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GENERAL INTRODUCTION 

Mycoplasma dispar is a pathogen of the respiratory tract of calves that is 
known to cause chronic colonization of the tracheal mucosa. Although M. dispar 

rarely causes mortality by itself, it is known to predispose the animal to more 

severe infections with highly pathogenic bacteria such as Pasteurella hemolytica. 

This predisposing role is most likely related to the impairment of tracheobronchial 

clearance that has been demonstrated during infection with this mycoplasma 

(Thomas et al. , 1987; Howard and Thomas, 197 4) . 

With the aid of ruthenium red staining, Howard and Gourlay (1974) showed 

that M. dispar produces a polysaccharide capsule (capsular polysaccharide, CPS) 

during natural infections. The production of this CPS can also be induced in vitro, 

under conditions of co-culture with bovine lung fibroblasts (Almeida et al. , 1991 ). 

With CPS of other bacteria, it has been shown that the CPS can help the 

microorganism in evading phagocytosis. They can do so by conferring surface 

negative charges (Van Oss and Gilman, 1973) or by masking binding receptors on 

the microorganism for opsonic factors such as the C3b protein of the complement 

pathway (Horowitz, 1982). Capsules have also been shown to promote adherence 

of organisms to the surfaces of inanimate objects or living cells by formation of 

biofilms (Costerton et al. , 1987) and by binding irreversibly to negatively charged 

surfaces by a latch effect provided by the multiple binding sites from repeating 

units in the polysaccharides (Robb, 1984). Published work has shown the CPS of 

M. dispar to be involved in the suppression of several alveolar macrophage 

functions such as phagocytosis, tumor necrosis factor and interleukin-1 production 

(Almeida et al. , 1992). Participation of mycoplasma capsule in the attachment 

process has been suggested by Howard et al (1974) . The association of CPS with 

immunosuppressive activities and attachment of M. disparto host cells implicates 
the CPS as a virulence factor. 

Several attempts have been made to measure antibody responses to M. 
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dispar protein antigens (Howard and Gourlay, 1983; Howard, 1983. Scott et al. , 

1980; Thomas et al. , 1982) in naturally or experimentally infected cattle but almost 

none or very poor responses were seen. No work has been published on the 
immune responses to the capsular antigen in infected calves. There is no 

information available regarding the antigenic nature of purified CPS of M. dispar, 

i.e. whether it acts as a typical thymus independent type 2 antigen similar to other 

polysaccharides or whether it has some unique properties associated with it. 

There is preliminary evidence that the CPS of M. dispar is similar in 

chemical composition to polygalacturonic acid (pGalU) which is found in citrus 

rinds and other plant tissues (Almeida et al. , 1990). If vaccines based on the CPS 

provide protection against infection and tissue damage by M. dispar, then there is 

potential for use of inexpensive, commercially available pGalU instead of the CPS 

of M. dispar which is expensive to produce in large quantities. 

If the CPS of M. dispar does elicit thymus-independent responses, then in 

order to induce immunity in animals, thymus-dependent (TD) forms of the CPS will 

have to be constructed. Such TD forms will enable the host's immune system to 

elicit an anamnestic response, produce antibodies with much higher affinity for 

CPS and also produce lgG antibodies which can be transferred to the new-born 

through placenta and colostrum. One way to construct such forms of the CPS 

would be through chemical modifications and conjugation with a protein. 

However, such approaches to vaccine development require understanding of the 

chemical structure of CPS. 

The main objectives of this research project were 1) to characterize the 

immune responses towards pGalU and to the purified capsu le of M. dispar in mice, 

2) to characterize the immune responses to capsule and pGalU in calves infected 

with M. dispar, and 3) to chemically characterize the capsule of M. dispar. 
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Thesis organization 

This thesis is composed of a general review of the literature followed by two 
papers being submitted for publication to different journals. A summary of the 

entire thesis and one appendix are included. The references cited in the General 

Introduction , Literature Review and General Summary follow the General 

Summary. 
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LITERATURE REVIEW 

This literature review covers the area of bacterial capsular polysaccharides, 
including their structure and function. In concordance with the focus of the 

research , special emphasis has been laid on the immune responses towards 

polysaccharides. 

Bacterial extracellular polysaccharides 

Carbohydrates are universally present on the surface of living cells. On 

eukaryotic cells, many different carbohydrates are attached as glycoproteins and 

glycolipids; the oligosaccharide moieties are known to act as receptors and they 

are known to play an important role in cell to cell recognition processes. In 

prokaryotes, polysaccharide capsules characteristically composed of repeating 

oligosaccharides are found on the surface of many bacteria. 

Bacterial extracellular polysaccharides (EPS) are found in one of two forms. 

As a capsule (capsular polysaccharide, CPS), the polysaccharide is intimately 

associated with the cell surface and may be covalently bound but is distinct from 

and extraneous to the bilayer membrane. In contrast, slime polysaccharides are 

only loosely associated with the cell surface. Distinction between CPS and slime 

polysaccharides is operationally defined by the degree of cell association 

following centrifugation (Whitfield, 1988). Differentiation between the two forms 

may be difficult, since cells producing large amounts of CPS may release some 

material at the periphery, giving the appearance of slime production. Stable 

mutants that are no longer able to attach the polysaccharide in the form of 

capsules are found. It is not clear whether the mutants lose a transferase type of 

enzyme which is involved during the final stages of capsule formation or whether 

an attachment site on the cell surface is lost. Although no chemical differences 

have been reported between the capsule and slime polysaccharides prepared 
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from wild type strains and their slime-forming mutants, for Enterobacter aerogenes 

it was shown that the slime polysaccharides had a lower molecular weight than 

the capsular materia l (Wilkinson, 1958). Most bacteria show a preference of 

producing one form over another, although some strains of Klebsiella sp. and 

Staphylococci sp. (Wilkinson, 1983) can simultaneously produce identical 

capsule and slime. Several bacteria including strains of Rhizobium sp., 

Agrobacterium sp. and Alcaligenes facalis var. myxogenes are able to 

synthesize more than one chemically distinct exopolymer (Sutherland, 1985). 

Distinction between CPS and other cel l surface polysaccharides can also be 

difficu lt. The CPS K-antigens of some Escherichia coli K serotypes are now 

known to be lipopolysaccharides. 

Among the gram-positive cocci, streptococci and staphylococci have been 

reported to produce polysaccharide capsules. These include Streptococcus 

pyogenes, Streptococcus agalactiae, Streptococcus suis, Streptococcus 

pneumoniae, Streptococcus bovis, Streptococcus mutans, Streptococcus 

salivarious, Staphylococcus aureus and Staphylococcus epidermidis. Bacillus 

anthracis, a gram-positive rod also produces a capsule. Neisseria meningitidis 

and Neisseria gonorrhoeae (Hendley et al. , 1977) are the gram-negative 

coccobacilli that have been reported to possess capsules. Examples of 

encapsulated gram-negative rods are Escherichia coli, Salmonella typhi, 

Salmonella paratyphi C, Salmonella dub/in, members of Klebsiella species, 

Vibrio parahaemolyticus, Haemophilus influenzae, Pasteurella multocida, 

Pasteurella haemolytica and Bacteroides fragilis. 

The production of the EPS may be affected by growth conditions. Synthesis 

of alginate by mucoid strains of Pseudomonas aeruginosa is a growth -

associated process and the speci fic rate of its production in continuous culture 

increases with increased specific growth rate (Mian et al. , 1978). Alginate is 

produced mainly during the exponential phase of growth (Annison et al., 1987) 

although EPS synthesis commences with the onset of stationary phase. 
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Production of this EPS also depends on the temperature of growth , more alginate 

being produced per ce ll at 12 C than at 25 C and least at 37 C (Evans et al. , 1973). 

Also, addition of 5% glycerol and 0.25 M NaCl to MacConkeys agar stimulates 

EPS production at all temperatures. Capsule formation by Bacillus anthracis is 

optimal on special media under 5% C02 (Orskov et al. , 1990). Lee et al. , (1993) 

reported that there was an inverse relationship between capsule (type 8 CPS) 

expression by Staphylococcus aureus and the iron concentration in the culture 

media. A similar relationship has been reported in the case of Neisseria 

meningitidis (Masson et al. , 1985). Lee et al. , (1993) also reported that S. aureus 

produces 350 times more cell-associated CPS per miligram of biomass when 

grown on the surface of Columbia agar than when grown in Columbia broth. Most 

of the CPS produced by broth-grown cells was secreted in the culture medium. 

Mycoplasma extracellular polysaccharides 

Mollicutes lack a cell wall containing peptidoglycan and protein matrices as 

are found in most prokaryotes (Plackett, 1959). Similar to many bacteria, capsules 

have been described in several moll icute species. However, morphologically they 

appear to more closely resemble the glycocalyx of eukaryotes than the classical 

capsules of the more traditional eubacteria (Minion et al., 1993). 

Recently, two comprehensive reviews regarding the capsu lar 

polysaccharides of mycoplasmas have been published (Minion et al. , 1993; 

Rosenbusch et al. , 1992). Several mycoplasma species produce a measurable 

capsule including Mycoplasma mycoides sub sp. mycoides (Buttery et al. , 1960), 

Mycoplasma dispar (Howard et al. , 1974), Mycoplasma gallisepticum (Tajima et 

al. , 1979) , Mycoplasma hominis (Furness et al. , 1976) , Mycoplasma 

hyopneumoniae (Horn , 1970; Tajima and Yagashaki , 1982). Mycoplasma 

maleagridis (Green et al. , 1973) , Mycoplasma pneumoniae (Wilson et al. , 1976 ), 

Mycoplasma pulmonis (Taylor-Robinson et al. , 1981 ), Mycoplasma synoviae 
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(Ajufo et al. , 1978), Mycoplasma mobile (Rosengarten et al., 1988), and 

Spiroplasma citri (Cole et al. , 1973 ). Among the ureaplasmas, the human 

pathogen Ureaplasma urealyticum expresses capsule (Robertson et al. , 1976), 
but U. diversum has been described to have only a very thin exopolymer 

(Boatman et al. , 1976). Rurangirwa et al. (1987) have reported the production of 

an extracellular polysaccharide from Mycoplasma capricolum with a large 

molecular weight. Although no morphological data is available , it has been 

considered as the capsular polysaccharide (Minion et al. , 1993) in view of its 

molecular weight which has been shown to be greater than 200 Kd. Capsules 

have not been described among acholeplasmas, spiroplasmas, anaeroplasmas or 

asteroplasmas and therefore may be considered unique to mammalian 

pathogenic species. 

The traditional methodology used for studying bacterial capsules has not 

been applicable with great success to mollicutes because of their smaller size and 

the complex nature of background components provided by the media or animal 

tissue environment in which capsule is being expressed.The majority of the 

morphological information available has arisen from electron microscopy 

observations. Mostly, mycoplasma capsules have been visualized with the aid of 

polycationic compounds such as ruthenium red and polycationic ferritin which 

complex with osmium tetroxide to stain polyanionic compounds (Luft, 1964). 

Rosenbusch and Minion (1992) have rai sed the question whether capsular 

structures that are either not polyanionic or are not reactive with polycationic 

compounds exist among mycoplasmas but have not been reported. 

Lipoglycans (Smith, 1984) have been found in the members of these 

mollicute families , but these structures are considered integral to the mycoplasmal 

membrane (Minion et al. , 1993). These lipoglycans can be extracted by treatment 

of the whole cells or membranes alone with hot 45 % phenol (Smith, 1984). 

Therefore , capsular material that has been isolated by the use of hot phenol 

extraction procedures may be contaminated with lipoglycans. The use of milder 
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treatments such as prolonged exposure to buffered saline at 37° C for the 
extraction of capsule (Almeida et al. , 1992) would not be expected to remove the 

lipoglycans from the mycoplasmal membrane. Moreover, lipoglycans do not 

provide significant extracellular electron microscopic image when stained with 

ruthenium red and are of lower molecular weight than capsu les (Rosenbusch et 

al., 1992). 

Howard and Gourlay {1974), demonstrated capsule on the surface of M. 

dispar (grown in glucose - calf serum - broth) by ruthenium red staining. The M. 

dispar capsule extended about 17-24 nm and M. mycoides capsule about 30 nm 

beyond the cytoplasmic membrane. Similar to M. mycoides subsp. mycoides and 

M. meleagridis, the M. dispar capsule possessed no obvious structure. Thus the 

ultrastructure of the mycoplasma capsule is distinct from those of Diplococcus 

pneumoniae, where the capsule was found to have a fibrous structure and 

Klebsiella pneumoniae , where a spike or net-like appearance was observed 

(Springer and Roth , 1973). With the aid of ruthenium red staining, mycoplasma 

capsules could be seen as amorphous layers. Capsules of up to 40 nm in 

thickness were seen surrounding M. hyopneumoniae in infected porcine lung 

tissue (Tajima et al. , 1982). 

Little is known concerning the effects of environmental factors on capsule 

production. In some species, capsule seems to be produced constitutively 

whereas others synthesize the capsular polysaccharide to a considerable extent 

only during in vivo growth. M. dispar produces little capsule in vitro but produces 

significant amounts in vivo or when cocultured with bovine lung fibroblasts 

(Almeida et al. , 1991 ). Increases in the thickness of the capsule have been shown 

to occur with cocultured M. gallisepticum (Tajima et al. , 1979) and M. 

hyopneumoniae (Tajima et al. , 1982). The nature of the interaction occurring 

between eucaryotic cells and the mycoplasmas is still undefined, but in the M. 

dispar model it has been shown that a dialysis membrane with a 14,000 

molecular weight cut-off can be interposed between cells and mycoplasmas 
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without interfering with the induction of capsule synthesis (Almeida et al. , 1991 ). 

Structures of bacterial and mycoplasma polysaccharides 

Methods for structural elucidation of polysaccharides 

The immunogenicity and the immunological specificity of polysaccharide 

antigens is dictated by their structures. Hence, in order to understand the 

immunology of polysaccharides and to develop effective prophylactic vaccines 

against encapsulated bacteria, it is imperative that the structure of the 

polysaccharide capsu le be elucidated. 

Many chemical techniques have been utilized to determine the structures of 

the bacterial and mycoplasma capsules. 

Thin-layer chromatography is generally used in conjunction with acid 

hydrolysis and enzymatic cleavage to determine the monosaccharide 

composition . Rurangirwa et al (1987) determined the composition of the 

polysaccharide obtained from F-38 strain of mycoplasma (etiologic agent of 

contagious caprine pleuropneumonia) by thin layer chromatography of the 

trifluoroacetic acid hydrolyzed polysaccharide. The acid hydrolyzed 

polysaccharide consisted of glucose, galactose, mannose, fucose , glucosamine 

and galactosamine in approximately equal quantities. 

Methylation analysis of polysaccharides has been used to provide 

information regarding the amount and the point of branching in the 

polysaccharide. The free hydroxyl groups in the polysaccharide are methylated by 

reaction with methylsulfinyl carbanion and methyl iodide. The methylated 

polysaccharide is then hydrolysed, and the resu lting partial ly methylated 

monosaccharides are reduced, acetylated and analyzed by gas chromatography 

coupled to mass spectrometry. Rodriguez et al (1988) methylated the carboxyl-

reduced capsular K4 antigen of E. coli 05 :K4:H4 and found that there were 3 

partially methylated polyol acetates in the mixture : 2,5-di-O-acetyl-1 ,3,4,6-tetra-O-
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methylmannitol ; 1,4,5-tri-O-acetyl-2 ,3,6-tri-0-methylglucitol and 1,3,4,5-tetra-O-

acetyl-2 ,6-di-O-methylglucitol. From these results , the authors inferred the 

presence of 3,4-linked glucuronic acid , 3-linked N-acetylgalactosamine and 

terminal fructofuranose in the K4 polysaccharide. 

Another technique that has been used with great success in determining 

the structures of polysaccharides is nuclear magnetic resonance spectroscopy . 

This technique has many advantages over other chemical degradation 

techniques. NMR spectroscopy is not destructive of the sample whereas all the 

other techniques are. Besides, other techniques can only provide partial 

information regarding the structure of the capsule whereas structures of many of 

the bacterial polysaccharides have been deduced almost entirely by NMR 

spectroscopy (Bhattacharjee et al., 1975; Crise! et al. , 1975). The first NMR 

spectroscopic technique to be exploited was 13C NMR which yielded valuable 

information on the structure and conformation of polysaccharides (Jennings et al. , 

1977; Egan, W., 1980; Bundle et al., 1974). A spectra obtained on 13C NMR 

spectroscopy of bacterial polysaccharides contains signals associated with all the 

individual carbon atoms of their basic skeleton. Despite the large number of 

carbons in these molecules, the pattern of these signals is simplified by the 

coincidence of the carbon signals of their individual identical repeating units. 
Bhattacharjee et al (1975) performed 13C NMR on the group B meningococcal 

polysaccharide. Despite the large molecular size of the polysaccharide, the NMR 

spectrum was found to be a eleven-resonance spectrum, containing one signal for 

each carbon in its o:-(2-->8)-linked sialic acid repeating unit. Thus the simple 

pattern of the signals provided good evidence for the group B meningococcal 

polysaccharide to be composed of the above repeating unit. In addition, further 

structural information was obtained by comparing the chemical shifts of the carbon 

atoms of methyl a- and ~- ketosides of sialic acid with those of the sialic acid 

residues in the polysaccharide. Large chemical shift differences at C-8 and 
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smaller ones at C-7 and C-9 confirmed that the sialic acid residues were linked at 

0-8, and similarities in the chemical shifts of C-1 , C-4 and C-6 of the methyl a-

ketoside with those of the sialic acid residues in the polysaccharide enabled the a-

configuration to be assigned to these residues. Also , chemical shifts have also 

been demonstrated to be conformationally sensitive ( Bundle et al. , 197 4). Thus , 

overall 13C NMR spectroscopy has proved to be a powerful technique in the 

structural determination of bacterial polysaccharides. 

As in the case of 13C-NMR spectra, the 1 H-NMR spectra of polysaccharides 

are considerably simplified due the presence of a single repeating unit. However 

due to the presence of a large number of protons, the one-dimensional 1 H-NMR 

spectra are generally more poorly resolved as compared to 13C-NMR spectra. The 

chemical shifts of the proton signals can be used to make proton assignments , 

and changes in chemical shifts following specific chemical modifications of 

polysaccharides can be used to provide valuable conformational information. The 

added advantage of 1 H-NMR spectroscopy is due to the phenomenon of proton-

proton coupling , from which the relative orientation of vicinal protons can be 

established. However, because of the complexity of most one-dimensional 1 H-

NMR spectra, this technique is usually used for assigning anomeric proton signals 

which resonate in the characteristic low field part of the spectrum. 

The ability to make assignments to the peaks has been greatly facilitated 

with the advent of two-dimensional techniques. These techniques have been used 

for the structural elucidation of the groups I (Michon et al., 1985a) and K (Michon et 

al. , 1985b) meningococcal polysaccharides. By performing proton homonuclear 

shift-correlated 2-D NMR (1 H-1 H COSY) and heteronuclear shift-correlated 2-D 

NMR (1 3C-13C COSY) experiments, the investigators were able to make 

unambiguous assignments to all the protons and carbons of the repeating units. 
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Structures of capsu lar polysaccharides 

The capsular polysaccharides produced by microorganisms are cell-

surface polymers consisting of repeating oligosaccharide units. They may be 

linear homopolymers of a single carbohydrate moiety, e.g. meningococcal groups 

A,B and C polysaccharides ; linear heteropolymers composed of two or more 

monosaccharides, such as pneumococcal types 3 and 19F polysaccharides; or 

they may be multi-chained polymers composed of two or more monosaccharides 

and additional moieties, e.g. 0 -acetyl, pyruvic acid , glycerol, ribitol and 

phosphodiester bonds such as pneumococcal types 1, 4, 18C, 6 and 19A 

polysaccharides. 

Based on the type of the capsular polysaccharide present, N. meningitidis 

has been classified serologically into groups A, B, C, 29e, W135, X, Y and Z. 

Group A PS is a homopolymer of 2-acetamido -2-deoxy 0 -mannopyranosyl 

phosphate (Bundle et al, 1974) and group Xis a homopolymer of 2-acetamido -2-

deoxy 0 glucopyranosyl phosphate (Bhattacharjee et al. , 1975). Group Band C 

PSs are homopolymers of sialic acid. The groups Y and W135 contain 0-glycosyl 

and 0-galactosyl residues respectively in addition to sialic acid. The group Z 

contains glycerol-3-phosphate in addition to 2-acetamido -2-deoxy -0-

galactopyranose residues . 

According to their type specific capsular polysaccharides,H. influenzae can 

be classified serologically into six types (a through f). Types a, b, c and f contain 

phosphodiester linkages. Types d and e contain N-acetyl mannuronic acid. All of 

H. influenzae polysaccharides are high molecular weight negatively charged 

surface polymers. Except for type e, all types have a relatively simple structure , 

being a 0 -ribofuranosyl -0- ribitol phosphate polymer (Crisel et al. , 1975). 

Capsular antigens of E. coli are acidic polysaccharides with different 

chemical compositions which have been grouped into two kinds depending upon 

the molecular weight and the acidic components present. The type I capsular 

polysaccharides have molecular weights greater than 100 Kd and the acidic 
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components are glucuronic acid , galacturonic acid and pyruvate whereas the type 

II polysaccharides are less than 50 Kd and contain glucuronic acid , N-

acetylneuraminic acid, phosphate and 2-Keto-3-deoxymanno-octonic acid (KOO) 

as their acidic components. The structures of the capsular K polysaccharides have 

been reviewed by Jann and Jann (1990). 

The structures of the capsular antigenic polysaccharide from most of the 

eighty types of the gram-negative bacterium Klebsiella have been elucidated and 

a complete account of them has been reported (Isaac, 1985). Klebsiella K5 

capsular polysaccharide is a linear trisaccharide repeat including two charged 

groups , namely a glucuronic acid residue and a 4,6-ketal pyruvate attached to the 

mannose residue. An 0-acetate is attached at the 2-position of the glucopyranose 

ring . Klebsiella KB is a tetrasaccharide sequence consisting of three neutral sugar 

residues in the backbone and a charged glucuronic acid residue in the side chain . 

Klebsiella K9 is a pentasaccharide repeat consisting of four neutral sugar 

residues (three L-rhamnose residues and one D-galactose residue) in the 

backbone and one charged glucuronic acid residue as the side appendage. The 

chemical repeating sequence of the Klebsiella serotype K18 is the most complex 

of Klebsiella polysaccharides. It is a polyhexasaccharide consisting of a 

trisaccharide backbone repeat with a trisaccharide side chain attached to the c:x.-D-

glucose residue of the backbone. The only charged group in the repeat is the 

carboxyl of the ~-D-glucuronic acid moiety which is the middle residue of the side 

chain . Another interesting polysaccharide is that of serotype K25 which consists of 

a tetrasaccharide repeat with a polydisaccharide backbone and a disaccharide 

chain attached. The backbone is similar to the animal connective tissue 

polydisaccharide, hyaluronic acid, the chondroitin sulfates and dermatan 

sulfate.The charged group in the repeat is the carboxyl of the glucuronic acid 

residue which is attached directly to the backbone. 

AmongS. pneumoniae strains, 83 type specific polysaccharides are 
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produced which have been designated 1-83 in the U.S. system. The Danish 

system has combined closely related types into groups. Most pneumococcal 

polysaccharides are negatively charged and possess acidic components, 

including D-glucuronic acid (e.g. types 2, 3, 5, 8, 9A, and 9V) , D-galacturonic acid 

(e.g. type 1) and phosphate in phosphodiester bonds (e.g. types 6A, 68, 1 OA, 11 A, 

158, 19F, 19A, 20 and 23F). Type 4 polysaccharide contains pyruvate as its acidic 

component, while type 12F contains 2-acetamido-2-deoxy-D-mannuronic acid as 

the acidic component. The structures of pneumococcal polysaccharides have 

been reviewed (Jennings 1990). One property of the pneumococcal 

polysaccharides that enabled limitation of their number in the vaccine was their 

extensive serologic cross-reactivity demonstrated in animal experiments. The 

origin of this cross-reactivity is the extensive structural homology found in the 

pneumococcal polysaccharides, which is exemplified in the Danish serotyping 

system. 

Group B streptococci produce four type-specific polysaccharides: la, lb, II , Ill 

and IV. The structures of all but the last have been elucidated (Jennings et al. , 

1983a; Jennings et al. , 1983b; Wessels et al. , 1987). All the polysaccharides 

contain D-galactose, D-glucose, 2-acetamido-2-deoxy-D-glucose and sialic acid. 

This 3-0-(N-acetyl-a-neuraminyl) - ~-D-galactopyranosyl group of these 

polysaccharides is the end-group oligosaccharide in the human M and N blood 

group substances and thus the organism can effectively evade the human immune 

system (Jennings , 1990). 

The structure of the capsular polysaccharide of M. mycoides subsp. 

mycoides and Mycoplasma sp. bovine arthritis strain have been elucidated. The 

polysaccharide is a galactan of unusual structure consisting of galacto-furanosyl 

units in 1->6 ~ linkage (Plackett and Buttery, 1964). The predominant structural 

unit of the glucan from the bovine arthritis strain is ~- D-glucopyranosyl-(1->2)-D 

glucopyranose (Plackett et al. , 1963). 
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Function of the capsules 

Capsules are important determinants of the behaviour of bacteria within the 

animal host. Comprising 99 % of water, these highly hydrated polysaccharide 

capsules may serve many functions most of which are protective in nature. 

Capsules may enhance survival and faci litate spread of bacteria from one host to 

another by preventing dessication. They may significantly affect the access of 

molecules and ions to the bacterial cell envelope and the cytoplasmic membrane 

(Dudman, 1977). Cells buried within a polymer matrix, may, for instance , be 

inaccessible to antibacterial agents such as antibiotics (Costerton et al. , 1987). 

Capsules may promote adherence of bacteria to the surfaces of inanimate 

objects or living cells by formation of biofilms (Costerton et al. , 1987) and by 

binding irreversibly to negatively charged surfaces by a latch effect provided by 

the multiple binding sites from repeating units in the polysaccharides (Robb, 

1984). Association between attachment and virulence of mycoplasma species was 

reported by several authors (Gabridge, 1983; Bredt et al. , 1981) and participation 

of the mycoplasma capsule in the attachment process was suggested (Green and 

Hanson, 1973; Wilson and Collier, 1976; Howard et al. , 197 4) . Electron 

microscopy pictures of M. dispar attached to RSC have shown the presence of 

ruthenium red stainable capsular material and fine threads of extracellular 

material bridging gaps between membranes. The author suggested that this was 

evidence of participation of M. dispar capsule in the attachment process (Howard 

et al. , 197 4). Similar observations and suggestions were made by Tajima and 

Yagihashi (1982) in their study of the interaction of Mycoplasma hyopneumoniae 

with porcine respiratory epithelium using transmission electron microscopy. 

Among certain gram-positive and gram-negative bacteria, capsules have 

evolved distinctive structural and functional characteristics which are of cardinal 

importance in the pathogenesis of infection of animals, plants and insects. 
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Capsulated bacteria are responsible for causing some of the most serious 

invasive infections to which man is susceptible , including septicemia, meningitis , 

pneumonia, osteomyelitis, septic arthritis and pyelonephritis. The morbidity and 

mortality caused by these infections is substantial and their capsules have been 

implicated as the major virulence factors (Robbins, 1978). The type of EPS , the 

amount synthesized and the rate of synthesis may all have a bearing on the 

pathogenicity of an organism. 

Capsules seem to be particularly important in bacteria whose strategy for 

survival in the host depends on the evasion of phagocytosis (Dudman, 1977; 

Horowitz and Silverstein , 1980; Jann and Jann , 1983). Most capsular 

polysaccharides are hydrophilic and confer a negative charge on the bacterial 

cell , characteristics which are intrinsically antiphagocytic in their effect. The 

experimental observations of Ponder (1928) , Van Oss and Gillman (1973) , and 

Absolom (1988) were the basis of the assumption that the hydrophilic properties of 

polysaccharide capsules act by reducing the surface tension at the interface 

between the phagocytic cell and the bacterium. This impaired the abi lity with 

which phagocytic ingestion occurs. In biological fluids containing lgG , most non-

encapsulated microorganisms, because of their hydrophobic surface (increased 

aqueous surface tension) non-specifically adsorb lgG. It was found that an lgG 

coat and the subsequent complement activation with deposition of C1423 enhances 

the surface hydrophobicity which increased the phagocytic engulfment of 

microorganisms by the PMNs. Encapsulated microorganisms, which were 

hydrophilic did not absorb lgG at their periphery to any significant extent and failed 

to induce efficient phagocytic ingestion. Because of the surface charge, the contact 

between the capsulated bacteria and the phagocytic cell is compromised since the 

negative charge on each cell results in mutual repulsion . Thus, due to the physical 

properties of CPS including hydrophilicity and charge , the phagocytic ingestion of 

capsulated organisms is inefficient in the absence of factors which facilitate 

contact between the bacterium and the phagocytic cell and which modify the 
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hydrophilic bacterial surface. 

Microorganisms have been found in host systems forming microcolonies 

immersed in a glycocalyx which creates a protective niche where individual 

microorganisms survive host defense mechanisms. Isenberg (1988) reported that 

the microorganisms were immersed in a protective halo made up of joined 

individual exopolysaccharides which were resistant to degradation by mammalian 

enzymes. Consequently, phagocytes were unable to break the exopolysaccharide 

barrier to engulf these microcolonies. 

Many host factors can act as opsonins which modify the surface of 

capsulated bacteria, but C3b - the cleavage product of the third complement 

component- is of central importance, especially against invasive infections caused 

by capsulate bacteria (Winkelstein , 1981 ). C3b can be generated by two 

independent mechanisms, the alternative and classical pathways. The formation 

of C3b through the alternative pathway is of particular importance in the non-

immune host ; in the early phase of invasive infection with capsulated bacteria, 

specific antibodies are absent and therefore antibody-independent activation of 

C3 and the deposition of C3b on the bacterial surface is a major source of opsonic 

activity. The C3b deposited on the bacterial surface can act as a ligand of specific 

receptors on polymorphonuclear leukocytes or macrophages. Activation of C3 

triggers the complement cascade leading to the formation of the MAC (membrane 

attack complex), whose fixation on the surface of the bacteria can cause 

bacteriolysis. Factor H is a complement regulatory protein which competes for 

surface bound C3b with factor B (Fearon 1978) and facilitates the degradation of 

C3b by factor I. This disassembly of the C3 convertase terminates the C3b 

amplification loop and limits the deposition of this important opsonin on the 

bacterial surface. Bacterial capsules have evolved to take advantage of this 

competition between factor B, which promotes amplification and factor H, which 

terminates it. This has been best studied in type Ill , group B streptococci (Edwards 

et al. , 1982) and in the K1-encapsulated E. coli (Stevens et al. , 1978). Both 
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capsules contain sialic acid , which increases the affinity of factor H for cell-bound 
C3b. A similar strategy of limiting complement deposition has been described for 

capsules that do not contain sialic acid. The capsules of type 7 and type 12 
pneumococci have a decreased binding affinity for factor B, which results in a 

relative increase in the binding of factor H (Joiner et al. , 1984). The streptococcal 

M protein, a surface fibrillar molecule has a high affinity for factor H and thereby 

evades killing mediated by the alternative pathway (Horstmann et al. , 1988 ). 

Masking of microorganism binding receptors for opson ic factors by the 

capsular layer has also been suggested. Capsule may be permeable to opsonic 

factors that recognize sites beneath the capsular surface, but th is structure may 

present a physical barrier that prevents the opsonic ligand from contacting the 

phagocytic cell (Horowitz and Silverstein , 1980; Horowitz, 1982). Verbrugh et al. 

(1982) showed that lgG from nonimmune serum and C3 were deposited beneath 

the capsule of Staphylococcus aureus and evidently were blocked from interacting 

with the receptors on the phagocytic cells: anticapsular antibody promoted C3 

deposition throughout the capsu le, including the bacterial surface, and resulted in 

efficient opsonization and phagocytosis. 

The onset of the immune response can drastically increase the efficacy of 

the host defense.There are , however, situations in which the immune state of the 

host vis-a-vis an infecting microorganism is virtually never reached and 

susceptibility to infection is maintained in late stages of an infection. Well known 

examples are extraintestinal infections with E. coli exhibiting the K1- or K5-

specific capsular polysaccharides. This is because the structure of K1 

polysaccharide is identical with the terminal carbohydrate region (Finne, 1982; 

Hoffmann et al. , 1982) of the embryonic form of the neural cel l adhesion molecule. 

Similarly, the structu re of the K5 polysaccharide is identical with the first polymeric 

intermediate in the biosynthesis of heparin (Navia et al. , 1983). A similar example 

of structural mimicry has been reported with Mycoplasma mycoides subsp. 

mycoides . It has been suggested that the mycoplasma galactan possesses 
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serological similarity to pneumogalactan, a product of the normal lung epithe lial 

cells (Gourlay and Shifrine, 1966; Shifrine and Gourlay, 1965). Structural analysis 

of the capsular K4 antigen (Rodriguez et al. , 1988) revealed that this 
polysaccharide had the structure of chondroitin, substituted by fructose . This 

fructose substituent, which was found to be the immunodominant sugar of the K4 

polysaccharide , occurs in such a labile linkage that it is removed at pH 4.0 at 37 C. 

In buffered cultures of E. coli 05:K4:H4, the polysaccharide capsule was found to 

lose its fructose constituent with the conversion to nonimmunogenic chondroitin. 

Thus, growth of this E. coli strain in body compartments of low pH may convert 

encapsulated bacteria from a form in which they induce and react with specific 

anticapsular antibodies to a form in which they can no longer do so. 

Since efficient phagocytosis requires the presence of specific anticapsular 

antibody, opsonization of encapsulted bacteria can be hampered by poor 

immunogenicty of the CPS. 

Types of immunological responses 

Specific immune responses are classified into two types, based on the 

components of the immune system that mediate the response: Humeral immunity 

and cell-mediated immunity. 

Exposure of the immune system to foreign antigens sets into motion the 

series of events that lead to lymphocyte activation and the generation of humeral 

and cell-mediated immunity. Different antigens and conditions of immunization 

lead to responses that vary both quantitatively and qualitatively. The magnitude of 

an immune response to an antigen is determined by a balance between 
lymphocyte activation and tolerance induced by that antigen. In fact, the same 

antigen can be administered in ways that preferentially stimulate lymphocyte 

growth and differentiation or inactivate lymphocytes and induce functional 

unresponsiveness. The nature of an immune response to an antigen is 
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determined by the specificities and functional classes of lymphocytes that are 

activated by that antigen. For instance, different antigens preferentially stimulate 

the production of antibodies of various heavy chain isotypes or generate CTLs or 
other effectors of cell-mediated immunity. Such variability is important because it 

enables the immune system to protect an individual from the many distinct types of 

microbes present in the environment. 

Antigens being the obligatory first signal for lymphocyte activation , the 

nature of the antigen has significant influence on the type and magnitude of the 

immune response that develops. 

Classi fication of antigens 

One of the important findings leading to the discovery of T and B cells was 

the realization that most antigens required both cell types for induction of an 

antibody response. It was soon found that this was not the case with all antigens. 

Thus, LPS ( Moller et al. , 1971 ) and polyvinylpyrrolidone (Andersson et al. , 1971 ) 

could induce an immune response without the help of T cells. On this basis, 

antigens were classified into two major classes: thymus dependent (TO) and 
thymus independent (Tl). 

Thymus dependent (TD) antigens consist of soluble proteins such as 

hemocyanin , ovalbumin, bovine gamma globulin , haptenated derivatives or 

bacterial proteins such as tetanus and diphtheria toxoids or whole cells, viruses or 

parasites. They require the presence of mature T lymphocytes , which have been 

procesed by the thymus gland, as well as antigen presenting cells. 

Antigens were classified as thymus independent (Tl) because they were 

able to elicit responses in congenitally athymic nude mice or in adult mice who 

had been thymectomized in the newborn period. Thus these antigens do not 

require the presence of the thymus or mature T lymphocytes to stimulate an 

antibody response. However, their behaviour as Tl antigens does not mean that 

they cannot be influenced by T cells, either directly or by cytokines produced by 
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the T cells (Mangini et al. , 1981 ). A common characteristic of these molecules was 

that they consisted of repeated antigenic determinants. This property was 

considered to explain their T-cell independency: the repeating antigenic 

determinants should result in an effi cient crosslinking of the immunoglobulin 

membrane receptors on the B cells and this should give activation signals to the B 

cells. This is the view held by majority of the immunologists today. However, two 

other views on the nature of Tl antigens have been proposed. One is simply to 

deny their existence: Tl antigens are only less T-cell dependent than other 

antigens (Cohn et al. , 1975). The other view is that all Tl antigens are polyclonal B 

cel l activators and this triggers B cells that have bound the antigen by their specific 

immunoglobulin receptors (Coutinho et al. , 1974). 

There are two types of Tl antigens (Mosier et al. , 1982). This classification 

was based on the observations that neonatal mice (Mosier and Zaldivar et al. , 

1977) and mice linked with an X-linked genetic defect such as the CBA/N mouse 

strain (Amsbaugh et al. , 1972) failed to respond to soluble capsular 

polysaccharides but did respond to other Tl antigens. When the properties of the 

group of Tl antigens which could stimulate CBA/N spleen cells (TNP-BA, TNP-

LPS , high epitope TNP-beads) were further analyzed, it became clear that these 

antigens were dissimilar in many respects. Whereas in vitro responsiveness of 

cells to TNP-BA and TNP-LPS was acquired at birth (Mosier et al. , 1977), 

responsiveness to high epitope bead was acquired at 2 to 3 weeks of age (Mand 

et al. , 1979) and in this regard was similar to acquisition of responsiveness to 

TNP-Ficoll (Mosier et al. , 1977). Furthermore, TNP-BA (Mand, 1982) and TNP-LPS 

(Wong and Herscowitz, 1979) were found to be macrophage independent 

antigens while TNP-polyacrylamide beads (Mand, 1982) were found to be 

macrophage dependent. Although experiments in vitro utilizing spleen cells from 

nu/nu mice indicated that TNP-Ficoll behaved as a Tl antigen, rigorous depletion 

of T cells from spleen cells of euthymic mice resulted in the abrogation of the 

response to the antigen and this response was reconstitutable with purified 
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populations of T lymphocytes (Mand, 1982). Thus, Tl-1 antigens require least 
amout of T cell help and can elicit responses in CBA/N mice as wel l as in neonatal 

mice. The Tl-2 antigens, on the other hand, are unable to stimulate B lymphocytes 

without ancillary help. Despite this , these antigens cannot be regarded as TD 

antigens since they do stimulate responses in nude mice. 

Type 1 Tl antigens are bacterial products, tend to have lipids attached, 

function as polyclonal activators in the mouse, activate the alternate complement 
pathway and stimulate responses in the neonates and the xid mice; type 2 

antigens tend to be high-molecular-weight polymers with repeating determinants 

and cannot stimulate responses in the neonates or the xid mice. Examples of type 

1 Tl antigens would include lipopolysaccharide and haptenated derivatives , 

Bruce/la abortus and haptenated derivatives , Nocardia water-soluble mitogen 

and haptenated derivatives, polymerized flagellin from Salmonella bacteria, N. 

meningitidis heat-killed bacteria and outer membrane proteins. Examples of type 2 

Tl antigens would include ficoll and haptenated derivatives, levan, dextran and 

haptenated derivatives, Pneumococcal polysaccharides, H. influenzae 

polysaccharides, N. meningitidis polysaccharides and polynucleotides such as 

poly I- poly C ( Howard et al. , 1971 ; Feldman et al. , 1971; Miranda, 1972) 

In practice, the assignment of a given antigen to the Tl class always is the 

result of a negative experiment (the best available method of T-lymphocyte 

depletion fails significantly to reduce the immune response to the antigen) , so it is 

always formally possible that a Tl antigen will later be reclassified as TD but not 

vice versa. 

Immunological tolerance 

Tolerance (or immunological unresponsiveness) can be defined as a 

specific depression of the immune response induced by previous exposure to the 

antigen. This definition would implicitly exclude genetically controlled inability to 
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respond or an inherent non-immunogenicity of a particular material. Thus, 

tolerance represents an induced depression in the response of an animal that, 

had it not been subjected to the tolerance inducing procedure, would be 

competent to mount an immune response to the antigen being studied. It follows 

from this definition that any formal experimental demonstration of tolerance 

requires two exposures to the antigen : an initial tolerance-inducing exposure and 

a subsequent "challenge" with the antigen presented under appropriate 

immunizing conditions. Tolerance would be assayed as a depression of the 

immune responses of the subjects that received both the tolerance-inducing and 

challenge exposure to the antigen as compared with the responses of subjects 

that received only the challenge. Tolerance can be either complete , that is no 

detectable antibody synthesis , or partial , that is, a quantitatively reduced immune 

response. 

Tl antigens have been known to possess the ability to tolerize B cells. The 

characteristics of Tl antigens that make them potential tolerogens are the 

polymeric structures with repeating determinants , thei r high molecular weight and 

their slow metabolism in the host's body. 

The first step in immunity or tolerance at the cellular level is the binding of 

antigen to immunoglobulin receptors on the cell. In their studies with hapten-

coupled Tl antigens, Wilson & Feldmann (1973) and Klaus (1975) established that 

these antigens, unlike TD antigens, rapidly establish high-avidity binding to B 

cells, because of multipoint attachment of their repeating antigenic determinants. 

The epitope density is a major facto r in causing tolerance (Feldmann, 1972; 

Desaymard & Feldmann, 1975). They found that lightly substituted antigens (with 

0.6 - 2 epitopes /50,000 molecular weight) were immunogenic but not tolerogenic; 

molecules with 2 -3 epitopes per 50,000 molecular weight were both 

immunogenic and tolerogenic; while those with even higher epitope density are 

obligate tolerogens. However, even lightly substituted antigen (0.6 

epitopes/50 ,000 molecular weight) was as effective as were preparations with a 
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four-fold higher epitope density in tolerizing primed B cells (Klaus & Humphrey, 

1975). Based on these observation together with the observations that low doses 

of the antigen were required to tolerize these cells (Klaus & Humphrey, 1975), the 
authors suggested that primed B cells have receptors with higher avidity for 

antigen than the virgin cells and thus the population of memory B cells from 

primed adult mice can be tolerized more easily than can the population of 

potentially responsive mature B cells in unprimed mice. 

Tl antigens are generally high molecular weight and have long chains, as 

distinct from the globular nature of TD antigens.The Tl antigens must be above a 

critical size to function as tolerogens. For example, the tolerogenicity of dextran 

8512 disappears when its molecular weight is reduced from 70,000 to 20,000 

(Howard, Vicari and Courtenay, 1975) and that of 82-6-linked polyfructose when 

reduced from 6000 to 3000 . Moreno, Courtenay and Howard (1976) found that 

the fructose polymers were able to retain their activity even when they are cut 

down to much smaller pieces as compared to their glucose counterparts. They 

suggested that this could reflect stronger binding at individual receptor sites. 

Tl antigens characteristically persist in the body for a long time, because of 

the absence of the appropriate catabolic enzymes. The tolerogenicity of D-amino 

acid polymers, in contrast with the corresponding L-polypeptides, has been 

attributed to their nonmetabolizable nature. Persistence is important in induction 

and maintenance of tolerance because it allows high concentrations to be 

sustained in the environment of the ce ll. 

The mechanism of B cell tolerance induction could be due to immobilization 

of receptors under conditions where the B cell is unable to clear such an antigen 

lattice from the membrane (by shedding or endocytosis) , as it would normally do 

during the events leading up to triggering (Klaus, 1976). Alternatively , Sidman & 

Unanue (1975) suggested that unresponsiveness may result from an intracellular 

inhibition of receptor resynthesis , following receptor modulation by persisting 

antigen. 
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Immune response to bacterial polysaccharides 

Ontogeny 

One of the major problems in developing effective vaccines for the 

prevention of diseases caused by encapsulated bacteria such as S. pneumoniae, 

H. influenzae and N. meningitidis has been the low immunogenicity of their CPS, 

especially in children under 2 years of age who are at greatest risk for infection 

with these bacteria. Normal infants under 2 years have a low and inconsistent 

antibody response to the polyvalent pneumococcal polysaccharide vaccine 

compared to older children and adults (Borgono et al. , 1978; Cowan et al. , 1980; 

Sell et al. , 1981 ). Cowan et al (1980) showed that antibody titers achieved in 

infants immunized before 23 months of age were not statistically different from 

infants receiving saline control. Sell et al (1981) demonstrated that the polyvalent 

pneumococcal vaccine given at 6 months of age stimulated a low level of antibody 

against S. pneumoniae type 3 and the same vaccine given at 12 months of age 

stimulated low levels of antibody against type 3, 7, 18 and 23. The absolute level 

of antibody achieved, however was far below that expected in normal adults. 

Makela et al. (1977) and Anderson et al. (1977) have demonstrated that the 

antibody response of the polyribose phosphate CPS of H. influenzae type bis 

striking ly age dependent, with adequate levels of postimmunization antibody 

being achieved only with vaccination after the age of 18-24 months. Gold et al. 

(1978) and Wi lkins et al. (1979) found the similar age-dependent acquisition of 

antibody responsiveness with meningococcal group A and group C 

polysaccharides. 

This hyporesponsiveness in infants has been shown to be re lated to the 

ontogeny of the response to Tl-2 antigens. While responses to TD antigens are 

present at birth , the responses to Tl antigens are not. Responses to Tl-1 antigens 

could be seen very early whereas responses to Tl-2 antigens could be seen only 
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3-18 months after birth in humans and 3-6 weeks in mice. Another difference 

observed between Tl-1 and Tl-2 antigens was that the adult CBNN mice and the 

normal neonatal mice could respond to Tl-1 but not to Tl-2 antigens. This 
unresponsiveness of xid mice to Tl-2 antigens could be corrected by the transfer of 

B cells from normal , genetically compatible strains. In addition, reconstruction of 

thymectomized X-irradiated xid mice with stem cells from normal donors allows the 

recipients to respond to Tl-2 antigens. Both these results (Scher et al., 1975) 

indicated that the mutant xid gene led to B-cell unresponsiveness because of a 

defect within the B cells or their precursors.Thus the dichotomy observed between 

Tl-1 and Tl-2 antigens reflects the differing sensitivities of B-cell subsets at various 

stages of differentiation, the Tl-1-sensitive B cell being an early appearing subset 

and the Tl-2-sensitive subset being a more mature B cell. It was found that the xid 

mice lacked a subset of B lymphocytes characterized by the Lyb-3 (Huber et al. , 

1977) and Lyb-5 cell surface markers (Ahmed et al. , 1977). These cells 

(designated Lyb-5+ B cells) are present at low frequencies in 2-week-old normal 

mice and do not reach adult levels until 3-4 weeks of age. In both neonatal mice 

and mice with xid defect, the failure to respond to polysaccharide antigens 

correlates with an absence or diminished number of this mature subset of B cel ls 

(Mosier et al. , 1977). Boswell et al (1980) demonstrated the requirement for Lyb-5+ 

B cells in the in vitro antibody response to the type 2 Tl antigen, trinitrophenylated-

Ficoll (TNP-Ficoll) . 

The utilization of cyclosporin A reinforced the notion that the B lymphocytes 

can be subdivided into two distinct subsets. Kunkl et al (1980) reported that the 

administration of cyclosporin A to mice along with antigens blocks the response to 

Tl-2 antigens, leaving the capacity to respond to type 1 Tl antigens intact. 

Memory and affinity 

A significant feature that accompanies the response to a TD antigen is the 

development of memory cells. Memory B cells (Klinman et al. , 1990) are primed 
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and respond rapidly to a second dose of antigen, resulting in a secondary 

antibody response that occurs sooner than the primary, is shifted to a higher 

proportion of lgG than in the primary, and overall is of higher magnitude, usually 
10-fold (Stein et al. , 1990). In the case of protein antigens or haptens coupled to a 

protein carrier, the secondary antibodies are of higher affinity than the primary 

antibodies (Berek et al. , 1988; Stein et al. , 1980), which is thought to result from 

antigen selection of antibodies that have undergone somatic hypermutation 

(Manser et al. , 1990). In contrast, a second dose of a Tl antigen stimulates a 

response that is not increased compared to the primary response or is increased 

only by a small amount , two- to fourfold at most (Stein et al. , 1990). In general, the 

affinities of antibodies to polysaccharides are two orders of magnitude lower than 

affinities of antibodies to proteins or haptens and there is little or no evidence of 

affinity maturation . The question of whether antibodies to polysaccharides 

stimulated by a TD form of the polysaccharide undergo affinity maturation has not 

been satisfactorily answered. 

Class. subclass and combininQ site 

For essential ly all humoral immune responses , both lgM and lgG antibodies 

are produced and represent the major classes. The secondary response to TD 

antigens is accompanied by an increase in the ratio of lgG to lgM, whereas for Tl 

antigens usually both isotypes are produced in relatively low amounts and in a 

one-to-one ratio that changes very little with a secondary immunization (Stein et 

al. , 1982; Stein et al. , 1990) 

In both mice and humans, the predominant subclass in response to a TD 

antigen is lgG1 ; however, lgG2 is also produced in reasonable amounts. In mice , 

relatively little lgG3 and in humans relatively little lgG3 and lgG4 are produced in 

response to TD antigens. In contrast, responses to Tl antigens show significant but 

varying degrees of restriction to certain subclasses. In the mouse, lgG3 , normally 

expressed at low levels in the serum, is overexpressed among antibodies to 
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polysaccharide (Stein , 1992). In humans the subclass restriction is not as marked 

as in mice, but there is a restriction to lgG2 that is more evident in sera from 

immunized adults (Shackelford et al. , 1988; Shackelford et al., 1987; Rautonen et 

al. , 1986). 
Mice with xid-determined xid defect have normal levels of serum 

immunoglobulins except that lgM levels are moderately depressed (Perlmutter et 

al. , 1979). This, along with the observation that antibodies produced in response 

to Tl-2 antigens are primarily of lgM and lgG3 classes, has led to the suggestion 

that lgG3 production is largely a property of antibody forming cells which develop 

from Lyb5+ B cells (Kung et al. , 1983). Since, Tl-1 antigens yield lgG responses in 

which lgG1 or lgG2 predominate, Kung et al (1983) suggested the possibility that 

when Lyb5+ B cells are activated by Tl-2 antigens, a form of lg switching leading to 

major expression of lgG3 predominates and that Lyb5- B cells do not use this 

switching pathway. Consequently, lgG3 is a minor fraction of the lgG that is 

secreted by the Lyb5- lineage. 

Responses to protein antigens are polyclonal, probably reflecting the many 

unique epitopes on these molecules. Polysaccharide antigens, in contrast, are 

large molecules with repeating determinants and relative ly few epitopes. 

Antibodies to polysaccharides have been found to be oligoclonal rather than 

polyclonal (Hansburg et al. , 1979). Studies of TD forms of po lysaccharide have 

shown that the response is oligoclonal, resembling the Tl response; however 

some diversity is observed (Stein et al. , 1982; lnsel et al. , 1986). 

Natural Immunity to polysaccharides 

It has been observed that most adult animal sera contain antibodies to 

polysaccharide antigens of various pathogenic bacteria. Antibodies to pathogenic 

organisms, e.g. meningococcal group A, B, C, H. influenzae type band 

pneumococcal type 3 were detected in the animals as they grew or in human 
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adults without possible contact with these organisms (Robbins et al., 1975; Sutliff 

and Davies, 1937). Goldschneider et al (1973) found that there was an age-

related increase in natural antibodies to the group A meningococcal 
polysaccharide in children even though the group A organisms were rare ly 

isolated from them. Sell et al (1981 ), during their study of responses to polyvalent 

pneumococcal vaccine in infants , found that natural acquisiti on of type specific 

antibody occurred in the unvaccinated controls such that by 24 months of age, 

mean antibody titers of the vaccinated and the unvaccinated groups were not 

different. On the basis of serological studies, the possible antigenic sources for 

these serum protective antibodies were identified to be derived from the cross-

reactive antigens (capsular polysaccharides) among intestinal and pharyngeal 

bacteria (Schneerson and Robbins, 1975 ; Robbins, 1978). This was later 

confirmed by the recognition of structural simi larities between the capsular 

polysaccharides of various organisms. Bax et al (1988) showed that the capsular 

polysaccharide of N. meningitidis group A cross-reacts with the capsules of E. coli 

K93, E. coli K51 and Bacillus pumilis, bacteria that are frequently found in human 

flora. Similarly , the CPS of N. meningitidis group B cross-reacts with E. coli K1 ; 

CPS of N. meningitidis group C with E. coli K92 and the CPS of H. influenzae 

type b with the CPS of E. coli K100 (Egan et al., 1980). The one exception to the 

rule that structural similarities form the basis of cross-reacting determinants is the 

polysaccharide of E. co li K93 which although being highly cross-reactive with the 

group A meningococcal polysaccharide, does not share with it one single common 

glycose residue or linkage (Bax et al. , 1988) . The probable explanation is that the 

common determinant can be recognized by comparing the two dimension 

structures of these two polysaccharides (Jennings, 1990). This phenomenon of 

serological cross-reactions being involved in the human immune mechanism to 

pathogenic bacteria has been clearly demonstrated by Schneerson and 

Robbinson (1975). On deliberately feeding non-pathogenic E. coli possessing the 

K100 capsule to human-adult volunteers, they found that intestinal colonizat ion 
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readily occurred and antibodies specific for the H. influenzae type b 

polysaccharide were induced. 

T cell regulation of the magnitude of Ab response 

While Tl antigens do not require helper T cells for induction of an antibody 

response, the magnitude of the response may be influenced by suppressor T cells 

and amplifier B cells. Baker et al (1970) reached this conclusion when they 

observed that the treatment of thymus bearing mice with antilymphocyte serum 

(ALS) enhanced the level of response to type 3 pneumococcal 

polysaccharide.This enhancement could be reversed by transfer of lymphocytes to 

ALS-treated mice indicati ng the T cell natu re of the suppression. However, the 

ALS-induced enhancement is not demonstrable in athymic nude mice suggesting 

that at least a subset of T cells are required for the expression of ALS-induced 

enhancement. Based on these findings the authors proposed that the antibody 

response to type 3 pneumococcal polysaccharides were controlled by the 

activities of 2 kinds of regulatory T cells called suppressor T cells (Ts) and 

amplifier T cells (Ta). Ts limit the extent to which antibody forming T cells 

proliferate in response to the antigen, whereas Ta drive B cells to multiply further 

after antigenic stimulation. 

Markham et al (1977), Taylor and Amsbaugh et al (1983), Taylor and 

Stashak et al (1983) and Taylor et al (1984) deleted Ts or Ta activity from donor 

cell suspensions by treatment with appropriate anti-CDS or anti-CD4 monoclonal 

antibody and complement (since Ts are CD8+CD4- and Ta are CD8-CD4+). They 

found that on transfe rring cell suspensions containing both Ts and Ta activity to 

athymic mice immunized with type 3 pneumococcal polysaccharide , the resulting 

anti-polysaccharide response is not changed. On the other hand, if Ta activity was 

eliminated before cell transfer, significant suppression of the response occurred 

whereas elimination of Ts activity resulted in increased response. Thus, Ts and Ta 

act in a competitive manner on B cells to control the magnitude of the antibody 
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response elicited after immunization. 

Taylor and Stashak et al {1983) showed that the B cells from mice 

immunized with type 3 pneumococcal polysaccharide activated antigen-specific 

Ts cells. Later, Elkins et al {1987) showed that the antigen primed B cells must 

express cell-surface lgM, but not lgD la antigen to be able to activate Ts cells. 

Elkins et al showed that antigen-primed B cells that were y-irradiated retained the 

ability to activate Ts whereas UV treated cells failed to do so. Both y-i rradiated and 

UV treated antigen-primed B cells expressed comparable levels of cell-surface 

lgM and localized to the spleen after in vivo transfer. Neither of the two could 

proliferate in response to the mitogens. By contrast , y-irradiated primed B cells 

could synthesize proteins whereas the UV treated could not. On the basis of these 

findings , the authors suggested that metabolic activity is necessary for activation of 

Ts cell by the primed B cells. Taylor et al (1989) showed that similar T cell 

regulation via Ts and Ta cells occurs with P. aeruginosa lipopolysaccharide, S. 

mutans polysaccharide and meningococcal polysaccharide and also H. 

influenzae type b polysaccharide. 

Studies on the ontogeny of Ts and Ta activity (Morse et al. , 1976) for the 

antibody response to type 3 pneumococcal polysaccharide revealed that Ts 

activity emerges first and is fully developed at 2 weeks of age. Ta activity, on the 

other hand, is minimal until week 4 and does not reach adult level until 8 -1 0 

weeks of age. Furthermore, the immaturity of B ce ll subpopulations in terms of la 

density and Lyb-5 marker, would correlate with the inability of mice younger than 

3-4 weeks of age to mount antibody responses to many Tl antigens. 

Role of spleen in immune response to polysaccharides 

Studies in patients before and after splenectomy, patients with functional 

and anatomical asplenia and animal experiments (Maclennan et al. , 1986; Amiot 

et al. , 1985; Amiot and Hayes, 1985; Cohn et al., 1987; Wara D. , 1981) have 
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shown that the Tl-2 antigen-related immune response is specifically related to the 

spleen. The presence of spleen seems to be important in the primary encounter of 

the antigen whereas the secondary responses can also take place at sites outside 

the spleen. This has led to the suggestion that in the spleen , specific subsets of B 

cells are present or that B cells can only be triggered to respond to these types of 

antigens in a splenic microenvironment. In the marginal zone (MZ) , where the 

blood leaves the arterial system into the venous sinuses, a special type of 

macrophages known as the marginal zone macrophages are present. By labelling 

the various polysaccharides with radioiodine and studying the autoradiographs, 

Humphrey, J.H. (1981) showed that the uncharged polysaccharides were 

exclusively taken up by the MZ macrophages and the acidic polysaccharides were 

mostly concentrated in the red pulp macrophages of mice. Kraal et al (1988), by 

using specific monoclonal antibodies found a much reduced MZ and thin and 

partly absent rings of MZ macrophages in the CBNN mice (xid mice) which could 

explain the unresponsiveness of these mice to polysaccharides. On the basis of 

these results it was suggested that the MZ macrophages perhaps presented the 

polysaccharides to the lymphocytes. However, the findings of Kraal et al (1989) 

question the role of MZ macrophages in the immune response to polysaccharides. 

Injection of a monoclonal antibody which reacted specifically with the mouse MZ 

macrophages resulted in complete abrogation of the uptake of neutral 

polysaccharides by the cells in vivo but this did not result in an altered humoral 

immune response to the polysaccharide (TNP-Ficoll). Even when the MZ 

macrophages were completely eliminated by coupling the antibody with a toxin -

gelonin , there was no alteration in the immune response against TNP-Ficoll. This 

would suggest that either the MZ macrophages are not involved in this kind of 

response or their function can be taken over by other cells. 

In the MZ, a special type of B cell has been described by Bazin et al., 1982). 

These B cells express low levels of lgD and high levels of lgM, are intermediate in 

size, do not recirculate and are thought to represent a separate lineage in B cell 
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development restricted to the spleen. Ti mens et al (1989) studied the splenic MZ 
in infants. Whereas all other cellular compartments completed their maturation to 

an adult immunophenotype and morphology within the first 5 months, the MZ B 

cells showed different features compared to the adult MZ B cells. The infant MZ B 

cells had a very high percentage of cells coexpressing lgM and lgD but there was 

an essential lack of CD21 antigen expression. Thus the authors suggested that the 

hyporesponsiveness of infants to polysaccharides could probably be due to the 

immaturity of the splenic MZ. 

Helen Braley Mullen (1990) attempted to study the properties of the 

antigen-presenting cell that would be required for activation of pneumococcal 

polysaccharide type 3 (Siii) specific suppressor T cells and contrasuppressor T 

(Tes; Baker et al. , 1988) cells by coupling Siii to various spleen cell 

subpopulations and assessing the ability of these Siii-spieen cells to activate Ts 

and Tes. The results indicated that Ts and Tes are preferentially activated when 

Siii is presented on distinct cell types. Siii-specific Ts were activated when Siii was 

coupled to anti-1-J reactive (Malley et al. , 1987) plastic adherent cells, presumably 

macrophages and Tes were activated when Siii was coupled to 1-J negative, 

plastic non-adherent spleen cells. 

Thus, immunity to diseases caused by invasive, encapsulated bacteria is 

associated with the presence of antibodies to the capsular polysaccharide. 

Hu moral response to these bacterial polysaccharides is characterized by 1) 

production of predominantly lgM isotype antibody; 2) lack of a booster response ; 

3) delay in ontogeny; 4) lgG subclass restriction. 

Immunity to mycoplasma polysaccharides 

Mycoplasma mycoides subsp. mycoides, the causal agent of contagious 

bovine pleuropneumonia synthesizes a galactan that forms a slime layer. Buttery 

et al (1975) reported that an intravenous injection of galactan exerted specific 
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effects on the vascular system of the lung and on respiration which were 

manifested as transient apnoea, increased pulmonary arterial and decreased 

systemic arterial blood pressure. Necropsy revealed hemorrhages associated with 
alveolar ducts and vessel walls , areas of pulmonary edema, dilated airways and 

also some capillary thrombosis. The authors suggested that the galactan may 

have caused the release of biogenic amines which may have produced the effects 

seen. Out of the 8 calf sera that were tested , only three agglutinated galactan-

coated goat red blood cells, one at a dilution of less than 1 in 80 and the other two 

at dilutions greater than 1 in 80. One interesting observation was that none of the 

calves showed any kind of reaction when they were injected for the second time 

with galactan using the same dose as the first time or even up to five times the first 

dose. The authors suggested two possible explanations for th is phenomenon. 

First, it could be possible that galactan caused a release , to the extent of depletion , 

of a cell-bound mediator. The second possibility is that galactan binds for a long 

time with the cell receptor so that the receptor was not available for a second dose 

of galactan. 

Several investigators have attempted to measure antibody responses to M. 

dispar antigens in the sera and lung washings from several groups of naturally or 

experimentally infected cattle. Scott et al (1980) examined the sera from five 

groups of eight calves selected from a herd reared on a beef unit in Southern 

England. Sera taken from these animals at about monthly intervals over a period 

of 200 days were examined for lgG antibody to M. dispar by enzyme-linked 

immunosorbent assay. A very small increase in the mean antibody titer of two out 

of the five groups was observed. Thomas et al (1982) examined paired sera , the 

first sample being taken at the onset of outbreaks of respiratory disease and the 

second about thirty days later. A fourfold increase in the lgG antibody was seen in 

a few of these animals. Another group of sera was examined from Ayrshire calves 

(Howard, 1983) . These calves had pneumonic lesions and were colonized with 

M. dispar. Although no serum antibody was detected, significant levels of lgA 
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antibodies to M. dispar were detected in the lung washings by ELISA. Howard 

and Gourlay (1983) reported that vaccination of gnotobiotic calves with formalin -

killed M. dispar and oil-adjuvant by the intramuscular route followed by 

intratracheal administration of the killed M. dispar failed to protect against 

respiratory challenge with M. dispar. In contrast, three subcutaneous injections 

gave some evidence of protection. The investigators reasoned that the poor 

response to M. dispar could have been due to the destruction of antigens by 

formalin treatment and so they compared the responses to live and formalin-killed 

organisms in conventionally reared Ayrshire calves. They found no evidence for 

live mycoplasmas inducing a better serological response than killed 

mycoplasmas. Thus, M. dispar was found to be very poorly immunogenic. They 

also studied the serological response (lgM and lgG1 by single radial hemolysis) in 

conventionally reared calves of varying ages following three subcutaneous 

injections of M. dispar antigen. They found that the response was poorest in 

young calves and greatest in oldest calves. Almeida et al (1992) investigated the 

effects of encapsulated M. dispar and purified capsule of M. dispar on the activity 

of bovine alveolar macrophages, in vitro. They reported that the encapsulated M. 

dispar and the purified capsule, as opposed to unencapsulated M. dispar, did 

not induce and suppressed the production of tumor necrosis factor , interleukin-1 

and glucose consumption by the alveolar macrophages. Thus, the very low 

antibody responses produced towards M. dispar, as reported by Howard and 

Gourlay (1983) could have been due to suppressive effects of M. dispar capsular 

material on the macrophages. 
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IMMUNE RESPONSES TO THE CAPSULAR POLYSACCHARIDE OF 
MYCOPLASMA DISPAR IN CALVES AND MICE 

A paper to be submitted to Comparative Immunology, Microbiology and Infectious 

Diseases 

Praveen Bansal and R. F. Rosen bu sch 

Abstract --- Humeral and cell-mediated immune responses to the capsular 

polysaccharide (CPS) of M. dispar and polygalacturonic acid (pGalU - a 

structurally similar polysaccharide) were investigated in calves experimentally 

infected with M. dispar and in mice immunized with CPS or pGalU. Sera, 

tracheobronchial lavage and nasal fluids, collected befo re and after infection in 

calves , were checked for the presence of anti-CPS and anti-pGalU antibodies. 

The sera from mice injected with CPS or pGalU were checked for different classes 

of anti-CPS and anti-pGalU antibodies. Peripheral blood lymphocytes from calves 

and splenic lymphocytes from mice were monitored for specific proliferative 

responses to CPS and pGalU. At about 2 weeks post-infection , anti-CPS lgM 

response in serum, anti-CPS and anti-pGalU lgM and lgA response in lavage fluid 

and lymphocyte proliferative response was seen in the calves. Mice immunized 

with CPS and pGalU gave exclusively lgM responses. No secondary response 

was seen in mice immunized with CPS in contrast to mice immunized with pGalU. 

Antibodies cross-reactive with pGalU were present in the sera of CPS-immunized 

mice but antibodies cross-reactive with CPS were not found in pGalU-immunized 

mice. No significant blastogenic response was shown by mouse splenocytes to 

CPS or pGalU. 
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INTRODUCTION 

Mycoplasma dispar is a capsulated mycoplasma which establishes chronic 

infection of the lower respiratory tract in calves resulting in local 

immunosuppression [1] and specific lesion production [19) . The capsular 

polysaccharide (CPS) is produced by the mycoplasma during natural infections [7] 

and in vitro, under conditions of co-culture with bovine lung fibroblasts [2] . This 

CPS has been shown to be involved in the suppression of several alveolar 

macrophage functions such as tumor necrosis factor and interleukin-1 production 

[1 ]. Thus, the CPS appears to be a major virulence factor. Acidic hydrolysis of the 

CPS of M. dispar with 4 M trifluoroacetic acid showed the presence of 

galacturonic acid residues [14) . In order to study the influence of galacturonic acid 

residues on the immunogenicty of the CPS, immune responses to 

polygalacturonic acid (pGalU - a linear homopolymer of galacturonic acid) were 

compared to those obtained against CPS. 

Several attempts have been made to measure antibody responses to M. 

dispar proteinaceous antigens in naturally or experimentally infected cattle [6, 8, 

17, 18) and almost none or very poor antibody responses were seen. Immune 

responses to the capsular antigen, however, have not been studied. This study 

was made to characterize the nature of the immune responses towards the CPS 

and to examine the extent of cross-reactivity among CPS-specific and pGalU-

specific responses. 

MATERIALS AND METHODS 

Cattle 

Three beef-type calves obtained from a Mycoplasma dispar-free herd were 

separated from the cows at birth and placed in individual isolation rooms with 

cedar chip bedding. They were fed limited colostrum (one pint) and a starch-free 
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diet which consisted of powdered skimmed milk supplemented with vitamins and 

minerals. 

Mice 

Inbred, male Balb/c mice were obtained from Taconic, Germantown, NY. They 

were kept in a micro-isolator (Lab Products, Maywood, NJ) on an aspen chip 

bedding and were fed mouse breeder sterilizable diet 7004 (Teklad , Madison , WI). 

Antigens 

The CPS of Mycoplasma dispar was produced and purified according to the 

method of Almeida et al (1], with minor modifications. Briefly, M. dispar cells were 

co-cultured with bovine lung fibroblast monolayers for 23 hours. After separating 

the mycoplasmas from the bovine cells and washing them in PBS three times at 

4°C, capsule was extracted by incubating the mycoplasmas in phosphate-

buffered saline at 37°C for 1 hour. The supernatant obtained after centrifugation 

was lyophilized. This preparation was then purified by capturing the CPS on 

agarose bound Ricinus communis agglutinin I or RCA120, (Vector, Burlingame , 

CA), and eluting with 0.1 M galactose. The eluate was then passed through a 

Biogel P4 (Bio-Rad, Melville, NY) size exclusion column using distilled water as 

the running buffer. Each collected fraction was analyzed for the presence of CPS 

by thin-layer chromatography. A sample of 1 µI of each fraction was spotted on 

silica gel plate (E . Merck, Darmstadt, Germany) and was run in a solvent system of 

butanol, acetic acid and water in the ratio of 2:1 :1 . The carbohydrate spots were 

visualized by dipping the plate in a reagent made up of 0.5 g thymol , 0.5 g a-

naphthol, 5 ml concentrated sulfuric acid and 95 ml ethanol and heating the plate 

for 1 O minutes at 120°c . The fractions that had CPS were pooled and lyophilized. 

The protein and nucleic acid contamination in the purified CPS preparation was 

checked by measuring A2ao and A260· 
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Polygalacturonic acid , sodium salt was obtained from Sigma Chemical Co., 

St. Louis, MO. 

Infection and immunization 

The SD-0 strain of M. dispar used at passage level 10 had been previously 

isolated from a pneumonic calf [19] and cloned twice. The calves were infected by 

intratracheal canulation with 109 cfu of M. dispar strain SD-0 in 50 ml of sterile 

PBS pH 7.4 at the age of 4 weeks. 

Groups of 4 Balb/c mice were injected subcutaneously one or two times, 2 

weeks apart with 0.5 µg of CPS or pGalU using alum as adjuvant (Pierce , 

Rockford , IL). CPS and pGalU were reconstituted in saline to a concentration of 

1.3 µg/ml. Alum was then added to the antigen such that the ratio of alum to alum-

antigen mixture was 1 :4 vol I vol. Each mouse was injected with 0.5 ml of this 

alum-antigen mixture. A group of 4 mice was not injected and was used as the 

non-injected control group. For each group of 4 mice which was injected with 

antigen , there was a group of 2 mice which was injected with the adjuvant alone. 

Collection and processing of samples 

Nasal swabs were taken from each calf twice at weekly intervals pre-infection 

and once after infection. The swabs were dipped in 1 ml of sterile PBS for 30 

minutes and then processed for mycoplasma isolation as has been described 

before [11 ]. 

Nasal fluid and tracheobronchial lavage fluid were collected once before 

infection and twice after infection (12 and 35 post-infection) . Sterile gauze tampon 

prepared to fit a nostril was inserted into one nostril at a time, left in place for 3 

minutes, and then transferred aseptically into a chilled tube . The nasal fluid was 

expressed from the gauze tampon by adding 0.3 ml of PBS and centrifuging . To 

the fluid , 1 mM EDTA was added prior to storage at -20° C. 

For the collection of tracheobronchial lavage fluid , each calf was sedated with 
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Rompun (Miles Laboratories, Shawnee, Kansas) , 1 mg per pound body weight, 

injected intramuscularly. Aseptically , a mid-line skin incission was made mid-way 

down the neck over the trachea, and a 13 gauge cannula inserted into the trachea 
with the aid of a 15 gauge trocar (Tracheal wash kit , Har-Vet, Spring Valley, WI). 

After ascertaining that the cannula was in place (air could be aspirated readily if in 

place) , 50 ml sterile PBS was flushed through the cannula into the 

tracheobronchial passage and then aspirated into a fresh syringe. Approximately 

2 ml of the straw-colored fluid was recovered from each calf. The fluid was 

centrifuged at 700 X g for 5 minutes to remove cells. Two hundred microliters of 

this fluid was processed for mycoplasma isolation [11 ]. EDTA (1 mM) was added to 

the remaining fluid and stored at -20° C. 

Blood for serum and peripheral lymphocytes (20 ml) was collected twice 

before infection and weekly after infection for 5 weeks. Sera were collected and 

stored at -20°C. The peripheral lymphocytes were processed for lymphocyte 

proliferation assay. 

The sera, alveolar lavage fluid and nasal fluid were examined for the 

presence of anti -CPS and anti-pGalU lgG, lgM and lgA antibodies by ELISA. To 

measure antibodies in the lavage flu id, it was treated with an equal volume of 

1:100 Sputolysin (Calbiochem , San Diego, CA) for 60 minutes at room 

temperature and centrifuged to remove the mucus. 

The calves were euthanized 35 days post-infection. Bronchiolar swabs were 

taken at post-mortem using a pediatric swab with calcium alginate fiber tip (Fisher, 

Itasca, IL) for isolation of M. dispar. 

Groups of mice were killed by C02 asphyxiation, bled by heart puncture and 

their spleens removed 3, 5, 9, and 12 days after the first injection, or 3, 5 and 7 

days after the second injection. Prior to immunization, al l mice were bled by retro-

orbital puncture. The serum samples were examined for the presence of anti-CPS 

and anti -pGalU lgM, lgA, lgG1, lgG2a , lgG2b and lgG3 antibodies by ELISA. 

Spleens were processed for splenic lymphocyte proliferation assays. 
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ELISA 

The assay was performed using 96 well , flat bottom plates (lmmunolon I, 

Dynatech, Chantily, VA). The plates were incubated stationary with 100 µI of 

Ricinus Communis Agglutinin RCA120 (Sigma, St. Louis, MO) diluted at 500 ng/ ml 

in 0.1 M sodium carbonate for 14 hrs at 37°C. The plates were then washed once 

with ice-cold PBS and stored at 4°C until used. Just before use, the plates were 

washed three times with ice-cold capsule buffer (Hepes 1 O mM pH 7.5 ; NaCl 0.15 

M; CaCl2 0.1 mM). The carbohydrate , CPS or pGalU (100 ng) dissolved in 100 µI 

of capsule buffer, was then added to each well and incubation allowed for 1 hour 

at room temperatu re. The plates were then washed three times with ice-cold 

capsule buffer supplemented with 0.5% horse serum (CBHS). The coated wells 

were then incubated at 37°C for 1 hour with 100 µI of test sera diluted to 1:100 or 

100 µI of tracheobronchial lavage fluid and nasal flu id diluted to 1:10 with CBHS. 

Tests were set up in duplicate. Plates were washed three times with CBHS and 

then incubated with 100 µI of a 1 :400 dilution in CBHS of rabbit anti bovine lgG, 

lgM, lgA (Cappel, Malvern , PA), for 1 hour at 37°C. The plates were washed again 

three times with CBHS and 100 µI of horseradish peroxidase conjugated goat anti 

rabbit lgG (Cappel, Malvern, PA) diluted to 1 :400 with CBHS was added to each 

wel l. The plates were incubated for 1 hour at 37°C and then washed three times 

with CBHS. In the case of murine sera, after the addition of antisera (also diluted 

1:100 with CBHS), the appropriate conjugated goat anti mouse lgM, diluted to 

1 :200 or goat anti mouse lgA, lgG2a, lgG2b or lgG3 labelled with horseradish 

peroxidase (Boehringer Manheim, Indianapolis, IN), all diluted to 1 :400 with 

CBHS, was added to each well and incubation allowed for 1 hour at 37°C, 

followed by three washes with CBHS. The substrate solution was prepared with 

tablets of 5-aminosalicylic acid following manufacturer's instructions ( Sigma, St. 

Louis , MO). After incubation for 20 minutes at room temperature , the reaction was 
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stopped by addition of 100 µI of 3N NaOH and the color obtained was measured 

spectrophotometrically at 550 nm with an automated microplate reader (Model 

EL310, Bio-Tek, Winooski, Vermont). 

The results were expressed as mean ± SEM, where SEM was calculated as 

the standard deviation (SD) divided by the square root of the number of animals. 
The serological cut-off for a positive reaction was taken as the mean plus 2 SD of 

the pre-infection or pre-immunization samples. Thus, a serum was considered 

positive for anti-CPS lgM, anti-pGalU lgM, lgA (both anti-CPS and anti-pGalU) if 

the difference between the pre and post immune sera was greater than 0.020, 

0.032, 0.035 O.D. units at 550nm respectively. 

Peripheral blood lymphocyte proliferation assay (calves) 

Lymphocyte blastogenesis (LB) was done according to the method of Roth et 

al [15] with a minor modification. Briefly, peripheral blood lymphocytes were 

collected by layering diluted blood on Histopaque 1077 (Sigma, St. Louis, MO) 

and centrifuging at 540 G for 40 minutes at room temperature. The hazy band was 

harvested and washed with Hanks balanced salt solution without calcium and 

magnesium (Sigma, St. Louis, MO) and finally the lymphocytes were suspended 

in Medium 199 (GIBCO, Gaithersburg , MD) supplemented with 1000 units/ml 

penicillin , 100 ng/ml kanamycin, 100 ng/ml streptomycin , 15 % fetal calf serum and 

2-mercaptoethanol. The cells were then counted on a Coulter Counter (Model ZF, 

Coulter Electronics, Hialeah , FL) and the cel l count was adjusted to 2.5 x 106 

cells/ml. Two hundred microlitres of the adjusted cell suspension was added in 

triplicate to the wells of a 96 well, flat bottom plate (Costar, Cambridge, MA) . 

Twenty five microlitres of antigen (1.2 mg/ml or 120 µg/ml of pGalU ; 120 µg/ml or 

12 µg/ml of purified CPS), ConA (20 µg/ml) or PBS was added to groups of 3 

replicate wells. The plate was then incubated in a C02 incubator at 37°C for 5 

days. Twenty two hours before harvesting, 0.25 µCi of [3H] thymidine (Amersham, 
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Arlington Heights, IL), contained in 25µ1 of Medium 199 supplemented as above 

was added to each well . The cells were harvested onto water-prewetted glass 

fiber filters. These were then air dried and placed in a vial. To each vial , 5 ml of 
scintillation cocktail (ScintiVerse BO, Fisher, Itasca, IL) was added and the counts 

were done using a liquid scintillation counter (Model 1500, Packard, Downers 

Grove, IL). The stimulation index was calculated by dividing the mean counts per 

minute of triplicate antigen-stimulated cultures by mean counts per minute of 
unstimulated cultures. 

Splenic lymphocyte proliferation assay (mice) 

A cellular proliferation assay was performed with splenocytes, using the T-

lymphocyte mitogen ConA (Sigma, St. Louis , MO) and the B-lymphocyte mitogen 

LPS from E. coli K235 (Sigma, St. Louis, MO) as the positive controls. The assay 

was performed as described by Lysle et al [12], with minor modifications. 

On the appropriate day, the mice were killed by C02 asphyxiation and then 

were immediately bled via heart puncture. The spleen was then immediately 

removed and placed in a polypropylene tube containing 5 ml of RPMl-1640 

medium (GIBCO, Grand Island, NY) which was supplemented with 10 mM Hepes, 

2 mM glutamine and 50 µg gentamicin/ml . 

A single cell suspension of each spleen was prepared by gently pressing the 

tissue between the ends of sterile frosted microscope slides in supplemented 

RPMI enriched with 10% fetal calf serum (RPMI+). The number of splenocytes was 

determined using a Coulter counter (Model Z F, Coulter Electronics, Hialeah , FL) 

and adjusted to 5 X 106/ml. 

The mitogen ConA was made to a concentration of 1.0 µg/mL and LPS to a 

concentration of 10.0 or 5.0 µg/mL in RPMI+. Antigens CPS and pGalU were made 

to a concentration of 0.5 , 5.0 or 50 µg/ml in RPMI+. 

One hundred microlitres of the adjusted cell suspension was added to the 

wells of a 96-well , flat-bottom plate (Costar, Cambridge, MA). Then , 100µ1 of the 
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antigen (CPS or pGalU) or RPMI+ (negative control) or mitogen (ConA or LPS) 

was added to groups of 3 replicate wells and the plates were incubated at 37°C in 

a humidified incubator with 5 % C02. The cultures were pu lsed with 1 µCi (3H] 

thymidine (Amersham, Arlington Heights, IL) in 50 µI of RPMI+ during the last 24 

hours of a 5 day incubation. The cultures were haNested onto glass fiber filters 

using a microharvester (Bellco Glass, Vineland , NJ). The incorporation of [3H] 

thymidine was determined with a liquid scintillation counter ( Model 1500, 

Packard, Downers Grove, IL) and expressed as counts per minute from which the 

stimulation index was calculated. 

Statistical analysis 

Analysis of variance was used to assess the statistical significance of the 

changes in antibody levels after immunization with CPS and pGalU in mice. The 

level of significance for the F test was set at a probability of 0.001 . 

RESULTS 

Mycoplasma isolation 

No M. dispar was isolated from the calves prior to the experimental infection. 

The organism was isolated from the lavage fluid (collected at 12 and 35 days post-

infection) as well as from the lungs of the infected calves at necropsy. 

Antibody responses in M. dispar infected calves 

In the infected calves, no serum lgA or lgG was seen in response to both CPS 

and pGalU (data not shown) . However, there was a significant increase in the anti-

CPS and anti-pGalU lgM level at 14 days post-infection (Fig. 1 ). The increase in 

the anti-pGalU lgM level was much smaller than the increase in the anti-CPS lgM 

level. The tracheobronchial lavage fluid did not show any lgG response and there 
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was a significant lgM and lgA response to both CPS and pGalU 12 days post-

infection (Fig. 2). No significant lgM, lgG or lgA response was seen in the nasal 

fluid (data not shown). 

Antibody responses of the immunized mice 
The mean anti-CPS and anti-pGalU lgM level, measured as absorbance at 

550 nm using ELISA, in the pre-immune sera of mice was 0.025 ± 0.00115 (mean 

± SEM ; n = 78 mice) and 0.051 ± 0.0020 (mean± SEM; n = 78 mice) respectively. 

The mice immunized with 0.5 µg of CPS gave exclusively lgM antibody response 

to CPS which could be seen as early as 3 days, peaked at 9 and declined at 12 

days after the first injection (statistically significant at p < 0.001 ). No antibody 

response was seen after the second injection (Fig. 3). Mice immunized with pGalU 

gave a pGalU-specific lgM response which increased from 3 days to 12 days 

(statistically significant at p < 0.001 ). A secondary anti-pGalU lgM response was 

seen beginning from 3 days and peaking at 5 days after the second pGalU 

injection (Fig. 4). The antibodies in the sera of mice immunized with pGalU did not 

show any cross-reaction with CPS while the antibodies in the sera of mice 

immunized with CPS did show cross-reaction with pGalU. This cross-reactive 

response could be seen as early as 3 days, peaked at 5 days and declined from 

then onwards. However, no cross-reactive antibodies were seen after the second 

injection of CPS (Fig. 4). 

Lymphocyte proliferation 

The peripheral blood lymphocytes from infected calves showed a 1.66-fold 

increase in the stimulation index on day 14 post-infection when stimulated with 

CPS at a concentration of 12 µg I ml (Fig . 5). No significant proliferative response 

was seen with other doses of CPS or to any dose of pGalU. No significant 

increase in the stimulation index of mice splenocytes was observed with any dose 
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of CPS or pGalU (Fig. 6). 

DISCUSSION 

A study to assess the immune responses produced towards the CPS of M. 

dispar in calves experimentally infected with M. dispar and in mice immunized with 

CPS showed that the immune response was typical of the response produced to 

polysaccharide antigens which have been characterized as thymus-independent 

antigens [13). In experimentally infected calves, serum lgM response peaking at 

14 days post-infection and a local humoral response (as measured in 

tracheobronchial lavage fluid) consisting of lgM and lgA was seen 12 days post-

infection. An lgA response would normally not be expected if the antigen was 

exclusively polysaccharide because of limited T-cell involvement. However, in the 

case of infection, the host sees the polysaccharide antigen (CPS) in conjunction 

with M. dispar proteins and so it is possible that a small amount of T-cell 

involvement is present which enables antibody class switching from lgM to lgA. 

The same reason could also explain the in vitro lymphocyte proliferation seen in 

response to 0.3 µg of CPS (12 µg I ml). Polysaccharide-specific lgA antibodies 

have been shown to be produced in certain strains of mice such as C57BL/6, 

which were immunized with purified dextran [5]. The lgM and lgA antibody 

responses seen in the calves peaked at about 2 weeks post infection and then 

declined progressively such that by 5 weeks post-infection antibody levels were 

similar to pre-infection levels. Since M. dispar was isolated from the lung tissues 

and lavage fluid 5 weeks post-infection, the immune response produced appeared 

to be incapable of completely clearing the organism from the host. To perform 

these studies , calves had to be raised under conditions that minimized nonspecific 

antibody responses to CPS. Therefore , the calves were raised on starch-free diet 
in isolation rooms in order to avoid antibodies that might be formed due to 

exposure to other polysaccharide antigens such as starches that are present in the 
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hay and to CPS of other micro-organisms. They were fed limited colostrum to limit 

passive transfer of maternal lgG antibodies. 

Mice immunized with CPS and pGalU produced exclusively lgM responses. 

However, no secondary response was seen in mice immunized with CPS in 

contrast to mice immunized with pGalU. The absence of the secondary response 

could be explained by : a) B-cells were tolerized with the second dose of CPS but 

not with pGalU, b) CPS was immunosuppressive but pGalU was not, at least not 

to the same extent. The difference in to le rogenicity between CPS and pGalU may 

be due to the differences in the molecular weights, epitope density or extent of 

persistence of the two polysaccharides. These factors have been found to 

considerably affect the tolerogenicity and immunogenicity of many polysaccharide 

and other thymus-independent antigens [9, 3, 4] . For example , the tolerogenicity of 

~2-6-linked polyfructose disappeared as its molecular weight was reduced from 

6000 to 3000 [9] . The molecular weight of pGalU is 4,000 daltons in average 

whereas that of CPS is at least greater than 14,000 daltons [2]. The fact that the 

same dose of CPS (0.5 µg) was immunogenic after the first injection but 

tolerogenic after the second injection can be explained by the fact that the primed 

B cells are tolerized more easily than the potentially responsive mature B cells in 

unprimed mice [1 O]. 

The antibodies in the sera of mice immunized with CPS cross-reacted with 

pGalU but antibodies cross-reactive with CPS were not found in the sera of 

pGalU-immunized mice. This might indicate that among the epitopes presented by 

the CPS, there may be a few which are very similar to some of the epitopes of 

pGalU. As expected of thymus-independent antigens, no CPS-specific or pGalU-

specific lymphocyte proliferation was seen in mice. 

In order for the animal to be able to protect itself against infection and tissue 

damage, the immune responses to the capsular antigen would have to be thymus-

dependent so that the host's immune system would be capable of elicit ing an 
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anamnestic response, produce antibodies with much higher affinity to CPS and 

also produce lgG antibodies which can be transferred to the newborn through 

placenta and colost rum. Structural modifications via chemical methods and 
coupling of the polysaccharide with suitable protein carriers [16] are some of the 

approaches that could be utilized to construct thymus-dependent forms of the 

CPS. 

In conclusion , the CPS of M. disparwas shown to be a T-independent antigen 

that elicited humoral responses cross-reactive to pGalU, a structurally similar 

polysaccharide. The CPS of M. dispar differed from pGalU as evidenced by one-

way cross-reactivity of antibody responses and divergent memory responses. 
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Figure 1: Serum lgM response in M. dispar infected calves to CPS and pGalU. 

Bars represent mean absorbance at 550 nm (mean ± SEM ; n = 3 calves). 



E c 
0 
l.{) 
l.{) 

-ro 
CJ) 
(.) 
c co 
.D .... 
0 
(/) 
.D 
<( 

0.2 

0.1 

0.0 

5 0 

lgM/CPS lgNC PS lgM/pGalU lgN pGalU 

• dayO a day 12 
Im day 35 

Figure 2: lgM and lgA responses in bovine alveolar lavage fluids collected on day 

0, day 12 and day 35 post-infection with M. dispar, in response to CPS and pGalU. 

Bars represent the mean absorbance at 550 nm (mean ± SEM ; n = 3 calves). 
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Figure 3: Serum lgM response in mice injected with CPS and pGalU tested 

against CPS. Bars represent the mean difference in absorbance at 550 nm 

calculated as post immunization serum absorbance - pre immunization serum 

absorbance (mean ± SEM; n = 4 mice in each group) ; p's< 0.001. 
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Figure 4: Serum lgM response in mice injected with CPS and pGalU tested 

against pGalU. Bars represent the mean difference in absorbance at 550 nm 

calculated as post immunization serum absorbance - pre immunization serum 

absorbance (mean ± SEM; n = 4 mice in each group); p's < 0.001 . 
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Figure 5: Proliferation of peripheral blood lymphocytes from infected calves when 

stimulated with 12 µg I ml CPS. Each bar represents the mean stimulation index 

(mean ± SEM; n = 3 calves). 
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is represented by the dotted line. 
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STRUCTURAL INVESTIGATION OF THE CAPSULAR 
POL YSACCHARIDE OF MYCOPLASMA DISPAR 

A paper to be submitted to Carbohydrate Research 

Praveen Bansal and R.F. Rosenbusch 

ABSTRACT 

The structure of the capsular polysaccharide (CPS) of Mycoplasma dispar 

was investigated by 13C-n.m.r. spectroscopy and acidic hydrolysis. A chemical 

shift at 175 ppm was seen in the 13C-n.m.r. spectra of CPS which indicated the 

presence of the carboxyl groups. Acidic hydrolysis of CPS showed the presence of 

galacturonic acid and galactose residues. In addition, the hydrolyzate of CPS 

showed two more spots which could not be identified. The uronic acid content in 

the CPS was found to be 22 %. Based on the mass spectra of the methylated 

CPS, the structure of CPS was proposed to be : 

-->3) - a - Galp - (1-->2) - a - GalUA - (1 -->3) - a - Galp - (1--> 

3 

~Galp- 1 

INTRODUCTION 

Mycoplasma dispar is a capsulated mycoplasma that produces chronic 

infection of the lower respiratory tract in calves resulting in local 

immunosuppression and specific lesion production. The capsular polysaccharide 

(CPS) is produced by the mycoplasma during natural infections3 and in vitro, 

under conditions of co-culture with bovine lung fibroblasts2. This CPS has been 

shown to be involved in the suppression of several alveolar macrophage functions 

such as tumor necrosis factor and interleukin-1 production1 . Thus, the CPS 
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appears to be a major virulence factor. 

Although the structures of CPS from many bacteria such as Klebsiella , 

Escherichia coli and Haemophilus influenzae have been elucidated, very few 

studies have been focused on structu res of the mycoplasma capsules. Here we 

report structural studies performed on the CPS of M. dispar. 

EXPERIMENTAL 

Isolation of CPS --- The CPS of Mycoplasma dispar was produced and 

purified according to the method of Almeida et a11 , with minor modifications. 

Briefly, M. dispar cel ls were co-cultured with bovine lung fibroblast monolayers for 

23 hours. After separating the mycoplasmas from the bovine cells and washing 

them in PBS three times at 4°C, capsule was extracted by incubating the 

mycoplasmas in phosphate-buffered saline at 37°C for 1 hour. The supernatant 

obtained after centrifugation was lyophilized. This preparation was then purified by 

capturing the CPS on agarose bound Ricinus communis agglutinin I or RCA120, 

(Vector, Burlingame, CA) , washing the beads and eluting with 0.1 M galactose. 

The eluate was then passed through a Biogel P4 (Bio-Rad, Melville , NY) size 

exclusion column using distilled water as the running buffer. Each collected 

fraction was analyzed for the presence of CPS by thin-layer chromatography. A 

sample of 1 µI of each fraction was spotted on si lica gel plate (E. Merck, 

Darmstadt, Germany) and was run in a solvent system of 1-butanol, acetic acid 

and water in the ratio of 2:1 :1. The carbohydrate spots were visualized by dipping 

the plate in a reagent made up of 0.5 g thymol , 0.5 g cx-naphthol, 5 ml sulfuric acid 

and 95 ml ethanol and heating the plate for 1 O minutes at 120°C. The fractions that 

had CPS were pooled and lyophilized. The protein and nucleic acid 

contamination in the purified CPS preparation was checked by measuring A280 

and A260· 

Polygalacturonic acid , sodium salt was obtained from Sigma Chemical Co. , 
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St. Louis, MO. 
Acid hydrolysis --- Acidic hydrolysis of CPS (1 O mg I ml) was performed 

with 4 M trifluoroacetic acid at 121 ° C for 1 hour. Hydrolyzate was analyzed by thin 

layer chromatography using 1-butanol, acetic acid and water in the ratio of 2:1 :1 

as the solvent. 

Uronic acid content --- Uronic acids were estimated by the carbazole 

method as described by Knutson et al4 with minor modifications. Sulfuric acid -

borate reagent was prepared by dissolving 0.95 g of sodium tetraborate in 2.0 ml 

of hot water and then adding 98 ml of ice-cold concentrated sulfuric acid to it. The 

reagent (1 .5 ml) was pipetted in each tube and kept in an ice-bath. One hundred 

and seventy five microliters of the sugar solution (50 - 800 µg I ml) was added to 

sulfuric acid - borate reagent and the tubes were again placed on ice. One 

hundred microliters of the carbazole solution (0.125 % in absolute ethanol) was 

then added. The contents of each tube were mixed well and the tubes were 

heated at 55° C for 30 minutes. The tubes were then allowed to sit at room 

temperature for 2 hours before measuring the absorbance at 530 nm. 

N.m.r. spectroscopy --- The proton decoupled 13C-n.m.r. spectra were 

recorded with a VXR-300 spectrophotometer, using 0 20 as solvent. The spectra 

were recorded at 4° C and chemical shifts were expressed in reference to carbon 

disulfide. 

Methylation analysis --- Methylation of CPS was performed according to 

the conditions of Stellner et al5 with minor modifications. Hakomori reagent was 

prepared by stirring a 50 % dispersion of sodium hydride in mineral oil (3.0 g) into 

dry DMSO (40 ml) by a magnetic stirring bar coupled to an air driven motor in an 

ultrasonic bath . Dry nitrogen was blown over the surface of the mixture and the 

reaction was allowed to proceed at 50° C for about 4 hours by which time a clear 

green solution was obtained. The reagent was stored under 1 cm thick mineral oil 

in plastic cryovials in the freezer. 

The carbohydrate , CPS (10 mg) was dissolved in water (2 ml) and 1 O µg of 
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sodium borohydride was added. The reaction mixture was kept overnight. Excess 

sodium borohydride was decomposed with prewashed Dowex 50 hydrogen form 

(Sigma, St. Louis, MO). The sample was filtered through a membrane filter and the 
solution evaporated to dryness. The dried sample was dissolved in 1.0 ml of dry 

DMSO in a septum-stopped tube. Dry nitrogen was flushed through the tube and 

0.4 ml of Hakomori reagent was added. The solution was agitated in the 

ultrasonic bath for 2 hours. Methyl iodide (0 .4 ml) was then added dropwise and 

the cleared mixture was partitioned between chloroform - water (3 ml: 6 ml) three 

times. The chloroform layer was dried with 4 A molecular sieves (Fisher, Itasca, IL) 

and then evaporated to dryness. Stellner's reagent (1 ml) was added and the 

reaction mixture kept at go° C for 4 hours. Water (1 ml} was then added and the 

reaction was allowed to occur for 4 hours at go° C. The resulting sample was 

passed through a column of Dowex AG2 - xg, acetate form . The column was 

washed sequentially with 1.5 bed volumes each of water and methanol. The 

resulting solution was lyophilized. The lyophi lized sample was dissolved in 1 ml of 

water, to which 10 mg of sodium borohydride was added. After about 2 hours, 

excess sodium borohydride was decomposed with Dowex 50 hydrogen form. After 

filtration through a membrane filter, the solution was evaporated to dryness. The 

res idue was treated with acetic anhydride-pyridine; 1 :1 (4 ml) for 30 minutes at 60° 

C. The mixture was then partitioned between chloroform - water (3 ml : 6 ml) three 

times. The chloroform layer was dried with 4 A molecular sieves and the sample 

was concentrated by blowing dry nitrogen over it. The acetylated sample was 

analyzed by g.c-m.s using a DB-5 column. 

RESULTS 
Sugar analysis --- The uronic acid content in the CPS of M. disparwas 

found to be 22 % by carbazole analysis. Acidic hydrolysis of CPS for 1 hour with 4 

M TFA showed 4 spots on the TLC (Table 1 ). Two out of the 4 spots could be 

identified as 0-galacturonic acid and 0-galactose and the other two could not be 
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identified. 

N.m.r. spectra --- 13C n.m.r. spectra of CPS showed 4 clear peaks (Fig. 1 ). 

One was at 17 4.90 for the C=O of the carboxyl group and 3 peaks at 50.5, 56.6 

and 59.2 ppm for C-2, C-3 and C-4 of galactose respectively. In addition , one very 

small peak at 105.1 ppm corresponding to the anomeric carbon atom and another 

small peak at 61 .0 ppm for C-5 was seen. 

Methylation analysis --- The mass spectra of the methylated CPS is 

shown in figure 2. The peaks obtained could be explained when the CPS was 

proposed to be a tetrasaccharide repeat consisting of three neutral sugar residues 

(all galactose residues) and one charged galacturonic acid residue. The 

galacturonic acid residue and two galactose residues form the backbone and one 

galactose residue forms the side chain (Fig. 3) 

The various possible fragments that would be obtained from the proposed 

structure when subjected to the methylation process which could account for the 

peaks seen in the mass spectra of the methylated CPS are shown in figure 4. 

DISCUSSION 

The immunogenicity and the immunological specificity of polysaccharides is 

dictated by their structures. Hence, in order to understand the immunology of 

polysaccharides and to develop effective prophylactic vaccines against 

encapsulated microorganisms, it is imperative that the structure of the 

polysaccharide capsule be elucidated. Structural investigation of the CPS of M. 

dispar revealed that the CPS consisted at least of galacturonic acid and galactose 

residues. Since the uronic acid content was found to be 22 % acidic sugar, it may 

indicate that out of every 4 residues in the CPS, one of them is galacturonic acid. 

We have demonstrated that there is considerable cross-reactivity among anti-CPS 

and anti-polygalacturonic acid antibodies5. This may indicate that galacturonic 

acid may be the immunodominant sugar. 

Hydrolysis of the CPS with TFA showed 4 spots , out of which 2 could not be 
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identified. Both these spots had higher Rt values than galactose or galacturonic 

acid . These could be other hexoses or they could be 4-C or 5-C degradation 

products of galacturonic acid. 

Direct chemical analyses of few mycoplasma capsules has been reported. 

The CPS of M. mycoides subsp. mycoides is a galactan which is made up of a 

repeating unit of ~-D-galactofuranosyl-(1 -->6) -D-galactopyranose? . The 

predominant structural unit of the glucan from the Mycoplasma sp. bovine arthritis 

strain is ~-D-glucopyranosyl-(1-->2)-D-glucopyranoses . The composition of the 

polysaccharide obtained from F-38 strain of mycoplasma (etiologic agent of 

contagious caprine pleuropneumonia) was determined to be a mixture of glucose, 

galactose, mannose, fucose, glucosamine and galactosamine in approximately 

equal quantities9. In all these cases, the purification of the capsular material was 

accomplished by using hot phenol extraction procedures followed by ethanol 

precipitation or ion-exchange chromatography. It has been shown that hot phenol 

extraction causes the removal of lipoglycans present in the mycoplasma 

membrane1 0. The results could , therefore , have been affected by the presence of 

such impurities. 

D-Galacturonic acid residues have been shown to be present in a number 

of bacterial capsules such as those of Klebsiella serotype K 4911 and 

Streptococcus pneumoniae. This report shows that the CPS of M. dispar 

possesses such galacturonic acid residues. 
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Rt values of the components obtained by acid hydrolysis of 

CPS and pGalU . 

Compound 

CPS 

Component 

Galacturonic acid 

Ga lactose 

Unidentified 

Unidentified 

0.341 

0.488 

0.682 

0.804 
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Figure 3: Proposed structure of CPS 
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Figure 4: Fragmentation of methylated products obtained from residues A and B as 
indicated in Fig. 3 
a The figures are the m/e values of the upper fragment 
b The figu res are the m/e values of the remaining fragment 
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GENERAL SUMMARY 

Three research goals were outlined in the Introduction section of this thesis. 

The first, to characterize the immune responses towards pGalU and to the purified 

capsule of M. dispar in mice and the second, to characterize the immune 

responses to CPS and pGalU in M. dispar infected cattle have been achieved. The 

first goal was aimed at understanding the antigenic nature of the purified CPS. 

Generally, polysaccharides have been classified as thymus-independent type 2 

antigens. The results obtained from the studies done in mice strongly indicate that 

the purified CPS acts as a typical thymus-independent antigen. It was however not 

possible to state the particular type to which it belongs i.e. whether type 1 or 2 

thymus-independent antigen because that would require that the studies be done 

in neonatal and xid mice. The studies done in M. dispar infected cattle support the 

thymus-independent antigenic nature of CPS. These studies were necessary in 

order to make sure that the association of CPS with M. dispar did not endow 

unique properties to the CPS and also that the process of extraction and 

purification of CPS did not destroy or alter the antigenicity or immunogenicity of 

the CPS. 

These two goals were also aimed at studying the cross-reactivity among the 

antibodies directed towards CPS and pGalU. Studies in mice and in calves 

indicate considerable cross-reactivity which means that there is potential for use of 

inexpensive, commercially available pGalU instead of CPS in vaccines based on 

the polysaccharide antigen . 

The third research goal was to chemically characterize the structure of CPS. 

This goal has been partly achieved. One of the major hurdles in accomplishing 

this goal was the lack of availabi lity of large amounts of purified CPS. However, 

the data obtained does indicate similarity between CPS and pGalU acid. The 

presence of 22 % acidic sugar may indicate that among every 4 residues there is 

one galacturonic acid residue. The considerable cross-reactivity seen among anti-
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CPS and anti-pGalU antibodies may also indicate that the galacturonic acid 

residue is the immunodominant sugar. 

Overall, this work provided good evidence for the thymus-independent 
nature of the CPS of M. disparwhich may explain the ability of M. disparto 

establish chronic colonization of the lower respiratory tract in calves. Structural 

studies performed revealed that the CPS contained galacturonic acid and 

galactose residues. The presence of the galacturonic acid residues formed the 

basis of the cross-reactivity seen among the CPS-specific and pGalU-specific 

antibodies. 

Since , the thymus-independent responses seen in M. dispar infected calves 

appeared to be incapable of clearing the organism from the host it is evident that 

forms of CPS that induce thymus-dependent responses will have to be 

constructed. Since there is structural similarity between polygalacturonic acid and 

CPS, it may be possible to use chemically modified forms of pGalU or pGalU-

protein conjugates for inducing immunity in calves. 
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APPENDIX. STUDY OF IMMUNE RESPONSES IN CATTLE 
IMMUNIZED WITH POL YGALACTURONIC ACID 

INTRODUCTION 

This appendix summarizes an attempt to study the antibody responses 

towards the capsular polysaccharide (CPS) of M. dispar and polygalacturonic 

acid (pGalU) in cattle immunized with pGalU. 

There is preliminary evidence that the capsule of M. dispar is similar in 

chemical composition to polygalacturonic acid which is found in citrus rinds and 

other plant tissues.To determine whether polygalacturonic acid could replace 

CPS as the antigen in vaccines it was necessary to characterize the imune 

response to polygalacturonic acid in catt le and examine whether the antibodies 

produced towards polygalacturonic acid would cross-react with CPS. 

MATERIALS AND METHODS 

Cattle 

Thirteen cross-bred beef type steers, 17 to 15 months old, were injected 

subcutaneously with 2.5µg of polygalcturonic acid in 2 ml of saline to which 1 ml of 

Alum Inject (Pierce, Rockford, IL) was added and test bled for serum samples 

according to the following schedule: 

.Q.mt. SamplinQ 

dO Test bled and 1st vaccination 

d 14 Test bled 

d30 Test bled and 2nd vaccination 

d35 Test bled 
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Serums were collected and stored at -20C until tested for the presence of lgG and 

lgM antibodies to polygalcturonic acid and CPS using ELISA. 

ELISA 

The assay was performed as has been described previously in paper 1. 

The controls used in the test were : 

1. Substrate control : RCA120 +CPS+ substrate 

2. Conjugate control : RCA120 + CPS + horseradish peroxidase conjugated goat 

anti rabbit lgG + substrate 

3. Anti-class control : RCA120 +CPS+ rabbit anti bovine lgG or lgM +horseradish 

peroxidase conjugated goat anti rabbit lgG + substrate 

Statistical analysis 

Analysis of variance (Table 5.0) was done to see whether there were any 

significant differences in the antibody levels on different days. 

RESULTS 

Both anti-CPS (Table 1 and 2) and anti-pGalU antibodies (Table 3 and 4) 

could be detected in the sera of the steers vaccinated with pGalU. The anti-pGalU 

lgM antibody values were higher than anti-pGalU lgG, anti-CPS lgM and anti-CPS 

lgG values. Table 5 shows the means and the standard errors of means of the anti-

CPS and anti-pGalU antibody values obtained from the sera of the thirteen steers. 

After immunization with pGalU, no lgG response was seen with either CPS 

or pGalU. However, significant changes in the anti-CPs anti-pGalU levels were 

seen after immunization. The anti-CPS level decreased significantly at 30 days 

post-immunization. After the second dose of pGalU, the anti-CPS antibody level 

increased and reached the pre-immunization level. The anti-pGalU lgM level 
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decreased significantly at day 14 post-immunization , then increased such that by 

day 30 the antibody level was same as the pre-immunization level and then 

decreased again after the second immunization such that the lgM level was similar 
to that on day 14 post-immunization. 

DISCUSSION 

Carbohydrates are considered as thymus-independent antigens which means that 

they induce primarily a humeral response and the antibody isotype is 

predominantly lgM. However, no increase in the anti-CPs or anti-pGalU lgM level 

over the pre-immunization was seen. The anti-pGalU level declined 14 days post-

immunization, climbed back by day 30 and then declined again after the second 

dose of pGalU. This may indicate a phenomenon of antibody-mediated 

suppression. The first dose of antigen (pGalU) resulted in the clearance of some 

already present anti -polysaccharide antibodies. This decrease in the antibody 

level enabled the antigen to activate specific B cells resulting in the production of 

specifi c antibodies. After the second injection, the antigen again cleared the 

preexisting antibodies resulting in a decrease of anti-pGalU antibodies. 

From the above results it is evident that the steers had high levels of 

preexisting levels of antibodies to pGalU and also to the CPS of M. dispar 

(although these steers came from a M. disparfree herd). This reactivity to the CPS 

and to pGalU may have stemmed from two possible sources: antibodies may have 

been produced in response to the various carbohydrates in the feed or due to the 

exposure to the CPS of other bacteria. It becomes clear that t study the immune 

responses to pGalU or to the M. dispar CPS, calves will have to be raised in 

isolation so that they do not get exposed to other encapsulated bacteria and 

should preferably be fed a non - starch diet. 



Table 1: 

Steer # 

Results of antoglobulin-ELISA for detecting anti-CPS lgG antibodies in sera of the 
thirteen steers before and following vaccination with pGalU 

Day 432 434 439 440 441 442 443 444 445 446 447 450 452 

0 .206a .203 .205 .204 .195 .241 .237 .225 .224 .210 .209 .207 .205 

14 .202 .193 .197 .201 .199 .244 .237 .228 .226 .220 .211 .207 .240 

30 .201 .205 .209 .202 .197 .219 .233 .230 .223 .225 .203 .204 .238 

35 .184 .200 .208 .196 .204 .228 .232 .229 .226 .235 .208 .208 .233 

aThe figures given are optical density at 550 nm. 

tO 
CXl 



Table 2: Results of antiglobulin-ELISA for detecting anti-CPS lgM antibodies in sera of the 
thirteen steers before and following vaccination with pGalU 

Steer# 
Day 432 434 439 440 441 442 443 444 445 446 447 450 452 

0 .246a .244 .216 .251 .196 .258 .269 .234 .180 .227 .249 .252 .278 

14 .214 .251 .21 9 .228 .197 .269 .238 .186 .209 .235 .246 .260 .262 

30 .224 .265 .230 .230 .172 .227 .251 .166 .1 80 .203 .237 .265 .241 

35 .227 .248 .255 .245 .216 .229 .239 .1 88 .180 .230 .237 .265 .241 

aThe figures given are optical density at 550 nm 

CD 
CD 



Table 3: 

Steer# 

Results of antiglobulin-ELISA for detecting anti-pGalU lgG antibodies in sera of the 
thirteen steers before and following vaccination with pGalU 

Day 432 434 439 440 441 442 443 444 445 446 447 450 452 

0 .179a .187 .196 .197 .207 .217 .211 .190 .233 .261 .227 .194 .184 

14 .198 .199 .198 .205 .192 .208 .205 .201 .222 .221 .229 .225 .190 

30 .198 .199 .1 86 .195 .214 .211 .208 .169 .223 .227 .189 .217 .174 

35 .191 .208 .201 .1 89 .204 .21 5 .207 .194 .218 .226 .219 .215 .1 88 

aThe figures given are optical density at 550 nm 

0 
0 



Table 4: 

Steer# 

Results of antiglobulin-ELISA for detecting anti-pGalU lgM antibodies in sera of the 
thirteen steers before and following vaccination with pGalU 

Day 432 434 439 440 441 442 443 444 445 446 447 450 452 

0 .301 a .302 .296 .308 .317 .313 .31 5 .297 .260 .291 .294 .304 .289 

14 .287 .306 .294 .301 .285 .295 .302 .244 .202 .286 .276 .285 .292 

30 .304 .293 .306 .307 .305 .305 .315 .267 .253 .299 .273 .290 .290 

35 .278 .293 .307 .294 .279 .301 .287 .266 .187 .293 .291 .278 .288 

aThe figures given are optical density at 550 nm 

0 



Table 5: 

Antibodies 

Anti-CPS lgG 

Anti -CPS lgM 

Anti-pGalU lgG 

Anti-pGalU lgM 

Results of antiglobulin-ELISA for detecting anti-CPS lgG, lgM and anti-pGalU lgG , 
lgM in sera of thirteen steers 

Days 
0 

a.213 ± .0036 

.238 ± .0072 

.206 ± .0061 

.299 ± .0061 

14 

.216 ± .0047 

.232 ± .0069 

.207 ± .0033 

.281 ± .0074 

30 35 

.215 ± .0036 .215 ± .0044 

.220 ± .0083 .231 ± .0063 

.201 ± .0047 .206 ± .0033 

.293 ± .0049 .280 ± .0080 

aThe figures given are the means of the values± the standard error mean of the optical 
density at 550 nm of the sera of the thirteen steers when tested by antiglobulin-ELISA 

-' 
0 
N 
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Table 6.1: Analysis of variance table of anti-CPS lgG antibodies 

Source 
Cow 
Day 

aDF 
12 
3 

aDF =degrees of freedom 
bSS =sum of squares 

Anova bSS 
0.00969092 
0.00004492 

F value 
13.84 
0.26 

Pr> F 
0.0001 
0.8561 

Table 6.2 : Analysis of variance table of anti -CPS lgM antibodies 

Source 
Cow 
Day 

aDF 
12 
3 

aDF = degrees of freedom 
bSS = sum of squares 

Anova bSS 
0.02830658 
0.00209883 

F value 
10.59 
3.14 

Pr> F 
0.0001 
0.0370 
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Table 6.3: Analysis of variance table of anti-pGalU lgM antibodies 

Source 
Cow 
Day 

aOF 
12 
3 

aOF = degrees of freedom 
bSS = sum of squares 

Anova bSS 
0.02169892 
0.00328360 

F value 
12.10 
7.33 

Pr > F 
0.0001 
0.0006 

Table 6.4 : Analysis of variance table of anti -pGalU lgG antibodies 

Source 
Cow 
Day 

a OF 
12 
3 

aOF =degrees of freedom 
bSS =sum of squares 

Anova bSS 
0.01018073 
0.00032560 

F value 
7.41 
0.95 

Pr > F 
0 .0001 
0.4278 



105 

Table 7: Duncan multiple range test for anti-CPS lgM antibodies 

Duncan Grouping 

A 

A 

A 

B 

Mean 

0.238462 

0.231846 

0.230692 

0 .220692 

Day 

0 

14 

35 

30 




