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INTRODUCTION

The latent heat of fusion, hereafter referred to as

latent heat, 1s defined in the Handbook of Chemlstry and

Physics (8, p. 3097) as "The quantity of heat necessary to
change one gram of sollid to a liquid with no temperature
change." To galn further insight into the use of the latent
heat consider the simple example of ice used for cooling.
Ice absorbs heat from its surroundings until it reaches its
melting temperature., Then the ice continues to absorb heat
without temperature change while it melts. Finally, the
melted ice begins to heat up again. Two important factors
in using the latent heat are seen in this example: (1)
There must be a heat source with a temperature equal to or
higher than the melting temperature of the solid to be
melted. (2) No temperature change takes place in the
material while melting takes place, but thermal energy is
absorbed., The purpose of this thesis i1s to investigate one
application of this physical property.

The question one might well ask at this point is how does
this form of thermal energy absorotlion compare with other
commonly used methods., The three most important effects of
thermal energy absorption are the temperature increase of a
fluid, vaporization of a .uaterial and melting of a material.
For the purpose of comparison, the thermal energy absorbed by

one gram of material by a particular method of heat absorption



is used. For the thermal energy absorbed by a material

the change in termerature will be arbitrarily defined as the
difference between the melting point and boiling point of
the material. This change in tenperature will be excessive=
1y large in some instances. Therefore another comparative
value of 100 °C will be used. Thus for comparison the
thermal energy absorbed by melting one gram of material

becomes

where L 18 the latent heat in calories per gram. For a
change in temperature

AH,p = CAT (2)

/\HIOO = 100C (3)

where C 1s the specific heat in calories per gram-degree
centigrade and /AT 18 the change in temperature as defined
above in degrees centigrade. For vaporization

AHy = Ly
where Ly 1s the latent heat of vaporization in calories per
gram. The quantity /AH in each case represents the change in
enthalpy per gram of material.

Another useful quantity which will be discussed in more
detail later is the thermal energy absorbed per unit volume
which is designated by /AH . The quantity/\H will be
defined as Equation 1, 2, or 3 and [ will be the density

of the material being discussed., Values for these quantie



Table 1. Thermal energy ebsorption.

/AT JaN:i AHq 0o ANH AByP AH P AHloolD
oc cal?g ca%/g caf/g cégggcq cmBGai/cm3 cgl/cm3 cal/cm’

Water, H50 100-0 100, 79.71 539.55 100. 100 79.71 539.55 100
Sodium, Na 880-97.5 250.4 31.7 32, 232.5 3v.18
Sodium
Chloride,

NaCL 1465-804.3 124, 217
Sodium
Fluoride

NaF 1704-992,2 186. 27.9
Lithiunm
Nitrate,

LiNO3 (250) 88.5 39.
Potassium
Fluoride, KF 1502-859.9 108, 22.5
Aluminum, AL 2057-659.7 349.3 76.8 25.0 832.1 20.73 - 59.55
Nickel, Ni 2900-1455 187.8 73.8 13. 634,7
Mercury, Hg  356.58+39  12.78 2.82 70.6 3.23 173.0 40.02 956.0 43.73
Phosphorus, P 287-44,2 £52.7 503 13, 21.7 123.3 304.2 50.78
Sulfuric Acid

B2S50y 326-10,35 107.0 24.0 122.1 33.9
Bismuth, Bi  1560-271.3 37.63 12.64 2.92 385.3 122.2 2949
Lead, Pb 1620-327.43 48.47 5.86 3.75 516.0 64.75 39.92

Lithivm, L1 1336186 1580.1 137.4 843,77 7337

= 2 - e ——— e = Smsacs



ties are tabulated for several elements and inorganic
compounds in Table 1. These values in the table are not
exact, since "typical" values of the physical properties
were used. Using the values in Table 1, 1t can be noted
that the heat absorvtion by melting is at least comparable
to the other processes except in the case of the vaporiza-
tion of water. In most cases the heat absorption in the
melting process is approximately equivalent to the other

processes,

Review of the Literature

Altman et al, (1) discussed the possibility of using
the latent heat of fusion in an energy storage device. 1In
this article the authors discussed such a device in general
and perform calculations for a simplified case to be used in
conjunction with a solar mirror in satellites. No other
applications of this principle have been found. The lack of
literature on this subject of using the latent heat indicates
the need for more research in the area.

In carrying out the heat transfer analyslis use was made
of Glasstone and Sesonske (5). During the investigation of
the melting problem several approaches were reviewed inocluding
those presented by Carslaw and Jaeger (3), Goodman (6),
Goodman and Shea (7), Ingersoll and Zobel (12), Landau (13),
Murray and Landis (16), Ross (19), and Stolz (20). The method

chosen was one of two methods presented by Murray and Landls



(16). The analytic solution of neat conduction in a
composite sphere given by Carslaw and Jaeger (3) is also
referenced, An experimental study of freezing and melting
is glven by Thomas and Westwater (21).

Use was made of Higdon et al., (10), Murphy (15),
Roark (18), and Timoshenko and Goodier (22) in the stress
analysis of spherlcal shells. Handbook of Chemistry and
Physics (8), Handbook of Thermopnysical Properties of Solid
Materials (9), Hultgren (11), and Metal Handbook (14) were
used as sources for the material properties used in Table 1

and Appendix A.

Possible Uses of the Latent Heat

There are two possible modes of application of the
energy absorption power of the latent neat. In the first,
or "one shot" mode, the material acts as a sort of saflety
or protective device. After the material melts, it 18 no
longer of any use so far as this method 18 concerned, The
material must be replaced or cooled in some manner before
the device 18 agalin ready for service. One possible example
of this mode is that the latent heat of some material might
be used to keep a shipping container below a glven tempera-
ture during an accidental fire. This same principle mignht
be useful in protecting instruments from high transient
temperatures. Another posslble application is to use the

latent heat of a material to absorbd the heat during



shutdown of high temperature devices.

The second mode is one of continuous opcration. In
this mode the latent heat of a material is used to transfer
the heat away from a continuous heat source. This is the
mode to which the bulk of this paper will be devoted.

The most common method of cooling or cobtaining heat
from a heat source is to circulate a coolant through tubes
placed through a heat source, and then pass the cooclant
through a heat exchanger to extract the thermal energy.
This is the method commonly used to obtain thermal energy
from nuclear power reactors. This thermal energy is then
used to generate high pressure steam which in turn drives
steam turbine generators. The coolants used vary widely,
but a few of the most commonly used coclants are water,
liquid metals, organic fluids, and gases. Another
important method of using the thermal energy is by turning
the water directly into steam by boiling the water in the
reactor.

| One alternate method mlght be to gllow bar stocks of
a coolant material to contact the heat source. The liquid,
containing the thermal energy in the form of latent heat,
could be drained off. The heat energy could then be released
in a heat exchanger as the material is resclidified into
bar stock again. This might be improved upon by allowing
the bar stock to be immersed in the molten material which is

in contact with the heat source. The transport of the bar



stock or bulk material and the method of reformation would
most certainly present formidable engineering problems.

A more favorable alternative would be to use a slurry

ith the particles of coolant material suspended in a
liquid or gas. The biggest difficulty would be to maine
tain suspension. There would also be problems durling
shutdown and startup. Choosing cooclant materials and
transport media which would lend themselves to formation
of suspension for both phases of the coolant material as
well as having satisfactory thermodynamic and heat transfer
properties would be a formidable, if not impossible, task.
However, if there were ways to circumvent this major diffi—‘
culty, this alternative could appear to be somewhat more
attractive than other methods now used.

Another possibility is to use this suspension concept
to increase the efficliency of present cooling system
designs. Finely divided particles could possibly be added
to present systems to increase the heat absorption capacity
of the coolant stream without increasing the required

temperature.



THE HEAT TRANSFER SYSTEM

The method proposed to overcome the difficulties listed
in the preceding sectlion is to enclose the coolant material
in a shell. These particles could be either used to form
a suspension or to be mechanically transported through the
coolant loop. The diagram for a system incorporating this
idea is given in Figure 1. It is similar to many other
coolant loops used for heat transfer. Probably the most
efficient plan would be to fill the system with a 1liquid
metal of high thermal conductivity and allow fluld pressure
to force the suspended particles around the coolant loop.

Starting at Point 1 in Figure 1, the particles would go
through the reactor. The heat energy produced in the
reactor would melt the coolant material (but not the particle
shells). Then the particles would pass into a heat exchanger
where the heat energy in the particles would be given up and
the coolant material in turn solidifies. Then the particles
would be ready to start the cycle over again. The pump is
necessary to maintain proper coolant flow through the
reactor.

The primary advantage of this alternative is that it
combines continuous operation with a relatively small overall
temperature change across the reactor. In addition, there
are no large density changes like those which occur in

vaporizing water to steam. The use of a shell concept allows
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a2 wide choilce of coolant materials. In many applications
these items would not offer any particular advantage, but in
a nuclear reactor the properties of the reactor are
significantly affected by changes in temperature and
density. One interesting potential for a system of this
type 1s the design of a nearly homogeneous nuclear reactor

with continuous fuel recycling.

These advantages, however, are not to be gained without
the addition of some difficulties., The most prominent
disadvantage 1s in the fabrication of large numbers of
coolant particles. The fabrication of the small coolant
particles could be difficult and therefore costly. Also
there may be larger pumping power requirements than the
more conventional systems because of the need to pump both
the coolant and transport medium. Still another difficulty
may be the erosion effects of the particles inside the
coolant tubes.

It appears the final overall judgment of the system
will be economic. The increased cost of fabrication and
punping power must be outweighed by the savings created by
the more even temperature distributions. These savings
would come about mainly through more even fuel burnup and
reduced fuel fabrication costs.

In order to gain a better understanding of the

proposed system given in Figure 1, it will be postulated to
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be in steady state operation with heat energy QR being
produced in the reactor per unilt time. It i=s further
assumed that the heat energy losses are negligible, and that

any friction losses Py, are glven by

Py = Pp (5)
where Pp is the puaping power.

Define the following by:

-

L = latent heat of fusion for the coolant
nateriel

Thelt = melting temperature of the coolant
material

7] = weight fraction of the coclant material
to the total material transported

Qg = energy removed from the coolant stream
by the heat exchanger per unit tine

Pp = density of the coolant material which
is assumed constant

Assume that the coolant particles are small and well mixed
with the transport medium so that the coolant stream can be
considered homogeneous with density P.. The coolant flow
will have a constant mass flow rate, w. Then using the

first law of thermodynanics
Change in energy = heat added + work done = 0
or
(Qg = Qglt = (Pp = Pp}t (6)
where t 1s some specified increment of time. The right hand

side of Equation 6 is zero therefore

QR = QE (?}
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Since the main interest is in the efTect of the latent

heat, the mean coolant stream temperature will be taken
as constant at the coolant material melting temperature for
the points noted in flgure 1. Then, if %i i8 thne welight
fraction of the coolant material which is melted at the 1th
point, . _

Qp = WT/( (‘2 - ,“'1)11 (8)
where 1 and 2 refer to the points 1 and 2 in Figure 1. A
similar expression may be written for the energy removed by
the heat exchanger that is

g = w7) (£, = F3L (9)
Since heat energy is neither added nor subtiracted in the

pump, then

[
({

1 =43 (10)
This also follows from Equations 7, 8, and 9.

The reactor is postulated to contain n coolant flow
tubes one of which 18 shown in Flgure 2. The heat transfer
expressions for similar coolant tubes and conventional
coolants, using the specific heat of a fluid coolant, are
given in Glasstone and Sesonske (5, D. 364).

The differential mass of coolant material dm which

passes along the differential length of tube dx per unit time

is given by
dm = 27 Rgv g (11)
From Figure 2 and the previous definitions, it is seen that

W =nv 2n Ry [, (12)



cal coolant

tuke,

£1
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where v is used here gs the mean speed of the coolant stream.
The rate dq(x) at which heat is added to the stream in

a differential length dx for the 19 tube is given by

dqj (x) = I7df da

i

Lacns (13)
= n

where défis the differential fraction of coolant material
melted. Note that w/n is the total mass flow rate per
coolant tube.

It is assumed that all heat flow is normal to the
coolant stream. Using this assumption and the assumption
of steady-state operation the heat generation rate in the
volume cooled by the 1th coolant tubve Qi is gliven by

X =1
o = | gy 1 (14)
lz =0

The total heat generation rate QR for the reactor is then

given by

x=17

n

n
Qe = 3 Q = 3 dqs (x) (15)
- e % L= . )

The volumetric heat source is, in general, a point
function S(x,y,2). An effective areca .y can bte defined such
that the heat generated in the small volume cooled by the

length dx of the coolant tube becomes

’

—

dqj (x) = | S(xz,y,2) dydz | ax (16)
“/ay J
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In the most common reactor designs the coolant tubes are
placed parallel to one another and the elTective areas can
be considered independent of x. Therelore the local average

heat source per unit volume Si(x) 18 defined by

Sy (x) = e JJ’ S(x,y,2) dydz (17)
Ay Ay

From Equations 16 and 17 one then gets
dqq (x) = AyS, (x)ax (18)

Combining Expressions 13 and 18
nA;y Sy (x) dx
af = has1(x)
Lnw (19)

Integrating 19 over the length of the ith coolant tube gives

E(T) o L naySy (x)ax
) 7)o M

4

Y o & - nhy 1
(g(l) «:(0) Iith tube m f Si(X)dX (204a)
0
- x=1
= -I—J-]—{E j dql
x=0
n
= Eaa Qi (200)

Tnls shows that the change in fraction of melted coolant
material 18 proportional to the amount of heat generated in
the volume cooled by the coolant tube. In order to meet the

conditions that the mean temperature of the coolant stream e
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the same at Points 1 and 2 of Figure 1 and that the latent
heat is the mode of heat absorption, Qi of Equation 20b will
always be such that

0 < g(l’) - oy <1.00 (21)

10 pype
While the mean temperature of the coclant stream may
be at or near the melting temperature of the coolant materi-
al at Pointé 1l and 2 of Figure 1, the mean temperature of
the coolant strezm must be higher than the nmelting
temperature while the coolant stream is within the reactor.
In addition the temperature of the surface of the coolan
tube Ts must be higher than the mean coolant strean
temperature Tm. These temperature differences are necessary
to allow for the transfer of heat into the coolant streanm
and from the coolant stream into the coolant particles. In
order to simplify the expression for heat transfer from tube
to coolant the normal procedure is to assume that an
expression of the form

dgy (x) = h(Tg(x) - Ty) dAg (22)

holds at the surface where h is the heat transfer cocifi=
clent. The differentlal area dig is the surface area of the
coolant tube asscociated with dgs;(x). In the present case of

2 uniform circular coolant tube dAs becomes

dA_ = 2m Ry dx (23)

Substituting this result into Egquation 22 and integrating

over the length of the 1th coolant tube one gets
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x=1" '
Q = f dqi(x) = 27 RtJ, h(Tg(x) = Tyldx (24)
x=0 0
By combining Equations 22 and 23 and comparing this result
with Equation 18 it is seen that

Aisi(x) = 21 Rch(Tg(x) - Ta) (25a)
or
Tg(x) = ﬁiﬁiifl + Tn (250)
2nRgh

This equation can be used to determine the surface tempera-
ture of the coolant tube if Si(x) can be determined. The
function S1(x) can be determined by noting the relationship
between thermal neutron fluxqbth(x,y,z) and energy genera-
tion from Glasstone and Edlund (4,p.80). t 15 known that
it takes approximately 3.1 X 10lo fissions to generate one
watt-second of energy. The rate at which Tissions occur is
the product of thermal neutron flux and the fission cross-
section?if. With Chls information the energy generation in

a differential element of volume dVol becomes

S(x,y,z) dVol = K |f{'w(x.y,z) dvol (26a)

> it 1 - (f:(x.y,z)dVol watts (26D)
1 x 10

Therefore

Qp = j' Sy (x,¥,2)dVol (27a)
Reactor
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Qg = K ,f %Lt‘ (x,¥,2z)dx dy daz (270)
Reactor
From Equations 16 and 26

/

! 7 @
dgy (x) = K { J thh (x,¥,2) dy dzidx (28a)
I the local average flux is defined as
N 1 [ g )
O(x) = = D (x,¥,2) dy dz (28b)

then dg; (x) beconmes

day (x) = kA3 ¢p(x) ax (28c)
If the constant KAi is redefined as K3, Equation 14 becomes
71
oy = k3 | plx)ax (29)
/0

th coolant tube

From Equation 15 the heat removed by the i
is Jjust some fraction By of The total heat removed from Che
reactor. Thus

U = 3%z (30)

Which when combined with Equation 29 gives
BiQR = K3 (31)
Tnerefore the fraction of heat removed by the 1th coolant

tube By becomes a welighting Tunction for the ith

tube, If it
is possible to determine this fraction in some manner when
(x) is known, then K, can be determined. Since from

Equations 18 and 29

8181 (%) = & O(x) (32)
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then T4(x) can be determined from Equation 25

It can be noted that from the assumption of a well
mixed coolant stream that §i(0) of Equation 20z is the
same for all the coolant tubes and is equal to éi of
Equation 8. However éi(l) will be different for different
coolant tubes. The quantity gi(l) is not the actual
fraction of the melted coolant material at the exit of

the coolant tube., It is instead the fraction of melted
coolant material which would exist if the coolant streanm
were allowed to reach thermal equilibrium. As mentioned
above the coolant stream can not be in thermal equilibriun
while it is in the reactor. If it were, no heat transfer

to the coolant particles would take place. The thnermal
energy represented by the difference between the actual
fraction of melted coolant material and éﬁ(l) is contained

in the coolant stream as the heat absorbed by the change in
temperature of the materials comprising the coolant stream.
If the recombined coolant stream is allowed to reach thermal
equilibrium at some later time Equation 20b will represent
the heat energy removed by the 10 coolant tube. It has
already been assumed that the coolant stream is well mixed at
the melting temperature of the coolant material tpeit at

Point 2 in Flgure 1. Thus using Zquations 15 and 20b it can

be seen that



n - r)_ -
L hw ol / &, i
Qg = 2 —— |Gi(3) = &l0) (33a)
B im B > ]
or n .
- (1\
Qg=Dm| 2 27 . (0)} (33v)
a2 6

By noting that £(0) is equal to &y and comparing Equation 33b

with Equation 8 éé become

How
Uy

1 (1)
o R (3%)

Uy

2

Using Egquation 20b to solve for éﬁ(l) and substituting into

Equation 34, it is seen that
n

o3
=5 & <(0)
éé 1=1 Lnw i (35)

To use the heat absorption power of the latent heat
completely, the coolant material would be all solid at Point 1l
6{0) = 0 and all liquid at Point 2 (éé = 1.0). One way
for 55 to be unity is for each fi(x) to be unity. For
uniform tubes this further implies that the Qi's are all
equal. Thus for the most efficlent use of all the latent
heat all the Qi's must be equal. If the Qi°s are not all
equal then gi(lﬁ can not all be unity unless the coolant
tubes are of non-uniform size or more thermal energy is
allowed into some coolant tubes than is necessary to melt

the coolant material flowing in those tubes.
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Pumping Power
Pumping power as given by Glasstone and Sesonske
(5, p. 396) is

Pumping Power = Pressure Drop X Volume Flow Rate (36)

If /A, stands for pressure drop across the whole systeun,

the symbolic representation of 36 becomes

- w
Pe

The pumping power requirement should be as low as possible

since pumping power subtracts from the net power of the

system., In order to have lower pumnping power requirements

the volume flow rate term of Equation 36 should be as

small as possible. The volume flow rate F is given by
F=w/ (38)
P

Since the density of the coolant under discussion does not
vary significantly, the volume flow rate is constant
throughout the system. If Equation 8 is solved for w and

combined with Equation 38, the volume flow rate becomes

Qp
F o= :
MR (2 = £1)L (39)

The quantity Qp will normally be fixed by the power genera-
tion in the reactor. If the flow rate is to be & minimun,
then the terms in the denominator of Equation 39 must be
maximized. This implies that‘fz - Ei be unity which was

described earlier as the condition for most efficient use
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of the latent heat.
If the shell material is neglected, the relationship be-
F

tween the welght fractlon of coolant material 7), denslty ~, and

volume V are given by

Total Weight _ Fﬁvh + F%m Ve

Total Volume Ve (40a)

Fe

77_ Welght Of Coolant Material _ ngm
Total Weight - LeVe (40Db)

Vo = Vyp + Vpy = Constant (40c)

where the subscriptsc, m, and Tm designate total coolant
stream, coclant material, and transport media respectively.
The total volume V, is constant for a fixed system, and if a
choice of materials has been made the density [, is also

fixed. Thus from Equation 40

V.
NP = E%EE (4

_(_.
=
St

which implies that the product 7)f; can be increased by
increasing the amount of coolant materizl. There 1s, of course,
some upper limit to the amount of cooclant material that can be
added to the stream and still maeintain the desired Ilow
conditions.

In order to increase the latent heat L a material change
is required. When the material is changed the density P is
also changed. A means of comparison between different

materials is possible by noting from Eguation 41 and 39 that



QTJ Vc

F= 2
VmimL(gé - gl) (&2)

Therefore the volume flow rate is inversely provortional
to the product me. Values for this product are given
- fe K
as AYM, P 1in Table 1.
Thne volume flow rates for the other two thermal energy

absorption methods become

= = _..9.?._...
AT PC\—CAT (L"'Ba}
FV = QR -
Pelv {43b)

No ratios of volumes appear in these expressions because the
coolant material usually comprises all of the coolant streanm
for these methods. A comparlison of the three values of
volume flow rates given by Equations 42, 43a, and 43b shows
that for equal values of AEP as given by Table 1, the
volume flow rate for the latent heat process Equation 42,

is higher by the factor V/Vm. When this result is used in
conjunction with the equation for pumping power Equation 37,
it shows that the pumping power for the latent heat process

can be expected to be higher than for the other methods.
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THE PARTICLE

The particles described in the last chapter must
absorb, store, and release the thermal energy transported
by the stream. The whole system will depend on how fast
and efficlently these particles can absorb and release the
heat energy.

From Figure 1 the thermal changes in a typical particle
can be followed as it makes one complete clrculit of the
coolant loop. The partlicle starts out at Point 1 at
constant temperature with some fraction of the coolant
material melted. As the particle moves into the reactor
coolant tube, the temperature distribution changes giving
the particle a hotter suriface temperature, This thermal
gradient will cause theirmal energy to flow into the coolant
material. This in tuirn causes more of the coolant material
to be melted., After the particle passes out of the reactor,
a thermal gradient will continue to exist until thermal
equllibrium of the coolant stream is established at Point 2.
At this point a different fraction of The coolant material
is melted, and the temperature is again constant. (Thermal
equilibrium need not be established, but it is assumed for
discussion purposes,) The particle now enters the heat
exchanger where the surface temperature is lowered. Heat is
transferred out of the particle. PFinally, the particle

leaves the heat exchanger and ocontinues to lose its thermal



energy to the coolant stream until thermal equilibrium 18
once again reached at Polint 1.

In the disocussion of the heat transfer system the
assumption of steady-state was taken Lo luply that the
fractions of coolant material melted §1 and 62 at Points 1
and 2 respectively would be constant. While this holds for
the total stream, it may not hold for the individual
particles, Therefore the fraction of coolant material
melted for a particular particle would in general be
different at Point 1 at each particle pass through the
coolant loop.

In previous discussions it was noted that the rate at
which the thermal energy is absorbed by the particles
should be close to the rate at which thermal energy 18 added
to the stream. It was pointed out that if this condition
did not exist, the excess thermal energy would act to raise
the temperature of the stream. Therefore the latent heat
would not be used effectively. One measure of the heat
absorption rate is the melting time for the coolant material
in the particle.

Melting Time

The time necessary for the melting of a fraction of
coolant material in one pass through the reactor is directly
related to the mass {low rate w, Thls {raction of coolant
material 1s melted as the particles pass through the reactor

to Point 2, Since under the steady-state condition this will
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be some fixed length, the time of passage through this length
must correspond to the melting time for The fractlion 62 -.51
of the coolant material.

For the purpose of determining melting time, the
temperature at the outside surface of the shell is taken to be
some function of position in the coolant cycle. IC is
convenient to choose the point where melting begins as the
entrance to the coolant tube x = 0, and the point where
melting has essentlally stopped as x = 1,. Thus the length
of coolant channel over which melting takes place 1s 1. 1In
the ideallzed case where the thermal energy 1s absorbed by
the latent heat as fast as 1t 15 added to the stream, 1, is
the same as the coolant tube length. Thé velocity of the

woam tilmes the cross-sectlional area of the coolant tube Ap

gives the volumetric flow rate; thus

w
VAp = e (&)
The velocity is given by
V = lm
(45)

8ince the melting time tme must be equal to the time of

passage through the melting length. Thus combining 44 and 45

the (46a)

or 1ATRA
™
bpe™ = (460)
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The Melting Problem

The particles consist of three distinct parts; snell
material, melted coolant material, and solid coolant
material. The nature of the melting-solidification process
dictates that both melting and solidification start on the
outside edge of the coolant materiasl and proceed toward the
center. This combined with the Tact that the fraction of
coolant material melted for any particular particle changes
on each complete circuit of the coolant loop, leads to the
conclusion that the particle may consist of alternate layers
of melted and solidified coolant material. During melting
the outside layer will always be melted coolant material.

To circumvent the problem of handling several layers, all

of the coolant material will be assumed to melt during
passage through the reactor and resolidify during passage
through the heat exchanger. This condition has already been
pointed out as one of the most efficient use of the latent
heat for heat transfer,

It will be further assumed that the properties of the
materials are independent of temperature in the range of
interest. For the Jth reglon one then has

Ciy V27 = %%.‘ (47)
where J 1is either sh, L, or ¢ corresponding to shell, liquid,
or solld respectively. This is the time dependent heat

conduction equation. The thermal diffusivity Cly oi the
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region is given by
K.

Cly = et 5
- Q. (48)
PsC;

where the material density Fﬁ the specific heat C P and the

thermal conductivity Kj are all propverties of the material
for the jth region.

Applying a set of boundary conditions between the
liquid and solid material, one then obtains a nonlinear
problem. This is caused by the fact that the boundary
between the liquid and sollid region is moving and changing
with time. Several authors have presented solutions to this
type of problem. Among them are Altman et al. (1), Baxter
(2), Goodman (6), Goodman and Shea (7), Ingersoll and Zobel
(12), Landau (13), Murray and Landis (16), O'Brien et al.
(17), Ross (19), and Stolz (20). Without exception a one
dimensional geometry is used. Because of its adaptablility
to spanerical geometry a method illustrated by HMurray and
Landis (16) is used in the following development.

In order to reduce the problem to one dimension, one
must assume that the particles are spherical with a known time
dependent uniform temperature distribution on the outside
surface of the shell. If it is further assumed that the
unmelted part of the coolant materisl stays centered in the
snell, one obtains a symmetrical problem, With these

assumptions the heat conduction Equation 47 becones
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OF Q3 d (527
o= s e
ot 2 Jr | or (49a)
which can be resolved into
; 2
9T . ZY N , g, 9T z
at ° ar c)r'a ( “'9b)

The boundary oondition at the outside surface of the shell is
T(r = Bp) = Tyoun(t) (50)

where the symbols are defined in Figure 3. The two boundary
conditions at the interface between the shell and the liquid

are that the temperature and heat flux e continuous. Thus

Tsn(T= R1) = TL( V= R) (51)
and
O Tsh oT ¥ = B
on'So = RS, TR (52)

For one boundary condition at the liqulid-solid interface one
must take an energy balance. The thermal energy {lowing into
the interface is equal to the thermal energy absorbed by the
melting process plus the thermal energy which flows away from

the interface. Mathematlcally this becomes

p T,
KL-TT&= PSL%; + ng—rf,r=€ (53)

The temperature at the liquid-solid interface must be at the

melting temperature of the coolant material,
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The final boundary condition occurs at the center. From the
symnnetry of the problem there can be no thermel energy flow

at the center, thus
3
Kg S— = @ _p=0 ' (55)

The methods shown by Murray and Landis use numerical
techniques to adapt this problem to either the analog or
digital computers. They term the method adapted here as the
"variable space network." A three point numerical approxina=-

tion is used for the spatial partial differentials involved.

Thus
QE}}. = Tn+l = Tn-1
Jr 2Ar|; (56)
and
S° T Tpn-1 = 2Tn + Tp4
P (ax(3) 2 (57)

Here the subscript n refers to the n h spherical surface as

defined in Figure 3. The radial differencesékrij for each
]

region are given by

shell region:

liquid region:
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Ar|y = BL= €
A g (59)
solid reglon:
&
Using these definitions for the radial differences the
radius to the nth surface, T, is given by
shell region:
r, = (n=b) Ar| gy + By (61)
liquid region:
r, = (nna)llr‘L - (62)
s8olid region:
r, = nAr\s (63)

The finite difference relations will be different for
each region. Considering the shell region first Equations

49b, 56,and 57 combine to give

o Tn - '---Lsh(Tn%—]_"Tn..l) + Agh (Tn-1-2Ty+Tn+1)
ot rn Ar ]sh (f\fﬂ’]sh)2 (64)

Next considering the liquid region the rate of travel of the

surface 18 related to the interface veloclty Dby

drq ar
Tdg /By -1y = dt/Ry - € (65)

from the definition of the total derivative



T ( 663 )

one has

dat Jr dt ét (660)

Substituting Equation 49b into 66b one has

~ : 2
dTn _oTn drp 0L 3 +Qp 2_n 5
dt J » &t I'n oF oT* it

Here the subscript n in the derivative terms denotes that the
derivative is evaluated at the nt? point. Now Equations 67,

65, 57 and 56 can be combined to give

dTn - (Tn+1 "Tn—lj” . (Rl - ?n) dé
dt ZAriL (Bl =€) dt

n ﬁhﬁlL)

A , BB (68)
i o
| L

For the solid region corresponding results can be shown, that

is
ar ag
at / Tn=at /e, 0<n-a (69)
and
dTn _ dTn drn _ 2Cs oTn +a8321h
dt or dt Tn OT D2 (70)

Combining Equations 69, 57, and 56 with Equation 70 one has

the results
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d™n _ (Tn+1l =Tn-1) n d€
at 2AT |« € at

(S

+2C8s (Tpsl  =Tn-1)
rn 2(ar|s)

Qs (T4

4 n-1 =2Tn + Tn4+1)

., 0<<n<a (71)
(&T:Is)z

The boundary conditions can also be put inte {finite
difference form. However, the value of the derivatives at
the boundary points must be defined dilferently since ine
material properties change at the boundaries. To obtain
an expression for these derivatives the following Taylor

series expansions were used

R .
T Ty = Ty + (&rln_{_) o\rﬁl + (AT ) ;] Py
and
By (2Ar1w#)2£$Tn
Tniz = Ty & (ZAr‘ni) g Yizh

or 2 oré  (73)

By eliminating the second partial derivative terms from

b

Equations 72 and 73 a Tfinite difference approximation for the

temperature gradient on one side of the boundary point n becomes

D Tn I 47, -7

S 4 =Intp = 3n
or |boundary < R (75}

»

AV ]

o

Where the + sign refers to the side away from the center of
the sphere and the - sign refers to the side nearest the

center. The boundary condition of Equation 50 becomes
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T, = Thoundary (75)

The boundary condition at the shell=-liquid interface given by

Equation 51 becomes simply
Tgh(r = Ry) = T (r = Ry) = Ty (76)

Using 74 the continuity of heat flux at the shell-liquid

interface from Equation 52 becomes

(4Tp+; =~Tp+2 =3Tp) _ (4Tp-1 =-Tp-2 =3Tp)
' .

Ksh

The boundary condition at the liquid-solid interface from
Equation 53 combined with Equation 74 gives an expression

for the rate of movement of the interface

s _ 1 [ (4Tg o1 =Ta-» =3Tg) i
dt PsL 2(ar|g)

KL(“’TQ+1 -Ta+2 =3Tg)
2(ar|L,) J (78)

Continuity of temperature at the liquid-solid boundary 54

offers no difficulty since

The final boundary condition at the center given by Equation
55 combined with Equation 74 becomes
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(471 T2 -3T0) _
2(!.\1'}3) (80)

T

l\b

Initial conditions are necessary to use these
equations. It has been assuned in formulating these
equations that there were three regions. This is not
strictly true since at £t = 0 i.e., upon:entry into the coolant
tube, there are only two regions, shell and solid coolant

material. Since Ar 1 and Ar appear in the denominators

ls
of several of the expressions they cannot be assigned
values arbitrarlly close to zero. Therefore, some initial
liquid Thickness must be assumed, and in the computations
the solid material does not completely melt. In addition
to this initial liquid thickness, an initial temperature
distribution is necessary. In ofder to find these

initial conditions it is possible to calculate the
tenperature distribution in a composite sphere without
melting. An analytical form is shown by Carlslaw and
Jeager (3, P. 351). The analytical form is difficult to
evaluvate since it requires evaluating the roots of a
trigonometric relationship. Each root is then used to
evaluate one term of an infinite series. O0On the other hand,
computer formulations are relatively easy to construct and
their accuracy can be made at least as good as the present
formulation of the melting problem. The computer formula-

tions are also more versatile in that almost completely
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arbitrary boundary and initial conditions may be used. Also
temperature varying material properties can be included. It
is then possible to combine this type of computer formula-
tion with a formulation of the melting problem to give the
temperature distribution at anytime after start-up of the
coolant flow cycle. Because of the amount of computer time
required, the initial conditions will be assumed for this
presentation.

Most of the comments above apply equally well to both
digital and analog devices. The finlte difference equations
developed to this point are in a form which is adaptable to
analog computers. The results of an analog computer would
be desirable over those of a digltal computer because of
the continuous time variable inherent in analog computers.
However, because of the non-linear nature of the equation,

a large amount of expensive equipment 18 necessary to

program these equations for enough points to get a reasonable
solution., The equipment was not avallable, therefore this
method of solution was not attempted.

The difference equations glven above can be programmed
for the digital computer by putting the time dependence as
well as the spaclial dependence into finite difference form.

This ocan easlly be done with the following approximations

dat Atm+1 (81)
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d€ “m+1 ‘“m+1= €

at  Atger  Otar (82)

where the subsceript m 1s used to denote the mth time inter-
val. The time interval Aty is given by

Atm = tm - tm_l N m = 1' 2| * = ® ‘83)

so that the total time is glven by

m
tg = 2 Aty (84)
i=1
In addition let/lir | and r, be defined by Equations 58, 59,
60, 61, 62, and 63 where € 1s replaced by€ ;. The results of
these modifications as applied to Equations 78, 71, 68 and
64 are given in Table 2.
If the temperatﬁre distribution at time t = tm is
known, there are N + 1 unknown temperatures for ¢ = €ty 4+ 1.
With the temperature at the boundary given at time € = tm 41
there are N=b-2 equations from 85, b-a-2 equations from 86,
a-1l equation from 87, and one equation each from 89, 88, 80,
and 79, and 75. Adding these equations up there are N + 1
equation in the N + 1 unknown temperatures, so that it should
be possible to solve for all of the unknown temperatures.
Most finite difference formulations require that the
increments used satisfy some relationship in order for the

formulation to be stable. This relationship will depend on



Table 2. Finite difference equations.

Number Reference
t i
Equation Rangs Equggions fauaticas
Shell A : ) (85) N=-12n N-b-2 (64), (49b)
t +1 :Sh T -T | >b+1
Tny,m+l = Tpnym + = Bal B
(or|sn)?
Liquid (86) b-l=n b-a-2 (68),(67),
. - o e 7 (Tn+1-Tn-1) (R1=Tn)l<p4 z a+l (65), (49b)
n, m+1 n,m 2¢r|L(Bl-€m)
+At m+1o'L ( Tn-l"Tn-l )
| Tnaxiy,
+Atm+1 C1,(Tn-1-2T, + Tp+41)
(ar|1,)“
Solid ~ I . o 1 0
+ (Tn+1-Tn-1)rn “ps (87) a-l=n=l1  a-1 5293’(7 Yy

n,m41 = Tnym 2:r|g <p

LAtni Is(Tna1-Ty )
rn AT g

+Atm+1 Qs(Tn-1-2Typ + Tn+1)
(.’.‘.I‘ls)z

6€



Table 2. (Continued)

Number
Equation Range of Reference
Boundary Conditions
Liquid-Solid Interface (88) n=a 1 (78),(53)
. Do K
: = € - = = m+ S ’,
KL {
'Ta-z,m -3Ta,m)+ 52;?; \uTa+1,m 'Ta+2.m
-3Ta,m}]
) Ta,m = Tmelt = constant (?9) n=a 1‘ (?9),(5b)
Shell-Liquid Interface (89} n=b 1 €77), (52
2 OrlsnArly, [ Ksh fum g
= b+l,m
Bl 3Kshir§L + 3KL¢rjsh-£r[3h \
KL,
= To+2 ,m) * _‘l_ri"f (4Tp-1,m -To-2, m):l
Outside Boundary (75) n=n 1 (75),(50)
Tn,m = Tboundary,m
Center Condition (80) n= 1 (80),(55)

i 3
T0,m+1 = 3 (uTl,m+1 'Tz,m+1)

Ot
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the parameters of the problem and particularly on the choice
for the starting position. It turns out that the time
increments required by stability are very small for this
particular problem. Since these increments are small, a
very large number of points must be calculated to obtain the
desired solution.

The results as glven by Murray and Landis (16) for
infinite slab geometry have been compared to the experi-
mental results by Thomas and Westwater. The calculated
interface velocity was less than half the experimental
velocity. 1In addition, the experimental velocity peaked
in a manner which was not predicted by the numerical
solutions. These comparisons would indicate that a high
degree of caution is necessary in using the results of
these calculations.

With the initial and boundary conditions glven, the
time that it takes to melt the solid coolant material from
radius ©5 to radius <, can be found. Both ¢35 and ¢y must
be chosen to keep the program stable. The choice of some €0
as an initial conditlion is the equivalent to choosing as
the starting position some finite distance 1lg from the
coolant tube entrance, If dqi(x) 1s known, 1o may be found

by integrating Equation 13.

x“lo - 3 i 3
_ WTL(R] = €9)
f dqy (x) = —
x=0 Rj (90)
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(Note that the fraction of coolant melted is the ratio of
the volume of melted coolant material to the total volume
of coolant material.) The radius of the solid <y can be
taken as the radius at x=1, In earlier discussions it was
suggested that the amount of unmelted material in the coolant
stream as the stream leaves the tube be Just sufficient to
bring the coolant stream into thermal equilibrium at the
melting temperature of the coolant material with all the
coolant material melted. Here it will be considered
sufficient to use
€u =Ry = ¢ (91)

If the volume of coolant material not included in the

calculations is small compared with the total volume of

coolant material, that is if

b 3 3 L 3 L 3
= TM(R] = €,) +=TNMEL——_nR
TR - - R (92a)
or
3 _ .3
e c0<<0 (92b)
then
the = t, (93)

However, if the condition 92 is not met some form of
correctlion must be applied to the calculated melting time the
In one possible correction one can assume that the average
melting rate of the unaccounted for coolant material is the

same as the average melting rate for the calculated result.
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ﬁ (R3 t'3) + Ew €2
R e
3 w(eg - rg) - (9ka)
3
or ( H3
By ™ Sy |
me m.\‘g_,njl} (94Db)

The melting time from either Equation 93 or 94 can then be

used to determine mass flow rate from Equation Uba.

Particle Size

The particle size has a direct
the coolant material can be melted.

important factor in determining the

influence on how fast
The size i8 also an

properties of the

coolant stream. It would seem that the melting time
should decrease as the slze of the particle 18 decreased.
In addition, it would seem reasonable to expect better
suspension propertles with smaller particles., However, as
the particles get smaller, the fraction of shell material
may have to be increased, or fabrication may be more
difficult. In elther case, some method of choosing an

optimum size should be used.

Stress in the Shell

For the purposes of discussion, the shell stresses will

be classified into three types; mechanical, thermal, and
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thermal expansive. The mechanically induced stresses are
those stresses produced by colllsions with other particles
and with the walls of the {flow channel as well as other
stresses produced by the moethod of transport. These
stresses are difficult to evaluate. However, some fore=-
thought in design of the coolant system could minimize

the effect of these stresses., For example if it could be
determined that flow through the pump caused the greatest
mechanical stresses than the pumping operation could be
placed in a portion of the flow where all the coolant
material 18 solid. In this way, the shell would get the
added strength of the so0lid center. This mignt not always
be the case. Depending on the cholice of materials and

the shell construction the melted coolant material could
be under high pressure. In this case, the high pressure
may give added strength to the shell for certain types of
stresses,

Thermally induced stresses are considered here to be
those stresses caused by thermal gradlients. While these
may be important in some cases, during normal operation the
particles should be small, and the temperature differences
should also be small. With these two factors working
together, the thermal stresses should be negligible,

The stresses caused by the difference in thermal
expansion of the shell and coolant material could be

significant. In addltion, most materials change density
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during phase change. This effect could add consliderably
to the stresses in the shell. Whenever possible through
design and fabrication, these stresses should be made to
counteract the mechanically induced stresses., There are
three cases for stresses caused by differences in thermal
expansion corresponding to whether the thermal expansion of
the shell is greater than, equal to, or less than the
thermal expansion in the coolant material. 1In the case
where the two are equal no stresses are induced. In the
other two cases high stresses can be developed by changes
in temperature because an interference fit will be caused.
It might be possible to avoid these stresses through a
' choice of fabrication process and temperature, but more
likely the shell will have to be designed to be subjected
to these stresses without fracture or damage.

An analysis of these shell stresses can be carried
out for the relatively simple case of a spnerical shell
with symmetry. Let pj3 be the pressure on the inside and

Po be the pressure on the outside.

Thin Walled Assumption
For the case wnhere the thickness of the shell is small
compared to the radius the following method 1s presented in
Higdon et al. (10). Referring to Figure 4 it is noted
that the force P exerted on the hemispnere by the pressure

is 5
P = pmR] (95)
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Figure 4. Thine-walled hemispherical pressure vessel,
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Figure 5. Deformation diagram of the coolant particle.
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where the pressure p 1s taken approximately as
p = DPi =Py (96)

Since the shell must be in static equilibrium, the force
developed in the shell must just equal the pressure

induced force, thus

2mR0d =D ﬁaf (97)
The stress in the shell then becones
=
” et
(O 8 i
d (98)

The normal criterion for the thin walled assumption is that

d

R <0-1 (99)

If the thin wall assumption does not hold, the more
complex analysis of a thick-walled sphere must be used.
The stress analysis for thick-wzslled spheres is given in

Appendix B. The results of this analysis are

3 3 3.3 .
Ty = PiRi - POR2  RiR2(Py -Po)
g - 3 287(23 - 77) (127)
E 3 3.3
O__r . piRl"" '90313 - RlR?{pi - p(}l
B} - B} r7(Ry = Bf (128)

where Ry and Bz are the inside and outside radius respec-

Cively and Ty and(jf are the transverse and radlial
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components of stresas., The stress in the coolant material 18

also given in Appendlx B, as
gtle = = Pole (100)
Or|e = = Po|e (101)

where the subscript ¢ denotes coolant material.
The radial stress at the inside surface of the shell
should equal the radial stress on the outside surface of

the coolant material. Thus
Ur|sh ® = Po|c =Py (102)

Both the shell and the center are changed Ugp(Ry) and Ug(Ry)
respectively from the unrestrained positions Ry | s, and Rp|qe

From Appendix B Equations 126 andlZ2l these changes are

3

UBh(Rl) - Rt (pot h =P ' ) (1 + M)
28 (R - B?) |8 e
+ 2(p | RJ 3y (2M - 1) (103)
Ole™ ~© PO‘Sh Bz - 3
and
(24 - 1)
Uo(By) = = pgl, sty (104)

From Figure 5, the sum of the two changes in radii must be
equal to the difference between the two unrestrained radii,
or

Ugn(By) + Ug(Ry) = Ryl = By g, (105)

The radii Rl sh and R24° can be found from the linear
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thermal expansion coefficient kJ and the following expresslion

R = Ry + k,AT (106)

J

where Ry 1s the reference radius and /AT is the change in
temperature. Therefore with all the physical properties
known it would be possible to calculate the stress at any

point in the shell.
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SUMMARY

Suggested Further Study

Four main areas of possible further investigations
have been opened in connection with the analysis given in
the text. These areas can be listed briefly as; fluld flow,
materials, economics, and analysis of the melting problen.
In most of these areas 1€ is primarily a matter of reviewing
what has already been done to see what might be applicable
to using the latent heat of fusion. A further investigation
into fluid flow should be attempted 1n order to find the
effect of size, shape, and mass of the particles on such
quantities as pressure drop, velocity, corrosion, ercsion,
and heat transfer coefficients of the fluid., A study of
materials should be directed toward choosing materials with
the desired properties needed for this method.

Economics will be the final judge of any proposed
system. For this reason, any economic analycis would be
aimed at comparing a proposed system with existing systems
or other possible systenms,

The melting problem has been investigated in the past as
seen by the references given in the text. A different
analytical approach may be helpful. Extensions to more than
one dimension 1s also desirable., Other efforts could be
directed toward convective boundary conditions between the

solid and liquld phases as well as the effects of changes
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in material density upon phase change. It might be possible
to investigate the melting problem from a microscopic point
of view rather than the macroscopic approaches taken before.
Perhaps use could be made of the experimentally verified
fact (Thomas and Westwater (21) ) that the interface is
composed of irregular sized crystals with varying rates of

growth.

Summary of the Analysis

The analysis was directed mainly at the heat transfer
and melting problems invelved in using the latent heat of
fusion. Other factors besides those of heat transfer may
make it difficult to employ the latent heat. but strictly
from a heat transfer point of view it is possible and under
certain conditions even desirable to make use of the latent
heat for heat transfer. The primary advantage of using the
latent heat lies in reducing the temperature drop required

in the heat source.
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APPENDIX A

A computer code was programmed for the IBM 360/50
computer to solve for melting time and temperature
distributions using the equations in Table 2. The
programming language used was FORTRAN IV with baslc
programming support. The logic for the program is shown
by the flow diagram in Figure 6. Table 3 lists the values
used for the material properties. The value of density
listed for bismuth is8 a compromise value since Dbismuth
actually contracts upon melting. The other values in
Table 3 were selected as representative values in the
temperature range of interest,

Table & lists the values of the parameters used in
the program. The initial conditions and resulting
temperature distributions for the two runs are shown in
Figure 7A and 7B. The linear initial temperature
distribution was Ghosen for simplicity. The initial
melted thicknesses were chosen in conjunction with the
time increments by trial and error using short runs of
the program. The values for these parameters were choosen
to keep the computer time required reasonable. The
boundary conditions were chosen large for the same
reason. Even with these cholces Run A did not go to
completion but was terminated by the operator after

twenty minutes. However Run B ran to completion with a
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total run time of approximately 9.5 minutes,

The effect of round off error could be seen in the
last several temperature distributions of Run A. The value
of the temperature for the radius next to the solid-liquid
interface increased in an unexpected manner until 1t was
larger than the temperature at the next largest radius.
This 18 a physically impossible situation from the nature
of heat conduction. This situation 18 demonstrated by
the oircled point in Flgure 7A. This point was not
included in the curve at t = 0.2587 because it was
considered to be an erroneous point due to the round off
errors.

Equation 82 was used to calculate the interface
velocity given in Figures 8A and 8B while the melting
rates of the coolant material in Figures 9A and 9B were

calculated using

2 /
= [ —— i)
melting rate L e Fs (107)

Using Equation 94b to calculate melting time one gets

0.2587 (1)3
(0.8)3 = (0.3560)7 (108a)

Run A: tme =

= 0,554 sec

0.01605 (0.1)3

Run B: =
b (0.08)3 - (0.02)7 (1080b)

0.0318 sec
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Figure 6. Flow diagram for melting problem problem.
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Table 3. Material properties

Material Shell Liquid Center pinensions
Steel Bismuth Bismuth

Property
Specific Heat, Cp 0.11 (3)* 0.03636 (1) 0.03244(1) cal/s %k
Density, 7.86 (3) 9.75 (&) 9.75(4) g/cmd
Thermal 0.12 (3) 0.03636 (2) 0.41(2) __cal
Conductivity, K cm=secCK
Latent Heat, L 12.44(1) cal/s

Melting Shb.5(1) oK
Temperature, Tpelt

*Numbers in parenthesis indicate references used for
the property values,

Table 4, Program parameters

Parameter Run A Run B

Total Number of

divisions, N 27 27
Divisions to Shell, Db 18 18
Divisions to Liquid, a 9 9
ngzizzzrzemperature, £00°K 560K
Radius to Shell, Rj 1l.0cm O.lcm
Total Radius, Rp l.lcm Oellcm
Time Increment, /\t 10~%sec 10~ 9sec
Initial Interface

- Position, € 0.8cm 0.08cm

0
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APPENDIX B

Stress Analysis of a Thick-Walled Sphere

(The following approach is simlilar to that presented by
Murphy (15, p. 114) for thick-walled cyclinders.)

Assume that the sphere is made up of spherical shells
of infinitesimal thickness dr. Each of these shells 1s
subjected to an internal radial stress and an external
radial stress. From symmetry considerations, these stresses
will be uniformly distributed on the surface of the shell.
All stresses are assumed to be tenslile, thus negative
values will indicate that the stresses are compressive.

From the freebody diagram of the hemispherical shell in

Figure 10 and the equations of equilibrium one has

2

anc%dr + "0, = n(r + dr)z(O} + dO}) (109)

Neglecting second order differentials, this reduces to

E oy dJ !r
Te B * = —Z
Ut T T 9 ER (110)

From Figure 11 the displacement of any Point A must be
along a radial line if the stresses on the inside and
outside of the spherical shell are uniformly distributed.
From this fact the unit strain €4 1in the tangential

direction due to a radial displacement U can be found as

et i 2n(r + U) = 2nr - E

2nr (113}
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Figure 10. Freebody diagram of a hemispherical shell.



The average radial unit strain is seen to be

= S

Al v (112)

-

It is also shown that for a triaxial system with

= \_Gu <+ I‘f';(-t’:-u -+ Cv -+ {'-w)_l
1 - M - 2M¢ (113)

direction u, v, and w
gu =

where the material is isotropic and homogeneous and the
proportional limit of neither normal nor sheer stress have
been exceeded. The symbol E stands for the modulus of
elasticity, and M is Poisson's ratio. For the use of a
sphere the triaxial system consists of one radial and two
tangential directions. Applying this to Equation 113 and
substituting the expression for g and <, from Equations

111 and 112 one can see that

i B [ . ;,;duj
t T - M - 2M2 ILr dr_J! (114)
and
B Tdu du , 2u |
Op = :——— + M (" — —
1-M- 212 |dr |\ P r| | (115)

Lt Equations 115, 114, and 110, are combined and the common

BN

raciors‘of Z and (1 - If - 2M2) are canceled out, then

| \
R R T
T dr dr | dr T
rd [ du [ au  oul]
B s s | o B T [ e B i
2 dr | dr \  dr /| (116)

Thnis expression reduces to
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r a%u " du u _ 0
2 drZ2 dr T (116a)
If an assumed solution of the form
u = cr¥ (117)

is substituted into Equation 116a, it is found that x =

-2 or x = +1. Thus one solution to Equation 116a has the

form
u = Ar~2 + Br (118)
By using the boundary conditions of the problem the
constants A and B can be evaluated. The boundary conditions
are the radial the stresses at the inner and outer surfaces
of the shell. The radial stress is given by Equation 115

with Equation 118 as

e

(2M - 1) 24 (1 + W)B

[_
Op = |

The boundary conditions for the inner and outer surfaces

respectively are

.Qﬁr(r = Rl) = - pi (120)
and

Orl(r = Rp) = - p, (121)
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that 18, the radial stress on a surface 18 a compressive
stress equal in magnitude to the pressure exerted on the
surface. With these conditions Equation 119 for the two

surfaces becomes

E P 1
-p, = 5 (ZM-I)——3+ (1+M)B (122)
1 =M= 21° L Ry J

and

' 2A

o B e (123)

0 1 = M - 2M%

J

Using these two equations the solutions for the constants A
and B can be shown to be

Lo R{R2(Pg - Py) (1 - M - 2u?)

2E (2M « 1) (R% - B%) (124)

and 3 3 2
(P4R7 = P,4R (1 - M - 2K
B om ekl oR2) )

2E (1 + M) (R3 - R?) (125)

From these values of A and B the expressions for Uy s and
g become
. _ BfR3(pg = py) (1 + M) + 2(pyR7 = poRa (2M = 1) r2
2E (R3 - B{) r? (126)

T & Piﬁf = poﬁg - Rgﬂg(po -P3y)
(R - BY) 2r3(Rj - BR)) (127)

3 3
PiR] - PoR2 Rfﬁg(Po -Py)
(R3 =~ B  #’(Rj - R} (128)

These results agree with the results given for
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Figure 1ll. Displacement due to stress in a spherical
shell.
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various speclal cases by Roark (18, p. 232) and by
Timoshenko and Goodier (22, P. 359).

Equations 109 through 119 hold equally well for solid
spheres, The difference between a thick-walled shell and a
solid sphere occurs in the boundary conditions and
evaluation of the constants A and B. The boundary
conditions at the outer surface are the same in both cases,
but the boundary condition at the inside surface is replaced
by the condition that the solution must be finlite within tChe
sphere. This condition implies that A must be zero. The

expression for the displacement u thus becomes

u = Br (129)
By evaluating Equation 129 at the outside surface the
constant B is found to be

_ -pol2M - 1)
E (130)

B

The resulting expressions for Uy Tpy &nd(jh are

- -po(ZM - 1)1‘
E (131)

u

Jgt = =P, (132)

gr = =% (133)



2.

3.

9.

10.

11.

12.

69

BIBLIOGRAPHY

Altman, Manfred, Ross, D. P., and Chang, Han. The
prediction of transient heat transfer performance of
thermal energy storage devices. Chemical Engineering
Symposium Series 57, 61: 289-298. 1965.

Baxter, D. C. The fusion times of slabs and cylinders.
Journal of Heat Transfer, 84: 317-326, 1962,

Carslaw, H. S. and Jaeger, J. C. Conduction of heat in
solids. Second edition, London, England, Oxford
University Press. 1959.

Glasstone, Samuel and Edlund, Milton C. The elements
of nuclear reactor theory. Princeton, New Jersey,
D. Van Nostrand Company, Inc. ¢1952.

Glasstone, Samuel and Sesonske, Alexander. Nuclear
reactor engineering. Princeton, New Jersey,
D. Van Nostrand Company, Inc. ¢l963.

Goodman, T. R. The heat balance integral and its
application to problems involving a change of phase.
Journal of Heat Transfer 80: 335-342, 1958,

Goodman, T. R. and Shea, J. J. The melting of finite
slabs. Journal of Applied Mechanics 27: 16=24. 1960,

Handbook of chemistry and physics. Fortieth edition.
Clevgland. Ohio, Chemical Rubber Publishing co.
cl958.

Handbook of thermophysical properties of solid
materials. Revised edition. Volume 2: Alloys.
New York, New York. The Macmillan Co. 1961.

Higdon, A., Ohlsen, C. H., and Stiles, W. B. Mechanics
of materials. New York, New York, John Wiley and
Sons, Inc. ¢l1960.

Hultgren, Ralph, Orr, Raymond L., Anderson, Phillip D.,
and Kelly, Kenneth K. Selected values of thermo-
dynamic properties of metals and alloys. New York,
New York, John Wiley and Sons, Inc. ¢1963.

Ingersoll, L. R. and Zobel, 0. J. An introduction to
the mathematical theory of heat conduction. New York,
New York, Ginn and Company. ¢l913.



70

13. Landau, H. G. Heat conduction in a melting solid.
Quarterly of Applied Mathematics 8: 81-94. 1950.

14, Metal handbook. Volume 1. Properties and selection
of metals. Metals Park, Novelty, Onio, American
Society for Metals. <¢cl1l961.,

15. Murphy, Glenn. Advanced mechanics of materials.
NeW6York, New York, McGraw-lill Book Company, Inc.
1946,

16, Murray, William D. and Landis, Fred. Numerical and
machine solutions of transient heat-conduction
problems involving melting or freezing. Journal of
Heat Transfer. 8: 106-112. 1959.

1?. O'Brien, G. S., Hyman, M. A., and Kaplan, S. A
study of the numerical solutions of partial
differential equation. Journal of Mathematics and
Physics 29: 223-251. 1951.

18. Roark, Raymond J. Formulas for stress and strain.
NewSYork. New York, McGraw-Hill Book Company, Inc.
1938.

19. Ross, T. K. Melting of solids. Chemical Engineering
Progress Symposium Series 17, 51: 67-69. 1955.

20, Stolz, G., Jr. Numerical solutions to an inverse
problem of heat conduction for simple shapes.
Journal of Heat Transfer. 82: 20-26. 1960.

21, Thomas, L. J. and Westwater, J. W. Microscopic study
of solid-liquid interfaces during melting and freezing.
Chemical Engineering Progress Symposium Series 41,

22, Timoshenko, S. and Goodier, J. N. Theory of elasticity.
Second edition. New York, New York, McGraw-Hill Book
Company, Inc. 1951,



