° 

(3.33 ) 

From Eq. (3.2 ). the -.,quared- norm of pe rturbatecl residual vector E 1n the discrete 

frequ ency domain can be writ ten a 

( 3.3-1 ) 

U ing the .'Iewton-Raphson method. g;i\·en in the pre\·iou ection. a -. that ati fie 

the con traint can be found iteratively. It can be ho wn ·14 that is a monotonic 

function of;. o that the algorithm yields a unique -y . The algo rithm of the propo eel 

met. hod can b(' sum mari zed a::. follows: 

L. C' hoo-e an initial rnlue of-: . 

2. Comput e { '('-·.l) using Eq. (3 .33). 

:J . Compute I t 1
2 using Eq. (3 .34) . 

·L W hile c: 2 n 2 2 _ J t ol ; i [ E 2 11 2 2 , 0 reduce ; el e increase;. 

Go to step 3 . 

. ) . top iteration. 

W here fto l in s tep fo u r determ ines the accuracy of the con traint. The convergence 

of the above a lgorithm wa~ ob erved to be high ly depended on the initial choice of-,. 

C hoo ing Q a the econd order difference operator. the propo eel a lgorithm 

yields Fig. 3.13b and Fig. 3.14b as the restored form of images in Fig . 3 .10. Fig. 3.13b 
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Fiuure 3.13: Restoration of Fi.e;. :3. lOa when Q is ,.,econd ~rder difference opera-
tor: ( a ) Conventional constrained lea,., t- squares: A.\1...,.£ = .517.9 0. 
1 = l.llo at fi iterations. ( b ) The propo ed method: 
.·UfSE - .5 L6.840. / = 0.1 33 1 at .5 it erations 

is obtained when I nz 2 is :3000000 wit h tolerance 1000 and t he initial rnlue of 1 i 

0.001 with tole rance l.OE-6 . . ·imilarly. F ig. 3.1-lb is obtained when 11 2 2 i 2000000 

with tolerance 1000 and the initial val ue of/ is 0.001 with toleran ce l.OE-6. For the 

purpo e of compari so n. we a l o ap plied the conventional second orde r difference filter 

(Eq. 3.9) to images in Fig. 3.10 y ielding Fig. 3.l'.3a and Fiu. 3.1-!a. Fig. '.3.13a is 

obtained \\·hen nz 2 i :3000000 with tolerance 1000 and the initial rnlue of 1 

0.01 wit h tolerance 1.0£-6 . . -' imilarly. Fig . '.3.l-la is obtained when 11 2 2 i 2000000 

with tole rance 1000 and the in i tial val ue of; is 0.01 wi th tolerance l.OE-6. 

Hence. compared with the con\·entional lea t- quare fi lt er. in\·er.e filte r and 

\\"iener fi lter . t he propo ed method may improve both the quality and A~I '£of the 

restorations dependinu o n the images to be restored. 



42 

Figure 3. 1-l: Restoration of Fig. 3.lOb when Q is second order difference opera-
to r : (a) Conventional const rained least- squares: AJl S E = 311.943, 
1 = 2.-!7 a t 6 ite rations. (b ) The pro po ed met hod; .-Uf SE = 290. 749. 
/ = 0.13:3 at .5 it erations 
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R estoratio n of Noisy ~mages Blurre d by U nknown PSF 

[n many pract ical application , the PSF of an imaging sys tem i usually unknown. 

Most of the existi ng restorat ion schemes we re developed under t he assum pt ion that 

the P SF is known . In this sect ion. we attempt to measure the PSF of an X-ray 

imaging sys tem in an app ropriate way before pseudoinverse restorat ion technique is 

applied . 

For an 1magrng system which i a linear shift inrnriant sy tern . the PSF can 

be defined as t he image in the image plane due to an ideal source at the origin in 

the object plane. [sing this definition. t he PSF of the X-ray imaging ystem i 

approximately det e rmined . 

T he X-ray imaging sys tem that we dealt wit h has good resolut ion a nd very litt le 

blurring effect . For an introduct ion of blurring effect t hat a no rmal eye can easily 

realize . the distance between the film and X-ray source was kept about 120 cm and 

the object phalanges was located 20 cm away from the film towards the X- ray source. 

Also a few mall spheri cally shaped metal pieces were placed in the am e plane as the 

object . Here we assumed that these small metal parts would act like ideal sources 

in the -pat ial domain and that t he amplification facto r of system is negligible due to 

the re latively large distance between the sou rce a nd the object . Fig. 3.2 hows an 

image captured under the above conditions. As seen in F ig.3 .2. the cap tured image 

of pha langes has moderate degree of blur, and t he images of spherical metal pieces 

are enl arged to some extent. For the purpose o f restoration , any one of t hese points is 

taken as the estimate of the PSF of the imaging system. Isolating one of the e points 

in Fig .3.2-b. the PSF of the sys tem was capt ured in an array of size of 2.Sx2.5 . .\Iext. 
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Fiaure :3.1.5: Res t oration of image in fi a . 3.2a by Pseudoin\·er e filter:~, - 0.049 at 
-l iterations 

program :VJ.\[.\12 read a nd 11ormalized the PSF and a pp li ed pse udoinverse filtering 

technique. The noise variance required fo r the pseudoim·er e filtering; routine was 

measured a s cr 2 = 11.-l 6. Hence. the re tored form of Fig. 3 .2-a is gi\·en in Fig. '.3.1 .j 

when n 2 is .5 000000 with tolerance 1000 and the initial rnlue o f --. is 0.01 with 

tolerance l.OE-6 . As seen in Fig . 3.1.5 . the blurring effect is reduced but the wrap-

around and end effects are int roduced in the res toration proces. HoweYer. the quality 

of Fig. 3.1.5 is ob\·iously bette r than tha t of Fig . 3 .2-a. 



-l.5 

CHAPTER 4. TOTAL LEAST SQUARES 

Total Leas t Squares ( TLS ) is a met hod of solving the system of equations v = Hu 

when the vector v and the matrix H are both corrupt ed by noi e r • 9. 10]. [t 

i different from conventional least squares ( LS ) that only account for errors in v . 

Fo r fitt ing a line to the points in a plane, the T LS find s a solution in t he ense of 

minimizing the sum of the squared perpendicular di stance : howeve r. LS minimize-

the vertical distance [9]. 

In the literature, Sil via and Tacker r21] applied the TLS approac h to the im·erse 

cat tering problem to infer t he shape, ize and structural propertie of an object 

from scattering measurements which result from seismic. acoustic or electromagnetic 

probes. :.J"ext , Ra hman a nd Yu :19: used the TLS to improve the re olution of the 

clo ely spaced freque n cies of multiple sinusoids when t he signal to noise ratio of the 

received signal is low . They found that T LS yielded bette r frequency estimates than 

the principal eigenvector m ethod in resolving bot h damped and undamped sinusoids 

in terms of average square e rror and bias. Abatzoglou and :\Iendel ' l' int roduced 

constrained total least squares by cons idering t he noise pe rturbations of v a nd H to 

be linear fun ct ions of a common noi se source vector. 
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Mathe m at ical D erivation o f TLS 

In the conventional lea·t - quare problem (L ), we a re gi,·en a e t of linear equa-

tions 

Ax = b - r ( 4.1) 

whe re A is a data matrix of size nun. b is an obsevation vector of -ize mxl and r i 

the mea urement error in b . The olut ion. minimiz ing b - A x 2 with re pect to 

x. i cri ,·en by )0 . 16. 23 

Howe,·er. when t he data matrix ha addit ional erro r component E . Eq. ( l. l ) can be 

wri tten as 

(A + E )x = b - r. 

Therefore, the TLS problem wa s tated a . 9. 10. 1:3 ] 

:\I inimize E r 2 
F 

'ubject to ( b - r )tR ange( A - E ) 

where IF denotes the Frobe niu no rm. viz 

(-1 .2) 

In [ ]. the T L problem was olved by t he lagrange mult ipliers method and later in[9: . 

it was solved by th e singular value decomposition app roach. In the fo llowing, the fir t 

approach will be given. Rew rit e Eq. (4.:2) as 

(-1.3 ) 



or 

where 

By - Fy = 0 

B = [A b ~ , F = [E I r] and y = l x ] 
- 1 . 

T he TLS problem can be restat ed as 

:\Ii nimize F 2 F 

'ubject to ( B - F )y = 0 

li -ing the lagrange multipliers method. the problem becomes 

:\.Iinirnize Tr [F TF ] - ~T ( B 1 F )y 

( 4 . ..J: ) 

( 4 .. 5) 

where .<l_ is the lagrange parameter vecto r. Taking the derivative of thi s function wi t h 

respect to F and using the_ fact s; 

and 

8~\_TFy - )\ T 
8F - _y 

DTr [F TF ] 
---= 2F oF 

a t at ion ary point can be given by 

1 T Fo = - -X y . 2-

Sub t ituting F o into Eq. (4.4), it follows that 

(4.6 ) 

(cl. 7) 



and . hence, 

Thu 

B yyT 
Fo = T . y y 

( 4. ) 

Since F } = 1- minimum when y is the eigell\·ector associated with the ::.mallest 

eiuell\·alue of BTB . the olution of XTL can be found ,·ia the following procedure: 

1. Form the singular value decompo ition of B 

B = U yT 

,,·here 

and the matrix:: is di agonal co nsisti ng of the s ingular values o f B . 

2. Let z be t he column ,·ector of V associated with the smallest ~ i ngular rnlue 

1711 _ 1 • then 

[ 

XTLS 

- 1 

z 

where =n-l i the last element in z. ~ote that the olu tion will not be unique if O'n-l 

is mult iple. Also XT LS doe not exi st if .:11 +1 = 0. 

Furthermore. it is known that a o lution to a n ill-conditioned least ::. quares prob-

lem can be obtained by ridge regress ion [161. Golub [9] demon strated I h at the total 

least q ua re problem is a d e regularization procedure or inYerse of the ridge regres-

s10n. Hence this property cau e the condit ion of the TLS problem to be alway worse 

than the condition of the corresponding L problem. 
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A pplicatio n of TLS to I mage R estorat io n 

I n this ection , we focu on the restoration of images degraded by either horizontal 

or ver tical linear motion blur. The effect of linear horizontal motion blur can be 

expres ed by r l-5] 
.V -1 

t•(m .n ) = 1-....J h(n - J)tl{m.j) ( l.9) 
;=O 

fo r m = 0.1, 2, .... .\I - L. The above equat ion can be be written in vector-mat ri x 

fo rm as 

where Ym and U m are the m th rows of t'(m.n) and u(m,n). respectively. Therefore. 

linear blur in each ro\,. can be con idered as one dimen -ional conrnlution proce 

Examining Eq. (4. 9) uncovers two prob lems related to image re !oration. T he 

first problem i the estimation of u(m.n) for each m by the knowledge of h(n) and 

t'(m. n) . On the ot her hand. the econd problem i the est imation of h(n) hv the 

knowledge of t•(m.n) and u(m.n) . 

For the purpose of illustration of the first problem . one dimen ional data of lenath 

\" =32 in Fig.4.1 was blurred by a tocha tic P F . The tochast ic P F was obtained 

by adding zero mean. unco rrelated noise of variance o-i = 0.0001 to the normali zed 

Gaussian shaped P F with rnriance l.O and length 9. The resulting blurred data was 

fu r ther added to by zero mean . uncorrelated ob en-at ion noise of variance a-~ = 0.0121. 

Fig . 4.1 shows the noisy data blurred by the stochastic PSF and the noi sy in put data. 

eparately. The aim wa to estimate the original ignal from the dearaded data 

sequence. Applying the least- quares and total least squares methods. the..\ }.,[ E 

values of the estimates fo r different o- 1 and o-2 are given in Table 4.1. Table 4.1 
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Figure -1. 1: One dimensional simulat ion : - - Original da ta . X- :\oisy data blurred 
by sto chastic P. F . ~- );oisy data to determine t he P F 
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how that the TL doe not yie ld e ti mate do er t o the original data than tho e of 

conventional lea -t -quare . Thi · is because of the de regularization property of TL . 

This property becomes ig nifica.nt when the problem is ill-conditioned. Even if the 

image is cho en parallel to the left s ingular vecto r o f A associated wit h the mallest 

ingular value (:i uggested hy [26]) . the L ·solution performed better than the TLS 

solution for image restoration prob lems . ...\ s a resu l t. TL is not a good method in 

the est imation of the original image by the knowledge of the degraded noi y image 

and the tochas tic PSF. Howeve r , TL yielded promising result s in dealing with the 

second problem . In t hi ca:.e, the vector matrix repre entation of Eq. (-1.9) can be 

gl\·en a 

where u;n is a toeplitz matrix and h ' is the unknown PSF vector. Here I he input data 

is assumed to contain a zero mean uncorrelated noi e component o f variance cri = 
0.0001 inherently. and then thi :- noi y input data i conrnh·ed with the determini tic 

part of the P. F used in the fir . t problem . .\ext. the blurred data is further added 

to by ze ro mean uncorre lated obsen ·ation noi se of variance a~ = 0.0121. Table. 4.2 

show the ...\~ISE Yalues of LS and TL · imulations for a et of different a 1 and cr2 . 

Examining this table for low \·alue of cr2 show, that TLS ga\·e better re ult compared 

with tho e of LS. Finally. It can be concluded that TL · can be used confidently in 

estimating the PSF by knowing the dearaded image and original image with noi se . 



Table 4 .1: AJ\I E values of LS and TL results in thee timat ion of Input Data 

I · ~R 0"1 0"2 A.H SELs A.JI... ' Er L · ! 
20 db 0.01 0.3-ll 4 . 60 34.5.690 
20 db 0.01 0.3-llc .59.331 196.16.5 
30 db 0.01 0.11 3. 114 31.906 
30 db 0.001 0.11 .5 .6.51 .:39 b 
30 db 0.0001 0.11 6.026 .. ).54: 
40 db 0.01 0.03-17 1.2.SO l.960 
40 db 0.001 0.034 7 0 .-b 0 .. 5:30 
40 db 0.0001 0.034 7 0.593 0.62i 
.50 db 0.0001 0.011 0.0.56 0.0.51 

Table 4.2 : AMSE values of LS and TLS result s in the estimation of PSF 

.R 0"1 0"2 .--UI S EL .-U I... ETL 
20 db 0.341 0.1 .) 1.31 E-6 5 .104£-6 
20 db 0.341 0.01 30 .6 2E-6 30.330£-6 
20 db 0.341 0.001 3l.272E-6 30. 74£-6 
30 db 0.11 0.1 36.316E-6 36 .665E-6 
30 db 0.11 0.01 3.16 E-6 3.156E-6 
30 db 0.11 0.001 3.10 E-6 3.0918-6 
40 db 0.0347 0.1 3.5.7 lE-6 36.07 E-6 
40 db 0.034 7 0.01 0.513E-6 o .. 573£-6 



CH APTER 5 . DISCUSSION 

In this re earch . we dealt \\·ith variou image restoration method that have been 

implemented in the di sc rete frequency domain. The method were te ted on real 

images blurred by either deterministic o r tocha tic PSFs in the presence of ignal-

independent additive ;au ian white noi e. Table .5.1-.5.2 Ii t the :\.\I E \·al ue 

obtained from t he restoration results in Chapter Three. \V iener filter ::,imulation were 

perfor med under the as um pt ion of zero mean and nonzero mean image . re pectively. 

However. it i true that the real image have nonzero mean. 

The major problem with image restoration methods is obsen·ed to be the edge 

effect due to the convolution wraparound at the borders of the restored images. The 

wrap-around i the result of the circular convolution process between the image to be 

restored and the resto ration filter, whe n the size of the convolu ti on exceed the size of 

Table 5.1: ...\.\I E value of Re torations with dete rmini tic P 'F 

Restoration cheme: 
Deter minist ic P ' F 
Im·erse Filter 
Wiener F il te r (ze ro m ean) 
\Viener filter (nonzero mean) 
Pseudoinverse F ilter 
Constrained Least quares Filter 

Picture 
...\i\I E 

-53cl. 31 
764 .. 550 

1192.276 
.).56.0 3 
499. 29 

X-ray Imaae 1 

A.MSE 
3.5.5A21 
229.4 0 

3512.6 9 
-124.093 
265.0 9 



Table .) .2: A.\I E values of Re5toration \\' it h tocha tic PSF 

Res tora tion che me: 
' tochastic P F 

Wiene r Filter (zero mean ) 
\Viener filt e r ( no nzero mean ) 

tochastic \\' iener F ilter (zero mean) 
Stochast ic \Viener F. (nonze ro mean) 

econd Order Diff. Operator 
Proposed Algorithm 

Pict ure 
.-\.\lSE 

.).066 
117 1.930 
636.2 0 

11-1 9 .93-l 
577.9 0 
.516. 40 

X-ray Image 
A.\I E 

276.406 
3.516.431 

2.59.390 
3-l 0.479 

311.9-13 
290.7-19 

t he DFT f21• T he restoration fi lt e rs al o introduced ringing effect at the borders of 

the re to red image in the form of st rip lines. The re toration proce- is a deblurring 

act ion or subt ractio n action as o p po ed to the com·olution sum in blurrina. Hence 

the restoration filt ers introduce negati\·e P F in the restoration and this cau e the 

rin ging in the regions of the im age wit h -harp discontinui ty ~ u ch a:. at the borders 

[2]. 

The results o f inYerse fi lt ering are shown in Fig. 3 .. 5. Inverse fi lt ers are known 

t o amplify noise during t he restorat ion process and are ext remely :::.e nsiti ve to S:-JR. 

HoweYer. inverse filter can perform well if there a re no singu larities in the P F. In 

order to eliminate these shortcomings . t he estimated image in frequency dom ain was 

se t to zero whenever the 2D-DFT of the P Fis less than a suitably chosen thresho ld 

le vel. 

The Wiener filter a sum es a s t at ionary random process and a linear est ima ti on 

model. F ig. 3.6 demons trates the re ult s o f \Vi ener fi l ter res toration . The Wiener 

filter eliminates the ill-conditioned nature oft he prob lem which is ign ifican t in inver e 

fi ltering. It necess it a t e the information about the power spec tra. o f the original image 

and the noise p roce s. It is t his information that pre,·ents t he \\"iener filter from being 
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unstable when the spectrum of t he PSF approache zero as happens in many real 

imaging sy terns. I t can be een from Eq. ( 3.6) that the Wiener filter becomes inverse 

filter as the spec trum of the noise process approaches to zero and it becomes zero 

as the spectrum of the original image approaches to zero. Therefore. it controls the 

ill-condition ing of the restoration by incorparating the information about the spectra. 

\\'hen the PSF of the imaging sys tem is stochastic, the \Viener filter can be 

modified to include the a priori information about the PSF in the restoration pro-

cess. From Eq. (3.18), this information appears as a regularization parameter in 

the denominator. Fig. (3 .11) and Fig. (3.12 ) are the restored forms of images Ill 

Fig. 3.10 u ing a com·entional \Viener filter (Eq. (3 .6)) and a modified \Viener fil-

ter ( Eq. (3 .1 )) . A significant improvement in the smoothness can be made by t he 

restorations implemented by Eq. (3 .1 ). 

To elimi nate the necessi ty of the knowledge about the power spectra of the 

noise and the original image required in the Wiener filter. a constrained least-squares 

filter can be used for the purpose of obtaining smoothed images. It can result in 

different filters depending on the choice of the constrained linear operator. Two 

such filter s were the pseudoinverse filter and the second order differ ence filter . The 

resto ration results of these filter s are shown in Fig. 3.7 and Fig. 3 .. respecti,·ely. 

Compared wit h the pseudoinverse filter. the second order difference filter yielded 

smoother image with lower Al\ISE rnlues. Constrained least -square methods also 

improve the sharpness and AMSE values of the images, when compared with t he 

resul t s of the inverse filte r and the \Viener filter. 

For the case of a stochastic P F. it i po sible to inclu de the tatistical char-
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acteri ti cs o f the PSF in the cons trained least- -q uare filter. The propo:;ed image 

re toration method (Eq. (:3 .:3:3)) and t he econd orde r difference fi lt er ( Eq. (3.10 )) 

y ield Fig. :3. l Ll and Fig. 3.1'.3 a.:; the restored form of images in F ig. 3.10. re pectively. 

The restored images of our proposed met hod are harper and visually more pleasing. 

The res to red s t andard te t image has lower A~'1 S E value, when compared with both 

the econd order difference fi lter and t he \\.iener fi lter . 

Whe n the PSF function o f the system is not known . it can be approximately 

determined by experimental calibration measurement. Fig. 3.2 represe nt s a y tem-

atically blurred real image and dot from whi ch the PSF of t he real X-ray imaging 

system is to be deter mined. l"sing thi P F. the p eudoi nYerse filter yields Fig . 3.1.) . 

Alt hough Fig. 3. 1.5 contains a. ringing effect around the edges . a ignificant impro \·e-

ment is obvious . when compared with Fig. 3.:2. 

A new image restoration a pproach using the TLS method has been im·e tigated. 

T he TL. · can be a pplied to restore noi y image blurred by tochast ic P ' F. or to 

e timate t he impulse r e pane of the imaaing sys tem. R eferri ng to T able 4.2. t he 

TLS yields better results than the com·entional least-squares in estimating t he P F 

for high values of S-:'\R. However. fo r the image res to ration problem that we dealt 

with. the TL method yields e timates that are wore t han those of t he con \'entional 

least- qua.res method due to the deregu lari zing effec t. 
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CH APTER 6. CONC LU SION 

In t hi s the~is, t he restorat ion of blurred images in the presence of additive sign al-

independen t noi e has been studied . . ·e,·eral re torat ion alao rit hms were di cussed. 

implemented and compared. 

We have im ple mented t he inve rse fi lter. the \V iene r fi lt er . t he p eudoin,·er e filte r 

and the second o rder difference filter to re tore noisy images degraded by determini tic 

P ' Fs . Each met hod was ob erved to require some ::.ort of a p riori information. The 

W iene r fil ter req uires the power spectra of the noi c and the o ri ginal image. 0Yeral l. 

t he second o rder difference filter yielded ·moother re tored image \\'ith maller ...\ .\ I E 

values . 

W hen t he P Fis stoc hastic . t he info rmation abou t the uncer tainty in the P F, 

if avai lable . should be i ncorpo rated in the restoration process to obtain better res ult s. 

\i\'e ha\·e developed a met hod called tochastic con trained least - quare that can use 

thi infor mation . Fur ther more. simu lat ions show the effectivene s of the proposed 

algorithm. 

Another way of restori ng noisy images blurred by stochast ic P F is the u e of 

the T LS. T his met hod has a deregularization property that yie lds worse restored 

images t han the conventional least- quares . Howe,·er. the T L yield better re ults 

in es tima ti ng the P SF of the imagi ng ys t ems unde r specific conditions. From a 
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comp utationa l efficiency point of vi~w. the frequency domain implementation of T LS 

may be possible and needs further deve lopment in the future . 

In most of the practical applications, the P SF of the imaging syst ems 1s not 

availa ble a priori and needs to be determined. Our attempt to determine t he PSF of 

an X-ray imaging sys tem by measurement has yielded promising results . 

Finally. it should be emphasized that good resto rat ion algor ithms should be les 

sensitive to SN R. y ield good resolut ion. and have a cont rol ab ilit y ove r the restored 

images. They a re also required to be computationally effic ient and use less memory 

sto rage. 
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APPENDIX 

PROGRAM MAIN1 
c 
C This program generates images blurred by deterministic 
C or stochastic point spread function (PSF) in the 
C presence of additive noise . 
c 
C y is an integer image f or input 
c 
C ye & ycd are complex images degraded by deterministic 
C and stochasti c PSF, respectively 
c 
C h & hd are gaussian shaped deterministic and stochastic 
C PSF , respectively 

parameter ( is=128,irn=7 ) 

C is=2**im 

integer y(is,is) 
comple x yc(is,is),uu,h(is,is),hd(is,is),ycd(is,is) 
character*32 outf ile 
pi=4.0*atan(1 .0) 

C Initialization 

do 10 j =l ,is 
do 10 i=l,i s 

y(i,j) =O 
yc(i , j) =crnplx (0.0 , 0.0) 



hd ( i,j) =cmplx (0.0 , 0 . 0) 
10 h ( i,j ) =cmplx (0 . 0 , 0.0) 

C PSF Generation 

mean=10 
var=4.0 
stdev=sqrt ( var ) 
sn=O.O 
iseed=27983 

do 20 j=1,2*mean-1 
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do 20 i=1,2*mean-1 
t=float (( i-mean) **2+ ( j-mean) **2 )/(2. 0*var) 
t=exp(-t) 
sn=sn+t 

20 h ( i,j ) =cmplx ( t, 0.0) 

C Normalization of PSF h and generation of hd 

print *, ' ENTER variance of hd ' 
read ( S,* ) psfv 
psfv=sqrt (psfv) 
d o 30 j=1,2*mean-1 
do 30 i=1,2*mean-1 

h ( i,j ) =h ( i, j)/ sn 

C Mean and Var i ance of hd are hand psfv**2, r espe ctively 

call normal ( gdev,x2,iseed) 
30 hd ( i,j ) =h ( i,j ) +cmplx (psfv*gdev , 0.0) 

no ise=O 

C Options to record h, hd in psf . dat and psfd.dat, r espectively 

C outfile='psf.dat' 
C c all arrange (h , is,is ,outfile,3,noise ) 

C outfile= ' psfd .dat ' 
C call arrange (hd,is,is, outfile,4,noise ) 
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c 
C Two dimensional discrete f ourier trasform of size 128x128 
c 

c 

call fft (h,im,im,-1 ) 
call fft (hd,im,irn,-1 ) 

C Correct the spatial domain shift because h and hd are not 
C centered at the origin 
c 

c 

tz=2.0*pi*float (rnean-1 )/float ( is) 
uu=crnplx (cos (t z ), sin (tz )) 

do 40 1=1,is 
do 40 k=1 ,is 

hd (k,l ) =hd (k,l ) * (UU** (k+l )) 
40 h(k,l ) =h (k,l)* (uu** (k+l )) 

C Options to record OFT of h and hd 
C outfile= ' fpsf.dat ' 
C c all arrange (h ,is,is,outfile,1,noi se ) 

C outfile= ' fpsfd.dat ' 
C call arrange (hd,is,is, outfile,2,noise ) 
c 
C Read original image 

open (9 ,file= 'orim . dat ' ,status='old ') 
rewi nd(9) 
read (9 ,50) ix,iy 

C ix, iy are horizantal and vertical sizes of image 

50 forrnat(2i5 ) 
if(ix.gt.is .or . iy.gt . is ) then 
print * , ' ERROR= > image is larger than 128x128 ' 
got o 1000 
end if 
read(9 ,51,end=60) (( y (i,j ),j =l,ix ) ,i=l , iy) 

51 f orrnat ( 16i5 ) 

C Conversion to complex image 



60 do 70 ik=l,ix 
do 70 il=l, iy 
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70 yc ( il,ik) =crnplx (float(y(il , ik) ) , 0.0) 
c 

call fft (yc,im,im,-1 ) 
c 
C Multiply DFT ' s of original image and PSF ' s 
c 

c 

do 80 1=1,is 
do 80 k=l,is 

ycd(k,l)=yc (k,l ) *hd (k,l ) 
80 yc (k,l ) =yc (k,l )*h ( k , l ) 

C Inverse DFT's 
c 

c 

call fft (yc,im,im,1 ) 
call fft (ycd,im,im,1) 

C Write blurred images 
C deterministic PSF 

outfile='b.dat ' 
call arrange (yc, ix,iy, outfile,2 ,noise) 

C stochastic PSF 
outfile= ' rb .dat ' 
call arrange (ycd,ix,iy,outfile,7,noise ) 

C write noi sy and blurred images 

noise=l 
C deterministic PSF 

outfile= 'nb .dat ' 
call arrange (yc,ix,iy, outfile,8,noise) 

C stochastic PSF 
outfile= ' nrb .dat' 
call arrange (ycd,ix,iy, outfile,4,noise ) 

1000 print "' 
end 
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PROGRAM MAIN2 

C This program implements : 
C 1- Restoration in the presence of Deterministic PSF 
C a) Inverse Filtering 
C b) Wiener Filtering 
C c) Constrained Least Squares 
C - Second Or der Difference 
C - Pseudoinverse Filtering 
C 2- Restoration in the presence of Stochastic PSF 
C a) Modified Wiener Filtering 
C b ) Modified Constrained Least Squares 
C - second order difference operator 
C 3- Unknown PSF to be measured 
C in restoring blurred and noisy images 
c 
C y - input image 
C ye - complex images in both spatial and frequency 
c 
c h 
c q 
c 

domain 
- Point Spread Function 
- power spectrum _in wiener filtering r outine and 

second order difference operator in 
C cons t rained least squares 
C x - restored image 
C i,j - spatial domain variables 
C k,l - frequency domain variables 

parameter(is=128,im=7) 

C is=2**im 

integer y( is,is ) 
complex yc(is,is) ,uu,h ( is , is ) ,thr ,q(is,is ), x ( is,is) 
charact er*32 outf ile 
character*32 infile 
pi=4 .0*atan (1 .0) 
p=sqrt (2.0*pi ) 



C Initialization 

do 10 j=l , is 
do 10 i=l,is 

x(i,j) =cmplx (0.0,0.0) 
y ( i,j ) =O 
q ( i,j ) =cmplx (0.0,0.0) 
yc(i,j) =cmplx (0.0 ,0.0 ) 

10 h ( i,j ) =cmplx (0.0 ,0.0) 

C PSF Generation 

6 

720 print •, ' ----PSF SELECTION---- ' 
print * 
pr int *, ' 1- Known PSF' 
print *• ' 2- Unkown PSF' 
print *• '3- None' 
print ,. 

730 print *, ' ENTER the selection 1,2 or 3 => ' 
read(5, *) isel 
go to (750,775,lOOO ) isel 
go to 730 

750 print •, ' ----KNO WN PSF with GAUSSIAN SHAPE--- - ' 
pr int • 
print *•' ENTER mean, variance of Gaussian Curve =>' 
read(5,* ) mean,var 
print *, ' wait ' 
stdev=sqrt (var ) 
sn=O .O 
do 20 j=1,2*mean-1 
do 20 i=1,2*mean-1 

t=float (( i-mean) **2+(j-mean)**2)/(2. 0*var ) 
t=exp (-t ) 
sn=sn+t 

20 h ( i,j)=cmplx (t, 0.0) 

C No r malization of PSF h 

do 30 j=1 ,2*rnean-1 
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do 30 i=1,2*mean-1 
30 h(i,j ) =h ( i,j )/sn 

ipsf=O 
go to 740 

775 print *,'----UNKNOWN PSF: Pseudoinverse Filtering ' 
print *, ' psf will be read from file psf.dat' 
open(12,file='psf . dat ' ,status=' old' ) 
read ( 12,60) ix2,i y2 
read( 12,70,end=25) ((y(i ,j ) ,j=1,ix2 ) ,i=1,iy2) 

25 sn=O.O 
rewind ( 12 ) 
mean=int ( ix2/2 ) 
do 26 j=1 ,ix2 
do 26 i=1,iy2 

sn=sn+float(y(i,j) ) 
26 h ( i,j ) =cmplx (f loat ( y (i, j)),0.0) 

C Normalize the measured PSF 

do 27 j=1 , ix2 
do 27 i=l , iy2 

27 h(i,j ) =h ( i,j )/sn 
ipsf=l 

C Calculate OFT of PSF 

740 call fft (h,im,im, -1) 

C Correct the spatial domai n shift because h is not 
C centered at the origin 

tz=2 .0*pi*float(mean-1) / f loat (is) 
uu=cmplx (cos(tz),s in(tz )) 
do 40 1=1, is 
do 40 k=l ,is 

40 h(k,l)=h(k,l)* (uu**(k+l ) ) 
print * ENTER degraded image= >' 

C Read the image to be restored 
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read(5,50) infile 
50 format ( a32 ) 

open(9,file=infile,status= 'old' ) 
rewind (9) 
read(9,60 ) ix,iy 

60 format(2i5) 
if ( ix .gt.is .or . i y. gt.is) then 
print *• 'ERROR=> image is larger than 128x128 ' 
goto 1000 
end if 
read(9,70,end=80) ((y (i,j ) ,j=1,ix) ,i=1,iy ) 

70 f ormat ( 16i5 ) 
80 do 90 ik=l, ix 

do 90 il=l,iy 
90 yc ( il,ik)=cmplx (float( y(il,ik)) ,0 .0 ) 

rewind(9) 
call fft (yc,im , im,-1 ) 

C Option t o record OFT of image 
C outfile='ycfft.dat ' 
C call arrange (yc,128,128, outf i le,1, 0) 

if ( ipsf . eq.1 ) got o 834 
840 print *· ' 1- Restoration with Deterministic PSF ' 

print * ' 2- Restoration with Stochastic PSF' 
print * '3- None ' 
print * 

841 print * ENTER the selection 1,2 or 3 =>' 
read( 5,* ) isel 
go to (800,900,lOOO)isel 
go t o 841 

800 print *, ' DETERMINISTIC PSF RESTORATION SCHEME ' 
print * 
print 
print 
print 
print 

* I , 
* I , 
* , ' * I ' 

print * 
if lag=O 

1- Inverse Filtering' 
2- Wiener Filtering' 
3- Constrained Least Squares ' 
4 - Quit ' 
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801 print*, ' ENTER the selection 1,2,3 or 4 =>' 
read(S,*) isel 
go to (810 ,820,830,840) isel 
go to 801 

810 print *,'----INVERSE FILTERING---- ' 
print * 
print*, ' ENTER threshold level=>' 
read (S,* ) tr 
do 100 1=1,is 
do 100 k=1, is 

t=h(k,l)*conjg(h(k,l) ) 
if (t.lt. tr) then 

x (k,1 ) =0.0 
else 

x(k,l)=yc(k,l)/h(k,l ) 
endif 

100 continue 
call fft (x,im,im,1 ) 
print *,'ENTER the out fi le =>' 
read(S,50 ) outfile 
call arrange (x,ix ,iy,outfile,2 ,0) 
print*,' Routine is DONE' 
goto 800 

820 print *•'----WIENER FILTER----' 
print *, ' wait ' 

C read the original image t o find spectrum 

open(8,file='orim.dat' ,status= 'old') 
rewind (8) 
read(8 ,60) ix1,iy1 
read(8,70,end=110) ( (y (i,j ) ,j=l,ixl) ,i=1,iy1 ) 

C Calculate the mean of the original image 

yav=O.O 
do 118 j=1,ix1 
do 118 i=l,iyl 

118 yav=yav+float (y (i,j) ) 
yav=yav/float(ixl*iyl) 
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110 do 120 j=l,ixl 
do 120 i=l,iyl 

q ( i,j)=crnplx (float (y(i,j))-yav,0.0) 
x ( i,j)=crnplx (yav, 0.0) 

120 y ( i,j)=O 
call fft (q,im,irn,-1) 
call fft(x,im,im,-1) 

C Subtract mean of the image from noisy image 

do 123 1=1,is 
do 123 k=l,is 

123 yc(k,l)=yc (k,1 ) -h (k,l )* x (k,l ) 

C Enter white noise variance measured either from 
C the degraded image or known a priori 

print *, ' ENTER Noise Variance= > ' 
read (S ,* ) var 

C if lag=l i f wiener filtering routine is called from 
C stochastic PSF restoration, hence the variance of 
C PSF should be included in the r outine 

c 

c 

if ( iflag .eq .1) then 
print *,'ENTER the variance of PSF =>' 
read(S,* ) psfv 

Multiply the variance of PSF by the size 

psfv= ((float (2*mean-1 ))**2) *psfv 
else 
psfv=O.O 
endif 
do 130 1=1,is 
do 130 k=l,is 

eps=h (k ,l)*conjg(h(k,l)) 

Cu - power spectrum of the original image 

of PSF 
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C Also multiply the noise variance by is*is 
C because of PARSEVAL THEOREM 

Cu=q(k,l)*conjg (q (k,l )) 
qr=var*float ( is**2 )/Cu 
x (k,l ) =yc (k,l ) *conjg(h(k,l ))/( eps+psfv+qr ) 

130 q (k,l ) =cmplx (0.0,0.0) 
call fft (x,im,im,l) 

C Add the average to the restored image 

do 131 j=l, ix1 
do 131 i=1 ,iy1 

131 x (i,j ) =x ( i,j)+cmplx (yav, 0.0) 
print *, ' ENTER the outfile =>' 
read (S,50) outfile 
call arrange (x,ix,iy,outfile,3,0 ) 
print *, ' Routine is DONE' 
if (iflag . eq.1 ) goto 900 
go t o 800 

830 print *,'----CONSTRAINED LEAST SQUARES----' 
print • 
print 
print 
print 

"' , . 
* , ' 
"' , . 

print * 

1- Pseudoinverse Filtering' 
2- Second Order Difference' 
3- None' 

831 print•, ' ENTER the selection 1,2 or 3 => ' 
read(S,* ) isel 
go t o (834,832,800) isel 
go t o 831 

832 print •, ' ----SECOND ORDER DIFFERENCE----' 
print * 
print • , ' wait ' 

C Second difference matrix initialization 

q ( l ,1) =cmplx (O.O,O.O) 
q ( 1,2) =cmplx ( 1.0,0.0) 
q ( 1,3) =cmplx (O.O ,O. O) 



q ( 2,l ) =cmplx( l. 0 , 0 . 0) 
q (2 , 2) =cmplx ( -4 .0,0.0) 
q (2,3 ) =cmplx ( l .O , O.O) 
q (3 ,l ) =cmplx (O.O,O.O) 
q ( 3,2 ) =cmplx ( l .0 , 0.0) 
q (3 , 3) =cmplx(O.O,O.O) 

C Take OFT of second differenc e operator 

call fft (q,im,im,-1 ) 

C Correct the spatial domain s hi ft b ecause q i s no t 
C centered at the origin 

tp=2.0*pi / float (is) 
uu=cmplx (co s ( tp ),s in(tp)) 
do 140 l=l , is 
do 140 k= l ,i s 

140 q( k,l ) =q (k,l ) * (uu** (k+l)) 

C Option t o record OFT of q 

C outf i le= 'qfft . dat ' 
C ca l l arrange (q,is,is, outfile,10) 

if ( iflag.eq. 1) then 
print *,'ENTER the variance of PSF ' 
read( S,* ) psfv 
ps f v= (float ((2*mean-1 )* *2)) *psfv 
e l se 
psfv=O. O 
end if 

C ----- Ne~ton Raphson r oot finding algor i thm 

print *, ' ENTER => bi a s,ftol ,garntol,gam, nl i m' 

C b ias - e stimated norm of noi se term 
C ft ol - t olerance i n t he value of funct ion 
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C around the root 
C gamtol - toler ance of the increment in ganuna 
C gam - initial value of gamma to be determined 
C nlim - maximum number of iterations 

read(S,•) bias,ftol,gamtol,gam,nlim 
do 150 iter=l,nlim 

C NOTE THAT: her e PARSEVALS THEOREM is used 
C fer - sununation of the magnitude square of residual 
C in frequency domain 
C dfer - derivative of fer wrt gam 
C thr - residual in frequency domain 

fer=O. O 
dfer=O.O 

do 160 1=1,is 
do 160 k=l,is 

eps=h (k,l ) *conjg(h(k,l)) 
yeps=yc (k,l )*conjg (yc(k ,l)) 
qx=q (k,l)*conj g(q (k,l )) 
qr=gam•qx 
dfer=2.0•qr*qx*eps*yeps/ (eps+psfv+qr) **3+dfer 

160 fer=fer+((psfv+qr )**2+psfv*eps ) *yeps/ ( eps+psfv+qr)**2 
fer=fer/float ( is*is ) 
fer=fe r -bias 
dfer=dfer/ float ( is*is) 

C Convergence of the algorithm can be increased by 
C multiplying dfer by a suitably chosen constant 

dfer=dfer 
del=fer/dfer 

print *,'iter ' , iter, 'gam ' ,gam,'del ' ,del, ' fer ' ,fer 

C Decision to continue the iteration 

if (abs (del ) .le.gamtol. or.abs (fer) . le.ftol ) goto 190 
gam=gam-del 



76 

150 continue 

C Use the optimum gamma f or second order difference 
C restoration 

c 

190 do 200 1=1,is 
do 200 k=1 ,is 

eps=h (k,l )*conjg (h (k,l) ) 
qr=gam*q (k,l )* conj g (q (k,l )) 
x (k,l )=(yc (k,l )*conjg(h (k ,l)))/(eps+qr+psfv ) 

200 q (k,l ) =cmplx (0.0 , 0.0) 
call fft (x,im,im,1 ) 
print *, ' ENTER the outfile =>' 
read (5 ,50 ) outfile 
call arrange (x ,ix,iy,outfile,4, 0) 
print *• ' Routine is DONE ' 
if ( iflag.eq .1 ) goto 900 
go t o 830 

834 print *, '-- --PSEUDOINVERSE RESTORATION- --- ' 

C Using the same variables as above 

print * 
print *, ' ENTER => bias,ftol,gamtol,gam,nlim' 
read (5,* ) bias,ftol,gamtol, gam,nlim 
do 205 iter=1,nlim 

fer=O. O 
dfer=O.O 

do 210 1=1 , is 
do 210 k=1 ,is 

eps=h (k,l )*conjg(h (k,l )) 
yeps=yc (k ,l)*conj g (yc (k,l )) 
thr=yc(k,l ) *gam/ (eps+gam) 
dfer= ( 2 .0*gam*eps*yeps/ (eps+gam)**3) +dfer 

210 fer=fer+thr*conjg(thr ) 
fer=fer/float ( is*is ) 
fer=fer-bias 
dfer=dfer/float ( is*is ) 
del=fer/dfer 
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print* ' iter' ,iter,'gam' ,gam,'del ' ,del, ' fer ' ,fer 
if (abs (del ) . le .gamtol.or.abs(fer ) . le.ftol) goto 220 
gam=gam-del 

205 continue 
220 do 230 1=1,is 

do 230 k=1, is 
eps=h (k,l )*conjg (h (k,l)) 

230 x (k,l)=yc(k,l ) *conjg(h (k , l ))/( eps+garn) 
call fft (x,im,im ,1) 
print *,'ENTER the outfile =>' 
read(5,50) outfile 
call arrange(x,ix,iy,outfile,7,0 ) 
print *•'Routine is DONE ' 
if ( ipsf . eq.1 ) goto 1000 
go to 830 

900 print *,'----STOCHASTIC PSF RESTORATION SCHEME----' 
print * 
print *• ' 1- Wiener Filter ' 
print *• '2- Constrained Least Squares:' 
print*, ' Second Order Difference' 
print *,'3- Quit' 
print * 
iflag=1 

901 print * , ' ENTER the selection 1,2 or 3 =>' 
read( 5,* ) isel 
go to (820,832,840)isel 
go t o 901 

1000 print • 
end 
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SUBROUTINE FFT (x,mrow,mcol,k) 

This subroutine calculates two dimensional discrete 
Four ier transform and its inver se. 
x -The two dimensional complex array; rep r esenting 

the input when subr outine is called and returns 
OFT or IDFT 

mrow- The row or ver tical axis written as 2**mrow 
mcol-The column or h orizantal written as 2**mcol 
k -If k=-1 then OFT 

i f k= 1 then IDFT 

complex x ( 128,128) ,u,w,t 

n=2**mcol 
pi=4 .0•atan ( 1 .0) 

do 100 ii=1, 2•*mrow 

do 20 1=1,mcol 
le=2** (mcol+1 - l ) 
l e l=le/2 
u= ( l .0,0.0) 
w=cmpl x(cos (pi/float ( lel )) , k*sin(pi/float (lel ))) 
do 20 j=1,le1 
do 10 i=j,n,le 
ip=i+lel 
t =x(ii,i ) +x (ii,ip ) 
x ( ii,ip)= (x (ii,i ) -x (ii,ip ) )*u 

10 x ( ii,i ) =t 
20 u=u*w 

nv2=n/2 
nrnl=n-1 
j=l 

do 30 i=l ,nml 
if ( i . ge.j ) goto 25 



t=x (ii,j ) 
x ( ii,j ) =x (ii,i ) 
x ( ii,i)=t 

25 kk=nv2 
26 if (kk .ge .j) goto 30 

j=j -kk 
kk=kk / 2 
got o 26 

30 j=j+kk 
100 continue 

n=2**rnrow 

do 200 jj=1,2**mcol 

do 120 1=1,rnrow 
le=2** (rnrow+1-l ) 
lel=le/2 
u= ( l. 0 ,0. 0) 

79 

w=cmplx (co s (pi/float (le1 )) ,k*si n (p i/float ( le1 ))) 
do 120 j=1,le1 
do 110 i=j,n,le 
ip=i+le1 
t=x (i,jj ) +x(ip,jj ) 
x ( ip, jj)=(x(i,jj)-x(ip , jj)) •u 

110 x ( i 'j j ) =t 
120 u=u•w 

nv2=n/2 
runl=n- 1 
j=1 
do 130 i =1,run1 
if ( i .ge .j) goto 125 
t=x(j ,jj) 
x (j ,jj)=x(i,jj ) 
x (i,jj ) =t 

125 kk=nv2 
126 if(kk .ge.j) goto 130 

j=j-kk 
kk=kk /2 



goto 126 
130 j =j +kk 

if (k . eq .-1) goto 50 
do 35 11=1, n 

0 

35 x ( ll, jj)=x(ll,jj)/fl oat(n* ( 2**rncol )) 

50 ff=12 
200 continue 

return 
end 



c 
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l 

SUBROUTINE NORMAL(x1,x2,yy ) 

This subroutine generates uncorrelated zero mean 
gaussian random numbers of unity var iance 

yy - any number greater than zero, is eed 
xl, x2 - random numbers 

integer yy 
real t,x1,x2 
call random(0.0, 1 .0 ,rando,yy) 
xl=sqr t (- 2 . *log (rando)) 
call random(0.0, 1 .0 ,rando,yy ) 

t=6.2831853072*rando 
x2=x1*sin ( t ) 
xl=xl*cos ( t ) 
return 
end 

subroutine random(a,b, rando,yy ) 
integer yy,m 
real a ,b,rando 
yy=16807*yy 

m=2*•31-1 
yy=mod ( yy,m) 

i f (yy .lt .0) then 
yy=yy+m 

end if 
rando= (float (yy)/float (m)) *(b- a ) +a 
return 

end 
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SUBROUTINE ARRANGE (ain , i h , iv , out f ile,ip,noise ) 

C This subroutine convert s t he complex array i nto 
C integer number f or output 
C ain - complex image array 
C ih - number of r ows o r horizantal size 
C iv - number of columns or vertical size 
C ou t f ile - name o f file to be outputted 
C ip - unit number 
C noise - determine whether output will be noisy or not 
C noise=O no noise 
c 
c 

n oise=1 un correla ted gauss ian no ise is added 
t o the output 

comp l ex ain ( 128, 1 28 ) 
int eger adat (128 , 128) 
real aout(128,128 ) ,amax 
character*32 outfile 

arnax=O.O 
do 750 j =l ,ih 
do 750 i=l,iv 
aout ( i,j ) =sqrt(ain(i,j ) *conjg ( ain ( i ,j))) 
adat ( i,j ) =int (a out ( i,j ) ) 

750 if (aout ( i ,j) . gt.amax) amax=aout(i,j) 

C Normalization option 

C d o 755 j=l,ih 
C d o 755 i=l,iv 
C tk= (a out ( i,j )*2 55 .0)/amax 
C 755 adat(i,j)=int ( tk ) 

C No ise adding r ou tine 

i f (no ise . eq .1 ) then 
iseed=lOOOO 



do 760 j=1,ih 
do 760 i=1,iv 
call norrnal(gasdev,x2,iseed) 

3 

C Standart deviation of noise is 10.0, hence variance 
C is 100.0 

it=10*gasdev 
adat ( i,j ) =adat ( i,j)+it 

760 continue 
endif 

open(ip,file=outfile,status='new') 
write (ip,780) ih,iv 

780 forrnat (2i5 ) 
print * , 'write is started' 
write ( i p , 7 8 5 ) ( ( ada t ( i , j ) , j = 1 , ih) , i = 1 , iv) 

785 forrnat (16i5) 
close(ip ) 

return 
end 




