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I. INTRODUCTION 

Nodal models have been used extensively in nuclear 

reactor analysis including safety and fuel management. 

The importance of using nodal model was stated by Askew in 

the summary of a recent international meeting on nodal 

methods [l]: 

Coarse mesh methods have been demonstrated to be a 
reliable and useful tool for both reactor design-
ers and operators in predicting the assembly to 
assembly variations of rating for operating re-
actors. The most advanced models appear to be 
capable of doing this with an RMS error of the 
order of ±2%. There is scope for further re-
finement in the modeling of reflectors and 
shrouds, and in the representations of varia-
tions of burnup within an assembly, especially 
at the core edge or following shuffling of edge 
assemblies. With improvements of this kind , 
the models will be capable , given good nuclear 
data and lattice calculations, of a predictive 
accuracy of the same order as that of the measure-
ments. 

The objective of this research will be to improve the 

convergence of a two group , one dimensional nodal model in 

an array of PWR fuel assemblies which simulate a slab 

reactor. 

Even though the one dimensional model isn ' t realistic 

for practical use, it will be undertaken for the fol -

lowing reasons: 

(1) Clarity in the technique development, 

(2) Insure the convergence of the problem , and 

(3) Computational efficiency . 
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The technique can be extended to the more complicated 

two and three dimensions . 
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II. THE ONE DIMENSIONAL NEUTRON DIFFUSION 

NODAL MODEL 

A. Neutron Diffusion Theory 

The general form of the two group diffusion equations 

is given by: 

d2 ~ l(x) - ( Lal+ Ll + 2 +} VL ft~l(x) + 
Dl dx2 

1 I VL f2 ~ 2(x) = 0 

d2 ~ 2(x) 
D2 2 - L a2 ~ 2(x) + Ll +2 ~ l(x) = O 

dx 

(II-1) 

(II-2) 

Subscripts 1 and 2 will be used to denote the quanti-

ties in the fast and thermal groups, respectively. 

~ 1 (x), ~ 2 (x) =fluxes at point x in the fast and thermal 

groups, respectively; 

D1 , D2 = diffusion coefficients for the fast and 

thermal groups, respectively; 

Lal' La 2 = absorption cross section for the fast and 

thermal groups, respectively; 
1 1 IVLfl' 1 vL f 2 = fission cross sections multiplied by the 

neutron yield per fission for the fast and 

thermal groups, respectively; and 

Ll+ 2 = removal cross section for the fast group . 

The above system of equations will be solved using the nodal 

method. 

To simplify the equations, one can write this system 
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as follows: 

d2 <1> 
dx~ + a 1 <f> 1 + a 2 <1> 2 = 0 (II-3) 

d2 <f> 2 
dx2 + B2 <l> 2 + B1 <l> 1 = o (II-4) 

where 

-( l: al l: 1-+2) 
1 + + IVL f1 

a l = D1 

VL f2 
a 2 = 

.A. Dl 

Furthermore, a quantity which will be frequently used is 

introduced here. It's called the average nodal flux defined 

as: 

<I> -

J <I> (x) dx 

f dx 

B. The Nodal Model 

(II -5) 

The basic idea of the method rests on the Weierstrass 

approximation theorem [2]. Since the neutron flux is con-

tinuous over each node (or assembly), one can expand it in 

a polynomial series. Moreover, the choice of a polynomial 

expansion is due to the fact that polynomials are continuous 

functions easy to manipulate. 
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The size of the nodes is taken equal to a fuel assembly 

width (- 20 cm). 

Fig. 1 shows the nodes arrangement . The integers re-

fer to the material types listed in t he Benchmark prob l em [3] 

shown in Tab l e 1 . Note that the fuel assemblies of t ype 3 

are control assemblies. The configuration of Fig. 1 will 

be called "the regular configuration." 

Table 1. Benchmark fuel parameters 

Material Region Dl D2 l: l-+2 Lal l: a2 VL f 2 

Fuel 1 1 1 . 5 0 . 4 0 . 02 0.01 0 . 08 0.135 
Fuel 2 2 1 . 5 0 . 4 0.02 0.01 0 . 085 0 .135 
Fuel 2 + Rod 3 1.5 0 .4 0 . 02 0.01 0.13 0 .1 35 
Reflector 4 2.0 0 . 3 0 . 04 0 . 0 0.01 0.0 

We will use a second order polynomial expansion to 

show the different steps of the model . Then the technique 

can be extended easily to the fourth order . 

Hence , the fast flux becomes: 

(II - 6) 

and the thermal flux will be: 

(II - 7) 

Each of the polynomials will be expanded about the center 



I 
I 
I 
I 
I 2- 3 2 2 1 4 13 2.. 
I 
I . 
l A.I- I "" ~+I 

i-=-1 

Figure 1. Half core fuel arrangement . 
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of the assembly (Fig . 2). Hence, equation II-5 becomes: 

2 - n 
<1> 1 = ao + a2 3 (II-8) 

and 
2 -

<1> 2 = bo + b2 n -3 (II-9) 

C . The Nodal Coefficient Determination 

1. The second order expansion 

The first concern of the model is the determination 

of the coefficients. They can be derived if we assume the 

flux values are known at the node boundaries and we apply 

a simple mathematical technique. 

a. Determination of ~O and ~l In these calcula-

tions, the fast flux analysis will be developed. The thermal 

flux development is done in a similar manner. The f lux 

<1> 1 (x) at the nodes n and - n is assumed known and is given by: 

(II-10) 

and 

(II-11) 

Adding these two equations, one gets: 

(II -12 ) 

Subtracting them, one gets: 

(II -13 ) 
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-n 

Figure 2. Flux expansion about the center of node i 
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Sub-b. Use of the function ~ to determine ~2 
stituting equation II-6 into II-3 (or equation II-7 into 

II-2), one can get: 

2 d ¢1 (x) 
= 2a2 dx 2 

(II-14) 

At this stage, the function g(x) is introduced . It carries 

the difference between the exact and the approximate solu-

tions. 

Therefore, we will concentrate on minimizing g(x) with 

respect to the unknown coefficients a 2 . 

Substituting equation II-14 into II-3 , one can get : 

g(x) (II-15) 

where ao, al, a2 and bo, bl, b2 are coefficients calculated 

from a previous iteration or simply: 

2a2 + f (x) = g(x) (II-1 6) 

(II-17) 

Therefore, minimizing g(x) in an integral sense, one 

can write: 
T) 

al L 2 0 (II-18) 
aa2 

g (x)dx = 
or 

2 r g(x) ag: (x) dx = 0 (II -19 ) 
aa2 

_ T) 
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Since og(x) = 2, equation II-18 becomes: 
aa2 

or 

n 
2 f [2a2 + f(x)]dx = 0 

-n 

2 Jn [2a2 + 
-n 
+ a. 2(50 

Performing the integration and arranging the terms, one 

gets: 

(II-20) 

c. The source calculation Once the fluxes are 

found, the source term is calculated as follows : 

s = 
i( VL f1¢l + VL f2¢2)Vi 

VT 
(II - 21) 

where Vi = node individual volume and VT = total vo lume of 

the core. 

The eigenvalue or keff can be determined from: 

s £+1 
kef f = 7 (II-22) 

where s 2 is the source value obtained at iteration £ and 

s £+l at the following iteration. 

d. The interface calculation To satisfy the dif-

fusion theory requirements, the interface flux values should 
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be continuous: 

(II -2 3) 

r R. where i and i + l represent the node indexes, <I> and <I> are the 

right hand side and the l eft hand side flux values at the 

interface, as shown in Fig . 3. 

To account for the continuity of the current , we intro-

duce a function tjJ at each node interface such that: 

<I> ~ - tjJ ~ d<j>. (x) 
1 1 1 = e dx x=n 

(II-24) 

and R, R, 
<l>i+ l - Wi+l d <l> i+l(x) 

= e dx 
(II-2 5) 

x=- 11 

where e is any positive distance from the interface, as 

shown in Fig . 3. 

Us ing equation II-6, we write for the node i : 

(II-26) 
d <I> i ( x) 

dx = a 1 . + 2a2xi 
n i 1 x=n i 

This can be determined from the polynomial coefficients 

for the node i. The relation: 

d<l>i+l(x) 
dx = a 1 + 2a2 x 

i+l i+l (II-27) 
x=- ni+l 

can also be determined from the polynomial coefficients for 



12 

R, 
<P i+l (x) 

tJJ . e 

interface 

Figure 3. Interface flux calculation 
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node i+l. 

Then using the Fick's Law and the continuity of the 

current, it follows that : 

(II-28) 

Hence: 

(II-29) 

Then, from equation II-23, 

e. The albedo calculation This is also a boundary 

condition; however , the nodes here are differ e n t because it 

describes the system outer boundary . I n t hi s c a se , the 

flux at the boundary can be given as an equivalent albedo 

boundary condition such that: 

d<P (x) 
DI dx 

from wh ich o ne gets: 

D. d<P. r i i 
<Pr = - T dx 

boundary 

x=n I 

= -T¢>(x) (II - 30) 
bo u ndar y 

(II- 31 ) 

where I represent s the last fue l assembly (see F i g . 4 ) 
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<t>r (x) 

Node I 

Boundary 

Figure 4. Flux calculation at the outer fuel assembly 
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and 1 is the albedo factor [4]. 

Using equation II-6, the above equation will give ¢ ~ 

in terms of the polynomial coefficients which have been 

found in the previous iteration. 

The basic calculation proceeds as follows: 

(1) Start with an initial flux guess. 

( 2) Calculate the polynomial coefficients. 

( 3) Calculate the neutron sources. 

( 4) Calculate the interface and boundary fluxes. 

( 5) Repeat steps 2 to 4 until convergence. 

The technique was applied to the "regular configura-

tions" and the results were compared to the two group fine 

mesh diffusion program called DODMG [5]. 

Three major points can be noted in the flux shapes: 

(1) The thermal flux peak at the reflector wasn't 

accurately represented (Fig. 5). 

(2) The flux in the core node next to the reflector 

was inaccurate (Fig. 5). 

(3) The fast flux was excessively higher in the 

center half core. 

Some attempts were made to solve these discrepancies ; 

unfortunately, the "tilt" in the flux shape didn't vanish 

(Figs . 7, 8 , and 9). 

Fig. 7 shows the flux profiles where two nodes per 

assembly are used in the outer fuel assembly and in the 
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Figure 6. Assemblies arrangement with two nodes per assembly in the outer fuel 
assembly and in the reflector assembly 
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reflector assembly (see Fig. 6). 

Fig. 8 displays the case where the reflector assembly 

was removed and an arbitrary albedo condition (fast albedo = 

0.5 and thermal albedo = 1.0) was applied. In this case, the 

thermal flux shape at the boundary is "steeper" than it 

should be. However, this may be expected, since the flux 

is described by a second order polynomial. 

Fig. 9 illustrates the case where the reflector was 

removed and a vacuum boundary condition applied. The NODAL 

and DODMG flux profile s are very similar except at the outer 

nodes. 

Finally , an attempt to resolve these errors will be 

made by the use of a higher order polynomial. This approxi-

mation will be used in the remainder of this study . 

2. The fourth order fitting 

In this case, equations II-6 and II-7 become: 

(II - 32) 

and 

(II-33) 

Hence , equations II-12 and II-13 become: 

<Pt + ,i. r 
= ( 2 If' ) (II-34) 

and 
r t 

a = (cf> - cf> ) -
1 2n (II-35) 
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Similarly, equation II-20 will be written as follows : 

1( - - n2 
a2 = 2 a laO + a 2b0) <a 1a2 + a 2b2) 6 

4 - 2 n <a 1a4 a 2b4) (II - 36) - IO + - a 4n 

Finally, using the minimization technique with respect 

to a 3 and a 4 , we get: 

1 2 
a3 = 6 (a l al + a 2bl) - 2L (a l a3 + a 2b3) 10 (II-37) 

and 
1 

<a 1a1 + a2b2) 
n2 

<a 1a4 + a 2b4) a4 = - 12 - 14 (II - 38) 

Therefore, the problem at present will be to solve 

equations II-34 through II-38 with the source and interface 

conditions, the same as described previously . 



23 

III. THE COMPUTATIONAL PROCEDURE 

The equations obtained above can only be solved by 

some iterative technique; the relaxation method was selected. 

This technique has already demonstrated its effectiveness 

with the nodal model, especially when a suitable accelerat-

ing technique is applied. 

At this stage, two fundamental definitions must be 

introduced; they wil l be frequently used. 

A. Fundamental Definitions 

1. Definition (1) [2] 

A sequence 

h{} 
a 

k=l 

of vectors in Rn is said to converge to x with respect to 

the norm 11 - 11 if given any £> 0 there exists an integer N(£) 

such that: 

l l~(k) - ~ II .5 £ , for all k ~ N(£) (III - 1 ) 

Since all norms on Rn are equivalent with respect to con-

vergence [2], the Euclidian norm wi l l be used . 

2. Definition (2) [ 6] 

The residual vector is defined as fo l lows: 

r £ = x(£+l) (I I I - 2) 
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In our problem, ~ will represent any of the coefficients, 

the average flux or the source expressions. In terms of 

the errors , equation III-1 becomes: 

(III-3) 

where E£ is the error at iteration (£ ) and E ( £+l) is the 

error at the following iteration. 

Then , using the stability condition [5], we define the 

rate of convergence v as: 

v = - ln t. 1 (III-4) 

where t. 1 = largest eigenvalue of the iteration matrix. 

The t. 1 can be approximated by using the ratio of two 

successive residual vectors, that is: 

/.. = l 

Hence, one can write: 

v = - ln 

(III - 5) 

(III- 6) 

Furthermore, the residual vector for the average flux wi l l 

be: 

(III- 7) 

Then, using equation III-1, we define the SNORM as: 
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SNORM = (III-8) 
IMAX 

where IMAX = total number of nodes. 

From equation III-6, we note that for a preset E , the 

smaller the slope of the SNORM, the faster the convergence 

will be . 

Hence, the SNORM versus number of iteration plots will 

be ext ensively used to describe the convergence of the 

system . 

B. The Relaxation Method (RM) 

The general form of the iterative process is given by : 

(III - 9) 

cal where x = the va lue of x calculated using the Seidel 

method . Here, it will be calculated by the analytical expres-

sions of the unknowns such as equations II-35 to II - 39) . 

a = Relaxation parameter . 
.£ x = The value of x from the previous iteration. 

A major problem associated with the use of the RM is 

the determination of the optimal relaxation factors. 
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c. The Accelerating Technique 

1. Introduction 

There are several accelerating techniques that one can 

apply to hasten the convergence of a slowly convergent 

problem. These techniques vary from a simple extrapolation 

to some sophisticated matrix manipulation (7]. 

However, the equations we are solving are strongly 

coupled (see equations II-35 to II-39); therefore, the 

iterative matrix isn ' t easy to write . Hence, the usual 

routines to find a
0

p may not be used, so special techniques 

are needed . 

2. The experimental method (6, 8] 

This technique consists of carrying out several itera-

tions with various a values (1 ~ a < 2) and observing the 

number of iterations for convergence. The a y ielding the 

minimum number of iterations is chosen as a op Instead of 

the number of iterations, one can use the spectral radius 

of the matrix. For this case, the a will correspond to op 
the least absolute value of the largest eigenvalue of the 

system [8]. 
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IV. RESULTS 

A. Application of the Technique to the 
Regular Configuration 

The overall flowchart is shown in Fig. 10. As described 

in section II-C, the computation starts with some initial 

guess of the coefficients and fluxes. Then, the coeffi-

cients are calculated using equations II-35 to II - 39. To 

insure the continuity of the fl uxes, the interface and 

albedo conditions are applied; then new fluxes and source 

are calculated. The iterations continue until the flux 

changes are less than a preset tolerance criterion . 

1. General behavior of the relaxation 
parameters 

In this problem, seven relaxation parameters were used. 

These include the five polynomial coefficients, the source 

term, and the interface values. They will be called ac . 
l 

for i =0, ... ,4, a and a. , respectively. s in 
The following remarks helped the author simplify con-

siderabl y the computation: 

(1) The coupling among the unknowns a 2 , a 3 and a 4 
suggests that the corresponding relaxation 

parameters must be underrelaxed in order to re-

duce the effect of the coupling on the convergence . 

Moreover, ac and ac may be kept equal to a c
2 3 4 

which monitors the flux shape (see second order 
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Figure 10. Problem analysis flow chart 
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fitting results). 

(2) On the other hand , previous studies [7] show 

( 3) 

that the relaxation factor a . should also be in 
under relaxed. 

Concerning a and a , they will be kept equal to 
co cl 

unity, since their effects are already considered 

in the expression of a 2 and a 4 , and a 3 , respec-

tively. 

Therefore , one can reduce the optimization problem 

to that of only three parameters , a , s a. and ac . in 2 

2. Determination of the optimal 
relaxation parameters 

Before the accelerating technique was applied , one 

needed to insure the problem convergence. This was done 

by using the trial and error process on the relaxation 

factors. We found that the system converged for the follow-

ing parameters : 

a = a = 1. 0 
co cl 

a = a = a = 0.05 
c2 c3 C4 

as = 1.3 and a. = 1.0, the tolerance £ was lOE-4 . in 

Then, as for the second order expansion , the results 

were compared to the DODMG solution. Figs . 11-13 illustrate 

the fluxes, the SNORM and the eigenvalue profiles obtained 



H 
E 
UR 
TE 
RL 
OA 
HT 

J: ,v 
LE 
u 
)( 

I. 

e. 

8. 

8. 

8. 

a. 

8. 

e. 

8. 

8.1 
•••• 

Fast flux 
.......•. Thermal flux 

A: DODMG 
B: NODAL 

,,.,,~,~~''"'''"" ~.r 
·····•'''''A '~ 

,_ 
•• • • • • . . • • • • . 

• • . • • • • .. : .. \. ; ... ... 

• . . • . . -• --. --• --.. ----• .. • • • • • • • • 
: 8P I a . ..-~~~~~-&-~~ .... ~~~~~~~~.A.-~~.._~~"-~--'.__~__. 

8.8 8.2 8.4 8.8 8.8 1.8 t.2 
PUSJ:IJION,, a1 

1.4 1.8 1.8 2.8 

Figure 11. Flux profiles comparison for original relaxation parame ters 



L 10-1 .5 
0 
G 
A 
R 10-2 
I 
T 
H 
H 

0 
10-2.5 

F 

s 10-3 
N 
0 
R 
H 

10-3.5 

28 e0 88 188 120 

t OF ITERATIONS 
Fi gure 12 . SNORM for t he original relaxati on parameters 

w 
N 

140 168 188 



1.4 

1.2 

E 
I 
G 
E 
N v 0.8 
A 
L w u w 
E 9.6 
s 

0.4 

0.2 

20 69 80 100 120 140 160 180 

t OF nERATIONS 
Figure 13. Eigenvalue convergence for the initial relaxation parameters 



34 

for the above data. 

From these plots, we note that the SNORM curve shows 

some continuous oscillations which characterize the insta-

bility of the solution . Moreover, the f lux profiles show 

a large deviation from the fine mesh fluxes. 

An attempt to solve these discrepancies was to de-

crease the tolerance to l OE-7. Unfortunately, this didn't 

reso lve the error, as is seen in Figs. 14-16. Therefore, 

the experimental method was considered and first applied 

The r e laxation factors a and a . were kept equal s in 
to their original values (1.3 and 1.0, respectively) and 

a c was given d iffe rent values between 0.0 and 1.0. The 
2 

least number of iterations needed for the SNORM to reach 

lOE-4 was recorded. Fig. 17 shows the a versus number of 
c2 

iterations. One can note that several a values correspond 
c2 

to the minimal number of iterations which is 72. The situ-

ation is even worse f or a and a . plots (see Figs. 18 and s in 
19). Therefore, the experimental technique needed to be 

improved. The SNORM was used for this purpose. Hence, from 

all the relaxation factors corresponding to the least number 

of iterations, the one which gave the smallest SNORM was 

selected as the a 0 p . Tables 2, 3 and 4 list some a values 

and their respective SNORMs. The following optimal relaxa-

tion factors were then obtained: 
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Table 2. a c 2 values and the respective SNORM at 72 itera-
tions 

ac2 0.154 0.1549 0.1545a 0.1547 0 . 155 0 . 1555 

Error ( 1 o5 ) 9 . 877 9.871 9.864 9.866 9.875 9 . 922 

a Selected value. 

Table 3. a in values and the respective SNORM at 65 itera -
tions 

Cl . in 0.9 0.92 0.945 0 . 95 

Error ( 1 o5 ) 9.454 9.5011 8.1764 7.99 

Cl. in 0 . 9502 0 . 9504 0.9508a 0 . 96 

Error ( 105 ) 7.986 7 . 980 7 . 97 0 8 8 . 211 

a selected value. 

Table 4. a $ values and the respective SNORM at 65 i ter a -
t i ons 

Cl s 1.1902 1.1908 1. 2a 1. 202 

Error ( 10 5 ) 8.1022 8.07 7 . 97 8 . 050 

aSelected value. 



a = 1.200 s 

a . = 0.9508 in 
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Since the technique was applied to each parameter 

separately , the values obtained may not be the optimal 

factors for the global problem . However , their feasibility 

was checked by seeking the a in an opposite sequence, op 
that is, keeping a and a s at their original values ( 0.05 

c2 
and 1.3 , respectively) and varying a . in 

were obtained. 

The same results 

For the above factors, the program was run and the 

results are recorded in Figs . 20-22. 

Fig. 20 represents the flux profi le comparison with 

DODMG. An excellent matching can be observed . Moreover, 

the SNORM (Fig . 21) oscillated to a lesser degree but de-

creased continuously. In the eigenval ue plot (Fig. 22), one 

can see that the keff reached a constant value after 45 

iterations. 

B. Application of the Technique to 
Other Problems 

The credibility of the determined parameters was tested 

using different problems. They will be discussed in the 

fo llowing sections. 
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1. Regular configuration with two 
assemblies shuffled 

The assemblies' disposition is illustrated in Fig . 23. 

This may be the case in a fuel management problem. 

2. Regular configuration without 
reflector 

In the regular configuration, the reflector was re-

moved. Even though this is not a realistic situation, one 

can judge better the polynomial expansion since an important 

flux variation is expected. 

3. Configuration with burnable poison 

In this case, the fuel assemblies are alternated with 

burnable poison assemblies. Fig. 24 shows the node arrange-

ment. The fuel parameters for this problem are listed in 

Table 5. Note also that the thermal albedo was increased 

to unity. 

Table 5. Burnable poison and fuel parameters 

Fuel 
type Dl 

3 1.2475 0.3775 l.7476E-2 9.193E-3 8.556E-2 0 .1160 6 .027E-3 

5 1. 2 315 0 . 3 8 01 1. 7 5 0 6 E-2 9 . 2 7 6 E- 3 7 . 8 9 6 E-2 0 . 12 3 3 6 . 4 3 6E-3 
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Figure 23 . Assemblies arrangement showing the two shuffled assemblie s 



5 3 5 3 5 3 5 5 
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4. Regular configuration with eight nodes 

The outer fuel assembly of type 2 was removed from the 

regular configuration. 

5. Regular configuration with eleven nodes 

The two outer fuel assemblies of types 2 and 1, respec-

tively, were divided into two nodes each. Fig. 25 shows 

the node disposition. 

This problem was undertaken in order to study the 

extension of the model to a larger core. 

The results of all the above problems are illustrated 

in Figs. 26-35. From the flux profiles, we note some devi -

ation between the model and the fine mesh results . An 

attempt to solve these discrepancies would be to go to 

higher accuracy such as lOE-7. 

are displayed in Figs. 36-43 . 

ment between the two models. 

The corresponding results 

They show a perfect agr ee -
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V. SUMMARY AND CONCLUSIONS 

The second order fitting has shown some shortcomings in 

all cases except for the problem where the reflector was 

removed and a vacuum boundary condition applied. The con-

vergence criterion was lOE-6 ; therefore , we didn't try a 

l ower one . 

The amelioration of the model was gained by the use 

of the fourth order expansion. Nevertheless , the number 

of iterations needed for convergence was relatively high 

(200 iterations) for a moderate convergence criterion (lOE- 4 ) . 

The attempt of decreasing it to lOE-7 didn 't resolve the 

difficulty , and the problem took more than a thousand itera-

tions to converge . 

The experimenta l method was considered and applied to 

each p arameter separately . The optimization procedure 

time was r e latively small when previous results were used . 

Its application r educed the number of iterations needed for 

the p robl em to converge to onl y 65 iterations with a toler-

ance of lOE-4. 

We a l so found that the accelerating technique selected 

was improved very simpl y by the use of the SNORM which is 

easily cal culated. 

The study of various probl ems was performed and insured 

the feasibility of the optimization t echnique results . The 

use of the optimal factors gave excelle nt resul t s for the 
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case where two fuel assemblies were shuffled , even though 

the convergence criterion was lOE-4 . 

For the remaining problems , the convergence was at-

tained for about 200 iterations and the conformity with 

respect to DODMG may be acceptable. Therefore, one needed 

to augment the accuracy to lOE-7, so the matching between 

the two models was excellent . Unfortunately , the computa-

tion time increased , especially for the problems where the 

number of nodes varied (8 nodes and 11 nodes cases) . This 

suggests that the model will be most efficient in fuel 

management where the assembly shuffling is frequent . Also , 

the use of a moderate convergence criterion such as lOE-4 

was enough for some problems (regular configuration, no 

reflector configuration) . 

Another general aspect of the technique is that the 

SNORM was continuously decreasing . This is a characteristic 

of the convergence of the solution. Unfortunately , in some 

cases, this rate of change doesn't remain as large as in the 

beginning of the process. 
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VI. SUGGESTIONS FOR FURTHER STUDIES 

Four major studies may be done to ameliorate this 

model. These are : 

(1) Attempt to damp the oscillations accused by the 

SNORM and eigenvalue curves . One has to investi-

gate the effect of the interface condition on 

this problem. 

(2) Further study is needed to incorporate into the 

program the experimental technique that has been 

applied. 

(3) Appl y the mode l to problems where the diffusion 

coefficient is variabl e and the cross sections 

are burnable dependent. 

(4) Finally, a more interesting case to investigate 

is the extens i on of the method to the three -

dimensional case and the n groups energy dif fu -

sion equation, which is a more realistic problem . 
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