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CHAPTER 1. INTRODUCTION

In reality, no recording is the perfect replica of the original data because of the
degradation properties of the recording system or the environment. These degrada-
tions in the recording can be either systematic (spatial). such as blurring due to optical
system aberrations (phase distortions), atmospheric turbulence (random variations in
the refractive index of the medium between the object and the imaging system), rel-
ative motion between the object and the imaging system, diffraction limitedness and
nonlinearity of the detector, or statistical, such as noise and measurement errors. For
example, electron micrographs are often degraded by the spherical aberration of the
electron lens and medical radiographic images are of low resolution and contrast due
to the nature of the X-ray imaging systems.

Recovering a high quality image from a degraded recording is the primary purpose
of the Image Restoration. For this purpose many restoration schemes were posed and
applied extensively with some degree of success during the past.

In this research, we are primarily concerned with the restoration of images de-

graded by
L. Blur which might be deterministic, stochastic, known or unknown, and

2. Additive noise.



In particular, we applied inverse filter, pseudoinverse filter (least-squares), constrained
least-squares filter and Wiener filter in frequency domain to estimate the original real
images. A new restoration scheme, developed from constrained least-squares, was
presented to restore images degraded by a stochastic blur function. The estimation
accuracies of the restoration schemes were compared in terms of mean-square error.
The estimation of the blur function of imaging systems from the degraded images was
presented. For the purpose of illustration, the blur function was first measured from
the degraded image directly, then this function was used in the restoration. Finally,
application of total least squares 9] to the image restoration was discussed and the

mean-square error values of one dimensional restoration results were given.



CHAPTER 2. GENERAL REVIEW OF IMAGE RESTORATION

Mathematical Model of a General Imaging System

For the convenience of analysis, any physical system is usually represented by
a mathematical model if some features of the given system are known. Since cap-
turing an image is a physical phenomenon, imaging systems can also be represented
by a mathematical model. For that purpose, what a person needs is to know some
properties of the given imaging system. Considering the knowledge of these proper-
ties, Jain [15] and Andrews and Hunt 2] represented a typical imaging system in a
mathematical model as shown in Fig. 2.1. This model mainly consists of an image
formation model, a detector/recorder model and a noise model, and can be expressed

mathematically as

v(r,y) = glw(z,y)] + n(z,y) (2.1)
w(z,y) = f f h(z,y: p.q)ulp, q)dpdg (2.2)

n(z,y) = flglw(z,y))|nm(e,y) + nalz,y). (2.3)
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In this model, the original image u(z,y) lies in the object plane and the recorded
image v(z,y) lies in the image plane. The continuous variable (z,y) represents the
location of an image point on either plane and u(z,y) (or v(z.y)) represents the
intensity level of the image at point (r,y). h(z.y;p.q) 1s the impulse response of
the linear image formation system. In image processing terminology, the function
h{z,y;p,q) 1s called point spread function (PSF) since it is the image in the image
plane due to an ideal point source at location (p,q) in the object plane. The PSF
is called space invariant if the value of A(r,y:p.q) depends only on the location
differences, i.e.,

h(z,yip,q) = h(z — py —q). (2.4)
Otherwise h(z,y:p,q) is called space variant. w(x.y) is called a blurred image which is
a superposition of the original image weighted by the PSF. The functions f and g are
usually nonlinear, representing respectively sensor nonlinearity and signal-dependent
noise function. The term n(z,y) is the addition of image-dependent noise compo-

nent flg(w(z,y))ni(r,y) and image independent random noise component no(z,y).

Suppose that
1. The sensors are operated in linear region (f is linear)
2. PSF is space invariant, and

3. The noise has only an image independent random component.

Eqgs.(2.1)-(2.3) reduce to

v(z,y) =

g4

f h(z —p,y — q)u(p,q)dpdg + n(z,y) (2.5)



Here we used n(z.y) in lieu of ny(x, y) for the simplicity of notation.

In order to restore the images by digital computers, the mathematical model of
imaging system should be in the discrete variable form (difference equation). An-
drews and Hunt 2| (see also 5]) showed that when sampling the continuous variable
functions uniformly, the model can be reduced to discrete variable form. Moreover,
if the sampled functions h(m.,n), u(m,n), and v(m,n) are periodic with a period
(M, N) in spatial coordinates, the model of the imaging system can be written as |2,

5, 14, 18]:

M

7
v(m,n) =
:

I N=-1
Y h(m —in—jluli,j) + n(m,n) (2.6)
Jj=0

0

where the sizes of u(m,n), h(m,n) and v(m,n) are KxL, IxJ.and MxN, respectively.
The overlap in the individual periods of the convolution term in Eq. (2.6) can be
avoided by choosing M > K +1 -1, N > L - .J — 1 and padding the functions
h(m,n), u(m,n) with zeros so that their sizes are equal to MxN. In the following
pages, the sizes of the sampled functions are assumed to be MxN.

In order to write Eq. (2.6 ) in vector matrix form for the convenience of processing,
Hunt 14| first ordered the image lexicographically by stacking the consecutive rows

into a column vector, yielding

R}
=~J

v = Hu +n (:

where v, u and n are vectors of dimension MNx1, KLx1 and MNxI, respectively.
When the dimensions of v and u are equal, H becomes a block circulant matrix con-
sisting of M? blocks and each block is a circulant matrix of size NxN. Again, Hunt 14
demonstrated that the circulant and block-circulant matrices can bhe diagonalized by

one dimensional and two dimensional discrete Fourier transforms, respectively. Fol-



lowing his approach, H can be written as:

H- WDW! (2.8)
or
D =W 'HW (2.9)
and
I=WWwW-! (2.10)

where D is a diagonal matrix whose elements D{k, k) are related to the two dimen-
sional discrete Fourier transform (2D-DFT) of the extended point spread function
h(m,n) and W is an unitary matrix of size MNxMN whose columns are the eigen-

vectors of H. Furthermore, it can be shown that the transpose of H is equal to
H' = wD'W! (2.11)

where D* is the complex conjugate of D. Using the diagonalized form of H, Eq. (2.7)
vields

v=WDWlu}n. (2.12)

Multiplying hoth sides of Eq. (2.12) by W1, we have
W lv=DW 'u-W'n (2.13)

where W-lv, W-lu, W-1ln are vectors of dimension MNx1. After rearranging
the elements of these vectors and the matrix D into 2D-DFT representation V'(k,1),

U(k,l), N(k,l) and H(k,l), respectively, Eq. (2.6) can be written as

Vik, 1) = H(k,)U (k1) + N(k,1) (2.14)



where the 2D-DFT is given by [5]

M-1N-1 ) B e
Z(k)= 3 Y z(m,n)e TN (2.15)
m=0 n=0

for 7 = V,U,N or H in Eq. (2.14) and z = v,u,n or h in Eq. (2.6). Similarly,

the spatial domain functions can be obtained by using two dimensional inverse DFT

(2D-IDFT)
| M-1N-1 T
Zm.n) = —= Z ZZ(F@.!)EJZ’”W*?. (2.16)
MN = =

Problems with the Image Restoration

Image restoration can be stated as a deconvolution problem or the problem of sep-
arating two convolved signals in the presence of additive noise. Examining Eq. (2.6)
with known PSF uncovers two problems; the equation can be either singular at worst
or ill-conditioned at best 2|. Singularity means there is no inverse transformation
for a solution, in other words, the solution does not exist. On the other hand, ill-
conditioned refers to the existence and uniqueness of a solution, but small changes in
the recorded image v cause large changes in the original image u. From the matrix
theory, condition of a matrix is determined by a condition number which is defined
as the ratio of the largest eigenvalue to the smallest eigenvalue of the matrix. The
larger the condition number, the higher the ill-conditioned behavior. ('onsequently, a
solution to Eq. (2.6) can be expected to be close to the original image if the condition
number of H is small.

A set of solutions to Eq. (2.6) can be found by using either statistical or deter-

ministic approaches. However, the selection of the proper solution within the solution



set will be another problem. The best one from the solution set can be selected by
using some optimization criteria.

When the PSF is unknown, it should be determined by either measurement or
some parameter estimation methods. Of course, the uncertainity of the resulting PSF
will be a new question to be answered.

In summary, the purpose of image restoration is to estimate the original image u
from the degraded image v such that the estimated image u is as close to the original

image u as possible, subject to a suitably chosen optimality criterion.

Previous Work in Image Restoration

Many studies in digital image processing resulted in a variety of image restoration
algorithms in the past. Early image restoration methods appeared in continuous
variable form. For example, a typical optical imaging system was often represented in
the form of Eq. (2.5). Helstrom [12] stated the optical restoration problem as finding
an estimate u that is a linear function of the degraded image v and then minimizing
the mean-square error (MSE) ! between the original image u and its estimate .

In [12], the images u, v and the noise n were assumed to be stochastic processes
with known properties in the presence of deterministic PSF h. Slepian [22 approached
the same problem by considering PSF h as a stochastic process with known charac-
teristics. The foregoing two approaches yielded a two dimensional linear Wiener filter
that depends on the power spectrum of the noise and the original image. In the case

of stochastic PSF, the resulting Wiener filter also included the second order statistical

'MSE = E|[| u(m,n) — a(m,n) |?].
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characteristics of the PSF. Slepian’s work showed that if the MSE is small enough,
at least one of the restored images is bound to be good. In addition, Helstrom 12|
came up with the digital form of the Wiener filter when he considered the problem
in discrete variable form (Eq. (2.6)) for digital image restorations.

The simplicity, flexibility and the power of digital computers are the main reasons
for discrete image restorations. Moreover, the developments in the theory of discrete
mathematics allowed the invention of different new restoration algorithms.

The first digital image restoration techniques were applied at the Jet Propulsion
Laboratory (JPL) in the early 1960s in the program to land a man on the moon 2.
[t was decided to land an unmanned craft which could analyze and take pictures of
the surface of the moon for later work. The degradation properties of the cameras
placed on the craft forced the usage of the image restoration. Consequently, JPL
measured the degradation properties of the cameras before they were launched and
then removed, as much as possible, the degradations from the received moon images
by means of some image processing techniques.

The degradation properties of the cameras or any imaging system can basically
be represented by Eq. (2.7) in vector-matrix form. The solution @ can be achieved
as a linear function of v in the sense of minimum MSE (MMSE), similar to the case
in continuous variable form 2, 12. When the statistical properties of the noise n are
unknown and even the PSF is spatially variant, a solution is still possible by means
of linear least-squares. Linear least-squares requires the norm of the residual vector
v — Hu to be minimized. Since there is no restriction on the values of the estimate

U, this approach was called unconstrained restoration [18]. The unique solution was
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given as the multiplication of v by the pseudoinverse matrix of H 10, 16, 23 .

Mascarenhas and Pratt [17] presented computer simulations of the unconstrained
restoration for underdetermined and overdetermined image observation models (i.e.,
the size of v is greater than that of u in overdetermined case and is less than that
of u in underdetermined case). In each case, a Gaussian shaped PSF with specific
variance was chosen to blur the images. Gaussian white noise with different variances
was also added to the resulting blurred images. Some round-oft errors were observed
inherently in the computations between the original images and the estimated ones,
even though there was no additive noise component n in Eq. (2.7). A curve was
drawn to relate the condition number of matrix H to the changes in the variance of
the Gaussian blur and the size of v. The condition number determines the singularity
of a matrix. The larger the condition number, the higher the singularity of matrix
H. For the case of high condition number of H, Eq. (2.7) will be extermely difficult
to solve and the solution becomes unstable.

One possible solution to Eq. (2.7) with singular matrices is to use Singular Value
Decomposition (SVD) of H in the calculation of the pseudoinverse of H (2, 15, 18,
26]. It was observed that the singular values of the higher orders approach zero and
cause the unstability of the solution (since the inverse of singular values determines
the pseudoinverse of H). In order to come up with an appropriate solution, Pratt [18]
suggested a sequential algorithm in the calculation of the pseudoinverse of H that
can be terminated before reaching the singularity of H which causes unstability.
Unfortunately the proposed SVD image restoration was found to be computationally

inefficient. In addition to that, the pseudoinverse restoration for a moderate degree of



blur was observed to be worse than the restoration for less blur. However, this trend
didn’t continue; the restoration for severe blur was found to be better in a subjective
sense than for moderate blur.

When the PSF is spatially invariant and the associated matrix H is a square
block circulant matrix, 2D-DFT approximation of block circulant matrices can be
applied to the pseudoinverse of H. Then the resulting filter in the frequency domain
is called an inverse filter |2, 15. 18], due to being the inverse of the 2D-DFT of the PSF.
However, it was stated that, in practice, the Fourier transform of the PSF drops oft
rapidly as a function of the distance from the origin of the frequency plane. Therefore,
the inverse filter also suffered when the Fourier transform of the PSF becomes zero
or close to zero.

One suggestion given |15 was to set the inverse filter to zero whenever the magni-
tude of the 2D-DFT of PSF is less than a suitably chosen positive threshold. Another
reasonable suggestion given [2| was minimizing some linear operator on the restored
image 0, while keeping the norm of the residual vector v — Hi the same as that of
the noise vector n. This is known as the constrained least-squares method. The linear
operator is allowed to have an additional control over the restoration process. It was
demonstrated [2] that the resulting filter can be either Wiener filter or pseudoinverse
filter depending on the selection of the linear operator.

In [14]. the linear operator was chosen as the second order difference matrix be-
cause it was desirable that the solution 1 satisfy some kind of smoothness measure and
the norm of second difference of the solution was found to reflect that measure. Clon-

sequently, the lagrangian minimization method yielded a linear filter with a lagrange
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multiplier as a parameter. The optimum value of this multiplier was determined iter-
atively 14|. The main difficulties of constrained least-squares estimation were found
to be the determination of the norm of the noise term in Eq. (2.7) and the initial
value of the lagrange multiplier in the iteration. However, the norm of the noise term
can be estimated from the degraded image a posteriori and the convergence of the
iteration can be made independent of the choice of the initial value of the lagrange
multiplier.

Again, Frieden 6| discussed Backus-Gilbert method which minimizes the linear
combination of the norms of the output noise term and the residual vector v — Hi.

The foregoing restoration algorithms were based on linear least-squares and
mean-square error methods that do not yield estimated images with positive intensity
values at each pixel. However incoherent imaging systems are known as having non-
negative PSFs, inputs and outputs. Consequently, a method based on a maximum
entropy concept was developed to yield nonnegative solutions (2, 15, 18, 32].

In the restoration of images by the maximum entropy method, the normalized
original image is treated as a probability density function and the entropy of the
normalized estimated image is maximized while keeping the norm of v — Hiui and the
norm of the noise term n equal. The experimental results showed that this method
yielded sharper restorations and enhanced small points on the degraded images.

Among a variety of others, Bayesian methods are important restoration tech-
niques when a priori information about the original image is known. In Bayesian
estimation (2, 6], the a posteriori probability density function of the original image

is maximized. That is to say, maximizing the probability density function of the
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original image u given the degraded image v gives the maximum a posteriori esti-
mate of u. If the original image u is assumed to be deterministic, the maximization
process yields a maximum likelihood estimate. If the imaging system is linear and
additive noise is a Gaussian white process, the maximum likelihood estimation re-
duces to the least-squares solution and the maximum a posteriori estimate reduces
to the MMSE (Wiener filter) estimate for the Gaussian distributed original image
u 27|. The Bayesian image restoration method can usually yield better results by
incorporating a priori information about the original image.

In fact, the number of constraints in the foregoing restoration methods can be
increased. A restoration method with more than one constraint was addressed by
31]. In [31], Youla and Webh presented some of the applications of signal reconstruc-
tion (especially tomographic image reconstruction and extrapolation of bandlimited
signals) by sequential projection onto convex sets (POCS). The theory behind POCS
is based on a priori construction of constraints on the solution. It was shown that if
the constraints form a convex set, then a set of feasible solutions satisfying all con-
straints can be found iteratively. An optimal solution among all feasible solutions is
then searched.

Trussell and Civanlar |25 applied the concept of POCS to the restoration of
the signals. They were basically interested in determining a set of appropriate con-
straints, but not the optimality of the solution. As a result of this study, it was stated
that the examination of the statistics of the noise can yield an important set of con-
straints and the fidelity of the solution increases with the number of constraints. For

example, when the PSF is stochastic, finding a solution to Eq. (2.7) becomes more
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difficult. Combettes and Trussell 4| recently studied this special form of problem
using the POCS concept. They determined a new set of constraints by considering
the statistical properties of the PSF. As expected, the diameter of feasible solution
set was increased due to the uncertainity of the PSF.

The ill-conditioned problem was reformulated by Ross 20|, and called regular-
ization, so that a solution which is not only less sensitive to the small perturbations
in the data v but also close to the original data u can be found. However, the
regularization process yields a solution as a function of a variable, called the reg-
ularization parameter. Ross introduced an iterative fast algorithm for obtaining a
feasible solution and established a criterion for determining an optimum value for the
regularization parameter.

Another digital image restoration method which has received much attention
in the literature is Kalman Filtering (KF). Well known as a great success in one
dimensional signal processing, KF is basically known as optimal linear estimator
minimizing the MSE. Nevertheless KF is different from the Wiener filter in the sense
of estimating the data recursively after the new observations.

In 1977, Woods and Radevan (30| (see also Biemond [3]) extended the conven-
tional one dimensional KF to two dimensions. Requiring high dimensional matrices,
the direct extension of KF was found to be computationally very inefficient. In or-
der to improve the computational efficiency. the authors introduced a Kalman strip
processor that updates one line in the image at a time, and a Kalman scalar proces-
sor that updates one point in the image at a time. It was shown that the proposed

techniques are computationally attractive and applicable to the nonstationary images
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degraded by space variant PSFs. It was hoped that the nonlinear models with space
variant PSFs could be treated using similar techniques.

Little work on the restoration of images degraded by a stochastic PSF in the
presence of additive noise can be found in the literature. As we mentioned at the
beginning, Slepian 22| dealt with the solution of Eq. (2.5) when the PSF is stochastic.
His approach vielded the Wiener filter as a function of the second order statistics of
the PSF. Later Ward and Saleh 28| developed two iterative nonlinear methods based
on modifications of the Wiener filter and the minimum variance unbiased estimation
techniques. The methods were both nonlinear and iterative because the unavailability
of the correlation matrix of the object image used in Wiener filter requires iterative
estimation from the degraded image. The proposed methods were tested on one
dimensional signals assuming the PSF and additive noise were uncorrelated. As
a result, the minimum variance unbiased estimation. derived from maximizing the
probability function, was observed to yield better results.

On the other hand, two papers dealing with the restoration of stochastically de-
graded images recently appeared. In the first paper. Guan and Ward [11] extended
the modified iterative Wiener filter, developed earlier by Ward and Saleh 28, into
two dimensional parametric form. The calculations were carried out in the frequency
domain by using block circulant matrix approximation of the mean value of a stochas-
tic PSF matrix. The restoration results of the modified Wiener filter in an iterative
fashion were observed to be both inexpensive and hetter than those of the linear
Wiener filter and the Backus-Gilbert technique in the sense of MSE.

Ward and Saleh [29) modified the Backus-Gilbert technique for restoration of im-
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ages degraded by a stochastic PSF. The developed method was based on the weighted
superposition of a small number of shifted versions of the distorted image. With this
property, the resulting filter was linear and similar to the finite impulse response
filter. The weights in the superposition were determined by optimizing a combined
measure of the resolution and noise. C'ompared with both the Wiener filter requiring
the knowledge of the ensemble average power spectrum of the image, and the min-
imum variance unbiased estimator. requiring extensive computations, the proposed
method yielded better restored images.

Stockham et al. 24| addressed the problem of deconvolving two signals when
both are unknown. This approach was called blind deconvolution. Here the extent
of one of the signals was assumed to be considerably smaller than the other. For
example, in the restoration of conventional acoustic recordings. the waveform span
of the acoustic signal is longer than the extent of the impulse response of the record-
ing mechanism. The authors developed homomorphic filtering and power spectrum
estimation schemes to recover the original speech. For the purpose of illustration. un-
known blurs from the degraded images were eliminated by using the theoretical results
developed for one dimensional restoration. For images of large dynamic range, the
homomorphic filtering approach was observed to provide smoother results compared
with the power spectrum estimation method.

Finally in terms of application areas, current literature (2, 4, 15, 31/ reveals that
digital image restoration methods are extensively used in medicine (diagnostic X-rays,
cell biology, anatomy. physiology);: in physics (plasma diagnostics, ultrahigh- pressure

shockwaves, solid state phenomena); in nondestructive testing (visual quality control



inspection. acoustic holography); in weather forecasting (observation of visible cloud
features from weather satellites); in resource exploration (two dimensional seismic

signal processing): and so on.

Statement of the Problem

Digital image restoration is mainly concerned with recovering the original image.,
given the degraded image and some knowledge about the properties of the degrada-
tions. In this thesis, we focus on images that are modeled by a linear shift invariant
system, namely

v — Hu - n (2.17)

where v is the observed or recorded image, u is the original image, n is Gaussian
noise vector with zero mean and uncorrelated elements and H is a block circulant

PSF matrix.

("onsequently, by knowing v and the statistical characteristic of n. our primary

goal is to restore u for the following cases:

a) Deterministic PSF matrix which is known.

b) Stochastic PSF matrix with known mean and variance.
¢) Deterministic PSF matrix which is unknown.

In the following sections, the above cases will be considered separately. In considering
cases described by (a) and (b) above, various existing algorithms will be applied to

restore the real images degraded by computer generated deterministic or stochastic
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PSF and additive Gaussian white noise. However, in (c¢) the unknown PSF will be

determined from a systematically degraded image.



CHAPTER 3. METHODS AND RESULTS OF DIGITAL IMAGE
RESTORATION

In the first section, we introduce the digitization procedure and give the statistical
properties of the test images to be used in computer simulations.

In the second section. we primarily study the performance of several existing
image restoration techniques for images blurred by the known deterministic PSF
and corrupted by additive signal-independent noise. The restoration results for each
method were given for the purpose of comparison.

In the third section, we propose a new method under the framework of the
constrained least-squares technique to restore images blurred by the stochastic PSF
and corrupted by additive signal-independent noise. The proposed method requires
the signal-to-noise ratio of the degraded image to be less than an a priori known value.
If this condition is satisfied. the simulation results show that our method outperforms
other existing techniques in terms of average mean-square error (AMSE}'. In the
fourth section, we attempt to estimate the PSF of imaging systems from the degraded

images before a specific restoration technique is applied.

'AMSE = 15 RIS Lo Hou(m,n) — a(m,n))2.



Figure 3.1: Original images: a) Picture of a girl, b) X-ray film of tibia

Figure 3.2: Systematically blurred images: a) X-ray film of phalanges, b) Blurred
dots to measure the PSF of X-ray imaging system
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Description of Test Images in Computer Simulations

Fig. 3.1 shows a standard picture of a girl and an X-ray film of a tibia representing
the original images for the computer simulations. The simulations were performed
in a Hewlett-Packard HP 9000/360 series computer. Fig. 3.2 shows systematically
degraded X-ray filin of phalanges and the dots to be used for the determination of
the PSF of the imaging system. These pictures were digitized into the images of
100x100 pixels with 8 bit intensity quantization by minimizing the tradeoft between
the resolution and the size.

Fig. 3.1a, standard test image used often in the literature. has an average gray
level of 178.180, a variance of 2832.627 and an energy (| u |?) of 3.458E-8. Fig. 3.1b
has an average of 131.798, a variance of 7001.048 and an energy of 2.43TE+8.

In order to blur the original images in Fig. 3.1, a symmetric Gaussian shaped

function h(m.n) was selected as the PSF:

2,2
m® +n

h(m,n) = Ke 22 (3.1)

where A is a scaling factor which normalizes h(m.n), i.e ¥, 5, h(m.n) = 1. The
program, MAINI, given in Appendix. was used to perform the degradations due to
blur and signal-independent additive noise. The routines (Eq. (2.6) in the spatial
domain and Eq. (2.14) in the frequency domain) were implemented by calling 2D-
DFT subroutine FFT and Gaussian random noise subroutine NORMAL. Fig. 3.3
represents the blurred forms of images in Fig. 3.1 when the chosen PSF is of size 19x19
with variance 4.0. With this selection of PSF, the size of convolution in Eq. (2.6) is less

than 128x128 (27 = 128) so that the wraparound effects due to the convolution process



Figure 3.3: Images blurred by Gaussian shaped PSF of variance 4.0

are prevented. Fig. 3.4 is the noise added form of Fig. 3.3. Here the noise of variance
100 is generated using the subroutine NORMAL that creates uncorrelated, zero mean
Gaussian numbers with unity variance. Corresponding signal-to-noise ratios (SNR)?
of Fig.3.4a and Fig.3.4b are 14.42 db and 18.45 db, respectively. In the following
sections, Fig. 3.4 will be the degraded image to which the restoration schemes will be

applied.

Restoration of Noisy Images Degraded by Deterministic PSF

In this section, we present the results of the restored images based on inverse
filtering, Wiener filtering and constraint least-squares filtering. We also use AMSE

as an objective quality measure to compare the performance of the aforementioned

b - . . o . _- . - . . . -
“SNR is defined as the ratio of the variance of the original image to that of the
signal-independent noise.



Figure 3.4: Noisy form of blurred images in Fig. 3.3. Noise variance is 100

restoration methods.

Inverse Filtering

N TE 5555 O ) . :
Based on Eq. (2.7), minimizing | v — Hu |~ with respect to u in the least-square

sense yields a solution given by 10, 16, 23
ia=(HTH) 'HTv. (3.2)
When the PSF matrix H is a square matrix and nonsingular, Eq. (3.2) reduces to
a=H'v (3.3)
Again, approximating the block circulant matrix H by the 2D-DFT. Eq. (3.3) will be
Vi(k. 1)

Ulk,l) = ——
H(k. )
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where ('(»i'.!). Vik,l) and H(k,l) are the 2D-DFTs of the estimated image u(m,n),
degraded image v(m,n) and the PSF h(m.n), respectively. Program MAIN2 in Ap-
pendix implements the inverse filtering routine in the frequency domain by setting
U(k,1) = 0 whenever H(k.l)|? is a less-than-suitably chosen quantity to eliminate
excessively large error when H(k.l) is close to zero. Fig. 3.5 represents the restored

form of images in Fig. 3.4. It is clear that the inverse filtering routine recovers much

of the details by causing additional effects along the edges.

Wiener Filtering

Assume that the restored image is a linear operation on the degraded image,
i.e.. i = Hv, and the original image and signal-independent noise are the samples of
two dimensional random processes with zero mean and known covariance matrices.
Minimization of mean square error £/ u — it [?] yields the Wiener filter [2. 15, 18].
For a general nonlinear image model with space-variant blur, the linear operator can
be given by 18]

H :Cuv(.cvv)ll (3.4)

where Cyy is the cross covariance matrix between the original and degraded images
and Cyy is the covariance matrix of the degraded image. If the imaging system is

the linear model given by Eq. (2.7). the linear function reduces to [2, 15, 18|
H-=-Cc,HYHC,HT + C,)! (3.5)

where Cy, and C,, are the covariance matrices of the original image and noise proccess
respectively. In order to obtain a rapid Fourier computation, the circulant approx-

imation to Cy, Cy and H is assumed 2. Then Eq. (3.5) can be expressed in the



frequency domain as

. H*(k,1)
k1) =
H(k,1) |? +Satkd)

A.l"l
Culk,l)

(3.6)

where (', (k.l) and (',(k,l) are the power spectra of the original image and the noise,
respectively.

Quite often, original images have nonzero means. If the original image has non-
stationary mean, we cannot use the circulant approximation, and Eq.(3.6) can not
be applied. However, if the original image has stationary mean, m, then the restored

image U(k.l)in the frequency domain is given by [15
Uk, ) = H(k,)(V(k, 1) — H(k)M(k,1)) ~ M(k,1) (3.7)

where M(k,1) is the 2D-DFT of the mean of the original image, m. To obtain the
final restored images, Eq.(3.6) or Eq.(3.7) is thus computed by the 2D-IDFT.

Fig. 3.6 represents the images in Fig. 3.4 restored by the Wiener filter routine
in program MAIN2 when the images are assumed to have zero mean. However, our
experience shows that Wiener filter for nonzero mean images (Eq. 3.7) can yield

smoother images with reduced dynamic range and increased AMSE.

Constrained-Least Square Filter

The constrained least-square filter is based on the minimization of a linear func-
tion of the original image such that the norm of the resulting residual vector is equal

to that of the noise vector '14.. The filter can be constructed according to:
Minimize || Qu |?

2

Subject to || v — Hu ||?=| n [|?



Figure 3.5: Restoration of Fig.3.4 by Inverse Filter, Threshold=0.06:

(a) AMSE 534.831, (b) AMSE 355427

Figure 3.6: Restoration of Fig.3.4 by Wiener Filter, Noise variance is 100:
(a) AMSE = 764.550, (b) AMSE = 229 480
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where Q is a linear operator. Using the lagrange optimization method, the estimate
can be given by [14]

i=(HTH +-+QTQ) 'HTv (3.8)
where v is the inverse of the lagrangian parameter to be determined to satisfy the
constraint and || n || is the norm of the noise vector which may be known a priori or
which can be estimated from the smooth regions of the degraded image. Under the

circular approximations, Eq. (3.8) can be written in frequency domain as |14

H* (k. DHV(k, 1)
| H(k,0) |2 +v | Q(k, 1) |27

Uk,l) = (3.9)

Hereafter the residual vector, r = v — Hi, in the frequency domain can be written

as

RUet) = 1 QU1 2 Vi, D

| H(k,{) |2 +v | Q(k,1) |2 (3.10)

where R(k,l) is the 2D-DFT of the residual »(m.n). If the norm of the residual vector
r is equal to that of the noise vector n, then 1 = u. In fact, the norm of the residual

can be calculated in the frequency domain by means of Parseval’s theorem as

M-1N-1 1 M-1N-1
e i’ =3 Y [rimn) P= =< S ¥ | Rk 2. (3.11)
m=0 n=0 MN k=0 =0

Moreover, it was shown [14] that || r '? is monotonically increasing as a function of ~.
Hence, there is only one value of 4 that satisfies the constraint. This optimal value
of 7 can be found by using optimization techniques such as the Newton-Raphson
method [7. The Newton-Raphson method is an iterative process of finding a root of

a function f(xz), starting from an initial estimate. The procedure can be summarized

as [T7]
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START initial guess r,
IF f'(z,) # 0.0 THEN 2, = 2, — f(x)/f (z1)

DO WHILE | »y — 2, | > Tolerance Value 1, OR
| flzs) |= Tolerance Value 2, AND f'(.t'l'] # 0.0

SET 25 = 21 — f(x1)/f (z,)
SET z5, = 4
ENDDO

Application of the Newton-Raphson method requires the derivative of the function

fiay=|r ||* = | n % From Egs. (3.10)-(3.11), the derivative of f(+) with respect

to 5 can be given by

9 1 M-1N- . Q(A‘_l} 2
VI A (3.12
roe MN = = (0 H(k D) 2 +v | @k, ) 2P )

As a result of foregoing explanations. the constrained least-squares image restoration
is implemented in the discrete frequency domain. Also, examining Eq. (3.9) reveals
that the selection of the linear function Q results in different forms of filters as shown

below.
1. Q = 0 or v = 0 results in the inverse filter.

y = W W o . . . . .
2. Q=04 / Cn'” minimizes the effective noise to signal ratio of the estimated

image and yields the Fourier Wiener filter given by Eq. (3.5).

3. Q = I minimizes the energy of the restored image yielding the pseudoinverse

filter.



Figure 3.7: Restoration of Fig. 3.4 by Pseudoinverse Filter: (a) AMSE = 556.083,

~ = 5.56 E — 2 at 4 iterations, (b) AMSE =424.093, v = 8.71E — 2 at
5 iterations

. When Q represents the second order derivative operator 14 the resulting esti-

mate satisfies the smoothness measure.

At this point, we are interested in implementing only the last two forms, since we
have already introduced the results of the first two. Fig. 3.7 and Fig. 3.8 represent the
images in Fig. 3.4 restored by a pseudoinverse filter and a second order derivative filter,
respectively. MAIN2 yields Fig. 3.7 when | n | is 3000000 with tolerance 1000 and
the initial value of v is 0.01 with tolerance 1.0E-6. Similarly. Fig. 3.8a and Fig. 3.8b
are obtained when | n |* is 2300000 and 1500000, respectively, with tolerance 1000
and the initial value of 5 is 0.0001 with tolerance 1.0E-6. As expected. the second

order derivative operator routine yielded smoother results than the pseudoinverse

filter.
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Figure 3.8: Restoration of Fig. 3.4 by Second Order Difference Filter:
(a) AMSE = 499.829, 5 = 0.423 at 6 iterations, (b) AMSE = 265.089,

~ = 0.382 at 7 iterations

Restoration of Noisy Images Degraded by Stochastic PSF

PSFs of real imaging systems usually have uncertainities due to the environmen-
tal or the systematic effects. For example, X-ray imaging systems, scanning micro-
scopes and microdensiometers are known to have blur functions with uncertanities
4. If the uncertainity in the PSF matrix H is additive and confined to the size of
the PSF, the linear shift invariant system in the presence of additive noise can be
written as

v=(H+N;)u+ no (3.13)

or



32
n=N;u+ ns (3.15)

where the matrix H is the mean of the stochastic PSF matrix H, and the matrix Ny

represents the variations about its mean H. The following assumptions are made:
B 4 5 n . 9
1. The matrix N consists of uncorrelated elements with variance o7.

2. The signal-independent additive noise vector ng has uncorrelated elements with

. 9
variance o;.
3. The elements of N and ng are uncorrelated.

In the following, we study the Wiener filter developed in (28 and propose a new
technique based on the conventional constrained-least squares filter for this restoration
problem. Also, for the purpose of performance comparison, the conventional Wiener
filter (Eq. (3.7)) and constrained least squares filter (Eq. (3.9)) were implemented.

Simulations show that our algorithm can yield better results in the sense of AMSE.

Wiener Filtering

Ward and Saleh 28 proposed a technique for restoration of the images degraded

by a stochastic PSF based on the Slepian’s work 22|, yielding a linear function
H = C,HY(HC,HT + E[C,]) ! (3.16)

and

Cn = E[nnT] = E[(Nju + nz)(Nyu + ng)7T] (3.17)
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Figure 3.9: Stochastically blurred images, o7 = 0.0025

Figure 3.10: Noisy form of stochastically blurred images. o3 = 100
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where the expectation in Eq. (3.16) is over u and the expectation in Eq. (3.17) is
over Ny and ns. Eq. (3.16) is similar to the conventional Wiener filter in Eq. (3.5),
except for the expectation operation, E[Cp|. Since we assumed that the uncertainity
in the PSF is uncorrelated with original image and signal-independent additive noise,

Eq. (3.16) reduces to |28

:anu = (-"I - 1.)(-\'- o ])"’?Cu_; T 0,22

where o7 and o} are the variances of uncertainity in the PSF and additive noise, re-

spectively. Using the 2D-DFT approximation of the block circulant matrices, Eq. 3.16

can be written as [11]

H*(k 1)
H(k,1) |2 +1Jo? + Smtkd

Culk,l)

H(k.1) = (3.18)

where I,.J is the size of the PSF and (', (k,[) and (",(k.l) are the power spectra of the
original image and the noise, repectively. Since the images in real life have nonzero
mean, the mean of the original image M(k.l) in frequency domain should be included

in the final form

U(k.D) = Hik,)(V(k,)— H(k, h)M(k. 1)) + M(k.1).

Experimental Results

We consider H is a block circulant matrix representation of a Gaussian function
with variance 4.0 and size [ = J = 19, Ny is a block circulant matrix represen-
tation of a two dimensional Gaussian white noise process with elements of variance

5

o = 0.00000625, and ng is the additive Gaussian noise vector whose elements are
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Figure 3.11: Restoration of Fig. 3.10a, ¢} = 0.00000625 and 3 = 100:
(a) Conventional Wiener filter, AMSE = 885.066, (b) Modified
Wiener filter, AMSE = 636.280

uncorreleted having variance 3 = 100. Program MAINI implements the foregoing
conditions on the original images in Fig. 3.1. Fig. 3.9 shows the images blurred by
stochastic PSF and Fig. 3.10 shows the noisy form of Fig. 3.9. Hence, in the following
pages. Fig. 3.10 represents the degraded images to be restored.

We first used the conventional Wiener filter (Eq. (3.6)) that yielded Fig. 3.11a and
Fig. 3.12a as the restored images in Fig. 3.10. When Eq. (3.18) is used, Fig. 3.11b and
Fig. 3.12b result. Compared with the conventional Wiener filter results, the modified

Wiener filter results are more clear and smoother with lower AMSE values.



Figure 3.12: Restoration of Fig. 3.10b, f‘rf 0.00000625 and rr 100:
{a) Conventional Wiener filter, AMWSE 276.406: (b) Modified
Wiener filter. AMSE = 259.390

The Proposed Approach

First of all, we reviewed the method by Combettes and Trussell |4/, which was
related to our work. The basic idea behind their work is to construct a closed convex
set based on the statistics of the residual signal and then apply the projections onto
convex sets(POCS) method (31 to obtain a feasible restored image.

Suppose that the statistics of the PSF matrix H are known, the residual vector
can be defined by v — Hi where 11 represents the restored image. It is clear that if
the original image is perfectly recovered 1 = u, then v — Hii = n». Although ng is
unknown, its statistics are generally available from the flat regions of the degraded
images. Therefore, it is reasonable to have the sample statistics of the residual vector

in agreement with those of the ns.
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Assuming the knowledge of H and the second order characteristics of uncertainity
in the PSF, Combettes and Trussell 4 formed a constraint based on the residual
vector

r =v — Hi. (3.19)
When the estimate @ is equal to the original image u, the residual becomes
r = Nju + ng; (3.20)

thus

| r[[*= E[(Nyu +nz)T(Nyu + na)]. (3.21)

Since the original image u, the uncertainity N; and additive noise ny are assumed

to be uncorrelated,

| ¢ |[*= E[nTns] + E[|| Nyu ||?. (3.22)
From the inequality
E[|| Niu ||’] €|l u ||? E[|| Ny ||?] (3.23)
it can be shown [4/ that
e |’ E(|ng [|}]+ 3] u|? (3.24)
where
I-1J-1
B=E[| Ny [I] =3 > E[| N1(i,5) ). (3.25)
1=0 ;=0

Therefore, the conventional constrained least-squares problem is modified to
Minimize || Qu |°

Subject to || v — Ha 2= E[|| ny [|2] + 3 || a ||?
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where Q is a linear operator. Using the method of lagrange multipliers and block
circulant approximation of PSF matrix H, the estimate can be given by

) H*(k, OV (k.
D= TR = etk -3

(3.26)

Compared with the Eq. (3.9). this estimate has an extra parameter 3 introducing the
effect of the uncertainity in the PSF. However, 3 in Eq. (3.26) has a deregularization
effect due to negative sign (9. 23]

In order to overcome the aforementioned deregularization effect, we modify the
conventional constrained least-square problem by incorporating the statistical infor-
mation about N; and ng in a different way. Notice that Eq. (3.13) can be written
as

v — Hu — Nju = n,. (3.27)

Given the estimate @ the perturbated residual vector ¢ can be defined as
e =v — Hit — Ny (3.28)

It is obvious that if @ = u then ¢ = ny. Since the perturbated residual vector and
noise vector are random, it is reasonable to seek an estimate 1 such that the average
value of the squared-norm of the perturbated residual vector ¢ matches with that of
the noise vector ny. Assuming all components of ng are uncorrelated with zero mean

and variance a%. it follows that
E[|| nz ||*] = MNa2. (3.29)

Hence, the conventional constrained least-squares problem can be stated as

2

Minimize | Qu |*
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Subject to E[| v — Hi +~ Nyn |*| = E ng  *|.

Assuming that the uncertainty matrix Ny has zero mean elements, the lefthand side

of the constraint can be further simplified and the constraint becomes
| v — Hii || +E]|| Ny ||?. (3.30)
Now, Eqgs. (3.19). (3.24) and (3.30) yield

E[|| ng ||}]- || u [* E]| N1 ||*] <|| v— Ha |°< E]|

L

ng ||*]+ || u [|? E[| N1 |[].

Thus, the lower and upper bounds of the residual vector r are determined. Since
v — Ha [*> 0, the proposed method can be applied if and only if the degraded

images satisfy the requirement:

e El ng [I?]
E[[| Ny ||*] £ 70‘“

- P

That was the reason why we chose o7 = 0.0025.
Returning to the optimization problem, a straightforward lagrangian minimiza-
tion yields
i =(HTH +7QTQ + EINTN, ) 'HTV. (3.31)

a2

Assume that all the elements of N are uncorrelated with variance 7. Eq. (3.31) can

be further reduced to

i =(HTH +4QTQ + 1Jo2I)"'HTv (3.32)

where ¥ = 1 and ) is a lagrange multiplier. C'omparing with the conventional con-

strained least-square filter [14], Eq. (3.31) has an additional term, E[NTN;], which

accounts for the statistical characteristics of the perturbations in the PSF.
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Since H, N; and Q are block circulant matrices, the 2D-DFT can be applied

and Eq. (3.32) can be written as

U(k.1) = (3.33)

H*(k,O)V(k, 1)
H(k,D) 2+ | Q(k, 1) 12 +1Jo}

From Eq. (3.28). the squared-norm of perturbated residual vector € in the discrete

frequency domain can be written as

M=1N-i ) ) _ .
€ 2:; SNTOST( VIR D - HELDU (KD * lJey | Uk ) I*) (3.34)
MN 2

Using the Newton-Raphson method, given in the previous section, a 5 that satisfies
the constraint can be found iteratively. It can be shown 14 that | ¢ | is a monotonic
function of v, so that the algorithm yields a unique 5. The algorithm of the proposed

method can be summarized as follows:

1. Choose an initial value of ~.

88

. Clompute ["'(A-.l] using Eq. (3.33).
3. Compute | ¢ |2 using Eq. (3.34).

4. While || e ' — | ng |*|> ftol;if | € |> = | ng2 |*> 0 reduce v else increase ~.

Go to step 3.
5. Stop iteration.

Where ftol in step four determines the accuracy of the constraint. The convergence
of the above algorithm was observed to be highly depended on the initial choice of 5.
Choosing Q as the second order difference operator, the proposed algorithm

vields Fig. 3.13b and Fig. 3.14b as the restored form of images in Fig. 3.10. Fig. 3.13b
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Figure 3.13: Restoration of Fig. 3.10a when Q is second order difference opera-
tor: (a) C'onventional constrained least-squares; AMSE = 577.980,
v = 1.776 at 6 iterations, (b) The proposed method:
AMSE = 516.840, v = 0.18331 at 5 iterations

a5

is obtained when | no |° is 3000000 with tolerance 1000 and the initial value of 5 1s
0.001 with tolerance 1.0E-6. Similarly. Fig. 3.14b is obtained when = nz *is 2000000
with tolerance 1000 and the initial value of 4 is 0.001 with tolerance 1.0E-6. For the
purpose of comparison, we also applied the conventional second order difference filter
(Eq. 3.9) to images in Fig. 3.10 yielding Fig. 3.13a and Fig. 3.14a. Fig. 3.13a is

"

obtained when ' nz ° is 3000000 with tolerance 1000 and the initial value of 5 is
0.01 with tolerance 1.0E-6. Similarly. Fig. 3.14a is obtained when | na [ is 2000000
with tolerance 1000 and the initial value of 4 is 0.01 with tolerance 1.0E-6.

Hence. compared with the conventional least-squares filter, inverse filter and

Wiener filter, the proposed method may improve both the quality and AMSE of the

restorations depending on the images to be restored.
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Figure 3.14: Restoration of Fig. 3.10b when Q is second order difference opera-
tor: (a) Conventional constrained least-squares; AMSE = 311.943,
~ = 2.47 at 6 iterations. (b) The proposed method; AMSE = 290.749,

~ = 0.133 at 5 iterations
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Restoration of Noisy Images Blurred by Unknown PSF

In many practical applications, the PSF of an imaging system is usually unknown.
Most of the existing restoration schemes were developed under the assumption that
the PSF is known. In this section, we attempt to measure the PSF of an X-ray
imaging system in an appropriate way before pseudoinverse restoration technique is
applied.

For an imaging system which is a linear shift invariant system, the PSF can
be defined as the image in the image plane due to an ideal source at the origin in
the object plane. Using this definition, the PSF of the X-ray imaging system is
approximately determined.

The X-ray imaging system that we dealt with has good resolution and very little
blurring effect. For an introduction of blurring effect that a normal eye can easily
realize, the distance between the film and X-ray source was kept about 120 cm and
the object phalanges was located 20 cm away from the film towards the X-ray source.
Also a few small spherically shaped metal pieces were placed in the same plane as the
object. Here we assumed that these small metal parts would act like ideal sources
in the spatial domain and that the amplification factor of system is negligible due to
the relatively large distance between the source and the object. Fig. 3.2 shows an
image captured under the above conditions. As seen in Fig.3.2, the captured image
of phalanges has moderate degree of blur, and the images of spherical metal pieces
are enlarged to some extent. For the purpose of restoration, any one of these points is
taken as the estimate of the PSF of the imaging system. Isolating one of these points

in Fig.3.2-b, the PSF of the system was captured in an array of size of 25x25. Next,
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Figure 3.15: Restoration of image in Fig. 3.2a by Pseudoinverse filter; 4 = 0.049 at
4 iterations

program MAIN2 read and normalized the PSF and applied pseudoinverse filtering
technique. The noise variance required for the pseudoinverse filtering routine was
measured as o> = 17.486. Hence, the restored form of Fig. 3.2-a is given in Fig. 3.15
when | n ||* is 5000000 with tolerance 1000 and the initial value of v is 0.01 with
tolerance 1.0E-6. As seen in Fig. 3.15, the blurring effect is reduced but the wrap-
around and end effects are introduced in the restoration process. However. the quality

of Fig. 3.15 is obviously better than that of Fig. 3.2-a.



CHAPTER 4. TOTAL LEAST SQUARES

Total Least Squares (TLS) is a method of solving the system of equations v = Hu
when the vector v and the matrix H are both corrupted by noise [8. 9. 10]. Tt
is different from conventional least squares (LS) that only accounts for errors in v.
For fitting a line to the points in a plane, the TLS finds a solution in the sense of
minimizing the sum of the squared perpendicular distance: however. LS minimizes
the vertical distance [9].

In the literature, Silvia and Tacker 21| applied the TLS approach to the inverse
scattering problem to infer the shape, size and structural properties of an object
from scattering measurements which result from seismic, acoustic or electromagnetic
probes. Next., Rahman and Yu 19 used the TLS to improve the resolution of the
closely spaced frequencies of multiple sinusoids when the signal to noise ratio of the
received signal is low. They found that TLS yielded better frequency estimates than
the principal eigenvector method in resolving both damped and undamped sinusoids
in terms of average square error and bias. Abatzoglou and Mendel (1] introduced
constrained total least squares by considering the noise perturbations of v and H to

be linear functions of a common noise source vector.
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Mathematical Derivation of TLS

In the conventional least-squares problem (LS), we are given a set of linear equa-
tions

Ax=b+r (4.1)

where A is a data matrix of size mxn, b is an obsevation vector of size mx1 and r is
the measurement error in b. The solution, minimizing | b — Ax | * with respect to
X, is given by |10, 16, 23|

XLs = (ATA)_IATb.
However, when the data matrix has additional error component E, Eq. (4.1) can be

written as
(A+E)x=b+r. (4.2)

Therefore, the TLS problem was stated as [8, 9. 10, 13]

Minimize | E | r :;«

Subject to (b — rjeRange(A + E)

where || . || denotes the Frobenius norm, viz

n'—d-/_d{JIJ.

GIR=%

1 J

In 8], the TLS problem was solved by the lagrange multipliers method and later in[9],
it was solved by the singular value decomposition approach. In the following, the first

approach will be given. Rewrite Eq. (4.2) as

([A | b] +[E| 1)) -0 (4.3)

-1



47
or
By -Fy=0 (4:4)

where

X
B=[A|b,F=[E|r]and y= ; (4.5)
-1

The TLS problem can be restated as
Minimize | F %
Subject to (B - F)y =0

Using the lagrange multipliers method. the problem becomes
Minimize Tr FpF — (B + F)y

where \ is the lagrange parameter vector. Taking the derivative of this function with

respect to F and using the facts;

IATFy g
—= =) 4.6
aF oY
and
OTr[FTF]
L J — 2 ""
OF F e
a stationary point can be given by
1
Fo = ;AYT-

Substituting Fg into Eq. (4.4), it follows that
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and. hence,

B T
By = Jfry :
y'y
Thus
TpTp
| Fo ||2= Tr[Fg Fo] = yy#yy (4.8)

Since || F ||%= is minimum when ¥ is the eigenvector associated with the smallest

eigenvalue of BTB. the solution of xps can be found via the following procedure:
1. Form the singular value decomposition of B
B=UY VT

where

UTU =1, VIV = 1,1

and the matrix Y is diagonal consisting of the singular values of B.

o

. Let z be the column vector of V associated with the smallest singular value

Gni1, then

=3 “n+1
where =, ., is the last element in z. Note that the solution will not be unique if o, .,
is multiple. Also x7rsg does not exist if z,,.; = 0.

Furthermore, it is known that a solution to an ill-conditioned least squares prob-
lem can be obtained by ridge regression [16]. Golub [9] demonstrated that the total
least squares problem is a deregularization procedure or inverse of the ridge regres-
sion. Hence this property causes the condition of the TLS problem to be always worse

than the condition of the corresponding LS problem.
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Application of TLS to Image Restoration

In this section, we focus on the restoration of images degraded by either horizontal
or vertical linear motion blur. The effect of linear horizontal motion blur can be

expressed by [15]

N-1
vim,n) = Zh(n—j}u(m.j! (4.9)
=0
for = 0,1,3, ... W — 1. The above equation can be be written in vector-matrix

form as

Vg = Htla

where vin and uy, are the mth rows of v(m.n) and u(m.n). respectively. Therefore,
linear blur in each row can be considered as one dimensional convolution process.

Examining Eq. (4.9) uncovers two problems related to image restoration. The
first problem is the estimation of u(m.n) for each m by the knowledge of h(n) and
v(m.n). On the other hand, the second problem is the estimation of h(n) by the
knowledge of v(m,n) and u(m.n).

For the purpose of illustration of the first problem. one dimensional data of length
N=32 in Fig.4.1 was blurred by a stochastic PSF. The stochastic PSF was obtained
by adding zero mean, uncorrelated noise of variance o} = 0.0001 to the normalized
Gaussian shaped PSF with variance 1.0 and length 9. The resulting blurred data was
further added to by zero mean, uncorrelated observation noise of variance o3 = 0.0121.
Fig. 4.1 shows the noisy data blurred by the stochastic PSF and the noisy input data.
separately. The aim was to estimate the original signal from the degraded data
sequence.  Applying the least-squares and total least squares methods, the AMSE

values of the estimates for different o, and o, are given in Table 4.1. Table 4.1
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Figure 4.1: One dimensional simulation: —- Original data, X- Noisy data blurred
by stochastic PSF. A- Noisy data to determine the PSF
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shows that the TLS does not yield estimates closer to the original data than those of
conventional least squares. This is because of the deregularization property of TLS.
This property becomes significant when the problem is ill-conditioned. Even if the
image is chosen parallel to the left singular vector of A associated with the smallest
singular value (suggested by [26]), the LS solution performed better than the TLS
solution for image restoration problems. As a result, TLS is not a good method in
the estimation of the original image by the knowledge of the degraded noisy image
and the stochastic PSF. However, TLS yielded promising results in dealing with the
second problem. In this case, the vector matrix representation of Eq. (4.9) can be
given as

i i

via = U, h

where U, is a toeplitz matrix and h’ is the unknown PSF vector. Here the input data
is assumed to contain a zero mean uncorrelated noise component of variance o} =
0.0001 inherently, and then this noisy input data is convolved with the deterministic
part of the PSF used in the first problem. Next, the blurred data is further added
to by zero mean uncorrelated observation noise of variance o = 0.0121. Table. 4.2
shows the AMSE values of LS and TLS simulations for a set of different o, and .
Examining this table for low values of 75 shows that TLS gave better results compared
with those of LS. Finally, It can be concluded that TLS can be used confidently in

estimating the PSF by knowing the degraded image and original image with noise.



Table 4.1: AMSE values of LS and TLS results in the estimation of Input Data

[ SNR e 7 AMSELs AMSErLs |

720 db 0.01 0.3478 18360 345.690 |

20 db 0.01 0.3478 59.331 196.165 |
30 db 0.01 0.11 3.714 31.906

' 30 db 0.001 0.11 5.651 R.394

' 30 db 0.0001 0.11 6.026 8.554 |

10 db 0.01 0.03478 1.250 1.960 |
40 db 0.001 0.03478 0.488 0.530
40 db 0.0001 0.03478 0.593 0.627 |
50 db 0.0001 0.011 0.056 0.057

Table 4.2:  AMSE values of LS and TLS results in the estimation of PSF

SNR - - AMSE, s AMSErLs
20 db 0.3478 0.1 57.318E-6 53.104E-6
20 db 0.3478 0.01 30.682E-6 30.330E-6 |
20 db 0.3478 0.001 31.272E-6 30.874E-6
30 db 0.11 0.1 36.316E-6 36.665E-6 |
30 db 0.11 0.01 3.168E-6 3.156E-6
30 db 0.11 0.001 3.108E-6 3.091E-6
10 db 0.03478 0.1 35.781E-6 36.078E-6
10 db 0.03478 0.01 0.573E-6 0.573E-6




CHAPTER 5. DISCUSSION

In this research, we dealt with various image restoration methods that have been
implemented in the discrete frequency domain. The methods were tested on real
images blurred by either deterministic or stochastic PSFs in the presence of signal-
independent additive Gaussian white noise. Tables 5.1-5.2 list the AMSE values
obtained from the restoration results in Chapter Three. Wiener filter simulations were
performed under the assumption of zero mean and nonzero mean images. respectively.
However, it is true that the real images have nonzero mean.

The major problem with image restoration methods is observed to be the edge
effect due to the convolution wraparound at the borders of the restored images. The
wrap-around is the result of the circular convolution process between the image to be

restored and the restoration filter, when the size of the convolution exceeds the size of

Table 5.1:  AMSE values of Restorations with deterministic PSF

' Restoration Scheme: Picture X-ray Image |

! Deterministic PSF AMSE AMSE |

| Inverse Filter 534.831 355.427

| Wiener Filter (zero mean) 764.550 229.480 |
Wiener Filter (nonzero mean) 1192.276 3512.689 |

' Pseudoinverse Filter 556.083 424.093 |

- Constrained Least Squares Filter 499.829 265.089 |




Table 5.2: AMSE values of Restorations with stochastic PSF

' Restoration Scheme: Picture X-ray Image

| Stochastic PSF AMSE .‘~\.\ISE4

| Wiener Filter (zero mean) 3%85.066 276.406
Wiener filter (nonzero mean) 1171.930 3516.431

‘ Stochastic Wiener Filter (zero mean) 636.280 259.390
Stochastic Wiener F. (nonzero mean) 1149.934 3480.479
Second Order Diff. Operator 577.980 311.943

‘ Proposed Algorithm 516.840 290.749 |

the DFT [2]. The restoration filters also introduced ringing effects at the borders of
the restored images in the form of strip lines. The restoration process is a deblurring
action or subtraction action as opposed to the convolution sum in blurring. Hence
the restoration filters introduce negative PSF in the restoration and this causes the
ringing in the regions of the image with sharp discontinuity such as at the borders
2].

The results of inverse filtering are shown in Fig. 3.5. Inverse filters are known
to amplify noise during the restoration process and are extremely sensitive to SNR.
However, inverse filter can perform well if there are no singularities in the PSF. In
order to eliminate these shortcomings. the estimated image in frequency domain was
set to zero whenever the 2D-DFT of the PSF is less than a suitably chosen threshold
level.

The Wiener filter assumes a stationary random process and a linear estimation
model. Fig. 3.6 demonstrates the results of Wiener filter restoration. The Wiener
filter eliminates the ill-conditioned nature of the problem which is significant in inverse
filtering. It necessitates the information about the power spectra of the original image

and the noise process. It is this information that prevents the Wiener filter from being
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unstable when the spectrum of the PSF approaches zero as happens in many real
imaging systems. It can be seen from Eq. (3.6) that the Wiener filter becomes inverse
filter as the spectrum of the noise process approaches to zero and it becomes zero
as the spectrum of the original image approaches to zero. Therefore, it controls the
ill-conditioning of the restoration by incorparating the information about the spectra.

When the PSF of the imaging system is stochastic, the Wiener filter can be
modified to include the a priori information about the PSF in the restoration pro-
cess. From Eq. (3.18), this information appears as a regularization parameter in
the denominator. Fig. (3.11) and Fig. (3.12) are the restored forms of images in
Fig. 3.10 using a conventional Wiener filter (Eq. (3.6)) and a modified Wiener fil-
ter (Eq. (3.18)). A significant improvement in the smoothness can be made by the
restorations implemented by Eq. (3.18).

To eliminate the necessity of the knowledge about the power spectra of the
noise and the original image required in the Wiener filter, a constrained least-squares
filter can be used for the purpose of obtaining smoothed images. It can result in
different filters depending on the choice of the constrained linear operator. Two
such filters were the pseudoinverse filter and the second order difference filter. The
restoration results of these filters are shown in Fig. 3.7 and Fig. 3.8, respectively.
Compared with the pseudoinverse filter, the second order difference filter yielded
smoother images with lower AMSE values. Constrained least-square methods also
improve the sharpness and AMSE values of the images, when compared with the
results of the inverse filter and the Wiener filter.

For the case of a stochastic PSF, it is possible to include the statistical char-
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acteristics of the PSF in the constrained least-squares filter. The proposed image
restoration method (Eq. (3.33)) and the second order difference filter (Eq. (3.10))
vield Fig. 3.14 and Fig. 3.13 as the restored form of images in Fig. 3.10, respectively.
The restored images of our proposed method are sharper and visually more pleasing.
The restored standard test image has lower AMSE value, when compared with both
the second order difference filter and the Wiener filter.

When the PSF function of the system is not known, it can be approximately
determined by experimental calibration measurement. Fig. 3.2 represents a system-
atically blurred real image and dots from which the PSF of the real X-ray imaging
system is to be determined. Using this PSF, the pseudoinverse filter vields Fig. 3.15.
Although Fig. 3.15 contains a ringing effect around the edges, a significant improve-
ment is obvious. when compared with Fig. 3.2.

A new image restoration approach using the TLS method has been investigated.
The TLS can be applied to restore noisy images blurred by stochastic PSF, or to
estimate the impulse response of the imaging system. Referring to Table 4.2, the
TLS yields better results than the conventional least-squares in estimating the PSF
for high values of SNR. However, for the image restoration problem that we dealt
with, the TLS method yields estimates that are worse than those of the conventional

least-squares method due to the deregularizing effect.
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CHAPTER 6. CONCLUSION

In this thesis, the restoration of blurred images in the presence of additive signal-
independent noise has been studied. Several restoration algorithms were discussed,
implemented and compared.

We have implemented the inverse filter, the Wiener filter, the pseudoinverse filter
and the second order difference filter to restore noisy images degraded by deterministic
PSFs. Each method was observed to require some sort of a priori information. The
Wiener filter requires the power spectra of the noise and the original image. Overall,
the second order difference filter yielded smoother restored images with smaller AMSE
values.

When the PSF is stochastic, the information about the uncertainty in the PSF,
if available, should be incorporated in the restoration process to obtain better results.
We have developed a method called stochastic constrained least-squares that can use
this information. Furthermore, simulations show the effectiveness of the proposed
algorithm.

Another way of restoring noisy images blurred by stochastic PSF is the use of
the TLS. This method has a deregularization property that yields worse restored
images than the conventional least-squares. However, the TLS yields better results

in estimating the PSF of the imaging systems under specific conditions. From a
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computational efficiency point of view, the frequency domain implementation of TLS
may be possible and needs further development in the future.

In most of the practical applications, the PSF of the imaging systems is not
available a priori and needs to be determined. Our attempt to determine the PSF of
an X-ray imaging system by measurement has yielded promising results.

Finally. it should be emphasized that good restoration algorithms should be less
sensitive to SNR, yield good resolution, and have a control ability over the restored
images. They are also required to be computationally efficient and use less memory

storage.



o

=]

(33

BIBLIOGRAPHY

Abatzoglou, T. J. and J. M. Mendel. "Clonstrained total least squares.” [EEE
1987 ICASSP Proceedings, 3 (Apr. 1987): 21485-21488.

Andrews, H. C. and B. R. Hunt. Digital Image Restoration. Englewood Cliffs.
NJ: Prentice-Hall. 1977.

Biemond, J. "Stochastic Linear Image Restoration.” In Advances in Computer
Vision and Image Processing, T. S. Huang, Ed. vol. 2. London: JAI Press Inc..
1986.

Combettes, P. L. and H. J. Trussell. "Methods for digital restoration of signals
degraded by a stochastic impulse response.” [EFE Trans. Acoust. Speech, Signal
Processing, 37 (Mar. 1989): 393-401.

Dudgeon, D. E. and R. M. Mersereau. Multidimensional Digital Signal Process-
ing. Englewood Cliffs, NJ: Prentice-Hall, 1984,

Frieden, B. R. "Image Enhancement and Restoration.” In Picture Processing and
Digatal Filtering, T. S. Huang, Ed. New York: Springer, 1975.

' Gerald, C. F. and P. O. Patrick. Applied Numerical Analysis. (‘ambridge, Mass.:

Addison Wesley Publishing Company, 1984.

Golub, G. H. "Some modified matrix eigenvalue problems.” SIAM Rev., 15 (Apr.
1973): 318-334.

Golub, G. H.and C. F. V. Loan. "An analysis of the total least squares problem.”
SIAM J. Numer. Anal., 17 (Dec. 1980): 883-893.

Golub, G. H. and C. F. V. Loan. Matriz Computations. Baltimore: Johns Hop-
kins University-Press, 1983.

Guan, L. and R. K. Ward. "Restoration of randomly blurred images by the
wiener filter.” [EEE Trans. Acoust. Speech, Signal Processing, 37 (Apr. 1989):
589-592.



[13]

[14]

60

2] Helstrom., . W. "Image restoration by the method of least squares.” J. Opt.

Soc. Am., 57 (Mar. 1967): 297-303.

Huffel, S. V. and J. Vandewalle. "The Total Least Squares Technique: Computa-
tion, Properties and Applications.” In SVD and Signal Processing: Algorithms,
Applications and Architectures, F. Deprettere, Ed. New York: North Holland,
1988.

Hunt, B. R. "The application of constrained least squares estimation to image
restoration by digital computer.” [EEE Trans. Comput., C-22 (Sept. 1973 ): 805-
812.

Jain, A. K. Fundamentals of Digital Image Processing. Englewood Cliffs, NJ:
Prentice Hall, 1989.

Lawson, C'. L. and R. J. Hanson. Solving Least Squares Problems. Englewood
('liffs, NJ: Prentice-Hall, 1974.

7/ Mascarenhas, N. D. A. and W. K. Pratt. "Digital image restoration under a

regression model.” [EEE Trans. Cir. Sys., C'AS-22 (Mar. 1975): 252-266.
Pratt, W. K. Digital Image Processing. New York: Wiley, 1978,

Rahman. M. A. and K. B. Yu. "Total least squares approach for frequency esti-
mation using linear prediction.” [EEE Trans. Acoust. Speech, Signal Processing,
ASSP-35 (Oct. 1987): 1440-1454.

Ross, G. "Iterative methods in information processing for object restoration.”
Optica Acta, 29 (1982): 1523-1542.

~ Silvia, M. T. and E. C. Tacker. "Regularization of marchenko’s integral equation

by total least squares.” J. Acoust. Soc. Am., 72 (Oct. 1982): 1202-1207.

2 Slepian, D. "Linear least squares filtering of distorted images.” J. Opt. Soc. Am.,

57 (July 1967): 918-922.

3 Stewart, G. W. Introduction to Matriz Computations. New York: Academic

Press, 1973.

. Stockham, T. G., T. M. Cannon and R. B. Ingebretsen. "Blind deconvolution

through digital signal processing.” Proc. [EEE, 63 (Apr. 1975): 678-692.

| Trussell, H. J. and M. R. Civanlar. "The feasible solution in signal restoration.”

IEEE Trans. Acoust. Speech, Signal Processing, ASSP-32 (1984): 201-212.



20

30,

31

32

61

Vandewalle, P. and E. Deprettere. A variety of Applications of Singular Value
Decomposition in Identification and Signal Processing.” In SVD and Signal Pro-
cessing:  Algorithms, Applications and Architectures, F. Deprettere, Ed. New
York: North-Holland, 1988.

- Van Trees, H. L. Detection, Estimation and Modulation Theory. New York: John

Wiley and Sons Inc., 1968,

Ward. R. K. and B. E. A. Saleh. "Restoration of images distorted by systems of
random impulse response.” J. Opt. Soc. Am., A2 (1985): 1254-1259.

Ward, R. K. and B. E. A. Saleh. "Deblurring random blur.” /EEE Trans. Acoust.
Speech, Signal Processing, ASSP-35 (Oct. 1987): 1494-1498.

Woods, J. W. and ('. H. Radevan. "Kalman filtering in two dimensions.” IEEFE
Trans. Inform. Theory, 1T-23 (July 1977): 557-566.

Youla, D. C'. and H. Webb. "Image restoration by the method of convex projec-

tions: Part 1- Theory.” [EEE Trans. Med. Imaging, MI-1 (Oct. 1982): 81-94.

Zhuang, X., E. Ostevold and R. M. Haralick. "The Principle of Maximum En-
tropy in Image Recovery.” In Image Recovery: Theory and Application, H. Stark,
Ed. New York: Academic Press, 1987.



62

ACKNOWLEDGEMENTS

[ would like to express a special thank you to my major professor, Dr. Hsien-Sen
Hung. whose expertise in signal processing and continuous advise in that field have
led to the selection of this research topic.

[ would like to thank Dr. William Brockman for being my co-major professor
and, once again. Dr. David Carlson and Dr. Mufit Akinc for their enthusiasm and
their interest to serve on my graduate commitee.

[ would like to express my sincere gratitude to graduate students Ali R. Brown,
Mathew Chackalackal and Scott Irwin for their help in digitizing the images. trans-
ferring the data and takiné pictures from the computer screen.

And last, but not least, a very special word to my family members who once
again stood patiently behind me. supported me and provided me with continuous
encouragement throughout my educational career. My parents, Huseyin Kazim and
Raziye: I thank you for being so close to me even though you were thousands of miles

away.



OO0 aoo00o0a0aaoaoaaa

63

APPENDIX

PROGRAM MAIN1

This program generates images blurred by deterministic
or stochastic point spread function (PSF) in the
presence of additive noise.

y 1s an integer image for input

yc & ycd are complex images degraded by deterministic
and stochastic PSF, respectively

h & hd are gaussian shaped deterministic and stochastic
PSF, respectively

parameter(is=128,1im=7)
is=2%*%im

integer y(is,is)

complex yc(is,is),uu,h(is,is),hd(is,is),ycd(is,is)
character*32 outfile

pi=4.0xatan(1.0)

Initialization

do 10 j=1,is

do 10 i=1,is
y(i,j)=0
yc(i,j)=cmplx(0.0,0.0)
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hd(i,j)=cmplx(0.0,0.0)
10 h(i,j)=cmplx(0.0,0.0)

PSF Generation

mean=10
var=4.0
stdev=sqrt (var)
sn=0.0
iseed=27983
do 20 j=1,2*mean-1
do 20 i=1,2*mean-1
t=float ((i-mean)**2+(j-mean)**2)/(2.0%*var)
t=exp(-t)
sn=sn+t
20 h(i,j)=cmplx(t,0.0)

Normalization of PSF h and generation of hd

print *, 'ENTER variance of hd’

read(5,*) psfv

psfv=sqrt(psfv)

do 30 j=1,2*mean-1

do 30 i=1,2*mean-1
h(i,j)=h(i,j)/sn

Mean and Variance of hd are h and psfv=*2, respectively
call normal(gdev,x2,iseed)

30 hd(i,j)=h(i,j)+cmplx(psfv*gdev,0.0)
noise=0

Options to record h, hd in psf.dat and psfd.dat, respectively

outfile=’psf.dat’
call arrange(h,is,is,outfile,3,noise)

outfile=’psfd.dat’
call arrange(hd,is,is,outfile,4,noise)
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Two dimensional discrete fourier trasform of size 128x128

call £ft(h,im,im,-1)
call fft(hd,im,im,-1)

Correct the spatial domain shift because h and hd are not

centered at the origin

tz=2.0*pi*float (mean-1)/float(is)
uu=cmplx(cos(tz),sin(tz))
do 40 1=1,is
do 40 k=1,is
hd(k,1)=hd(k,1)*(uu**(k+1l))
40 h(k,1)=h(k,1)*(uu*x*(k+1l))

Options to record DFT of h and hd
outfile=’fpsf.dat’
call arrange(h,is,is,outfile,1,noise)

outfile="fpsfd.dat’
call arrange(hd,is,is,outfile,2,noise)

Read original image
open(9,file='orim.dat’,status=’old’)
rewind(9)
read(9,50) ix,1iy

ix, 1y are horizantal and vertical sizes of image

50 format(2i5)
if(ix.gt.is .or. iy.gt.is) then
print *, 'ERROR => image is larger than 128x128’
goto 1000
endif
read(9,51,end=60) ((y(i,j),j=1,ix),i=1,iy)
51 format(16i5)

Conversion to complex image
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60 do 70 ik=1,ix
do 70 il=1,iy
70 yc(il,ik)=cmplx(float(y(il,ik)),0.0)

call fft(yc,im,im,-1)
Multiply DFT’s of original image and PSF’s

do 80 1=1,1is
do 80 k=1,is
yed(k,1l)=yc(k,1)*hd(k,1)
80 yc(k,1)=yc(k,1)*h(k,1)

Inverse DFT’s

call fft(yc,im,im,1)
call fft(yed,im,im,1)

Write blurred images
deterministic PSF
outfile='b.dat’
call arrange(yc,ix,iy,outfile,2,noise)
stochastic PSF
outfile=’rb.dat’
call arrange(ycd,ix,iy,outfile,7,noise)

write noisy and blurred images

noise=1
deterministic PSF

outfile=’nb.dat’

call arrange(yc,ix,iy,outfile,s,noise)
stochastic PSF

outfile=’'nrb.dat’

call arrange(ycd,ix,iy,outfile,4,noise)

1000 print =

end
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PROGRAM MAIN2

This program implements:
1- Restoration in the presence of Deterministic PSF
a) Inverse Filtering
b) Wiener Filtering
c) Constrained Least Squares
- Second Order Difference
- Pseudoinverse Filtering
2- Restoration in the presence of Stochastic PSF
a) Modified Wiener Filtering
b) Modified Constrained Least Squares
- second order difference operator
3- Unknown PSF to be measured
in restoring blurred and noisy images

y - input image
yc - complex images in both spatial and frequency

domain
h - Point Spread Function
q - power spectrum in wiener filtering routine and

second order difference operator in
constrained least squares

x - restored image

i,] - spatial domain variables

k,1 - frequency domain variables

parameter(is=128,im=7)
is=2%*im

integer y(is,is)

complex yc(is,is),uu,h(is,is),thr,q(is,is),x(is,is)
character*32 outfile

character*32 infile

pi=4.0xatan(1.0)

p=sqrt(2.0%*pi)
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C Initialization

do 10 j=1,is
do 10 i=1,1is
x(i,j)=cmplx(0.0,0.0)
y(i,j)=0
q(i,j)=cmplx(0.0,0.0)
yc(i,3)=cmplx(0.0,0.0)
10 h(i,j)=cmplx(0.0,0.0)

C PSF Generation

720 print *,’'----PSF SELECTION----’
print =x
print *,’1- Known PSF’
print *,’2- Unkown PSF’
print *,’3- None’
print x

730 print x,’ ENTER the selection 1,2 or 3 =>’
read(5,*) isel
go to (750,775,1000)1isel

go to 730
750 print *,’----KNOWN PSF with GAUSSIAN SHAPE----'
print =
print *,’ ENTER mean,variance of Gaussian Curve =>’

read(5,*) mean,var

print *,’'wait’

stdev=sqrt (var)

sn=0.0

do 20 j=1,2*mean-1

do 20 i=1,2*mean-1
t=float ((i-mean)**2+(j-mean)**2)/(2.0*var)
t=exp(-t)
sn=sn+t

20 h(i,j)=cmplx(t,0.0)

C Normalization of PSF h

do 30 j=1,2*mean-1
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do 30 1=1,2*mean-1
30 h(i,j)=h(i,j)/sn
ipsf=0
go to 740
775 print *,’----UNKNOWN PSF: Pseudoinverse Filtering’
print *,’psf will be read from file psf.dat’
open(12,file="psf.dat’,status=’'o0ld’)
read(12,60) ix2,iy2
read(12,70,end=25) ((y(1,j),j=1,1ix2),1i=1,1y2)
25 sn=0.0
rewind(12)
mean=int (ix2/2)
do 26 j=1,ix2
do 26 i=1,iy2
sn=sn+float (y(1,j))
26 h(i,j)=cmplx(float(y(i,j)),0.0)

C Normalize the measured PSF

do 27 j=1,ix2
do 27 i=1,iy2

27 h(i,j)=h(i,j)/sn
ipsf=1

C Calculate DFT of PSF
740 call fft(h,im,im,-1)

C Correct the spatial domain shift because h is not
C centered at the origin

tz=2.0xpi*float (mean-1)/float (is)
uu=cmplx(cos(tz),sin(tz))
do 40 1=1,is
do 40 k=1,is
40 h(k,1)=h(k,1)*(uu**(k+1))
print *, '’ ENTER degraded image =>’

C Read the image to be restored



50

60

70
80

90

read(5,50) infile
format (a32)
open(9,file=infile,status=’o0ld’)
rewind(9)
read(9,60) ix,iy
format (215)
if(ix.gt.is .or. iy.gt.is) then
print =, ’ERROR => image is larger than 128x128’
goto 1000
endif
read(9,70,end=80) ((y(i,j),j=1,ix),i=1,iy)
format (161i5)
do 90 1ik=1,1ix
do 90 il=1,iy
yc(il,ik)=cmplx(float (y(il,ik)),0.0)
rewind(9)
call fft(yc,im,im,-1)

C Option to record DFT of image

C
C

840

841

800

outfile="ycfft.dat’
call arrange(yc,128,128,outfile,1,0)
if(ipsf.eq.1) goto 834
print *, ’1- Restoration with Deterministic PSF’
*, '2- Restoration with Stochastic PSF’
print *, ’3- None’
*
*

print *, '’ ENTER the selection 1,2 or 3 =>’
read(5,*) isel

go to (800,900,1000)isel

go to 841

print x*,’DETERMINISTIC PSF RESTORATION SCHEME’
print =

print *,’ 1- Inverse Filtering’

print *,’ 2- Wiener Filtering'’

print *,’ 3- Constrained Least Squares’

print *,’ 4- Quit’

print =*

iflag=0
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801 print *,’ ENTER the selection 1,2,3 or 4 =>’
read(5,*) isel
go to (810,820,830,840)isel

go to 801

810 print *,’----INVERSE FILTERING----’
print *
print *,’ ENTER threshold level =>’

read(5,*) tr
do 100 1=1,1is
do 100 k=1,1s
t=h(k,1)*conjg(h(k,1))
if {t.1lt.tr) then
x(k,1)=0.0
else
x(k,1)=yc(k,1) /h(k,1)
endif
100 continue
call fft(x,im,im,1)
print =,’ENTER the outfile =>’
read(5,50) outfile
call arrange(x,ix,iy,outfile,2,0)
print *,’ Routine is DONE’
goto 800
820 print =*,’----WIENER FILTER----’
print x,’wait’
C read the original image to find spectrum

open(8,file="orim.dat’,status=’old’)
rewind(8)

read(8,60) ix1,iy1l

read(8,70,end=110) ((y(i,j),j=1,ix1),i=1,iy1)

C Calculate the mean of the original image

yav=0.0
do 118 j=1,ix1
do 118 i=1,iy1l
118 yav=yav+float(y(i,j))
yav=yav/float (ixl*iyl)
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110 do 120 j=1,ix1

do 120 i=1,iy1
q(i,j)=cmplx(float(y(i,j))-yav,0.0)
x(i,j)=cmplx(yav,0.0)

120 y(i,j)=0

call fft(q,im,im,-1)
call fft(x,im,im,-1)

Subtract mean of the image from noisy image

do 123 1=1,is
do 123 k=1,is

123 ye(k,1)=yc(k,1)-h(k,1)*x(k,1)

Enter white noise variance measured either from
the degraded image or known a priori

print *, 'ENTER Noise Variance => '’
read(5,*) var

iflag=1 if wiener filtering routine is called from
stochastic PSF restoration, hence the variance of
PSF should be included in the routine

if(iflag.eq.1) then
print *,’ENTER the variance of PSF =>’
read(5,*) psfv

Multiply the variance of PSF by the size of PSF

psfv=((float(2*mean-1) )**2)*psfv

else

psiv=0.0

endif

do 130 1=1,1is

do 130 k=1,is
eps=h(k,1)*conjg(h(k,1))

Cu - power spectrum of the original image
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C Also multiply the noise variance by isx*is
C because of PARSEVAL THEOREM

Cu=q(k,1)*conjg(q(k,1))
qr=var*float(is**2)/Cu
x(k,1)=yc(k,1)*conjg(h(k,1))/ (eps+psfv+qr)
130 q(k,1)=cmplx(0.0,0.0)
call fft(x,im,im,1)

C Add the average to the restored image

do 131 j=1,ix1
do 131 i=1,iy1
131 x(1i,j)=x(1i,j)+cmplx(yav,0.0)
print =,’ENTER the outfile =>’
read(5,50) outfile
call arrange(x,ix,iy,outfile,3,0)
print *,’Routine is DONE’
if(i1flag.eq.1) goto 900
go to 800
830 print *,’'----CONSTRAINED LEAST SQUARES----’
print =
print *,’ 1- Pseudoinverse Filtering’
print *,’ 2- Second Order Difference’
print *,’ 3- None’
print =
831 print =*,’ ENTER the selection 1,2 or 3 =>’
read(5,*) isel
go to (834,832,800)isel
go to 831
832 print =*,’----SECOND ORDER DIFFERENCE----’
print *
print *,’wait’

C Second difference matrix initialization
q(1,1)=cmplx(0.0,0.0)

q(1,2)=cmplx(1.0,0.0)
q(1,3)=cmplx(0.0,0.0)



q(2,1)=cmplx(1.0,0.0)
q(2,2)=cmplx(-4.0,0.0)
q(2,3)=cmplx(1.0,0.0)
q(3,1)=cmplx(0.0,0.0)
q(3,2)=cmplx(1.0,0.0)
q(3,3)=cmplx(0.0,0.0)

C Take DFT of second difference operator
call fft(q,im,im,-1)

C Correct the spatial domain shift because q is not
C centered at the origin

tp=2.0*pi/float(is)
uu=cmplx(cos(tp),sin(tp))
do 140 1=1,is
do 140 k=1,is
140 q(k,1)=q(k,1)*(uu**(k+l))

C Option to record DFT of q

C outfile='qfft.dat’
G call arrange(q,is,is,outfile,10)

if(iflag.eq.1) then

print *,’ENTER the variance of PSF’
read(5,*) psfv

psfv=(float ((2*mean-1)**2))*psfv
else

psfv=0.0

endif

g e Newton Raphson root finding algorithm
print *,’ENTER => bias,ftol,gamtol,gam,nlim’

C bias - estimated norm of noise term
C ftol - tolerance in the value of function
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around the root
gamtol - tolerance of the increment in gamma
gam - initial value of gamma to be determined
nlim - maximum number of iterations

read(5,*) bias,ftol,gamtol,gam,nlim
do 150 iter=1,nlim

NOTE THAT: here PARSEVALS THEOREM is used

fer - summation of the magnitude square of residual
in frequency domain

dfer - derivative of fer wrt gam

thr - residual in frequency domain

fer=0.0
dfer=0.0
do 160 1=1,1s
do 160 k=1,1is
eps=h(k,1)=*conjg(h(k,1))
yeps=yc(k,1l)*conjg(yc(k,1))
qx=q(k,1) *conjg(q(k,1))
qr=gam*qgx
dfer=2.0*qr*qx*eps*yeps/(eps+psfv+qr)**x3+dfer
160 fer=fer+((psfv+qr)**2+psfvxeps)*yeps/ (eps+psfv+qr)**2
fer=fer/float(is*is)
fer=fer-bias
dfer=dfer/float (is*is)

Convergence of the algorithm can be increased by
multiplying dfer by a suitably chosen constant

dfer=dfer
del=fer/dfer
print *,’iter’,iter,’gam’,gam,’del’,del,’fer’, fer

Decision to continue the iteration

if (abs(del).le.gamtol.or.abs(fer).le.ftol) goto 190
gam=gam-del



150

76

continue

C Use the optimum gamma for second order difference
C restoration

190

200

834
C

do 200 1=1,1s

do 200 k=1,1is
eps=h(k,1)*conjg(h(k,1))
qr=gam*q(k,1)*conjg(q(k,1))
x(k,1)=(yc(k,1l)*conjg(h(k,1)))/(eps+qr+psfv)
q(k,1)=cmplx(0.0,0.0)

call fft(x,im,im,1)

print *,’ENTER the outfile =>’

read(5,50) outfile

call arrange(x,ix,iy,outfile,4,0)

print *,’Routine is DONE’

if(iflag.eq.1) goto 900

go to 830

print *,’----PSEUDOINVERSE RESTORATION----~’

C Using the same variables as above

210

print *
print *, ’ENTER => bias,ftol,gamtol,gam,nlim’
read(5,*) bias,ftol,gamtol,gam,nlim
do 205 iter=1,nlim
fer=0.0
dfer=0.0
do 210 1=1,is
do 210 k=1,is
eps=h(k,1)*conjg(h(k,1))
yeps=yc(k,1l)*conjg(yc(k,1))
thr=yc(k,1)*gam/(eps+gam)
dfer=(2.0*gam*eps*yeps/(eps+gam)**3)+dfer
fer=fer+thr*conjg(thr)
fer=fer/float(is*1is)
fer=fer-bias
dfer=dfer/float (is*is)
del=fer/dfer



205
220

230

900

901

1000

print *, ’iter’,iter,’gam’,gam,’del’,del,’fer’, fer
if (abs(del).le.gamtol.or.abs(fer).le.ftol) goto 220
gam=gam-del
continue
do 230 1=1,is
do 230 k=1,is
eps=h(k,1l)*conjg(h(k,1))
x(k,1)=yc(k,1l)*conjg(h(k,1))/(eps+gam)
call fft(x,im,im,1)
print *,’ENTER the outfile =>’
read(5,50) outfile
call arrange(x,ix,iy,outfile,7,0)
print *,’Routine is DONE’
if(ipsf.eq.1) goto 1000
go to 830
print *,’----STOCHASTIC PSF RESTORATION SCHEME----'
print *
print *,’1- Wiener Filter’
print *,’2- Constrained Least Squares:’

print =*,’ Second Order Difference’
print *,?3- Quit’

print =

1flag=1

print *,’ ENTER the selection 1,2 or 3 =>’
read(5,*)isel

go to (820,832,840)isel

go to 901

print =*

end
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SUBROUTINE FFT(x,mrow,mcol,k)

This subroutine calculates two dimensional discrete
Fourier transform and its inverse.

X

-The two dimensional complex array; representing
the input when subroutine is called and returns
DFT or IDFT

mrow-The row or vertical axis written as 2**mrow
mcol-The column or horizantal written as 2x*mcol

k

10
20

-If k=-1 then DFT
if k= 1 then IDFT

complex x(128,128) ,u,w,t

n=2%**mcol
pi=4.0*atan(1.0)

do 100 ii=1,2**mrow

do 20 1=1,mcol
le=2%*(mcol+1-1)

lel=le/2

u=(1.0,0.0)
w=cmplx(cos(pi/float(lel)),k*sin(pi/float(lel)))
do 20 j=1,1lel

do 10 i=j,n,le

ip=it+lel

t=x(ii,i)+x(ii,ip)
x(ii,ip)=(x(i1,1)-x(ii,ip))*u
x(ii,i)=t

u=u*w

nv2=n/2

nml=n-1

j=1

do 30 i=1,nmi
if(i.ge.j) goto 25



25
26

30
100

110
120

125
126

t=x(i1,j)
x(ii,j)=x(ii,1)
x(ii,1)=t

kk=nv2

if (kk.ge.j) goto 30
j=3-kk

kk=kk/2

goto 26

j=j+kk

continue

N=2**Mrow
do 200 jj=1,2=**mcol

do 120 1=1 ,mrow
le=2xx=(mrow+1-1)
lel=le/2

u=(1.0,0.0)
=cmplx(cos(pi/float(lel)),k=sin(pi/float(lel)))

do 120 j=1,lel

do 110 i=j,n,le
ip=i+lel

t=x(i,j3)+x(ip,jj)

x(ip,jj)=(x(1,33)-x(ip,]jj) ) *u

xli;39)=t

u=u*w

nv2=n/2

nmli=n-1

j=1

do 130 i=1,nmil
if(i.ge.j) goto 125

t=x(3,33)

x(j,33)=x(1,33)

x(i,jj)=t

kk=nv2

if(kk.ge.j) goto 130

J=]-kk

kk=kk/2
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35

50
200

goto 126
J=j+kk

if (k.eq.-1) goto 50
do 35 11=1,n
x(11,33)=x(11,jj)/float (n*(2**mcol))

ff=12
continue
return
end
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SUBROUTINE NORMAL (x1,x2,yy)

This subroutine generates uncorrelated zero mean
gaussian random numbers of unity variance
Yy - any number greater than zero, iseed
x1, x2 - random numbers

integer yy
real t,x1.x%2
call random(0.0,1.0,rando,yy)
x1=sqrt(-2.*log(rando))
call random(0.0,1.0,rando,yy)
t=6.2831853072*rando
x2=x1*sin(t)
xl=x1*cos(t)
return
end

subroutine random(a,b,rando,yy)

integer yy,m

real a,b,rando

yy=16807*yy
m=2%**31-1

yy=mod(yy,m)

if (yy.1t.0) then

yy=yy+m

endif
rando=(float(yy)/float(m))*(b-a)+a
return

end
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SUBROUTINE ARRANGE(ain,ih,iv,outfile,ip,noise)

This subroutine converts the complex array into
integer number for output
ain - complex image array
ih - number of rows or horizantal size
iv - number of columns or vertical size
outfile - name of file to be outputted
ip - unit number
noise - determine whether output will be noisy or not
noise=0 no noise
noise=1 uncorrelated gaussian noise is added
to the output

complex ain(128,128)
integer adat(128,128)
real aout(128,128),amax
character*32 outfile

amax=0.0
do 750 j=1,ih
do 750 i=1,iv
aout(i,j)=sqrt(ain(i,j)*conjgl(ain(i,j)))
adat(i,j)=int (aout(i,j))

750 if (aout(i,j).gt.amax) amax=aout(i,j)

Normalization option
do 755 j=1,ih
do 755 i=1,iv
tk=(aout (1, j)*255.0)/amax
755 adat(i,j)=int(tk)

Noise adding routine

if(noise.eq.1) then
1seed=10000
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do 760 j=1,ih
do 760 i=1,1iv
call normal(gasdev,x2,iseed)

C Standart deviation of noise is 10.0, hence variance
C is 100.0

1t=10*gasdev

adat(i,j)=adat(i,j)+it
760 continue

endif

open(ip,file=outfile,status=’new’)
write(ip,780) ih,iv
780 format (2i5)
print *, ’write 1s started’
write(ip,785) ((adat(i,j),j=1,ih),i=1,iv)
785 format(16i5)
close(ip)

return
end





