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CHAPTER 1. INTRODUCTION 

1.1 The Voltage Stability Problem 

Society's dependency on electricity is increasing daily. To meet increased de

mand, generating facilities and major transmission lines must be built. During con

struction design, issues like delay of obtaining license to build new transmission lines 

from state agencies, difficulties in acquiring right-of-way from land owners, concerns 

regarding the relation of electromagnetic fields (EMF) to human health, and shift in 

generation pattern because of environmental constraints all corne into play. The most 

feasible response is often to interconnect different utilities and to exchange power be

tween them. Thus, modern electrical power systems tend to be highly interconnected 

and heavily loaded. As these systems continue to grow, voltage stability is becoming 

a major operating concern. 

A system is said to enter a state of voltage instability when a disturbance (say 

an increased load) causes voltage to drop quickly and automatic system controls fail 

to halt the decay. Voltage decay may occur in only a few seconds or require 10 to 20 

minutes. If the decay continues unabated, steady-state angular instability, or voltage 

collapse, occurs. In the literature, the voltage collapse point is generally referred 

as the critical point. This point is illustrated in figure 1.1, which plots the relation 

between real power and voltage at a load bus of a 2-bus system. The result is a 
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Figure 1.1: Illustration of the critical point on a P-V curve 

P-V curve with the critical point located at the tip. The frequency of voltage 

collapse incidents has increased in recent years, involving millions of dollars in losses. 

To prevent recurrence, operators and planners must understand fully the voltage 

collapse phenomenon. 

1.2 The Voltage Collapse Phenomenon 

In a power system, if generation facilities are adjacent to load centers, real and 

reactive power can be supplied by generating units. But in many instances, generation 

facilities are remotely located. Thus, the need arises for compensation of the voltage 

drop along the transmission lines and for the provision of voltage support within the 

load areas. Items available ~o maintain the desired voltage and reactive flow levels 

under changing operating conditions include: 

1. shunt capacitors, 
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2. under-load tap changing transformers (ULTCs), 

3. static var compensators (SVCs), 

4. shunt reactors, and 

5. generator reactive power reserves. 

In general, reactive power flows from a bus with a higher voltage magnitude to 

one with a lower voltage magnitude. An inductive reactive load lowers the voltage 

of the bus to which it is connected, whereas a capacitive reactive load raises the bus 

voltage. 

As mentioned, the main problem is the voltage drop that occurs after a distur

bance (an increase in load). Under such circumstances, excessive power because of 

increased loading, flows through inductive reactances of transmission lines and trans

formers. The problem is exacerbated if the reactive power supply at the local level is 

insufficient. But even when there is sufficient reactive power supply, if that supply is 

located far from the voltage-weak areas, it is of no use because reactive power cannot 

be transferred over great distances. The voltage decay problem becomes especially 

serious after a contingency, when cascading outages and voltage collapse throughout 

the system can result. Such voltage instability/collapse incidents that have occurred 

throughout the world are reported in [1]. 

One of the tools sometimes used for analyzing steady-state voltage stability is the 

Newton-Raphson power flow. But the Jacobian of the power flow becomes singular 

at the steady-state voltage limit, or the critical point. Consequently, the power flow 

equations cannot be solved at or near the critical point. This hampers the study of 
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voltage collapse. The next section briefly discusses the analytical and computational 

tools proposed by several researchers for analyzing the voltage stability problem. 

1.3 Literature Review 

In the literature, most of the static conditions derived to predict voltage insta

bility can be related to singularity conditions on the power flow Jacobian. It should 

be noted, however, that the singularity of the power flow Jacobian is a necessary but 

not a sufficient condition to indicate voltage instability. 

In any type of voltage stability analysis, we wish to know how close the system is 

to actual voltage instability, which can be expressed in terms of an index. Numerous 

such indices have been proposed to assess the proximity of an operating condition 

to voltage collapse. Tamura et al. [2, 3] related the voltage instability phenomenon 

to multiple power flow solutions. In a heavily loaded power system, two very close 

power flow solutions exist, that are called multiple power flow solutions. One is the 

higher-voltage power flow solution and the other is the lower-voltage solution. As the 

load demand increases, the two solutions approach each other, finally reaching the 

static voltage stability limit. Tiranuchit et al. [4] used the minimum singular value 

of the power flow Jacobian as a security index, and derived static control strategies 

based on this index. The minimum singular value zero corresponds to a singular 

Jacobian matrix. Kessel et al. [5] developed a local index, Li, which is computed for 

each mode i in the system. The maximum value (closest to one) is indicative of the 

proximity to voltage instability, where the power flow solution diverges. Schlueter et 

al. [6] proposed the concept of PQ and PV controllability, and identified the voltage 

control areas by defining an area version of the minimum eigenvalue index. 
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As mentioned, a drawback common to all these methods is that they rely on the 

Newton-Raphson method of power flow analysis, which is unreliable in the vicinity 

of the voltage stability limit. To overcome such difficulties, new methods based on 

continuation and bifurcation are emerging. Iba et al. [7] applied the homotopy con

tinuation method to detect the critical point. A homotopy parameter was introduced 

and used to trace without numerical ill-conditioning the solution along the curve from 

a base load to the critical load condition. This method is similar to the continuation 

method developed at Iowa ,State University (ISU) by means of predictor-corrector 

scheme [8]. 

1.4 Scope and Objective 

In response to the need for a more robust and numerically well-conditioned 

analytical tool for analyzing steady-state voltage stability, a continuation power flow 

(CPF) program was developed at ISU [8]. 

The continuation power flow, which approximates the critical point, starts at 

a base load with a specified load change scenario. In one program run, it provides 

a series of power flow solutions up to and slightly past the critical point. For each 

power flow solution calculated, the CPF produces an index to identify the distance 

from the critical point and a list of buses most prone to voltage collapse. The present 

version of the CPF has been proved a powerful tool for approximating the critical 

point. However, the CPF provides no information with respect to identifying the 

system's weakest components from the voltage stability viewpoint. Moreover, the 

current CPF does not fully utilize the effect of load modeling on voltage stability. 

The objective of this research is to make the available CPF a more powerful tool 
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for the analysis of steady-state voltage stability. This involves 

• a detailed study of the various load models (constant power, constant current, 

constant impedance, and composite load models) to determine their effects on 

voltage stability; 

• a definition of the concept load connectivity so as to clarify the understanding 

of the critical point with respect to PV curves; and 

• a systematic procedure, identifying key components (buses, branches, and gen

erators) of the system that are critical to maintaining voltage stability. 

1.5 Thesis Outline 

Chapter 2 describes the general principles involved in the analysis of steady-state 

voltage stability and provides robust numerical methods to be used in identifying 

voltage instability conditions. The basic principles involved in the CPF are reviewed 

in Chapter 3. In Chapter 4, the importance of load modeling in power systems 

(especially for voltage stability studies) is stressed, and the CPF is demonstrated with 

nonlinear load models. Chapter 5 presents a sensitivity approach using the tangent 

vector of continuation power flow to identify weak areas in the system. Chapter 6 

contains both the conclusions drawn from this research and suggestions for future 

work. 
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CHAPTER 2. STEADY-STATE VOLTAGE STABILITY 

EVALUATION 

2.1 Introduction 

In this chapter, the basic definitions pertaining to voltage stability are given. The 

general principle of how steady-state voltage stability can be analyzed is outlined. 

Finally, the basic steps involved in the direct and indirect methods of calculating the 

critical point are presented. 

2.2 Basic Definitions and Voltage Collapse Incidents 

Throughout this research, the problem of voltage instability, which causes the 

voltage collapse phenomenon, is examined from the steady-state perspective. The 

accepted definition of the steady-state stability of a power system is as follows [9]: 

"A power system is steady state stable for a particular steady state operating 

condition if, following any small disturbance, it reaches a steady state operating 

condition which is identical to or close to the pre-disturbance operating condition." 

A small disturbance is defined as 

"a disturbance for which the equations that describe the dynamics of the power 

system may be linearized for the sake of analysis." 

In general, static voltage instability refers to the continuous decay of voltage to 
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Table 2.1: Voltage collapse incidents 

II Date Location Time Frame II 
11/30/86 SE Brazil, Paraguay 2 seconds 
05/17/85 South Florida 4 seconds 
08/22/87 Western Tennessee 10 seconds 
12/27/83 Sweden 50 seconds 
09/22/77 Jacksonville, Florida few minutes 
09/02/82 Florida 1-3 minutes 
11/26/82 Florida 1-3 minutes 
12/28/82 Florida 1-3 minutes 
12/30/82 Florida 2 minutes 
12/09/65 Brittany, France ? 

11/10/76 Brittany, France ? 

08/04/82 Belgium 4.5 minutes 
01/12/87 Western France 4-6 minutes 
07/23/87 Tokyo 20 minutes 
12/19/78 France 26 minutes 
08/22/70 Japan 30 minutes 
12/01/87 France ? 

a critical value causing the protection equipment to react and effectively separates 

the network. Loss of voltage control does not necessarily involve large or increasing 

angles. Disturbances involving voltage collapse have occurred over the last 20 years, 

the majority occurring since 1982. A number of incidents are listed in Table 2.1 [1]. 

The time frames for these types of disturbances range from a few seconds to thirty 

minutes or longer. 

The need for a better understanding of the phenomenon and for exploring meth

ods of analyzing and solving voltage stability problems led to the formation of an 

IEEE task force on the subject [10]. This task force developed a report containing 

part of the work published up to 1989. The report also proposed definitions for the 
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three local terms of the voltage control problem. 

voltage stability: The ability of a system to maintain voltage so that when the 

load admittance is increased, load power will increase, so that both power and 

voltage are controllable 

voltage collapse: The process by which voltage instability leads to loss of voltage 

in a significant part of the system (voltage may be lost due to angle instability 

as well, and sometimes only a careful post-incident analysis can discover the 

primary cause) 

voltage security: The ability of a system not only to operate stably, but also 

to remain stable (as far as the maintenance of system voltage is concerned) 

following any reasonably credible contingency or adverse system change. 

If, following a disturbance (such as a load increase or a change in system configu

ration), a rapid voltage drop occurs in the system and automatic system controls fail 

to halt decay, the power system is said to be insecure and to be in the state of volt

age instability. If voltage continues to deteriorate, steady-state angular instability, 

or voltage collapse, will occur. 

Growing concern about voltage collapse incidents around the world led to the 

organization of international workshops at the following places: 

• Potosi, MO, September 1988; 

• Deep Creek Lake, MD, August 1991; 

• Lagos, Nigeria, January 1992; and 
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• EPRI/NERC forum on voltage stability, Breckenridge, CO, September 14-15, 

1992. 

2.3 Analysis of Steady-state Voltage Stability 

The steady-state operation of a power system network is represented by the 

power flow equations given by 

F(~, V,-\) = 0 (2.1) 

where ~ represents the vector of bus voltage angles, and V represents the vector of 

bus voltage magnitudes. -\ is the parameter of interest we choose to vary. It can 

either be a load parameter in terms of MW or a load connection parameter, which 

will be explained in the following chapters. In general, the dimension of F will be 

2npq + npv, where npq and npv are the number of PQ and PV buses, respectively. 

From equation 2.1 the fundamental equation of sensitivity analysis can be ob-

tained as 

dF = a F dS a F dV a F d-\ = 0 
as + av + a-\ (2.2) 

Let x = [~, V]T. From the foregoing differential equation, an ODE system can be 

obtained: 

dx [aF]-1 aF 
d-\ = ax B-\ (2.3) 

For a specific variation of the parameter -\, the corresponding variation to solution 

x is calculated by evaluating the Jacobian aFjax. This procedure, as proposed 

in Davidenko [11], fails at critical points where the Jacobian is singular and the 

inverse does not exist. At such points, the solution, x, is quite sensitive to even 

small parametric perturbations. In mathematical literature, these critical points are 
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referred to as turning points, limit points, or fold points. 

Several techniques have been proposed to calculate turning points. These meth

ods base their analyses on two approaches: 

• direct methods [12, 13] and 

• indirect methods [14, 15]. 

The former augments the original system of equations with an extra set of equations 

in such a way that the turning point becomes the solution of the system. The latter 

begins around the neighborhood of a turning point and calculates several different 

solutions of F(x, >.) = 0 by continuation. At the same time, a certain test function is 

monitored along the solution path, which gives information about the turning point. 

Both methods are described in the following sections. Excellent descriptions can be 

found in [16]. 

2.3.1 Direct methods 

The first application of direct methods to power system problems is described 

by Ajjarapu [17] and Alvarado [18]. This approach attempts to find the maximum 

allowable variation of >.: i.e., an operating point (±*, >.*) of F(±, >.) = 0, such that 

the Jacobian at this point is singular. It solves the system of equations 

F(±, >.) 

G(J!) = Fx (±, >.)fl 

hk -1 

(2.4) 

This procedure basically augments the original power flow equations F(±, >.) = 0 by 

Fx (±, >.)fl = 0 with hk = 1. This augmentation makes the Jacobian of the enlarged 
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system G(y) nonsingular and guarantees a solution that is the turning point. 

This approach has certain drawbacks. The dimension of the nonlinear set of 

equations to be solved is twice that of the conventional power flow. The approach 

requires close estimates for the vector fl. But convergence of the direct method is 

rapid if the initial operating point is close to the turning point. The enlarged system 

is solved in such a way that it requires the solution of four nxn (n is the dimension of 

the Jacobian Fx(;£, A)) linear systems, each with the same matrix. Such a procedure 

requires only one LU decomposition. Details can be found in [12, 17]. A good 

comparison of the direct method with the continuation method is given in [19]. 

2.3.2 Indirect (continuation) methods 

Unlike direct methods, which attempt to solve an enlarged system of load flow 

equations in one step, the continuation (indirect) method starts with a known base 

solution and attempts to solve the original load flow equations repeatedly. It assumes 

that the first solution (xo, Ao) of F(x, A) = 0 is available. The continuation problem 

is to calculate further solutions, (Xl, AI), (x2' A2), ... until we reach a target point, 

say at A = A *. The ith continuation step starts from an approximation of (xi, Ai) 

and attempts to calculate the next solution. There is an intermediate step, however. 

With the predictor-corrector type continuation, the i -+ i + 1 step is split in two 

parts. The first predicts a solution, and the second attempts to make this prediction 

converge to the required solution: 
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x 

\ 

- J -

Figure 2.1: Illustration of predictor-corrector scheme 

These steps are shown In Figure 2.1. Continuation methods differ, among other 

things, in the 

1. choice of the predictor, 

2. type of the parameterization strategy, 

3. type of the corrector method, and 

4. the step length control. 

These four aspects will be explained through the formulation of the power flow equa

tions in chapter (3), in which the basic continuation power flow will be explained. 

The continuation technique used, is explained with a simple example in Appendix A. 
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CHAPTER 3. PRINCIPLES OF CONTINUATION POWER FLOW 

3.1 Introduction 

As mentioned in the previous chapter, the continuation method is a mathe

matical path-following methodology used to solve systems of nonlinear equations. 

Using the continuation method, we can track a solution branch around the turn

ing point without difficulty. This makes the continuation method quite attractive 

in approximations of the critical point in a power system. The continuation power 

flow developed at Iowa State University [8] captures this path-following feature by 

means of a predictor-corrector scheme that adopts locally parameterized continua

tion techniques to trace the power flow solution paths. The next sections explain the 

principles of continuation power flow. 

3.2 Locally Parameterized Continuation 

A parameterization is a mathematical means of identifying each solution on the 

branch, a kind of measure along the branch. When we say "branch," we refer to 

a curve consisting of points joined together in (n + 1) dimensional space that are 

solutions of the nonlinear equations 

F(X,A) = 0 (3.1 ) 
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This equation is obtained by introducing a load parameter, A, into the original system 

of nonlinear equations, F(x) = O. For a range of values of A, it is quite possible to 

identify each solution on the branch in a mathematical way [12]. But not every branch 

can be parameterized by an arbitrary parameter. The solution of equation 3.1 along a 

given path can be found for each value of A, although problems arise when a solution 

does not exist for some maximum possible A value. At this point, one of the state 

variables, xi, can be used effectively as the parameter to be varied, choice of which 

is determined locally at each continuation step. Thus, the method is designated as 

the locally parameterized continuation. In summary, local parameterization allows 

not only the added load parameter A, but also the state variables to be used as 

continuation parameters. 

3.3 Formulation of Power Flow Equations 

To apply locally parameterized continuation techniques to the power flow prob

lem, the power flow equations must be reformulated to include a load parameter, A. 

This reformulation can be accomplished by expressing the load and the generation 

at a bus as a function of the load parameter, A. Thus, the general forms of the new 

equations for each bus i are 

AP' ~ 

where 

Pc. (A) - PL·(A) - Pr. = 0 
~ ~ ~ 

Qc· - QL·(A) - Qr· = 0 z ~ ~ 

n 
" v:. V-y' ·cos(b· - b· - '"Y' .) L..J ~ J ~J ~ J I~J 
j=1 

(3.2) 

(3.3) 
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n 
~ V:·V-y··sin(b·-b·-", .. ) L.J Z J ZJ Z J IZJ 
j=1 

and 0 ~ A ~ AcriticaZ' A = 0 corresponds to the base case, and A = AcriticaZ to the 

critical case. The subscripts L, G, and T respectively denote bus load, generation, 

and injection. The voltage at bus i is Vi L bi, and Yij L lij is the (i, j)th element of 

the system admittance matrix [y BUS]' 

To simulate different load change scenarios, the PL' and Q L. terms can be 
z z 

modified as 

where 

PLio + A [KLiSABASEcos(1Pi)] 

QLio + A [KLiSABASEsin(1Pi)] 

P L QL = original load at bus i, active and reactive respectively', io' io 

KLi = multiplier designating the rate of load change at bus i as A changes; 

1Pi = power factor angle of load change at bus i; and 

(3.4) 

(3.5) 

SaBASE = apparent power, which is chosen to provide appropriate scaling of A. 

The active power generation can be modified to 

(3.6) 

where 

PGio = active generation at bus i in the base case and 

KGi = constant specifying the rate of change in generation as A varies. 
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Now if F is used to denote the entire set of equations, then the problem can be 

expressed as a set of nonlinear algebraic equations represented by equation 3.1, with 

x = [~, V]T. The predictor-corrector continuation process can then be applied to 

these equations. 

3.4 The Predictor-corrector Process 

The first task in the predictor process is to calculate the tangent vector. This 

can be obtained from 

d~ 

[FS' F v , F,X] dV = 0 

d,X 

On the left side of the equation is a matrix of partial derivatives multiplied by the vec-

tors of differentials. The former is the conventional power flow Jacobian augmented 

by one column (F,X), whereas the latter t = [d~, dV, d,X]T is the tangent vector being 

sought. Normalization must be imposed to give t. a nonzero length. One can use, for 

example, 

where ek is an appropriately dimensioned row vector with all elements equal to zero 

except the kth , which is equal to one. If the index k is chosen properly, letting 

tk = ±1.0 impose a nonzero norm on the tangent vector and guarantees that the 

augmented Jacobian will be nonsingular at the point of maximum possible system 

load [20]. Thus, the tangent vector is determined as the solution of the linear system 

{3.7} 
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Once the tangent vector has been found by solving equation 3.7, the prediction can 

be made as: 

d§. 

d)' 

where I *' denotes the predicted solution, and a is a scalar designating step size. 

After the prediction is made, the next step is to correct the predicted solution. 

As mentioned; the technique used here is local parameterization, whereby the original 

set of equations is augmented by one equation specifying the value of one of the state 

variables. In equation form, this relation is expressed as 

where TJ is an appropriate value for the kth element of~. Once a suitable index k 

and the value of TJ are specified, a slightly modified N -R power flow method (altered 

only by one additional equation and one additional state variable) can be used to 

solve the set of equations. This procedure provides the corrector needed to modify 

the predicted solution found in the previous section. 

3.4.1 Selecting the continuation parameter 

The best method of selecting the correct continuation parameter at each step 

is to select the state variable with the largest tangent vector component. In short, 

we select the state variable evidencing the maximum rate of change near a given 

solution. To begin with, ). is a good choice, and subsequent continuation parameters 
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can be evaluated as 

(3.8) 

Here, t is the tangent vector. After the continuation parameter is selected, the proper 

value of either +1 or -1 should be assigned to tk in the tangent vector calculation. 

3.4.2 Identifying the critical point 

Arriving at the stopping criterion for the continuation power flow, we we must 

determine whether the critical point has been reached. This can be done easily be

cause the critical point is the point at which maximum loading (and hence maximum 

A) occurs before decreasing. For this reason, at the critical point, the tangent vector 

component corresponding to A (which is dA) is zero and becomes negative once it 

passes the critical point. Thus, the sign of the dA component tells us whether the 

critical point has been passed or not. 

The previous paragraphs summarize the basic continuation power flow. More 

details cailoe found in [21]. The basic C~F is based on a constant power load model. 

3.5 Example 

The basic continuation power flow previously explained is demonstrated using 
7v L,' / 

J ;; the a New England 30-bus test system, whose single line diagram is given in Fig-

ure 3.1. There are a total of 9 generators and 20 PQ buses in the system. Figures 3.2 

and 3.3 illustrate the variation of Pgen and Qgen with the system load (and thus 

A). When A is increased, so is the system load. This increase is shared among the 

system's nine generators, according to their initial generation ratio. No Pgen limits 

are considered here, as evident from the linear shape of each curve in Figure 3.2. 
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Figure 3.3 shows Q gen versus total load on the system. Before the critical point 

is reached, seven of nine generators reach their QZimits. This fact can be observed 

from Figure 3.3 in which the slope of a curve becomes zero once a generator reaches 

its QZimit. 

Figure 3.4 presents PV curves for the first four critical buses in the system, and 

Figure 3.5 gives the trajectory of the voltage stability index. Details of the criti

cal bus selection and the voltage stability index calculations are given in Chapter 5. 

The index becoming zero corresponds to the system reaching the critical point. The 

sudden drop in the index at a certain load levels corr~spond to one or more units, 

reaching their reactive power output limits. The next chapter describes the impor

tance of nonlinear load modeling in power systems (especially in voltage stability 

studies) and how these nonlinear load models are studied with CPF. 
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CHAPTER 4. CPF WITH NONLINEAR LOAD MODELS 

4.1 Importance of Load Modeling in Power Systems 

Most mathematical load models now used in power flow and transient stability 

studies do not represent actual load characteristics. Analysts select load models that 

will minimize the modeling effort. Expedience also plays a role in model selection. 

Thus, load models tend to yield conservative results. But the uncertainties in load 

modeling can be critical unknowns in the calculation of power transfer limits and 

in the requirements for transmission system expansion. Better models can predict 

power system behavior more accurately and, thus, bring improvements in transmis

sion system planning and utilization. All told, load modeling plays an important role 

in the analysis of power systems. 

With the objective of making more accurate, yet simple and more realistic 

load models based on available data, General Electric Company under the contract 

with EPRI [22] developed a quite sophisticated software, called load model synthesis 

(LOADSYN). This software is capable of producing load models for power flow and 

for transient stability computer studies. Actually, voltage stability studies (and hence 

power flow studies) often require more careful and accurate load modeling than do 

transient stability studies. This is because steady-state behavior changes with re

spect to load models, as will be demonstrated in later sections of this chapter. Here, 
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we are not attempting to model the loads in a power system. Rather, we are using 

already existing load models [22]. In this research, only the load modeling for power 

flow studies is considered, since we are interested only in the analysis of steady-state 

voltage stability. 

4.2 Load Modeling in Power Flow Studies 

Power flow studies are used to provide information on steady-state voltages and 

power flows in a system, subject to the voltage regulating capabilities of equipment 

and specified interchange between individual areas. The loads determine the pattern 

of flows and voltages within the system and should be modeled as accurately as 

possible. The load at any bus is a composite of many factors, including lighting, 

resistance heating, dc converters, arc furnaces, and motors of various sizes and types. 

Sensitivity of the active and the reactive loads to changes in voltage will have a 

significant effect on power flow results. Most power flow programs currently in use 

have no provisions for representing a general load dependency on voltage, since the 

general load is represented as constant MVA. This representation is appropriate for 

baseline planning studies and for steady-state evaluations following contingencies, 

when voltage regulating devices returned the voltage at the load to near its normal 

value. But for studies of voltages and flows immediately after contingencies, the 

representation of load's dependency upon voltage is necessary. With this in mind, 

we represent the load at a bus in a power flow study as a quadratic function of 

voltage [22]: 

P = aV2 + bV + c (4.1) 
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where a V 2 is the constant impedance load, bV the constant current load and c the 

constant power load. Composition of the load at a particular bus determines the 

parameters a, b, and c. A similar formulation can be used for reactive power, Q. 

Typically, load representations in power flow programs are limited to a load-voltage 

relation. Load-frequency characteristics are neglected because system frequency is 

generally maintained within narrow limits, normally ±0.03 Hz. 

4.3 Load Models 

The load on a bus consists of several types of loads such as motors, arc furnaces, 

and lighting. Active and reactive power requirements at a particular bus as a function 

of voltage depend on the types of electrical loads connected to that bus, as well as 

on the proportion of each type. If the quadratic load model in equation 4.1 is used, 

then individual loads can be represented by three analytical load models based on 

the load-voltage relation: 

1. constant power (P = constant), 

2. constant impedance (P ex V2), and 

3. constant current (P ex V 1.0). 

Furthermore, a composite load may consist of any number of induction motors, 

synchronous motors, rectifiers, and impedance loads. For such a composite load, the 

load-voltage characteristic can be determined analytically by combining the effects of 

the above mentioned individual load models. The characteristics of each load model 

are described briefly here. 
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4.3.1 Constant power load model 

P = V I = constant 

This model is also referred to as constant MVA. Real and reactive power, are 

separately treated. To maintain constant power, the load that is modeled as constant 

power draws more current from the system under low-voltage conditions, and less 

current under high-voltage conditions. Constant power characteristics are usually 

valid in a limited range of supply voltages. 

4.3.2 Constant impedance load model 

p ex: V 2 

With a constant impedance load, the both active and reactive powers increase 

as the square of the voltage magnitude. The active power decreases with increasing 

frequency. Thus, a constant impedance load absorbs much less power (both active 

and reactive) than a constant power load at lower voltage than at normal voltage. 

Consequently, the electrical load in the lines and the voltage drop at the bus during 

low-voltage conditions or during a fault will be different. 

4.3.3 Constant current load model 

P ex: Vl.O 

The constant current load draws a constant current from the system under all 

voltage conditions, i.e., the power (MVA) consumed by a constant current load is di

rectly proportional to the supply voltage. Thus, a constant current load will consume 
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more power (MVA) during high voltage conditions and less power (MVA) during low 

voltage conditions than a constant power (MVA) load. For realistic loads, a constant 

current load characteristic is not valid over the whole spectrum of voltages. The 

constant current model is nearly equivalent to 50% constant power load combined 

with 50% constant impedance load. 

Any combination of these three types of load models yields a relatively realistic 

power system load model, which can be called "composite load." Developing a non

linear load model is not an easy task because system load characteristics are least 

known part of a power system, voltage & frequency response of the load is not well 

known, and data can not be easily gathered. 

4.4 Continuation Power Flow for Nonlinear Loads Based on LOADSYN . 

The continuation power flow explained in Chapter 3 is based on a constant power 

load model. As mentioned, in constant power load model, load and generation at each 

bus are independent of voltage. Thus, both are made to vary in direct proportion 

to any change in A. But in a nonlinear load model, the response of the load to a 

change in voltage magnitude must be considered. Developing such a model is difficult, 

however, inasmuch as the characteristics of a wide variety of motors, appliances, must 

be considered. Composition of each load class at each bus also should be estimated. 

The LOADSYN software package mentioned earlier permits the user to develop 

load models for his or her system with a minimal amount of data on actual system 

loads (because of the lack of actual data) and with simply the mix of various classes, 

e.g., residential, commercial, and industrial. As the user acquires detailed information 

on load composition and characteristics, this information can be incorporated easily 
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to refine the model. Using LOADSYN to develop nonlinear load model for a given 

system requires three data sets [22]: 

1. The load class mix data, describing the percentage contribution of each of 

several load classes to the total active power (P) load at the bus. This data 

must be specified for each bus or similar group of buses in the system. 

2. The load composition data, describing the percentage contribution of each of 

several load components to the active power consumption of a particular load 

class. This data is a function of daily and seasonal cycles, local climate and 

weather, and other factors. 

3. The load characteristics data, describing the electrical characteristics, e.g., 

power factor, voltage and frequency sensitivity and motor model parameters, 

of each of the load components. 

Because the characteristic and composition data should not vary widely over a par-

ticular system, they can be developed once for the entire system. Only the load class 

mix data needs to be prepared for each bus or area and updated for changes in system 

load. The resultant load model is 

where these definitions pertain: 

PLio, QLio = the initial active and reactive powers consumed by the load at bus i, 

respectively (from the base case); 
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Vi = the voltage at bus i 

Voi = the initial voltage at bus i (from the base case); 

Pal = the frequency-dependent fraction of the active power load; 

KPV 1 = the voltage exponent for the frequency-dependent active power load; 

KPV 2 = the voltage exponent for the nonfrequency-dependent active power load; 

Qal = the r.atio of the uncompensated reactive power load to the active power load; 

KQV 1 = the voltage exponent for the uncompensated reactive power load; and 

KQV 2 = the voltage exponent for the reactive power compensation. 

Note: The full model includes terms accounting for frequency deviation. Here, only 

voltage dependent terms are used. Details about this software can be found in [22]. 

To simulate any load change in the CPF using the load model given by equa

tions 4.2 and 4.3, the PL' and Q L. terms must be modified. This can be achieved 
~ ~ 

by dividing each term into two components, as shown in equations 4.4 and 4.5. The 

first component corresponds to the original load at bus i, and the second component 

represents load change resulting from the change in the load connection parameter 

),. v 
I' 

, L ((, v" 

PL'(),) = PL·(1 + KL'),) z z ~ 
( 4.4) 

QL'(),) = QL·(1 + KL'),) z z ~ 
(4.5) 

where the subscript Li is used to denote the load at bus i. Similarly, the active power 

generation term can be modified to be 

( 4.6) 
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The same approach holds for the reactive power term. The input to the LOADSYN 

program is load class mix data, load composition data, and load characteristic data. 

The output is the set of constants Pal' Qal' KPVI, KPV2, KQVI, and KQV2. 

For the constant current formulation, the voltage exponents in equations 4.2 and 4.3 

become 1.0. For the constant impedance formulation, they are equal to 2.0. 

Unlike the constant power load formulation, where the term ,,\ corresponds di

rectly to the actual load in terms of MW or MVAR, ,,\ in this formulation corresponds 

to the quantity of connected motors, appliances, that has a given characteristic. In 

this formulation, ,,\ is referred to as a connection parameter rather than as a load 

parameter. The concept of ,,\ as a connection parameter and analyzing PV curve in 

the sense of steady-state voltage stability can be illustrated with a simple two-bus 

example. 

4.4.1 Two-bus example 

Consider a single source connected to a pure resistive load through a single line of 

reactance 0.1. The continuation power flow program is run for this example, which 

is similar to that considered by Sauer et al. [23]. The increase in load is merely 

an increase in the number of parallel resistors. The continuation parameter ,,\ in 

this example can be related to the number of resistors. The physical significance of 

operation varies from the open circuit case (number of resistors connected = 0) to the 

short circuit case (number of resistors connected = 00). Figures 4.2 and 4.3 presents 

,,\ versus P and P versus V plots for this example. Conventionally, the lower portion 

of the PV curve (that portion below the tip of the curve) is referred to as voltage 

instability. But this example shows that it is not true. Figure 4.3 demonstrates that 
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Figure 4.1: Simple two-bus example 

we can operate at all points on the PV curve as long as voltage limits are satisfied. 

The tip of the curve (point A in the figure) is merely the maximum power transfer 

point and is not the critical point. The critical point is B, at which the Jacobian 

becomes singular. In the bifurcation literature, B is referred to as a static-fold type 

bifurcation. At that point, the qualitative behavior of any system changes, i.e., the 

system loses stability. The next section examines the results of the continuation 

power flow program using different load model types. 

4.4.2 A test case 

To demonstrate the continuation power flow with different load models, a sce

nario from the 3D-bus New England test system was simulated. A base case load 

accompanying the system, as well as system data, was taken from [24]. For the com

posite load model, the required constants in equations 4.2 and 4.3 were obtained from 
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Table 4.1: Constants used in composite load model 

Constant Value 

Pal 0.70 
KPV1 0.38 
KPV2 1.78 

Qa1 0.44 

KQV1 1.64 
KQV2 2.00 

Table 4.2: Pmax and Pcritical values for different load models using CPF 

Type of load Pmax (MW) Prritirnl (MW) 
Constant Power 95.75 95.75 

Constant Current 109.26 87.08 
Constant Impedance 111.05 80.95 

Composite load 110.59 98.01 

the LOADSYN program. For the load class mix data, a composition of 35% heavy 

industrial, 35% commercial, and 30% residential load was considered. The resulting 

sets of constants are shown in Table 4.1 [21]. Figures 4.4-4.11 show the load varia-

tion with respect to ,\ and PV curves for constant power, constant current, constant 

impedance, and composite (based on LOADSYN) load models. As expected, with 

the constant power load model, the load changes linearly, for a change in'\. But 

for the other three types of load models, hysteresis can be seen. That is, the power 

reaches a maximum before a maximum in the load connection parameter ,\ occurs. 

Table 4.2 shows the Pmax and Pcritical values for the four types of load mod

els. Pmax is equal to Pcritical for constant power load model. But they are distinct 

(Pmax is greater than Pcritical) for the other three load models. Physically, this can 

be interpreted as follows: after the maximum power transfer occurs, more load is be-
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ing connected, but actual power consumption decreases as a result of the dominating 

effect of the load voltage dependency. 

The Jacobian becomes singular at the operating point corresponding to PcriticaZ' 

but not at the operating point corresponding to Pmax . These examples (2-bus and 

30-bus) clarify our understanding of the critical point with respect to the PV curves. 

Previously, the tip of the PV curve was assumed to be the critical point. The 

upper portion of the curve was considered stable, and the lower portion unstable. 

This demonstration clearly avoids such ambiguity. Moreover, the maximum power 

transfer is less for the constant power load model than for the other types of load 

models. Thus, the constant power load model is relatively conservative. 

It should be noted that although the LOADSYN software yields a better load 

model than the standard load models now available, there is still room for improve- . 

ment. For example, the range of voltage and frequency changes over which the mod

els are valid was not investigated thoroughly during the development of LOADSYN. 

Further research is needed to improve model accuracy over a wide range of voltage 

and frequency. In particular, further investigation of the behavior and the modeling 

of motors at low voltages is needed. Also, it is extremely important to note that 

LOADSYN speaks only to the response of the load model to changes in voltage and 

frequency. It does not speak to the accuracy of the load model to the actual system 

load. The next chapter explains the sensitivity approach we are proposing for the 

analysis of steady-state voltage stability. 
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CHAPTER 5. SENSITIVITY BASED STEADY-STATE VOLTAGE 

STABILITY ANALYSIS 

5.1 Introduction 

The aim of continuation power flow, as described in Chapter 3, is not simply to 

calculate the critical point closely, but also to provide sensitivity information that can 

be used to identify critical components in the system. This chapter describes how the 

tangent vector information from the continuation power flow is used to locate weak 

areas in the system. In particular, it identifies buses, branches, and generators that 

are critical to maintain voltage stability by deriving sensitivities of these elements for 

a given change in load connection parameter. Results of these sensitivities obtained 

using a 30-bus test system and a 17-generator (162 bus) reduced Iowa system are 

presented to illustrate the applicability of this approach. The next section outlines 

existing methods for calculating these sensitivities. Later sections use the tangent 

vector to describe our sensitivity approach. 

5.2 Identification of Critical Elements 

Identifying critical elements involves locating the key components in a power sys

tem (buses, branches, or generators) that are critical to maintain voltage stability. In 

other words, one should find the weak areas in the system. Different authors present 
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different approaches for finding such areas. Modal analysis is one such approach. 

5.2.1 Modal analysis 

Proposed by Gao et al. [25], modal analysis involves calculation of eigenvalues 

and eigenvectors of the power flow Jacobian. With a steady-state power system 

model, the authors computed a specified number of eigenvalues and the corresponding 

eigenvectors of the (reduced) Jacobian. Assume ei and 'lJi are, respectively the right 

and left eigenvectors of the Jacobian corresponding to the eigenvalue Ai. Then the 

ith modal reactive power variation is 

~here Ki 2 "£}=1 eji2 = 1, and the corresponding ith modal voltage variation is 

1 
~Vm· =-~Qm· 

Z A· Z 
Z 

If ~ V mi is known, ~8mi can be calculated from the power flow equations. Different 

participations are defined as follows. 

Bus participations: Participation of bus k to mode i is 

where eki is the kth element of the ith column right eigenvector and 'lJki is the kth 

element of the ith row left eigenvector. 

Branch participations: The participation of branch Ij to mode i is 

~QIj· 
Pl. = 1, 

Ji ~QImax. 
1, 
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where ~Qlmax' = Max(~Q1J") and ~Q1J" is the linearized reactive loss variation 
z z z 

across branch lj. 

Generator participations: The participation of generator gk to mode i is 

where ~Qgmaxi = Max(~Qgki) and ~Qgki is the linearized reactive power output 

variation at generator gk. 

In the three foregoing participations, the suffix i indicates a particular mode, i, 

corresponding to the eigenvalue Ai' The greater the participation, the greater that 

component's contribution to that particular mode. Gao et al. used these partici

pations to identify the buses, branches, and generators contributing to a particular 

mode, for both a base and a critical case. 

5.2.2 Singular value decomposition 

Another voltage stability assessment technique, based on the singular value de

composition of the power flow Jacobian, is presented by Tiranuchit et al. [4] and 

expanded upon by L6f et al. [26]. Singular value decomposition is described here: 

Consider an n X n real matrix A. The singular value decomposition (SV D) of 

A is written [27] 
T n 

A = QS? = ~ siqiPi
t 

i=1 
where S is an n X n diagonal matrix and Q and Pare n X n orthonormal matrices. 

The diagonal elements of S are called singular values of A. The columns ql, n, .. " 

qn of Q are called the right singular vectors. The columns PI, P2, "', Pn of ? are 
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called the left singular vectors. By appropriate choice of Q and P, singular values 

can be arranged such that 81 2: 82 2: ... 2: 8n 2: o. 
For a real symmetric matrix A, the individual singular values are equal to the 

square root of the individual eigenvalues of AT A or AAT [28]. Thus, for a real 

symmetric matrix, the absolute values of eigenvalues are equal to the singular values. 

Additionally, the smallest singular value of A is the 2-norm distance of A to the set of 

all rank-deficient matrices [28]. If the minimum singular value is zero (i.e.,8n = 0), 

then the matrix A is singular. Thus, in our voltage stability studies, the minimum 

singular value of the Jacobian becoming zero corresponds to the critical mode of the 

system. In [26], the authors calculated the minimum singular value and the two cor

responding (left and right) singular vectors of the power flow Jacobian. They defined 

a voltage stability index as the minimum singular value of the power flow Jacobian, 

which indicates the distance between the studied operating point and the steady-state 

voltage stability limit. The next section explains how the same participation infor

mation corresponding to critical mode can be obtained and how a voltage stability 

index can be derived from the tangent vector of the continuation power flow. This 

approach requires neither eigenvalue and eigenvector evaluation, nor singular value 

decom posi tion. 

5.3 Tangent Vector 

In the continuation process described in Chapter 3, the tangent vector proves 

useful because it describes the direction of the solution path at a corrected solution 

point. A step in the tangent direction is used to estimate the next solution. But if we 

examine the tangent vector elements as differential changes in bus voltage angles (dhi) 
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and magnitudes (dVi) in response to a differential change in load connectivity (d'x), 

the potential for meaningful sensitivity analysis becomes evident. The next examples 

demonstrate how the tangent vector elements change for different load levels. The 

numerical results that are presented in this chapter are from the New England 30-

bus system, which is a widely-used test system for voltage stability studies. Results 

from a 17-generator (162-bus) reduced Iowa system are also presented to illustrate 

the applicability of the approach to large-scale systems. 

Figures 5.1 and 5.2 illustrate the tangent vector elements versus the element 

number for two cases with different load levels, i.e., base case (light load) and critical 

case (heavy load). It should be noted that the first half of the graphs (first 29 elements 

for 3D-bus system, and first 161 elements for the 17-generator system) corresponds 

to voltage angle terms and that the next half (elements 30 to 49 for 3D-bus system, . 

and 162 to 316 for 17-generator system) corresponds to voltage magnitude terms. If 

we consider the first half of the graph (i.e., up to the elements which corresponds 

to voltage angle), the voltage angle terms are dominant for the light load condition 

than for the heavy load condition. Whereas the second half of the graph tells us that 

the voltage magnitudes are dominant for the heavy load condition than for the light 

load condition. We can conclude from this, that under light load conditions in the 

network, the steady-state angle stability is the less stable mode of instability, whereas 

under heavy load conditions the system is closer to steady-state voltage instability. 

The same conclusion was reached by Lof et al. [26] by performing singular value 

decomposition of the power flow Jacobian, which is computationally costly. But in 

continuation power flow we can derive the same conclusion from the tangent vector 

without the extra effort. 
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Tangent vee element magnitude x 10-3 
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5.3.1 Tangent vector, right eigenvector, and right singular vector of J 

Examining equation 3.7 from which the tangent vector is calculated, we can sur-

mise that the tangent vector is the right eigenvector of the Jacobian corresponding 

to zero eigenvalue at the critical point. Additionally, the right eigenvector is equal 

to the right singular vector because the Jacobian is real and (almost) symmetric. 

Thus, at the critical point, the tangent vector is equal to the right eigenvector corre

sponding to the minimum eigenvalue and the right singular vector corresponding to 

the minimum singular value. This equivalence is evident from Figures 5.3 and 5.4, 

in which the tangent vector, the right eigenvector, and the right singular vector of 

the Jacobian matrix near the critical point are plotted on the same graph for both 

systems. This information from the tangent vector can be used to identify buses, 

branches, and generators that are critical to maintain voltage stability. The next 

section shows how a voltage stability index can be derived from the tangent vector. 

5.3.2 Voltage stability index from the tangent vector 

Ajjarapu et al. [8] derived a voltage stability index using tangent vector infor

mation. Their first step was to find the weakest bus with respect to voltage stability. 

This is same as finding the bus with the greatest d~/dPtotal value. Here dPtotal is 

the differential change in active load for the whole system and is given by 

The weakest bus, j, is 
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When j reaches its steady-state voltage stability limit, d>" approaches zero, the ratio 

dVj / Cd>" becomes infinite or equivalently the ratio C d>../ dVj tends to zero. The 

ratio C d>../ dVj, which is easier to handle numerically, can be defined as a voltage 

stability index for the entire system. In [31] the minimum real part of the eigenvalue 

of the Jacobian and in [26], the minimum singular value of the Jacobian are defined 

as voltage stability indexes. But our tangent vector directly yields a good voltage 

stability index and avoids additional numerical computations. Figure 5.5 compares 

the voltage stability index from the tangent vector with that from the minimum 

eigenvalue and from the minimum singular value. The same trend is evident in the 

shape of the curves. All three indices are becoming zero at the same point, which 

indicates that the critical point has been reached. In fact, our voltage stability index 

has a physical interpretation in the sense that it is the ratio of differential change in 

voltage to differential change in active load for the whole system. The next section 

explains how to calculate the sensitivities of key components in the system. 

5.4 Sensitivity Analysis From the Tangent Vector 

In this research, we are only interested in the sensitivity of system response with 

respect to a change in one parameter [29]. In other words, we derive an expression 

for the differential change in a scalar valued function h(x, >..), because of differential 

change in >... Here, h(x, >..) is any power system operating constraint such as branch 

flow, reactive output of a generator, or bus voltage magnitude. Using the differential 

chain rule, we obtain 
dh 8h dx 8h 
d>" = 8xd>" + 8>" 

(5.2) 
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If we look closely at the equation 5.2, for calculating ~ we need ~, which can 

be calculated as in equation 2.3 (in our problem, x is the vector of voltage angles 

and magnitudes). This calculation involves computing the inverse of the Jacobian 

and fails at the critical point, where the Jacobian is singular and the inverse does 

not exist. But this ~ is given directly by the tangent vector in the continuation 

power flow. It can be substituted directly in equation 5.2 to obtain the sensitivity of 

any operating constraint. The next section derives operating constraint sensitivities 

corresponding to load buses, branches, and generators [32]. 

5.4.1 Bus sensitivities 

For bus sensitivities, the function h(x,).) can be either bus voltage magnitude 

or angle at a particular bus i. From equation 5.2 

dh n av:o dx)· av:o av:o dV:· dV:· _= L __ z __ +_z=_z_z+o=_z 
d)' j=l aXj d)' a). a\li d)' d)' 

Similarly, if we take bus voltage angle as function h, then 

dh /d8i 
d)' = d)' 

/ 

(5.3) 

(5.4) 

Close observation of the right-hand sides of the above two equations indicates 

that the numerators are nothing but the tangent vector elements. Because the value 

of d)' is the same for each d\li or d8i in a given tangent vector, bus sensitivities are 

nothing but the tangent vector elements themselves. Bus sensitivities indicate how 

weak a particular bus is near the critical point and help determine the areas close 

to voltage instability. The greater the bus sensitivity value the weaker the bus is. 

Tables 5.1 and 5.2 show the bus sensitivities near the critical point, both according 
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TabG Bus sensitivities for the first 10 buses near the critical point - 30-bus 
system 

According to voltage angle According to voltage magnitude 
Bus Tgt. vec. Sensi- Bus Tgt. vec. Sensi-
no. Element tivity no. Element tivity 
20 0.9465 1.0000 21 -1.0000 1.0000 
23 0.8805 0.9303 24 -0.9391 0.9391 
22 0.8774 0.9271 22 -0.9334 0.9334 
19 0.8710 0.9203 23 -0.9267 0.9267 
21 0.4959 0.5240 16 -0.9149 0.9149 
24 0.2923 0.3088 19 -0.9090 0.9090 
16 0.2609 0.2756 15 -0.8735 0.8735 
8 -0.1320 0.1394 20 -0.8696 0.8696 
7 -0.1239 0.1309 17 -0.6995 0.6995 
4 -0.1014 0.1071 14 -0.6228 0.6228 

to voltage angle and magnitude for the 30-bus test system and for the 17-generator 

(162-bus) reduced Iowa system, respectively. 

5.4.2 Branch sensitivities 

Let us consider a branch, ij. Let Vi L <5'i and VJ L <5' j be the voltages at buses i 

and j, respectively, and let Yij LOij be the line admittance. Then the losses in the 

line ij, neglecting the shunt charging capacitance, can be derived as (see Appendix 

B): " 

Defining this loss expression as function h, we obtain the sensitivity equation: 

dh 
d)" 

(5.6) \ 
; 
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Table 5.2: Bus sensitivities for the first 10 buses near the critical point - 17-generator 
system 

According to voltage angle According to voltage magnitude 
Bus Tgt. vec. Sensi- Bus Tgt. vec. Sensi-
no. Element tivity no. Element tivity 
90 -0.6889 1.0000\ 
89 -0.6458 0.9374 , 

63 -1.0000 1.0000 
60 -0.9849 0.9849 

86 -0.6073 0.8815 61 -0.9784 0.9784 
87 -0.5852 0.8494 58 -0.8883 0.8883 
36 -0.5803 0.8423 59 -0.8661 0.8661 
56 -0.5638 0.8184 15 -0.8448 0.8448 
67 -0.5603 0.8133 62 -0.8445 0.8445 
35 -0.5496 0.7978 65 -0.8072 0.8072 
104 -0.5477 0.7950 64 -0.7973 0.7973 
33 -0.5466 0.7934 10 -0.7729 0.7729 

Branch sensitivity indicates how important a particular branch is to voltage stability .. 

Tables 5.3 and 5.4 shows the branch sensitivities obtained near the critical point 

by considering the QZosses in the branches for the 30-bus test system and for the 

17 -generator reduced Iowa system respectively. Figures 5.6 and 5.7 show the real 

power versus total Q Zosses for ten participating branches (five most and five least). 

These are the five branches with the highest and the lowest sensitivities for the 30-

bus system and for the 17-generator system, respectively. The slope of the curve 

showing the QZosses in the five most participating branches is steep, compared with 

that of the five least participating branches. Thus, the rate at which the QZoss in 

a particular branch is changing is important, but not the magnitude of QZoss. This 

relation can be observed from the QZosses and the sensitivities from Table 5.3 or 

5.4. For example, inTable 5.3, the QZoss in branch 25 is greater than that in branch 

3, but branch 3 has a higher sensitivity. 
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Table 5.3: Branch sensitivities near the critical point for the 30-bus system 

Branch no. Bus i-Bus j Q losses Sensitivity 
24 16-19 5.4576 1.0000 
30 21-22 2.9336 0.5924 
32 23-24 2.7159 0.5249 
23 16-17 0.9558 0.2377 
3 2-3 0.7863 0.1839 

25 16-21 1.0473 0.1784 
22 15-16 1.3171 0.1541 
21 14-15 0.7611 0.1349 
33 25-26 0.1217 0.1033 
34 26-27 0.5242 0.0807 

Table 5.4: Branch sensitivities near the critical point for the 17-generator system 

Branch no. Bus i-Bus j Q losses Sensitivity 
42 13-62 0.9800 1.0000 
196 1-93 1.0729 0.7525 
79 25-26 0.2818 0.5245 
141 55-149 0.3518 0.4040 
154 62-63 0.5018 0.3225 
182 84-93 0.3397 0.3174 
88 27-126 0.4374 0.2941 
152 61-62 0.4807 0.2927 
201 95-96 0.3698 0.2902 
81 26-74 0.9852 0.2891 
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These sensitivities provide valuable information for contingency selection. To 

illustrate, in the 30-bus test system, branch 24, which has the highest sensitivity, 

is the most critical branch. This can be verified by considering the outage of each 

branch separately. Outage of branch 24 isolates some part of the system. With the 

outage of branch 30, we could transfer less power than we could with the outage of 

branch 32, a fact indicating that branch 30 is more critical than branch 32 for voltage 

stability. Similarly, for the 17-generator system, with the outage of branch 42, we 

could transfer less power than with the outage of any other branch. Thus, branch 42 

is the system's critical branch in terms of voltage stability. 

5.4.3 Generator sensitivities 

The reactive power at a generator can be defined as the function h. I.e., 

(5.7) 

where 

n 
Qr - '" V:.V-y. ·sin(o· - o· - 0··) ~ i - L.J l J lJ l J lJ 

j=l 

with the following definitions 

QLio = original reactive load, 

KLi = multiplier designating the rate of load change at bus i as ,\ changes, 

1/Ji = power factor angle of load change at bus i, and 

S.:lBASE = apparent power chosen to provide appropriate scaling of ,\. 
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Table 5.5: Generator sensitivities near the critical point for the 30-bus system 

Generator no. Q generation Sensitivity 
29 2.3443 1.0000 
25 1.843 0.5318 

Table 5.6: Generator sensitivities near the critical point for the 17-generator system 

Generator no. Q generation Sensitivity 
131 1.4013 1.0000 
121 2.2922 0.7143 
125 2.7090 0.6391 
6 2.4771 0.5799 

130 1.8297 0.4486 
76 4.3247 0.3522 

The sensitivity equation therefore becomes 

(5.8) 

Tables 5.5 and 5.6 respectively show the generator sensitivities calculated for 

the same 30-bus test system and 17-generator reduced Iowa system near the critical 

point. There are 9 generators in the 30-bus system. Near the critical case only two 

generators are participating, and the other seven generators already have reached 

their Q limits. Generator sensitivities indicate those generators that are important 

in maintaining voltage stability near the critical point. Evidently, generators with 

high sensitivity are especially important. For example, with the outage of generator 

29, we could transfer less power than with the outage of generator 25. These generator 

sensitivities can be used to obtain a better combination of generators to share the 

increase in load. Sensitivity results are verified with the finite difference approach. 

v 
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The sensitivities that we talked about in the above sections are useful not only 

for finding weak areas in the system, but also for diagnosing modeling deficiencies. 

In [30], an analysis of voltage stability on the MAPP-MAIN transmission interface 

of Wisconsin used three different power flow models to determine voltage stability 

limits. They used bus and branch sensitivities of CPF to assess and compare modeling 

deficiencies or strengths for three types of power flow models they used. They also 

used our branch sensitivities to identify the most critical branches in the system, 

both for normal case and for some contingencies. 
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CHAPTER 6. CONCLUSIONS AND SUGGESTIONS FOR FUTURE 

WORK 

6.1 Conclusions 

The continuation power flow program has been tested on systems as large as 

6000 buses and has worked well. A detailed study of load models (constant power; 

constant current; constant impedance; and composite load, which is a combination 

of the first three) and their effects on voltage stability also has been conducted. This 

study defined the concept of load connectivity and clarified the confusion about the 

critical point with respect to PV curves. The continuation power flow algorithm 

evidently is not dependent on the type of load model used, but runs with any type of 

aforementioned load models. The more accurate the load model, the more accurate 

the results obtained by the method. 

The tangent vector information from continuation power flow was used effectively 

to locate weak areas in the power system, e.g., the buses, branches, and generators 

that are critical to maintain voltage stability are identified using our proposed sen

sitivityapproach. The branch and generator sensitivities were verified by separately 

considering outages of the most critical branch and generator. Obviously, with these 

outages, we were able to transfer less power than with other outages .. Even though 

approaches, such as modal analysis, give the participation information at the base 
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case, they does not provide much information. In other words, the participation of 

key components near the base case (especially if remote from the critical point) might 

be completely different from that of key components near the critical case. The ex

amples included in this work demonstrated the ability of our approach to identify 

key components in the system with little additional effort. 

The sensitivities derived are useful not only for finding weak areas in the system, 

but also for diagnosing modeling deficiencies. In [30], an analysis of voltage stabil

ity on the MAPP-MAIN transmission interface of Wisconsin used three different 

power flow models to determine the voltage stability limits. The three different mod

els produced three different stability limits. The sensitivity-based CPF successfully 

identified the most critical branches, both for normal case and for some contingen

cies. The results were verified by outaging these lines. The authors used the bus and 

branch sensitivities of CPF to assess and compare modeling deficiencies or strengths 

for the three types of power flow models used. 

6.2 Suggestions for Future Work 

Although the continuation power flow has proved practical for the steady-state 

analysis of voltage stability, there is still room for improvement. Sharing of a system 

load increase is currently divided according to the initial generation ratio. Now that 

we have derived the sensitivities of the key generators at each load level, load could 

be shared according to these factors. We expect more power to be transferred with 

this type of sharing. In addition when the generator sensitivities are being derived 

and a particular generator reaches the QZimit, its sensitivity becomes zero. But if 

we provide more reserve reactive power to this generator, it may become the most 
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critical generator. So this aspect of QZimits should somehow be taken into account 

while the generator sensitivities are being derived. One way to do this would be 

to use reactive power capability curves. The QZimits of the generators, for a given 

load level and power factor, can be fixed according to these curves, and then the 

generator senstivities can be computed. Regarding branch sensitivities, the shunt 

charging capacitance is neglected when the losses in the branches are calculated. If 

we consider this fact also, increasingly accurate results may be obtained. 

An enhancement that would make continuation power flow run faster would 

be decoupling the Jacobian. Most run time involves the corrector iterations, which 

require solving Ax = b, where A is the Jacobian. So if we use the concept of P -

V and Q - 8 decoupling here, it would save memory, simplify calculations, and 

result in smaller computational times. The decoupling validity, however, should be 

checked at all load levels until the critical point is reached. To this end, a measure is 

needed. In [31), the authors came up with a decoupling condition, for which the real 

and reactive power decoupling is valid (or justifiable). We used this condition as a 

measure. For the systems we tested, it was valid until the critical point was reached. 

Moreover, this decoupling measure continuously decreased from the base case to the 

critical case. Thus, as the system became more stressed, decoupling became less 

justifiable. Further, checking the condition involves calculating eigenvalues, norms, 

from which we could not achieve any improvement in cpu time. A more detailed study 

of decoupling and its application to CPF must be done before definitive conclusions 

can be reached. 

Future studies could involve including the effect of interchange flows in CPF. 

The independent parameter A could be related to power import and export to enable 
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ready assessment of the voltage stability margin in terms of interchange. Finally, 

the voltage stability problem was examined only from steady-state perspective in 

this research. Including the capability of accounting for system dynamics will be the 

future research in this area. 
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APPENDIX A. BASIC CONTINUATION METHOD FOR A SIMPLE 

EXAMPLE 

Consider the following simple example with one unknown x 

2 J(x, >.) = x - 3x + >. = 0 (A.1) 

The Jacobian is 

[a
J aJl = [(2x - 3) 1] ax a>. 

Let the base solution (xO' >'0) be (3,0). Then the series of solutions (xl, >'1), (x2' >'2), 

... can be found using predictor-corrector continuation as below: 

Continuation step 1: 

Predictor 

To start with, let>. be the continuation parameter. Calculate the tangent vector as 

below, according to the augmented system given by equation 3.7 (here the index k is 

2). 

[ (2XOO - 3) :][::] = [ : ] 

=;[: :][::]=[:] 
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-1 
::::} dx = - and d)' = 1 

3 

Predict the next solution as 

where (J" is a scalar designating step size (say 0.5). 

Thus the predicted solution (x 1, X 1) becomes (2.8333,0.5). 

Corrector 

Correct the predicted solution by solving: 

[

2.6666 
::::}-

o 

: ] [ :: ] = [ f(X~ Xl) ] 

: ][ :: ] = [ 0,02:7768 ] 

::::} ~x = -0.0104165 and ~). = o. 

Repeat these corrector iterations, until reasonable accuracy is obtained (say E = 

0.0001). Now, max{~x,~).} > E. So update xl & Xl and repeat the corrector 

iteration. 

::::} xl = xl + ~x = 2.8229164 
update 

Xl = Xl +~). = 0.5 
update 

Corrector iteration: 

[ 

(2xl d - :3) _ up ate 

o : ][ :: ] [

1(X1 ,Xl )] 
uPdateo update 
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=> ~x = -0.00004075 and ~,,= o. 

Now, max{~x, ~"} < Eo So stop the corrector iterations. After the first continuation 

step, the point (xl, "1) is equal to (2.8228757,0.5). 

Continuation step 2: 

Select the continuation parameter as the state variable with the largest tangent vector 

component. i.e., 

max{ldxl,ld"l} = max{l- 0.3331, Ill} 

=> continuation parameter is " and the index k is 2. 

Tangent vector: 

=> dx = -0.3779646 and d" = 1. 

Predictor (step size is 0.5): 

X2 = 2.6338934 and 12 = 1.0 

Corrector: 

=> ~x = -0.0157485 and ~,,= O. 

Now, max{~x, ~"} > E. So update x2 and 12 and repeat corrector iterations, we 

get x2 = 2.618034 and "2 = 1.0 
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Continuation step 3: 

For this step also the continuation parameter is A. 

Tangent vector: 

=} dx = -0.4472 and dA = 1. 

Predictor (step size is 0.5): 

X3 = 2.394434 and J;3 = 1.5 

Corrector: 

_ [1.7:887 :] [ :: ] = [ O.05~0121 ] 

=} llx = -0.027957 and llA = o. 

Now, max{llx, llA} > £. So update x3 and J 3 and repeat corrector iterations, we 

get x3 = 2.366026 and A3 = 1.5 

Continuation step 4: 

For this step also the continuation parameter is A. 

Tangent vector: 

=} dx = -0.57735 and dA = 1. 



76 

Predictor (step size is 0.5): 

X4 = 2.07735 and -:.\4 = 2.0 

Corrector: 

::::} ~x = -0.072169 and ~A = O. 

Now, max{~x, ~A} > E. So update x4 and -:.\4 and repeat corrector iterations, we 

get x4 = 2.000026 and A4 = 2.0 

Continuation step 5: 

For this step also the continuation parameter is A. 

Tangent vector: 

::::} dx = -0.99995 and dA = 1. 

Predictor: 

Now, if we take step size equal to 0.,5, the corrector iterations diverge, because the 

predicted solution is too far from the solution curve. So step size selection plays an 

important role in the continuation process. If one can select the step size automat

ically at each step, the speed up of the process improves and solution converges to 

the required point without any numerical problems. For this example if we take a 

step size of 0.25 now and continue the process, 

X5 = 1.75004 and '\5 = 2.25 
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4-~~--------------~----------Larnbda 

Figure A.1: A versus x curve 

Corrector: 

=> .6.x = -0.12502 and .6.A = O. 

Now, max{.6.x, .6.A} > c. So update x5 and X5 and repeat corrector iterations, we 

get the critical point at: 

X5 = 1.5 and A5 = 2.25 

Figure A.1 shows the A versus x curve for the example. 
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APPENDIX B. DERIVATION OF BRANCH SENSITIVITIES 

The following is a derivation of the expression for the branch sensitivities ne

~lecting the shunt charging capacitance. 

Let Vi L 8i and Vj L 8j be the voltages at buses i and j respectively of the branch ij, 

and let Yij L ()ij be the line admittance. The current in the branch ij is 

1- . - (v.. L 8· - V- L 8 .) y . . L e· . 
1,) - 1, 1, ) ) 1,) 7,) 

Then the total power flow in the branch ij from i to j is given by 

(SZoss)ij (PZos s )ij + j (QZoss)ij = Vi1ij* 

[V.2 - v.. V·cos(8· - 8·) - z ZJ Z J 

-)·V.·V-sin(8· - 8 ·)]y··L - e·· 
1, ) Z ) Z) Z) 

Similarly, the total power flow from j to i is 

(SZoss)ji = (PZos s )ji + j (QZoss)ji = Vj ljt 

[V~ - v.. V-cos(8· - 8·) 
) Z) ) Z 

-J·V:·V-sin(8· -8·)]y··L -e·· Z ) ) Z Z) Z) 

The power loss in the branch ij is the algebraic sum of the above two power flows 

which is 
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Now differentiating the above loss function w.r.t. '\, we obtain the sensitivity equation 

as 

dh 

d'\ 

d\!:, 
[(2lt£ - 2Vjcos(8i - 8j)) d; 

dV 
+ (2Vj - 2lt£cos(8i - 8j)) d{ 

d8· 
+ (2lt£ljsin(8i - 8j)) d; 

d8· 
- (2lt£ljsin(8i - 8j)) d{ ]YijL-Oij 


