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INTRODUCTION 

The latent heat of fu s ion, he r eaf ter r e f err ed t o a s 

latent heat, is de fined in the Ha ndbook of Chemi stry and 

Phlslcs (8 , p . J097) a s "The quantity of heat nece ssary to 

change one gram of solid to a liquid wi t h no t emperature 

change." To gain furthe r ins i ght into t he use o f the latent 

heat consider the simple example of lee used for cooling. 

Ice absorbs heat from its surroundings until it reache s its 

melting temperature. Then the ice con tinues to absorb heat 

without temperature change while it melts. Finall y , t he 

melted ice begins to heat up a gain. Two important fac t ors 

in using the latent heat are seen in t hi s example: (1) 

There must be a heat source with a tempera ture equa l t o or 

hi gher than the melting temperature of the s olid to be 

melted . (2) No temperature cha nge takes pla ce in the 

material while melting t akes place , but thermal energy ls 

absorbed . The purpose of this thes is is to investigate one 

application of this physical property. 

The question one might well ask at this point is how does 

this form of thermal energy abs orption compare with other 

commonly used methods . The three mo s t important effect s of 

thermal energy absorpti on are the temperature increas e of a 

flu i d , vaporization o f a ~aterial and melting of a materi a l . 

For the purpose of comparison, the thermal energy absorbed by 

one gram of material b y a particular method of heat absorption 
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1s used . For the thermal energy absorbed by a material 

the change in terroerature w111 be arbitrarily def1ned as the 

difference between the melt1ng polnt and boiling po1nt of 

the material. This change in temperature will be excessive-

ly large in some instances . Therefore another comparati ve 

value o f 100 °c will be used . Thus for comparison the 

thermal e nergy absorbed by melting one gram of material 

becomes 
f\ HM-=L (l) 

where L i s the latent heat in calories per gram . For a 

change in temperature 

6 H6 T = C6 T 

/\H100 = lOOC 

where C is the specific heat in calories per gram-degree 

centigrade and 6 T is the change in temperature as defined 

above in degrees centigrade . For vaporization 

6 Rv = Lv 

(2) 

( J) 

where Lv is the latent heat of vaporization in calories per 

gram . The qUE\ntity 6H in each case represents the change in 

enthalpy per gram of material . 

Another useful quantity which will be discussed in more 

detail later is the thermal energy absorbed per unit volume 

which is designated by L\Rp • The quanti tyL\H will be 

defined as Equat ion 1 , 2 , or J and p will be the density 

of the material being discussed . Values for these quant1 -



Table 1. Thermal energy absorption. 

6·r 6HL:\J 6Hr.1 6Hy 6H100 6HL\T,0 6H.,1f? .6Hv p .6.H100 ~ oc cal g cal/g cal/ g cal7g cal / cm) ca~/cm3 cal / cm3 cal/ cm 

Water , H2o 100- 0 100. 79. 71 539.55 100. 100 79. 71 539.55 100 
Sodium , Na 880- 97.5 250 . l,t. 31 . 7 32. 2320 5 30.18 
Sodium 
Chloride , 

No.CL 1465- 804 .. 3 124 . 21.7 
Sodium l''luoridc 

NaF 1701{--992. 2 186. 27 .9 
Lithium 
Nitrate, 

(250 ) L1 N03 88.5 39. 
Potassium \...! 
Fluoride, KF 1502-859.9 108. 22.5 
Alu.;iinum , AL 2057-659.7 .349. 3 76 .. 8 25 .0 832.1 20.73 59.55 
Niel' ~1 , Ni 2900- 11.:.55 187.8 73.8 13 . 634. 7 
Mercury, Hg 356. 58 }-39 12.78 2.82 70 .6 3 .23 173.0 40.02 956.o 43 . 73 
Ph or p 1orus , P 287- l}l}. 2 52 .. 7 5 . 03 l JO. 21 . 7 123. 3 304.2 50.78 
Sulfurtc Acid 

H2S04 326-10.35 107.0 24.o 122.1 33.9 
Bi muu th, Bi 1560-2710 3 37.63 12.64 2.9 2 385.3 122 .. 2 29.9 
Leed , Pb 1620-327 .1~3 ~-8 .47 5.86 3.75 516.0 64.75 39.92 
Li t:1i Unl' L1 1336-186 1580.1 1 37. 1~ 843.77 73.37 
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ties are tabulated for several elements and 1norgan1c 

compounds 1n Table 1. These values in the table are not 

exac t, s 1.nce •• typ1oal .. values of tho physical properties 

were used . Using the values 1n Table 1 , it can bo noted 

that the heat absorotion by melt ing 1s at least comparable 

to the o ther processes except in the case of the vaporiza -

tion of water. In most cas es the heat absorPt1on in the 

melting process is approximately equivalent to the other 

processes . 

Review of the Literature 

Al trnan et A.l . ( 1 ) d1.scu~sed the poss1 bili ty of using 

the latent heat o f fusion in an energy storage dev1.ce . In 

this arti cle the authors d1soussed such a dev1ce in general 

and perform calculations for a simplif1cd case to be used in 

conjunction wt t h a s olar m~rror in satellites . No other 

appl1oat1ons o f this principle have been found . The l a ck of 

lite rature on this subject o f using the latent heat 1nd1oates 

the need for more research tn the aren . 

In carrying out the heat transfer analysis use was made 

of Glasstone and Sesonslce { 5) . During the 1nvest1gat1on of 

the melting problem several approaches wore reviewed 1nolud1 ng 

those presented by Carslaw and J aeger (J ) , Goodman (6) , 

Goodman and Shea {7 ) , Ingersoll and Zobel (12), Landau {13) , 

Murray and Landis (16) , Ross (19) , and Stolz {20) . The method 

chosen was one of two methods presented by Murray and Landis 
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(16) . The analyt1o solution of heat conduction 1n a 

composite sphere given by CarslAW and Jaoger (J) ls nlso 

referenced . An experimental study of freezing and melting 

is given by Thomas and Wostwater ( 21) . 

Use was made of Hi gdon et ~l . (10), Murphy (15) , 

Roark (18 ), and Tirnoshenko and Goodier ( 22) in the str ess 

analysis of spherical shells . Handbook of Chemistry and 

Physi cs (8) , Handbook of Thermophysical Properti es of Solid 

Materials (9), Hultgren (11 ), and Metal Handbook (14) were 

used as sources for the material properties used in Table 1 

and Appendi x A. 

Possible Uses of the Latent Heat 

There are two possible modes of application of the 

energy absorption power of the latent heat . In the first , 

or "one shot" mode , the material acts as a sort o f safety 

or protective device . After the material melts , it is no 

longer of any use so far as this method ls concerned . The 

material must be replaced or cooled in some mannor before 

the device is again ready for service . One possible exampl e 

of this mode is that the latent heat o f somo material mi ght 

be used t o keep a shipping container below a given tempera-

ture during an a ccidental fire . This same principle might 

be useful 1n protecting instruments from high transient 

temperatures. Another possi ble application is to use the 

latent heat of a material t o absorb the heat during 
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shutdown of high temperature devices. 

The second mode is one of continuous OP-~~tion. In 

this mode the lctent heat of a m ..... :cerial is used to transfer 

the heat ai·1ay from a con t!nuous hcct sou:;:-cc. 'I'hi s is the 

mode to which the bulk of this paper ~:111 be devoted. 

The most common method of coolin3 or obtaining hec.t 

from a heat source is to c1rcul~te a coolcnt through tubes 

placed through a heat source, and then poss the coolc.nt 

through a heot exchanger to extroct the ther!l:.al e~e~gy. 

This is the method co:nmonly used t o obtain therm~l ener3y 

f!.'om nuclear po·Her reactors. This therool energy is then 

used to generate high pressure steam \·1hich in turn dri v.as 

steam turbine genera tors. The coolants used vary \'ridely, 

but a f ew of the most co!D.!!lOi'lly u~ed coo:. ..... nts c.re water, 

l .iquid met als, organi c fluids, and gases . !..nether 

important method of using t he ther:lla l ene:rsy is by turnins 

the water directly into steam by boiling the water i n the 

reactor. 

One a.l terna te method r:ii gh t be to c.:lou bcr stocl-:s of 

a coolant mater ial to contact ·i;he hec.t source. The l iquid, 

containing the thermal energy in the form of lctont he~t, 

could be drained off. The hect energy could then be released 

in a heat exchanger as the material is rcsolidified into 

bar stock again. This might be improved upon by allowing 

t he bar stock to be immersed in t he molten naterial which ~s 

in contact with the heat source. ~he t~~~sport of the b~r 
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stock or bulk material and the cethod o'!' rcfo::-mc.tion would 

most certainly present formidable enGinocring problems. 

A more favorable alternative uou:!..d bo to use c. r:lurry 

with the particles of coolant mc~c=ial suspe~dcd ~n o. 

liquid or gas. The biggest difficulty t:ould be to main-

tain suspension. There would also be problcos during 

shutdo~m and startup. Choosing coolant materials and 

transport media which uould lend thcns1..;lv0s to forraation 

of suspension for both phases of the coolant mate~inl cs 

well as havinb satisfactory thcrmodyn~mic and heat tro~sfer 

properties would be o. foriilidablc~ if not impossible, tasl{ . 

However, if there were ways t o circU!:lvcnt this mo.jor diffi-

culty, this alternative coulC. appear to be so::nei·1hat more 

attractive than other methods no"t·J used. 

Another possibility is to use this suspension concept 

to increase the efficiency of present cooling system 

designs e Finely divided pert1clcs could pos=ib:y be added 

to present systems to increase the heat absorption capacity 

of the coolant stream without increasing the required 

t emperature . 
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THE HEAT TRANSFER SYSTEM 

The met hod proposed t o overcome the d1ff1cult1es listed 

in the prec eding section is to enclose the coolant material 

1n a shell. These par ti cles could be either used to form 

a suspens ion or to be mechanically transported through the 

coolant loop. The diagram for a system incorporating this 

idea is given in Figure 1 . It is similar to many other 

cool ant loops used f or heat transfer . Probably the most 

efficient pl an would be to fill the system with a liqu~d 

metal of high thermal conductivi t y and allow fluid pressure 

to force the sus pended par t i cles around the coolant loop. 

Starting a t Poi nt l in Figure 1, the perticles would go 

t hrough the r eactor. The heat energy produced in the 

rea ctor would melt the coolant material (but not the particle 

shells). Then the par ticles would pass into a heat exchanger 

where the heat ene r gy i n t he particles would be given up and 

the coolant mate ria l i n t urn solidifies . Then the particles 

would be r eady to sta rt t he cycle over again . The pump is 

ne ce ssa ry to ma intain proper coolant flow through the 

reactor. 

The primary advantage of t his alternative i s that it 

co~bines continuous oper a tion wi t h a relatively small overall 

t emperature change a cross t he reactor . In addition, there 

a r e no large density changes l ike those which occur 1n 

vaporizing wa t e r to steam . The use of a shell concept allows 
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a Wide choice of coolant materials. In raany ~pplicat1ons 

these items would not offe r any particula r advantage, but in 

a nuclear reactor the properties of the reactor ore 

significantly affected by changes in temperature and 

densi ty . One interesting potential for a system of this 

type is the design of a nearly homogeneous nuclea r reactor 

wi th con t i nuous fuel recycling . 

These advantages, however, a r e not t o be gained without 

the addition of some difficulties. The most pro~inent 

disadvantage is in the fabrication of l a r ge numbers of 

coolant particles. The fabricntion of the small coolnnt 

particles could be difficult and therefore costly . Also 

there may be larger pumping powe r requi r ements than the 

more conventional systems because o f the need to pump both 

the coolant and transport ~edium . Still another difficulty 

may be the erosion effects of the particles inside the 

coolan t tubes . 

It appea rs the fina l overall judgment of the system 

will be economic . The increased cost of fabrication and 

pumping power must be outweighed by the savings created by 

the more even t emper ature distributions. These sevings 

would come a bout mainly through more even fuel burnup end 

reduced fuel fabrica tion costs . 

In order to gain a better understandin g of the 

proposed system given in Figure 1, it will be postulated to 
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be in steady state operation with heat energy QR being 

produced in the reactor per unit time. It is further 

assu~ed that the heat energy losses arc negligible, and that 

any fri ction l osses Pr, are given by 

Pp = Pr 

where Pp is the pu::iping power. 

Defi ne· the following by: 

L = latent heat of fusion for the coolant 
materiel 

Tmelt = melting temperature 
material 

of the coolE:nt 

TJ = i·1cight fraction of the coo:....u::'lt n::o.tc r1o.l 
to the total material tro.nspo?ted 

QE = c11ergy removed from the coolc.nt st::eam 
by the heat exchanger per unit time 

Pm = density of the cools.nt r.w.ter1a.l which 
is assumed constant 

(5) 

Assume that the coolent particles a.re ~mall o.nd well mixed 

Wi t h the transportuedium so that the coolant stream can be 

considered homogeneous with density Pc.. The coolant flow 

will have a const~nt osss flow rate, w. Then using the 

firs t law of thermodynamics 

Change in energy = heat added + work done = 0 
or 

wher e t 1s some specified increment of time. The right hand 

s ide of Equation 6 is zero therefore 

{7) 
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Since the main interest is 1n tho effect o f the latent 

heat , the mean coolant stream temporntuTe will bo taken 

as constant a t the coolant mnterLal melting temperature for 

the points noted in Flgure 1 . Then, 1f ~1 1s the weight 

fraction of the coolant material which is melted at the 1th 

point , 

where 1 and 2 refer to the points 1 and 2 in Figure 1 . A 

similar expression may be written for the energy r emoved by 

the heat exchanger that ls 

(9 ) 

Since heat energy is neither added nor subtracted in the 

pump, then ( t 
( ) 1 = ( 'J (10) 

This also follows from Equations 7, 8, and 9. 
The r eactor 1s postulated t o conta in n coolant flow 

tubes one of which ts s hown 1n Figure 2 . The heat transfer 

expressions for similar coolant tubes and convent ional 

coolants, using the speci fic heat of a fluid coolant , are 

given in Glasstone and Sesonske (5 , ~ . 364) . 

The differential mass o f coolant material d.m which 

passes along the differential length of tube d.x per unit time 

is given by 

(11) 

From Figure 2 and the previous definitions , it i s seen that 

w = nv 2n Rt Pc (12) 



F'1g:.i r e 2 . T~/plc 3.l coolP. "'.~ t ube . 



where v 1s used here c.s the =.cmi speed o~ the coola!lt stream. 

The rate dq (x) at ·i;o:h1c::t hcc.t 1s c.dded 'co the strec.m in 

a differential length d.x for the 1th tube 1s given by 

;- w 
= L d c T.J-

_, :.1. 
(lJ) 

,>-llhere d:- 1s the differentio.l frc.ctio:.'l cf coolant J:Ulterial 
;, 

melted . Note that w/n is the total !:!ass flow ro.te per 

coolant tube. 

It is a.ssuraed that ell hect f:o~; is :::o:.-~l to the 

coolant stren!:l. Using this ossui:.ption end the assu.r:i.ption 

of steady-state operation the heat genc~~t~on =~te in the 

volume cooled by the ith coolcnt tube Q1 is given by 

(14) 

The total heat gener ation rate QR for the reactor is then 

given by 

(15) 

The volumetric heat source is, in gc~eral, o. point 

function S(x,y.z). :m effective o~co A~ can be dcf~ncd such ... 
that the heat generated in the sooll voluma cooled by the 

length dx of the coolant tube beco~cs 

- ( 
S(x,y,z) dydz dx (16) 



1 5 

In the most common reactor designs tho coolant t ubes are 

placed parallel to one another and the offec~lve areas can 

be considered independent of x . The r efore t he local a verage 

heat source per un1t volume s 1 (x) is def~ned by 

1 

ff s1 (x) :r: -

Ai Ai 
S(x,y,z) dydz 

From Equations 16 and 17 one then gets 

Combining Expressions lJ and 18 

d~ = nA1S1 ( x) 
LTJW 

dx 

(17) 

(18 ) 

(19) 

Integrating 19 over the length of the 1th ooolant tube gives 

f
~( l) 

( Co) 

( ~(l.' ) - ~( 0) I 1th 

n 
c-

= 
n 

L7/W 

tube 
nA1 =-
LI JW 

l ' 
JO s1 (x)dx 

J
x=l 

dq1 
x=O 

This shows that the change in fraction of melted coolant 

(20a) 

( 20b) 

material 1s proportional to the amount of hoat gene~ated in 

the volume cooled by the coolant tube . In order to meet the 

conditions that the mean temperature of the coolant stream be 



the same at Points 1 end 2 of Figure l and that the latent 

hea t i s the mode of heat absorption, Qi of Equation 20b 't"Jill 

always be such that 

0 :5 ~(l) - ~(O) i th tube -:::; 1o00 (21) 

While the mec.:n tempero.tu:.""e of -~~e coo:.ent stream mc.y 

be at or near the melting temperature of the coolcnt u:s.tcri-

al at Points 1 and 2 of Figure 1 9 the me~ tc~pero.ture o? 

the coolant stream must be higher tho.n tho neltins 

temperature while t he coola.i""lt stroa.:r!l ls within the ree.cto::- . 

In addition the tc~perature of the surface of the coola~t 

tube Ts must be hi gher than the mean coolan~ stroc.m 

tempera ture Trj . ~hese temperature di:fercnces are necessary 

to allow for the transfer cf he.::.t into the coolant strec.m 

and from the coolant stream into the coolant pe.rtic_es o In 

order to simplify the expression for heat transfer from tube 

to coolant t he normal procedure is to ~ssume t hat an 

expression of the form 

(22) 

holds at the surface where h is the hect tre..nsfer coc~fi

cient . The differential area dAs is the surface area of the 

coolant tube associated with dq1 (x) .. In the present CG.Se of 

a uniform circular coolant tube d.~s becomes 

(23) 

Subs tituting this result into Equation 22 end integrating 

over the length of the ith coolant tuba one gets 
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/ x=l 1/ 

Q1 = f 
X2=0 

dq1 (x) = 2n Rt f 
0 

h(T8 (x) - Tm)dx ( 24) 

By comb1n1.ng Equations 22 and 2J and comparing this resul t 

w1th Equation 18 i t is seen that 

(25a ) 

or 
( 2.5b ) 

This equation can be used to detormine the surface tempe ra-

ture of the coolant tube 1f s1 (x ) can be determined . The 

function s 1 (x) can be determined by noting the relat1onsh1p 

between thermal neutron fluxq)th (x ,y, z) and ener gy genera-

tion from Glasstone and Edlund (4, p . 80) . It is known that 

it takes approximately J . l x 1010 fissions to generate one 

watt- second of energy . Tho rate at which fissi ons occur i& 

the product of thermal neutron flux and the fission cross-

section L r • With this 1nfo:rmation the energy generation in 

a differential element of volume dVol becomes 

S(x , y , z) dVol = K .j; (x,y, z ) dVol (26a ) 

= 
...... -
/ f (/ )Cx ,y,z)dVol watts 

J,l x 1010 
(26b) 

The ref ore 

QR= J S1(x,y, z)dVol 
Reactor 

(27a) 
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QR = K 

!Reactor 
~_) th 

(x,y,z)d.x dy dz 

From Equations 16 and 26 

= K [f ti --. 
I I 

dqi(x) cpth (x,y9z) dy dz l dx 
.J 

If the local average flux is defined as 

o<x) = 
I 

t hen dqi(x) becooes 

dq1(x) = KAi cp(x) dx 

(27b) 

(28a) 

(28b) 

(28c) 

If the constant KA1 is r edefined as Xi, Equation 14 becomes 
f l 

Qi = Ki I cp (x)dx 
) 0 

(29) 

From Equation 15 the heat removed by t he ith coolant tube 

is just some fraction B1 of the total heat removed from the 

r eactor. Thus 
(JO) 

Which when combined with Equation 29 gives 

( 31) 

Ther efore the fraction of heat removed by the ith coolant 

tube B1 becomes a weighting function for the ith tube . If it 

is possibl e to determine this fraction in some ma nner when 

(x) is known, then Ki can be determined . Since fro~ 

Equa t ions 18 and 29 

(32) 
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then Ts(x) can be determined from ~Qu~tion 25b• 

It can be r.oted that fron the assur.:iption o-:: a well 

nixed coolant stream that ~i(O) oi Equation 20~ is the 
)-

same for a ll the coolant tubes and is equal to ~l of 

Equati on 8 . However ~i(l) will be di:tferent for different 

coolant tubes. The quantity ~i(l) is not the actual 

-::raction of the melted coolant mate~ial ~t the exit of 

the coolant tube. It is instead the f~action of melted 

coolant ~aterial which would exist if the coolant strea:::. 

were allowed to reach thermal equilib~ium . _:._s mentioned 

above the coolant stream can not be in thermal equilibrium 

while it is in the r eactor . If it were, no heat transfer 

to the coolant particles would take place. The thcrJ!al 

energy represented by the difference between t~e actual 
r fraction of melted coolant material and ~i(l) is conta~ned 

in the coolant stream as the heat absorbed by the change in 

temperature of the materials co~prising the coolant stream. 

If the recombined coolant stream is allowed to reach ther:!:al 

equilibrium at some later time Equation 20b will represent 

the heat energy removed by the ith coolant tube. It has 

already been assumed that the coolant stream is well nixed at 

the ~elting te~perature of the coolant material t~elt at 

Point 2 in Figure 1. Thus using ~quations 15 a.~d 200 ~t ca~ 

be seen that 
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n 
IT'u r >- r l 

QR = 2: - n- l(;t (:') - s O)j 
i=l 

( 330.) 

or 
[ n (; (1 ') - ~(o)J Q~ = LTjlr L 1::-1 -

i=l n 
{33b) 

By noting that (< 0) is equal to f 1 Ci""'!d comparing Equation 33b 

with Equation 8 f2 beco::ncs . .., ti (l) ·-;- = 2: s2 i=l n (34) 

Using Equation 20b to solve for (1Cl) :::.nd substituting into 

Equation 34, it is seen t .at 
n 

+ (co> (2 = L Q1 
i=l LTJW n (35 ) 

To use the heat absorption power of the :atent ~eat 

completely, the coola.YJ.t material would be all so:id at ?oim; 1 

f Co) = o and all liquid at Point 2 <(2 = 1.0). One way 

for ~2 to be unity is for each fi {l) to be un~tyg For 
J -

u..~iform tubes this further implies th:::.t the Q1's c~e all 

equal * Thus for t he most efficient use of all the latent 

heat all the Q1°s must be equal . If the Q1 °s ere not all 

equal then f 1 (1
1

) can not all be unity lli"llcss the coolc.nt 

tubes are of non- uniform size or co~e thc:"C.nl ene~gy is 

allowed into some coolant tubes thrui is :1ecessary to melt 

the coolant material flowing in those tubes. 
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Pumping Power 

Pumping power as given by Glasstone and Sesonske 

(59 p. 396) is 

Pumping Power = Pressure Drop x Volu~e Flow Rate (36) 

If .6p stands for pressure drop across the whole sy~ten, 

the symbolic representation of J6 becomes 

w ( ) Pp= L\P _ 37 
Pc 

The pumping powe1" requirement should be as low as possible 

since pumping power subt.racts fron the net power of the 

system. In order to have lower pumping powo!' roqu1re::.ents 

the volume flo:r rate term of Equa';.;~0:.1 J 6 S:lould be es 

small as possible. The volume flow rate F is given by 

(38) 

Since the density of the coolant under discussion does not 

vary significantly, the volume flow rate is constant 

throughout the system .. If £quation 8 is solved for K and 

combined with Equation JS, the volume flow rate becomes 

(39) 

The quantity QR Pill normally be fixed by t he po't·rer genera-

tion in the reactor.. If the flow rate ~s to be a minimll!!l, 

then the terms in the denominate:" of Equnt::..on 39 must be 

maximized. This implies that ( 2 - ( 1 be unity wh.:..ch wa s 

described earlier as the condition for most efficient use 
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of the latent heat . 

If the shell material is neglec~ed, the relationship 8e-

t.~een the :·reight frac-c_on of coolant !llaterial 77, density p, and 

volume V are given by 

Pc= 
Total Volume Ve (40a) 

77 = Weight Of Coolc:.nt i(.~:~orinl _ fl:1Vm - -Total Weight pcVc (40b) 

Vm + VTm = Cons-Cant (40c} 

where the subscripts c , m, and Tm designa.te tcte.l coolant 

stream, cool~nt Doterial, end tr~ns?ort ~edia rospcctivcly. 

The total volume Ve is constn~t for e. fixed system, and if a 

choice of materials has been made the density Ari is also 

fixed . Thus from Equation 40 

77 Pc = p'f? Vm 
Ve 

which implies ths.t the product 77Pc con be increased by 

( !.-1) 

increasing the amount of coolant mntcri~lo There is, of course, 

some upper limit to the amou..~t of coolcnt matcriol that can be 

added to the stream and still ma1ntc1r. the desired flow 

condi tions. 

In order to increase the latent hcct L a material cr.c~ge 

is requiredo When the mcterial is chcnged tr.e density P~ is 

also changed . A mea.ns of compe.:rison bo1..\100n different 

mater 1als is poss1ble by noting fro~ Equction 41 and 39 thnt 
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F = 
(42} 

Therefore the volume flo"lr rate is inversely pro"Oortional 

to the product PmL • Val ues for this product a re given 

a s 6::r:i p in Taole 1. . 

The voltL;ie flm·i rates f or the other tKo ther:::a.l e!!ergy 

absorption methods become 

F~T = QR 
pc \ ct:::,.T (43c.) 

Fv QR = { 4Jb) p cLv 

No ratios of volumes appear in these c~pxessio~s bec~use the 

coolant material usually conprisas c:l o: t~e cool&nt stre~~ 

for these methods. A coopar1son of the thxce vclues of 

volume flol:r :rates gi vcn by Equations ~,2, 43::., fu"'ld 43b shows 

that for equal values of 6H P as gl vcn by T~blc 1, the 

volume flow rote for the l atent hect p~occss Equation 42, 

is higher by the fa.ctor V/Vm.. When this r esult is used i n 

conjunction with t he equ~tion for pump~ns power Equ~tion 37, 
1 t shows thot the pU!llping powe::.~ for the la~ent hcc:i; p::ocess 

can be expected t o be h1 ghcT than for the othc= methods. 



THE PARTICLE 

The particles described in the last chapter must 

absorb , store , and r elease the thermal energy transported 

by the stream. The whole system Will depend on how fast 

and efficiently these particles can absorb and release the 

heat energy. 

From Figure 1 the thermal changes in a typical particle 

can be followed as it makes one complete c1rcu1t of the 

coolant loop . The particle starts out at Point 1 at 

constant temperature with some fraction of the c oolant 

material melted . As the particle moves into the reactor 

coolant tube , the temporature distribution changes giving 

the particle a hotter surface temperature. This thermal 

grad1ent will cause thermal enexgy to flow 1nto the coolant 

materi al . This 1n turn causos more of the coolant material 

to be melted . After the particle passes out of the reactor, 

a thermal gradient will continue to ex1st until thormal 

equ111brium of the coolant stream is established at Point 2 . 

At this point a different fraction of the coolant material 

is melted , and the temperature 1s again constant . (Ther.ual 

equilibrium need not be established , but it 1s assumed for 

discussion purposes . ) The particle now enters the heat 

exchanger where the surface temperature 1s lowered . Heat is 

transferred out of the particle. Finally , the particle 

leaves the heat exchanger and continues to lose its thermal 
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energy to tho coolant stream until the rmal equ1l ibr1um is 

once again reached at Point 1 . 

In the discussion of the hea t transfer system the 

assumption of steady- state was t akon to imply that the 

fractions of coolant material melted ~l and ~2 at Potnts l 

and 2 r espec tively would be constant . While this holds for 

the total stream , it may not hold for the individual 

particles . Therefore the fraction of coolant material 

melted for a pa rticular pa rticle would in general be 

different at Point 1 at each particle pass through the 

coolant l oop . 

In previous discussions it was noted that the r ate at 

which the thermal energy is absorbed by the particles 

should be close to the rate a t which thermal energy 1s added 

to the stream. It was pointed out that 1f this condition 

did not exist , t he excess the~al energy would act to r aise 

the temperature of the s tream . Therefore the latent heat 

would not be used effectively. One measure of the heat 

absorption rate is the melt1ng t ime for the coolant material 

1n the particle. 

Melting Time 

The time necessary for the melting of a fract1on of 

coolant material in one pass through the r eactor is directly 

related to the mass flow r ate w. This f~nct1on of coolant 

material is melted as the particles pass t hrou gh the reactor 

t o Point 2 . Since under the steady- state oond1t1on this will 
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be some fixed length , tho time of passage through this l ongth 

must c orre spond to the melting time f or the fraction ~2 - f 1 

of the coolant material . 

For the purpose of detorm1ning melting time , the 

temperature at the outside surfa ce of the shel l 1s t aken t o be 

some function of position in tho coolant cycle . It is 

convenient to choose the point where melting begins as the 

entrance to the coolant tube x a O, and the point where 

melting ha s essentially stopped as x = l m• Tnus the l en gth 

of coolant channel over which melting takes place is l m• In 

the idealized case where the thermal energy is abs orbed by 

the latent hea t as fast as 1t 1s added t o the stream , lm is 

the same as the coolant tube length . The velocity of the 

~'~m times the cross- sectional area of the coolant tube AT 

gives the volumetric flow r a te; t hus 

The veloci t y is given by 
v = 

w -npc 

l m 
tme 

s i nce the melting time tme must be equal to the time of 

(44) 

(45) 

pass age t hrough the melting length . Thus combining 44 and 45 

w = lmATn 
tme (46a) 

or 
tme= l mATnPc 

w (46b) 
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The Molt ing Problem 

The particles consist of throe distinct parts ; shell 

material , me l ted coolant material , and solid coolant 

mat e r ial . The nature of the melting- solidifi cation process 

d i ctates t hat both melting and solidification start on the 

outside edge of t he coolant material and proceed toward the 

center. Thi s combi ned with the fact that the fract i on of 

coolant mat erial mel t ed f o r any particular particle changes 

on each complete c i r cuit of the coolant loop , leads t o the 

conclus ion t hat the particle may consist of alternate layers 

of mel t ed and s olidified coolant material . During melting 

t he outside l a yer will always be melted coolant mntorlal . 

To ci r cumvent the problem of handling several layers , all 

of t he coolant mat e r ial will be assumed to melt during 

passage through t he r eac t or and resolidify durin g passage 

t hrough the heat exchanger . ~his condition has already been 

pointed out as one of th e most effi cient use of the latent 

heat for heat t r ansfer . 

It will be f urther assumed that the propert ies of the 

ma terials are independent of t emperature i n the r ange of 

interest . For the jth r egion one then has 

(47) 

where j is either sh , L, or c correspondin~ t o shell , liquid , 

or solid res pectively. This i s the time dependent heat 

conduction equation. The thermal diffusivi ty Q j of t he 
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region i s given by 

(48) 

where the material density p. the snecific heat C . and the J • J 

ther mal conductivity Kj are all properties of the material 

for the jth region • 

.Appl ying a set of boundary conditions betwee:l'l the 

liquid and solid material, one then obtains a nonlinear 

probl em . This is caused by the fact that the boundary 

between the l i quid and solid region is moving and changi~g 

\ii th t i ne. Several authors have presented solutions to this 

type of probl em • .ALlong them are Altman et al . (1), Baxter 

(2), Good.:nan (6), Good.man and Shea (7), Ingersoll and Zobel 

(12), Landau (13), t·:urray and Landis (16), o~:arien et al. 

(1 7), Ross (19), and Stolz (20) . Without exception a one 

di mensi onal geometry is used . Because of its adaptability 

to spheri cal georaetry a method illustrated by :·'.urray and 

Landi s ( 16) is used in the follov~ing development. 

I n order t o reduce the problem to one di~ension, one 

!!lust assume that the particles are spherical with a knm·m time 

dependent unifo rr.:J. temperature distribution on the outside 

surface of ~he shel l . If it is further ass'!l!:led tha~ the 

unnelted part of the coolant material s~ays ce~tered in the 

shell, one obtains a symmetrical problem. 1.vi th these 

assumptions the heat conduction Equation ~7 becomes 
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which can be resolved into 

ci T = 20.j ;:)T 
() t r dr 

{49a) 

{49b) 

The boundary condition at the outside surface of the shel l is 

where the symbols are defined in Figure J . The two boundary 

conditions at t he interface between the shell and the liquid 

are that the temperature and heat flux be continuous . Thus 

{51) 

and 
K ~ Tsh 

sh Jr = (52) 

For one boundary condition at the liquid- solid interface one 

must take an energy balance . The therma l energy flowing into 

the interface is equal to the thermal energy absorbed by the 

melting process plus the thermal energy which flows away from 

the interface. Mathematically this becomes 

K Tt -L -r - + r ::: E {53 ) 

The temperature at t he liquid-solid interface must be at the 

melting temperature of the coolant material , 
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TL { r = E ) = T8 { r = E ) - T { 54) - melt 

The final boundary conditio~ occurs at the center. From the 

symnetry of the problem there can be no thermal energy flo':'l 

at the center, thus 

= 0 r = O 9 

The methods shoi·m by Murray and La...Yldis use nu:.ie:::-ical 

techniques to adapt this problem to cithe~ the analog or 

{55) 

digital computers . T~ey term the ~cthod ~daptcd here as the 

"variable space networl{ . 0 A thre..; point numerical app:'oxina-

tion is used for the spntial parti~l differe~tials involved. 

Thus 

and 

~Tn Tn+l - Tn-~ = 
Jr 2~rl j 

Tn-1 - 2Tn + Tn-H 
(L~' i j) 2 

(56) 

(57) 

Here the subscript n refers to the nth spheric~l surface as 

defined in Figure 3. The radial differences.6r J j for each 

region are given by 

shell region: 

(58) 

liquid region: 
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6r lL R1 - E s:: (59) b - a 
solid reg1on: 

6 r j 8 = E (60) 
a 

Using these definitions for the r adial differences the 

radius to the nth surface, rn 1s given by 

shell region: 

rn = (n-b)L'.lr l sh + R1 (61 ) 

liquid region: 

rn c (n-a ) 6 r j L + (62) 

solid region: 

rn = n 6r\ 3 (6J) 

The finite difference relations will be different for 

each region. Considering the shell region first Equations 

49b, 56,and 57 combine to give 

U sh(Tn+1- Tn-1) + ash(Tn-1-2Tn+Tn+1) 
rn 6.r I sh ( L\rl sh) 2 (64 ) 

Next oons1dering the liquid region the r ate of travel of the 

surface is related to the interface velocity by 

drn d ' 
at' I R1 - rn = dt/R1 - E (65) 

from the definition of the total derivative 



"'T '\T dT = ,.. dr + - dt 
J r c.,t (66a) 

one has 

(66b) 

Substituting Equct1on 49b into 66b one hes 

"' d ':i:'n _ o Tn d:·n ---dt ~ r dt (67) 

Here the subscript n in the deriv~tive tcr:Il.S denotes thct the 

derivative is evaluated c..t the nth point . Now Equations 67 9 

65, 57 and 56 con be co~bined to give 

dTn 
dt 

= (Tn+l - Tn - 1 ) .. 
2 ,6.r IL 

+ L(Tn - 1 -2':."n +Tn+ 1) 
2 (L.r IL) 

dE 

(68) 

For the solid region corresponding results ca.~ be sho~m, t hat 

is 

and 

d:c d 
dt I rn = dt /~ 0 <n · -: a 

'-- ' 

dTn _ 211'n drn 2c s 2 Tn 
dt - '2. r dt + ;; 21 r 

a >,2r,,n , So -
..,.. ()r2 

(69) 

(70) 

Combining Equa tions 69 9 57, end 56 with Eqt:~t::..on 70 o~c hcs 

the results 



dTn = ( Tn+l - Tn - 1) 
dt 2~r\ 8 

2 r· i..:.L + s (Tn+l -'-."'n-1) 
rn 2(6r.\ s) 

E dt 

+ as (Tn- l - 2Tn + Tn+l) , O<n<a 

The boundary conditions ccn also be put iLto fini~e 

(71) 

difference foroo HoweverQ t he V8.lUG of the dcriv.::.tives at 

the boundary points must be defined d1::0~cn~ly since t~e 

~aterial properties change et the bou~dnries g To obt~in 

an expr ession for t hese do:"i vot1 ves the follot1ing To.ylor 

series expansions were used 

(72) 

and 

(73 ) 

By e l iminating the second partial derivative ter~s from 

Equations 72 and 73 a finite diff e rence approxi~ation for t~e 

temperature gradient on one si de of ~he bou~dary point n becomes 

() 'ln I 
() r J boundary = t 

4T ~ - T:1 -.: 2 - 3T:4 
2 (~r. i ~-) (74) 

w:1ere the + sign refers to the side o.u:::i.y from the center of 

the sphere and the - sign r efers to the side nesrcst the 

center. The boundary condition of Equc.-Cion 50 becomes 
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(75) 

The boundary condition at the shell-liquid interface given by 

Equation 51 becomes simply 

(?6) 

Using 74 the continuity of heat flux at the shell-liquid 

1nterfaoe from Equation 52 beoomes 

( 4Tb + l - Tb + 2 - )Tb) 
Ksh ----...... -----~-------

( 41b - 1 - Tb - ? - JTb} 
= - KL ------~~---------

2 (~r I sh) 2 ( 6 r I L) (?7) 

The boundary condition a t the liquid- s olid interface from 

Equation 5J combined with Equation 74 gi ves an expression 

for the rate of movement of the interface 

d E l --dt PsL 

K (4Ta + l ·Ta + 2 .- JTa ) J 
2(6r lL) (78) 

Continuity of temperature at the 11quid-sol1d boundary 54 

offers no difficulty s1noe 

(79) 

The final boundary oond1t1on at the center given by Equation 

55 combined With Equation 74 beoomes 



J6 

(80) 

Initial conditions are necess~ry to use these 

equations . I t has been assu.~od i~ formulaving these 

equations that there were three regions. This is not 

strictly true since at t = 0 :..e., upon e:'ltry in-co t.te coolant 

tube, there are only two regions, shell and solid coolant 
I 

material . Since ~r IL and /::J.r J 8 appear in the der.o:.:i:1a to:-s 

of several of the e:t:pressions ·chey cannot be assigned. 

values arbitrarily close to zero . Therc:ore, sooc initial 

liquid thic!u1ess must be ass-....::ued, a:1d in the co!Tputations 

the solid material does not completely melt . In addi tion 

to this initial liquid thickness, an initial temperature 

distribution is necessary. In order to find these 

initial conditions it is possible to calculate t~e 

temperature distribu"Gion in a co:nposite sphere without 

::;:i.el ting. An analytical form is shoim by Carlslai:T and 

Jeager (J, p. 351). The analytical for:-.1 is di:'ficult to 

evaluate since it requires evaluating the roots o: a 

trigonometric relationship. Each root is then used to 

eva.lua te one tern of a'l infinite series. en the other :land., 

computer formulations are relatively easy to cons~ruct and 

their accu!'acy can be ~ade at le~st as gooQ as the prese~t 

for:.:1ulation of the melting problem. ·rhe computer for::rnla-

tions are a lso mor e versatile in that almost co~ple~ely 
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arbitrary boundary and initial conditions may be used . Also 

temperature varying material properties can be included . It 

is then possible to combine this type of computer f ormula-

tion with a formulation of the melting problem to g1ve the 

tempera ture distribution at anytime after start-up of the 

coolant flow cycle. Because of the amount of computer time 

required, the initial conditions Will be assumed f or this 

presentation. 

Most of the comments above apply equally well to both 

digital and analog devices. The finite difference equations 

developed to this point are in a form which is adaptable to 

analog computers. The results of an analog computer would 

be desirable over those of a digital computer because of 

the continuous time variable inherent in analog computers . 

However , because of the non-linear nature of the equation, 

a large amount of expensive equipment is necessary to 

program these equations for enough points to get a reasonable 

solution. The equipment was not available, therefore this 

method of solution was not attempted. 

The difference equations given above can be programmed 

for the digital computer by putting the time dependence as 

well as the spacial dependence into finite difference f orm. 

This oan easily be done with the f ollowing approximations 

dTn 
-= 
dt (81) 

and 
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d f" 1.. m+l ( m+1- cm - - = 
dt /\tm+l 6tm.+l (82 ) 

where the subs cript m 1s used to denote the mth time inter-

val. The time interval 6tm is given by 

m = 1, 2, • • • (8J) 

so that the total time is given by 

( 84) 

In addition let6r n and rn be defined by Equations 58, 59 , 

60 , 61, 62 , and 6J where E 1s replaced by E m. The r esults of 

these modifications as applied to Equations 78, 71, 68 and 

64 are given 1n Table 2 . 

If the temperature dis tributi on a t time t = tm is 

known, there are N + 1 unknown temperatures for t = t m + l• 

With the temperature at the boundary given at time t = tm + 1 
there are N-b-2 equations from 85 , b- a-2 equations from 86 , 

a-1 equation from 87, and one equation each from 89, 88 , 80, 

and 79, and 75. Adding these equations up there are N + 1 

equation in the N + 1 unknown tempe r atures , so that it should 

be possible to solve for all of the unknown temperatures . 

Most finite difference formulations r equire that the 

increments used satisfy some relationship in order for the 

formulation to be stable. This relationship Will depend on 



Table 2. Finite difference equa tions. 
Number Reference 

~uat1on Range of Equations Equations 

Shell (85) N-1 ~ n ~ -b-2 (64),(49b) 
6tm+l J .sh (Tn+l -Tn-1) ~b+l 

Tn,m+l = Tn,m + 
rnAr \ sh 

6tm+l CZ.sh <Tn-1-2Tn + Tn+l) 
+ 2 

(6 r I sh) 

Liquid (86) b-1 ~ n b-a-2 (68)' (67)' 
(Tn+1-Tn-1> ( R1-rn )D.E.m+l ?: a+l (65),( 49b) w 

Tn, m+l = Tn, m + \ () 

26r l t <R1-€m) 

+6t m+lQL(Tn-1-Tn-l) 
rn~ \L 

6tm+l C.L(Tn-1-2T1 
+ (6.r jL) 2 

+ Tn+l) 

Solid 
~ (87) a-l::n -:::-1 a-1 ( 71) t ( 70) ' T = T + (Tn+l-Tn-l) rn -:::: m+l (69) n,m+l n, m ~ I ~ r s '- m 

+ 6tm+l :Z s CTn+i -Tn- 1 ) 
rn u r 1 s 

6tm+1 O. s CTn-1-2Tn + Tn+l) + (6 r , 5 )2 



Table 2. {Continued) 
Nwn er 

Equa tion Range of 

Boundary Condi tions 
Liquid-Solid I nterface (88) n=a 

Em+l = Em+l - Em = ti;:;,1 [ 2(~ 1 sl (4Ta-1, m 

-Ta-2, m -JTa,m) + Kt f4T T 26 r l L 1 a+l,m - a+2,m 

-JTa, m)] 

Ta,m = Tmelt = constant (79) n=a 
Shell- Liquid I nterface (89 ) ~=b 

b.r [sh l\r j L [ Ksh ( 1b m = 4Tb+l,m 
' JKsh~r l L + JKL6r l sh ~r j sh 

- Tb+2 ,m) + A~IL (4Tb-1,m -1b-2, m)] 

outside Boundary (75) n=n 

Tn m = Tboundary, m 
' 

Center Condition 
1 

To, m+l = J {4T1, m+l -T2,m+1) 

( 80 ) n=O 

Equation 

1 

1 
1 

1 

1 

Reference 
Equations 

(78),(5)) 

( 79 ), { 54) 
(7?),(52 ) 

(75),(50) 

( 80), ( 55) 
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the parameters of the problem and particularly on the choice 

for the starting position. It turns out that the time 

increments required by stability are very small f or this 

particular problem. Since these increments are small, a 

very large number of points must be calculated to obtain the 

desired solution. 

The results as given by Murra y and Landis (16) for 

infinite slab geometry have been compared to the experi-

mental results by Thomas and Westwater. The calculated 

interface velocity was less than half the experimental 

velocity. In addition, the experimental velocity peaked 

in a manner which was not predicted by the numeri cal 

solutions. These comparisons would indicate that a high 

degree of caution is necessary in using the results of 

these calculations. 

With the initial and boundary conditions given , the 

time that it takes to melt the solid coolant material from 

radius f 0 to radius ._ M can be found. Both f o and r M must 

be chosen to keep the program stable. The choic e of some Eo 

as an initial condition is the equivalent to choosing as 

the starting position some finite distance lo from the 

coolant tube entrance. If dqi(x) is known, lo may be found 

by integrating Equation lJ. 

f 
x=lo 

dq1 (x) = 
X=O 

WI) L(R{ - E 6) 
n Rf (90) 
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(Note that the f r a ction of coolant melted la the ratio of 

the volume of melted coolant material to the total volume 

of coolant material.) The radius of the solid ' M can be 

t aken as the radius at x=r. In earlier discussions it was 

suggested that the amount of unmelted material in the coolant 

stream as the stream leaves the tube be just sufficient to 

bring the coolant stream into thermal equilibrium at the 

melting temperature of the coolant material with all the 

coolant material melted. Here it Will be considered 

sufficient to use 

E M = Rl - Eo (91) 

If the volume of coolant material not included ~n the 

calculations is small compared with the total volume of 

coolant material, that is if 

4 J E ~) +~ J 4 RJ - 1T(R1 TT E M<< - TT 
J J J 1 

or 
FJ - t=" 3 << 0 m ·o 

then 

However, if the condition 92 is not met s ome f orm o f 

(92a) 

(92b) 

(93) 

correction must be a pplied to the calculated melting t ime tm• 

In one possible correction one can assume that the average 

melting rate of the unaccounted for coolant material is the 

same as the average melting rate for the calculated result . 
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4 J ( 6) 4 

' ~ l [1 + 3 n(R1 + -'il 
tme :a tm J 

4 J , J) _ n( E0 - ...J 

J m 
(94a) 

or J 
tme = tm ( R1 

( J ) 
\ L 6 - m (94b) 

The melting t1me from either Equation 9J or 94 can then be 

used to determine mass flow rate from Equation 46a. 

Particle Size 

The particle s1ze has a direct influence on how fast 

the coolant material can be melted. The size is also an 

important factor in determining the properties of the 

coolant stream . It would seem that the molting time 

should decrease as the size of the particle is decreased. 

In addition , it would seem reasonable to expect better 

suspension properties With smaller particles. However, as 

the particles get smaller, the fraction of shell material 

may have to be increased, or fabrication may be more 

difficult. In either case, some method of choosing an 

optimum size should be used . 

Stress in the Shell 

For the purposes of discussi6n, the shell stresses will 

be classified 1nto three types; mechanical, thermal , and 
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thermal expansive. The meohantcally 1nduced stresses are 

those stresses produced by collisi ons with other particles 

and with the watls of the flow channel as well as other 

stresses produced by the method of transport . These 

stresses are difficult to evaluate . However, s ome fore-

thought 1n design of the coolant system could minimize 

the effect of these stresses. For example 1f it could be 

determined that flow through the pump caused the greatest 

mechanical stresses than the pumping operation could be 

placed in a porti on of the flow where all the coolant 

material ls solid. In this wa y, the shell would get the 

added strength of the solid center. This might not always 

be the case. Depending on the choice of materials and 

the shell construot1on t he melted coolant material could 

be under hi gh pressure. In this case, the high pressure 

may give added strength to the shell for certain types o r 

stresses. 

Thermall y induced stresses are considered here to be 

those stresses caused by thermal gradients. While these 

may be important in some oases, during normal operation the 

particles should be small , and the temperature difference s 

should a l so be small. With these two factors working 

together, the thermal stresses should be negligible. 

The stresses caused by the difference in thermal 

expansion of the shell and coolant material could be 

s1gn1f1oant. In addition, most materials ohange density 
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during phase change . Thi s effect could add considerably 

to the stresses in the shell . Whenever possible through 

design and fabrication , these stresses should be made to 

counteract the mechanically induced s tresses . There are 

three cases for stresses caused by differences in thermal 

expansi on corresponding to whether the thermal expansion of 

t he shell is grea ter than, equal to, or less than t he 

thermal expansion in the coolant material . In the case 

where t he two are equal no stresses are induced . In the 

other two cases hi gh stresses can be developed by changes 

in temperature because an interference fit will be caused . 

It mi ght be possible to avoid these stresses through a 

· choice of fabrication process and temper a ture, but more 

likely the shell will have to be designed to be subjected 

to these stresses without fracture or damage . 

An analysis of these shell stresses can be carried 

out f or the relatively simple case of a spherical shell 

with symmetry . Let Pi be the pressure on the inside and 

p0 be the pressure on the outside. 

Thin Walled Assumption 

For the case where the thickness of the shell is small 

compared to the radius the following method is pr esented in 

Higdon et al . (10 ) . Referring to Figure 4 it is noted 

that t he force P exerted on the hemisphere by the pressure 

i s 
( 9 5) 
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F1gure 4 . Th1n-walled hem1spher1cal pressure vessel . 

~ Restrained hterfaoe 

Figure S. Deformation diagram or the coolant particle . 
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where t he pressure p is taken approximately as 

(96) 

Since the shell must be in static equilibrium, the force 

developed in the shell must just equo.l the pressure 

induced force, thus 

The stress in the shell then becomes 

u = R1 
d 

{97) 

(98) 

The normal criterion for the thin walled assumpt ion is that 

d 
(99) 

If the thin wall asGumption does not hold, the more 

complex analysis of a thick-ualled sphere must be used. 

The stress analysis for thick-we.lled spheres is given in 

Appendix B. The results of this analysis a?e 

3 3 3 3 
0-t = P1R1 "" POR2 + R1 R2(p1 - P 0) 

3 R{ 2R3{R~ - R{) R2 - (127) 

3 3 J 3 
- P o.2_ 

u r = PiRl - PoR2 R1 R2(P i 

R~ - Rf - --;3(R~ - Ri ) (128) 

where R1 and R2 a=e the inside and outside radius r0spec-

t1 vely and u t and ur are the transverse and radic.l 
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components of stress. The stress in the coolant materlal 1s 

also given 1n Appendix B, as 

CTt l c = - (100) 

CTrl c = - (101 ) 

where the subscript c denotes coolant material . 

The radial stress at the inside surface of the shell 

should equal the radial stress on the outside surface of 

the coolant material. Thus 

(102) 

Both the shell and the center are changed UshCR1 ) and U0 (R1 ) 

respectively from the unrestrained positions R1 I 3h and R2 l o• 

From Appendix B Equations 126 andl21. these changes are 

R~Rl Ush(Rl) a 
2 E (R~ - Rf) 

( P 0 \ sh - P O I c) { 1 + M) 

+ 2(Polca{ - ?o Jsh R~) (2M - 1) (lOJ) 

and 
u ( R ) = - p I ( 2M - 1 ) 

c 1 0 o E R1 (104) 

From Figure 5, the sum of the two changes in radii must be 

equal to the difference between the two unrestrained radii , 

or 

ush<R1) + uo<8i> = R2 jo - R1 fsh (105 ) 

The radii R1 I sh and R2.j 0 can be found from the linear 



thermal expansion coefficient kj and the following expression 

(106 ) 

where Ro is the reference radius and .6.T is the change in 

temperature. Therefore with all the physical properties 

known it would be possible to calculate the stress at any 

point 1n the shell. 
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Suggested Further Study 

Four main arecs of possible furt~er 1nv~ .... ti£at1ons 

have been opon .... d in connection t·:i·i..!l ·chc c.r: ....... ly8is given in 

the tc:rt. These areas can be listeC. briefly .As; ! ... luid flo1·1, 

materials, econom1cs 9 and analysis of tho rncltinc problem. 

In ~ost of these o:rcas 1 t is p:ri~ari :.. y c. :_ ..... tt'3:r- o-:: revtei-iir:g 

what ho.s already been done to see ':hat eight 'be applicc.ble 

to using the :atcnt heo.t of fusior:. A fur~her invcst~g~tion 

into fluid flow should be attc~pted i~ ord~~ to find the 

effect of size, shape, ar:d mess o~ the pc.~t::.0lcs on sue~ 

quantities as pressure drop, velocity, co~rosion, e~osion, 

::::.nd heat tra.'l'lsfer coefficients cf t:1e fluid. A s·.:;udy o:::' 

tiateria.ls should be dlrocted toi-:rard c:-ioos~::-.s ::c.te:-ials with 

the desired properties needed for ~~is nethod . 

Economic s will be ·che fino.i. judg.:? of c.ny proposed 

system. For this reason, any oconoo::.c cnaly .... s uould be 

aimed at compcring a proposed systc~ With existing systems 

or other possible systcns . 

The tiel ting problem has bee~ 1nveu.:;~gn~e~ i~ t~a pest cs 

seen by the references given in th~ toxt. A different 

analytical approach ~ay be nc:pful. ~Atcns_or.s to ~ore t~~n 

one uimension is also desirable. Other efforts could b~ 

directed toward convective bound8.:~y condi tio:'1s bcti·:cc~ t.'1e 

solid and liquid phases us well a.s the e ::" f ects o:::"' ch8---iges 
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in mat erial density upon phase change. It migh·c be possible 

to i nvestigate the melting proble~ fron a microscopic poi~t 

of vi e1·1 r ather than the mccroscopic approc.ches tc:?.ken before . 

Perhaps use could be made of the exp~rimc~t~lly ver~fied 

fact (Tho!ll.as and Wes ·~water (21) ) tha.t the interface is 

c o"X.pos ed of irregular sized crystals "l'ii th vc.rying rates of 

growt h . 

Summar y of the Analysis 

The anal ysis was d~rcctcd mainly ct 'Che heat tr..?.nsfcr 

and melting probl ems involved in usi~g the latent hcet of 

fusion . Other fac tor s besides those of heat transfer cay 

make i t difficult to employ the later.t heat . but strictly 

f rom a heo.t transfer point of view it is possib:e and under 

c ert a in c ondi t ions even desirable to ~eke use of the latent 

heat f or heat transfer . The primary odvc.nt~ge of using the 

ls.t ent heat l ies in r educing the temperc.tu:::-e dro p requ:red 

in the heat source . 
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APPENDIX A 

A computer code was programmed for the IBM J60/50 

computer to solve for melting time and temperature 

distributions using the equations in Table 2 . The 

program.ming language used was FORTRAN IV With bas1o 

programming support . The logic for the program is shown 

by the flow diagram ln Figure 6 . Table J lists the values 

used for the material properties . The value of density 

listed for bismuth is a compromise value since bismuth 

actually contracts upon melting . The other values in 

Table J were selected as representative values in the 

temperature range of interest . 

Table 4 lists the values of the parameters used in 

the program. The initial conditions and resulting 

temperature distributions for the two runs are shown in 

Figure 7A and 7B. The linear initial temperature 

distribution was Ohosen for simplicity. The initial 

melted thicknesses were chosen in conjunction with the 

time increments by trial and error using short runs of 

the program. The values for these parameters were ohoosen 

to keep the computer time required reasonable . The 

boundary conditions were chosen large for the same 

reason. Even with these choices Run A did not go to 

completion but was terminated by the operator after 

twenty minutes. However Run B ran to completion with a 
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total run time of approximately 9. 5 minutes . 

The effect of round off error could be seen in the 

last several temperature distr1butions of Run A. The value 

of the temperature for the radius next to the sol1d-11qu1d 

interface increased in an unexpected manner until it was 

larger t han the temperature at the next largost radius . 

This is a physically impossible situation from the nature 

of heat conduction. This situation is demonstrated by 

the oiroled point in Figure 7A. This point was not 

included in the curve at t = 0. 2587 because it was 

considered to be an erroneous point due to the round off 

errors. 

Equation 82 was used to calculate the interface 

velocity given in Figures 8A and 8B while the melting 

rates of the coolant material in Figures 9A and 9B were 

calculated using 

melting rate = 

Using Equation 94b to calculate melting time one gets 

Run As 

Run Bt 

0. 2587 (l) J 
tme = (0. 8)J - (O.J56o )J 

= 0.554 seo 

0.01605 (O.l)J 
tme = co.oa)J - (0.02)3 

a: O.OJ18 sec 

(107) 

(108a) 

(108b) 
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ad-Mat'l Properties 
nd Problem Parameters 
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- --Calculate Program 
Constants 

Calculate Initial 
Conditions 

I. 

Write Initial 
Conditions 

- . -· - --- __J ------Calculate Temperature 
Distribution for t=t1 
{Equati ons in Table 2) 
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Ca lculate 6~ 
~Equation 88 Table 2) 

Calcula te Temperature J 
Distributi on t=tm+l 
{Equations in Teble 2) - --- - --

,,___ ______ 'L_ ___ ·--~ 

Write Temperature 
Distribution 

Figure 6 . Flow diagram for melting problem problem . 
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Table 3. Material properties 

Material 

Property 
Specific Heat , Cp 
Density, 
Thermal 
Conductivity, K 

Latent Heat , L 
Melting 

Temperature , Tmelt 

Shell Liquid 
Stoel Bismuth 

0 .11 (3)* 0 . 03636 
7 . 86 (3) 9 . 75 
0.12 ( J) 0 .03636 

Center Dimensions Bismuth 

(1) O.O J244(1 ) cal/p; °K 
( 4) 9 .75(4) g/ cmJ 
(2) o.41(2) ca l 

cm- secOK 
12 . 44(1) cal/g 
544.5(1) OK 

*Numbers 1.n parenthesis indicate references used for 
the property values . 

Table 4 . Program parameters 

Parameter 

Total Number of 
divisions , N 
Divisions to Shell , b 
Divisions to Liquid , a 
Boundary Temperature , 

Tboundary 
Radius to Shell , R1 
Total Radius , R2 
Time Increment, ~t 

Initial Interface 
· Position, E 

0 

Run A 

27 
18 

9 

600°K 

l.Ocm 
l . lom 

lo-4sec 

0 . 8cm 

Run B 

27 
18 

9 

560° K 

O. lcm 
O. llcm 
io- 5sec 

o . o8cm 
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APPENDIX B 

Stress Analysis of a Thick-Walled Sphere 

(The following approach is similar to that presented by 

Murphy (15, p. 114) for thick-walled cyclinders .) 

Assume that the sphere is made up of spherical shells 

of infinitesimal thickness dr . Each of these shells is 

subjected to an internal r adial stress and an external 

radial stress. From symmetry considerations , these stresses 

will be uniformly distributed on the surface of the shell . 

All stresses are assumed to be tensile, thus negati ve 

values w111 indicate that the stresses are compressive. 

From the freebody diagram of the hemispherical shell in 

Figure 10 and the equations of equilibrium one has 

(109) 

Neglecting second order differentials , this reduces to 
rd< I Ot = (T, + - __..! r 2 dr (110) 

From Figure 11 the displacement of any Point A must be 

along a radial line if the stresses on the inside and 

outside of the spherica l shell are uniformly distributed . 

From this fact the unit strain E t in the tangential 

direotion due to a radial displacement u can be found as 

Et 2TT(r + U) - 2TTr u r:s = 
2TTr r (111) 
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2rrr CJ .. d. r ... 

(b) 

F1gure 10 . Freebody diagram of a hem1spher1cal shell . 



The averase radial unit strafn is seen to be 

d :.l 

dr 

It is also sho1m that for a triaxial syste::n with 

direction u, v, and w 
Ou = 

(112) 

(113) 

where the t:ateria l is isotropic and ho::nogeneous and the 

proportional limit of neither normal nor sheer stress have 

been exceeded. The synb~l E stands for the modulus of 

elasticity, and M is Poisson's ratio. For the use of a 

sphere the triaxial syste::n consists of one radial and two 

tangential directions . Applying this to Squation 113 and 

substituting the expression for t and r from Equations 

111 and 112 one cs..n see 

Gt = 
1 

and 

CTr = 
1 

E 
- !'i -

tha t 
;.;' 

,.... 
•tdu 

..., 
.... u + -- M - 2:.12 Lr dr_J 

du. 
2M2 i dr + }'I 

L 
(
- du + 

dr 

(114) 

2u I 

(115) 

If Equations 115, 114, and 110, are combined and the common 

fac"t,01·sJ o f 3 and (1 - i·! - 2:'12 ) are canc e:. ed o~t, then 

u vdu du du 2u ' + .. = + :,! + - dr dr dr -r r / 

r d r du C.u 2U + + M + 
2 dr .... dr dr ,.. - ,_ (116) 

This expressi on reduces to 



65 

u = 0 
r (116a) 

If an assumed solution of the form 

u = crX (117) 

is substituted into Equati on 116a, it is found that x = 
-2 or x = +l . Thus one solution to Equation 116a has the 

form 

u = Ar- 2 + Br (118) 

By using the boundary conditions of t he problem the 

constants A and B can be evaluated . The boundary conditions 

are the radial the stresses at the inner and outer surfaces 

of the shell. The radial stress is given by Equation 115 

with Equation 118 as 

E CJr = ~~~~~ ..... 
1 - M - 2M2 [ ( 2M - 1) ~ 

r3 
+ (1 + M) B 

(119) 

The boundary conditions for the inner and outer surfaces 

respectively are 

(120) 

and 

(121) 
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that is, the radial stress on a surface is a compressive 

stress equal in magnitude to the pressure exerted on the 

surface. With these conditions Equation 119 for the two 

surfaces becomes 

E l 2A (l+M)Bl - pi = 2M2 
(2M-l)-J+ 

l - M - ' R1 ...J 

(122) 

and 
~ 

2A I 
E I 

- p = (2M-l)-3+ (l+M)B I 

0 1 - M - 2M2 R2 
(12J) 

Using these two equations the solutions for the constants A 

and B can be shown t o be 

R{R~(Po - P 1 ) (1 - M - 2M2 ) 
A = ----~----------~------~ 2E (2M - 1) ( R~ - R{) 

and J J 2 ( P1R1 - P 0R2 ) (1 - M - 2M ) 
B = ~~~~~~~~~--.~--

2 E ( l + M) ( R~ - R{) 

From these values of A and B the expressions for u, 

Gt become 
, r' 

J J J J J R1R2(Po - P1 > (1 + M) + 2(p1R1 - p 0R2 (2M - 1) r 
u c ------------------~---------------------------

(124) 

(125) 

and 

2 E ( R~ - R~) r2 {126) 

CTt = 
(127) 

{128) 

These results agree with the results given for 



Figure 11 . Displacem 
shell . 
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ent due to stres spherical s in a 



68 

various special cases by Roark (18, p . 232) and by 

Timoshenko and Goodier (22, p . 359) . 
Equations 109 through 119 hold equally well for solid 

spheres . The difference between a thick-walled shell and a 

solid sphere occurs in the boundary conditions and 

evaluation of the constants A and B. The boundary 

conditions at the outer surface are the same in both cases , 

but the boundary condition at the inside surface is replaced 

by the condition that the solution mus t be finite within the 

sphere. This condition implies that A must be zero . The 

expressi on for the displacement u thus becomes 

u ::: Br 

By evaluating Equation 129 at the outside surface 

constant B 1s found to be 

B = - P o( 2M - 1) 

E 

The resulting expressions for u, CTr ' and a-t are 

- Po ( 2M - 1) u = --~~------r 
E 

U-t = - p 0 

the 

(129) 

(lJO) 

( 1.31) 

(132) 

(lJJ) 
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