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I. INTRODUCTION

We are utilizing nuclear energy. Essentially, nuclear energy con-
sists of two types: one is fission energy and the other is fusion en-
ergy. However, right now, fusion energy is not available. To actualize
fusion reactors using the principle known as magnetic confinement, there
are two possibilities: one is a toroidal fusion reactor, which has no
end out of which plasma can leak; the other is a magnetic mirror fusion
reactor, which is open ended [1,2].

One type of toroidal fusion reactor, called tokamak [3], is the most
possible to actualize, so far. In a tokamak, the most important plasma
parameters are the plasma cross section, plasma current, plasma tempera-
ture, and plasma density. Also important is the value of "beta," which
is the ratio of the plasma kinetic pressure to the magnetic pressure
used to confine the plasma. Beta is affected by the plasma cross sec-
tion. If a plasma cross section shape is noncircular, the beta value
is higher than that of a circular-shaped plasma. Thus, concepts of
toroidal fusion reactors have evolved, first from circular to noncir-
cular cross section shape, then to elliptic and D shapes [1,2]. More
recently, bean-shaped cross sections have been proposed [4]. All of
these shapes show progressively higher beta values. The plasma cur-
rent yields a poloidal magnetic field and toroidal magnetic coils yield
the toroidal magnetic field in a tokamak system.

In this research, the relationship between a noncircular shape of

a plasma cross section is focused on, especially a bean shape and the



beta value.

The primary objectives of this research are:

L.

To construct an improved, mathematically convenient
plasma surface function for the bean-shape plasma cross
section. The plasma surface function is a mathematical
expression that defines the plasma surface.

To analyze the relationship between plasma current distri-
bution and MHD instabilities for the bean-shape plasma.

To simplify the current density distribution function for
the bean-shape plasma cross section.

To simplify the poloidal magnetic field distribution func-
tion according to the simplified current density distribu-
tion function.

To analyze the relationship between beta values and the
poloidal magnetic field distribution function.



ITI. THEORY AND GOVERNING EQUATIONS

A. Basic Definitions

The value of beta, B, in a controlled thermonuclear reactor (CTR)

is defined generally as

P

B =
2
Bofzuo

(1)

where P is the kinetic pressure of plasma, B0 is the magnetic field that
confines plasma in a toroidal device, and Hy is the permeability of the

plasma in vacuum. Thus, a poloidal beta, BP’ can be defined as

B, (2)

P 2
BP/ZHO

where BP is the poloidal magnetic field to confine plasma. This field

is
T

P
By = 37 a
e

(3)

where IP is the plasma current to produce the poloidal magnetic field

and ae is the effective minor radius of plasma. Similarly, a toroidal

beta, Bt’ can be defined as

B, = —o—— ()

t 2
Bt/ZUO

where Bt is the toroidal magnetic field.



B. Plasma Cross Section Shape Calculation

For the bean-shape cross section of plasma, the following equa-

tions have been suggested to define its surface [4,5,6]:

X(9) i + pcos t

il

Z(9) E p sin t (5)

The terms in this discussion are identified in Fig. 1. In equation (5),
p=1+Bcos O, t =C sin 8, and 0 < 6 < 2m. To quantify the effects
of indentation, i = d/2a, the parameters i, E, and C in these equations
can be varied so as to keep the elongation, b/a, and the aspect ratio,
R/a, constant.

Instead of using the above equation, the following equations are

proposed here:

/ 2
v(cos 8 - 1) + u cos & k2 - 80

2

]

X (8)
o

(6)

20(9) v sin 6 + u sinf® vk~ - —

Equation (6) is in effect in the convex part of the curve in Fig. 2.

In addition, the following equations

2
X,(8) = v(cos 6 - 1) - u cos /k2 _EBT
(7
2 482
Zi(e) = v gin @ - u sin® VK> - =3
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Bean-shaped plasma cross section
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Bean-shaped plasma cross section




are in effect to describe the concave part of the curve in Fig. 2.

In equations (6) and (7)
0<k<1 (8)

If k is equal to 1, equations (6) and (7) describe the outer surface
of the plasma. If k is less than 1, equations (6) and (7) may be used
to define "inner profiles'" of the plasma. The variable, 6, is in the

range

km km

The relationships between the coordinates shown in Fig. 1 and the

coordinates used in equations (6) and (7) are as follows:

=4 _v-u
YT 2a u+v (10)
1
a =-5(u + v) (11)
b = Z(6%) {12}
The 6% satisfies the following equations:
2 2 2
T~ v 46% m
= — = = e . R
tan 0 e 1 7 + i 8 (13)
R=R -7 (14)




Equations (6) and (14) depend on the assumption that the magnetic
axis of the plasma, that is, the point of highest magnetic field, lies
at the origin. This is also the centroid of the toroidal plasma cur-
rent distribution. This assumption is understood from the experimental
data shown in Fig. 3, which fit this assumption very well [4].

The idea of the equations (6) and (7) is as follows: In a func-
tion of Z = £(X), which has the condition of |Z| <mv/2, if Z axis is

mapped on the following equation:
X=-v+ Vv -2 (15)

we can get the equation of Z = gOf(X). From this mapping procedure,

equations (6) and (7) are given.

C. Cross Sectional Area Element of

Bean-shaped Plasma

To figure out the poloidal magnetic field of bean-shaped plasma,
the cross-sectional area element is calculated. From equations (6) and

(7), the cross-sectional area element, S(k), is

2
- - ri]de (16)

where
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2 2
ro=r (@) = /(0 + v}’ + {2, (®)
(17)
il 2
r; - ri(e) = J/{Xi(e) + vl + {zi(e)}
Inserting equation (17) into equation (16) gives
5 2
S(k)=4qu2 k-2 a0 (18)
i
o
The variable, 9, can be transformed as
8 = Xl sin ¢ (19)
Inserting equation (19) into equation (18) gives
X
S(k) = & uw J £ k cos ¢ %; cos ¢ do¢
o
T
— 2 2
=T uv k2 [ + %-sin 2¢]i = E—J%E—E— (20)

D. Plasma Current Density Distribution

The plasma current density distribution figures are given in Fig.

3 as experimental data. Usually, plasma current density distributions

are approximated as

3
_ _ork,¢) |
J¢ Jo[l {rs(l,q:)} ] (21)
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where o and B are constants, r(k,¢) is the distance between an arbitrary
point and the origin, rs(l,¢) is the distance between the origin and

Bl
the surface and ¢ is the angle between the X axis and r

Usually, o =
B = 2 are chosen [7].
The plasma current at a cross section is given by
I = J J ds (223
5 S

where S is the cross sectional area of the plasma, J is current densi-

ty, and ds is area element.

The poloidal magnetic field distribution about the origin can be

given as
B (e(k,0)) = —2— | 4. ds
P 2 2mr(k,d) S d
J u
___ oo _ox(k,9)
= 7 (k,3) JS =G aey " as (23)

The current density distribution shown in Figure 4 is described by

the equation:

r(k,?d
Jq) = JO {—(_]’-—-E)—} ] (24)

However, r(k,¢)/rs(l,¢) is actually equal to k

, as may be verified
from equation (7).

Then, equation (24) can be expressed as

_ 242
J¢ = Jo[l - k7] (25)
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According to the above, the poloidal magnetic field distribution is

U k H k
- _9 - 9 _|22 2 "t
BP(k) = Tk J J¢ ds 7Tk L) Jo(l k'7)" muvk'dk

ﬂqu uv

12

5 3

[k - 3k~ + 3k] (26)

]

The above expression is shown in Figure 5.
From the above expression, the curve which is made by the isodynamic

lines is given in Figure 6.

E. Toroidal Magnetic Field

In the toroidal magnetic field of the bean-shaped plasma, there is
a tendency for electrons to move along the magnetic lines, so that the
electric fields which are produced by the gradients of the magnetic
fields are canceled by the movement of electrons along the rotational
transformed magnetic lines. Thus, the maximum toroidal magnetic fields
occur at the intersection of the convex curve and X axis, and at the two

vortexes.

F. GSafety Factor

The definition of safety factor, q, is the ratio of the winding
number of magnetic force lines around the major axis to the winding
number of magnetic force lines around the minor axis. In general, the
value of q differs according to the distance from the minor axis in a

cross section of plasma. The safety factor is expressed as



Poloidal magnetic field 12 B, (k)/mu_J uv
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B
1= %c EE 2:§ (27)
P o
where the integration contour, c, is along the magnetic force line
around the minor axis. Near the minor axis, which corresponds to the
magnetic axis of the poloidal magnetic field, BP is almost maximum ac-
cording to Figure 5, however; therefore, the integration contour is al-
most zero. Then, q is given by taking the limit as r goes to zero.
On the other hand, at the plasma surface, q is given by:

1 d
158 (r) %c B.(ry) 7m
P s 0

(28)

where the integration contour is along the plasma surface. From the
previous calculation, the value of poloidal magnetic field at the plas-
ma surface is constant.

If the toroidal magnetic field at the surface is almost constant,
which is the case when the major radius is much larger than the minor

radius, equation (28) can be expressed as

B.{xr )
£t g df
q(r ) = § (29)
s BP(rS) c ZTTRo
Equation (29) can be calculated as
i Jis Bt(rs) 27rae _ Bt(rs) a, -
s B_.(r ) 2mR B.(r ) R
P s o P''s o

where a,s the effective radius of plasma, is defined as
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. = /5 . J/muw (31)

Here, S is the cross sectional area of plasma at the surface, as in equa-
tion (19).

The effective aspect ratio, AE, is expressed as

R
A == (32)
e a
e
Therefore, the safety factor at the plasma surface is
B _(r )
£ s 1
qit ) » === (33)
s BP(rS) A,

The relationship between the poloidal beta, BP’ and the toroidal
beta, Bc’ is given by the combination of equations (2), (4), and (33).

It is
(34)
To confine plasma, it is desired that the value of the toroidal

beta be as large as possible. From equation (34), it follows that the

small values of q(rs) and Ae are to be chosen.
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III. DISCUSSION AND APPLICATION

A. Properties of MHD Instabilities

There are many kinds of MHD instabilities [8]. Their properties
are strongly related to the poloidal magnetic field. For example, the
tearing mode instability takes place on the poloidal magnetic field.
The process of the tearing mode instability is as follows:

1. Local magnetic fields perturb the poloidal magnetic
field.

2. They produce new magnetic axes which are different
from the magnetic axis of the poloidal magnetic
field.
3. They split off the poloidal magnetic field.
As another example, there is the ballooning mode instability.
Here, plasma is expanded in the direction from the magnetic axis of the

poloidal magnetic field to the outside. This expansion is increased by

centrifugal force.

B. Poloidal Magnetic Field Analysis

As exhibited in Figure 3, there are several maximum values in each
plasma current density distribution. This is a problem. According to
the distribution function, some portions of the plasma behave like para-
magnetic particles and the others like diamagnetic particles. Especial-
ly in Figure 3c, there are three maximum values in the distribution,
which can be explained as arising from:

1. Centrifugal force

2. Skin effect
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Particularly, if a very large current is applied to plasma, the
inductance increases. If there are more than two maximal values, the
conductivity increases slowly. The above processes affect the tearing
mode instability. 1In the condition of Figure 3c, there is a high
possibility for new magnetic axes to appear.

The most desirable current distribution has only one maximum value
which exists at or near the magnetic axis. Even though the tearing mode
instability does not occur, the centrifugal force is always present.
There is a tendency for the ballooning mode instability to increase if
charged particles in the plasma have large energy.

To avoid the above situation, the magnetic field along the major
axis is always applied; however, the above instability still takes place
at a high enough plasma energy (temperature). If constant magnetic
fields along the major axis are applied, there is no improvement because
the application affects only the magnitude of the poloidal magnetic
field. Magnetic fields which increase along the direction from the
plasma surface to magnetic axis are better; however, this is not easy
to do. If the magnitude of an applied field is not sufficient, some
maximal magnetic fields might still remain.

It follows that, from the magnetic axis to the plasma surface, the
poloidal magnetic field, BP(k) must be a monotone increasing function.

In other words,

d
Ik BpCk) > 035 0<k<1 (35)
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If a point of inflection exists in the function after adding an applied

field, then at the point of inflection we get
i1.?,(1;<)| =0 ; Pek<l and O <4i=l.
dk P k=1 <

where i is the point of inflection

It is possible for charged particles to stay near such a point,
creating the possibility that the magnetic field at that point becomes

unstable.

C. Toroidal Magnetic Field Analysis

The minimum toroidal magnetic field exists at the center of the
inner surface of the bean-shaped plasma and the maximum toroidal mag-
netic field exists directly opposite on the outer surface. From the
mid-plane, the toroidal magnetic field distribution, Bt(k), is a mono-

tone increasing function and along the mid-plane, it is a constant:

d
=B 08 =0} T e

This situation is not desirable. If the toroidal magnetic field distribu-
tion is considered, the distribution along Z axis is always constant for
any value of k; however, the distribution perpendicular to the Z axis has
the maximum and minimum values. To reduce the difference between the maxi-
mum value of Bt(k) and the minimum value of Bt(k), a large value of aspect

ratio is chosen.



23

D. Current Density Distribution Analysis

The following types of current density distribution are discussed
here.
1. Constant current
2. Skin effect current
3. Current with inside conductor
4. Current with outside conductor

Their poloidal magnetic field distributions are also calculated.

L Constant current

Constant current means that the current density is constant. The

expression is as follows:
I, = Jo = constant ; 0 <k<1. (36)

In this case, using equation (20) gives

Uo k 2
e ] ]
BP(k) Sk L} Jo m uvk' dk

(37)

TR wv J k Ty J o uow
(] (8] kldkl___ 0] (s}
2k s 4

Equations (36) and (37) are shown in Figure 7. According to Figure 7,

the poloidal magnetic field distribution has the property that

d

EBP(k) >0 .

Thus, BP(k) is stable.
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2. Skin effect current

Skin effect current is caused by high frequency wave current. If
high frequency wave current is applied to a conductor, inside inductance
increases and most of the current density is concentrated on the sur-
face of the conductor. The mathematical expression for skin effect cur-
rent is:

1 :k=1
J¢ =J, 8(k) ; S (k) = { (38)
0@ k#1
where 8§ (k) is delta function.

Instead of using a delta function, it may be approximated by higher
order function. Actually, some current density does exist in the range
of 0 < k < 1 so that the delta function does not fit the distribution
perfectly in any case. Moreover, with a delta function, there is no
magnetic field in the range of 0 < k < 1 and the magnetic field exists

only in the range of k > 1. Thus, a high order power function is more

realistic. Such a function is expressed as
Y=X ; 0<Xx1, (39)

Applying equation (39) to equation (38) gives

Jg =, K (40)
In the case of n = 4, equation (40) is
ro=a ¥ (41)
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Combining equations (20) and (41) gives

Ho % 2 i i
BP(k) = T L) JOH uvk'™ dk
J U Tuv k J y muv
__00o T R < - -
= K Jok dk 12 k (42)

Equations (41) and (42) are shown in Figure 8. According to Figure 8,

the poloidal magnetic field has the property of

d
ik B(k) >0

Thus, BP(k) is stable and skin effect current is better than constant
current because near the plasma surface, the gradient of the poloidal
magnetic field for skin effect current is much larger than that of con-

stant current.

3 Current with inside conductor

This system is called internal ring system. A conductor is placed
inside the plasma; a system which has more than one internal ring is
called multipole. In this section, only one internal ring system is
discussed.

Let the following equations be set up:
J. = J_ = constant ; 0<k<ac<l (43)

J. =3 —1—2[—k2+2ak—2a+l]; 0 <ac<kc<1. (44)

° (1-aw
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where ¢ is dimensionless conductor thickness, Jc is the conductor current
density and JP is the plasma current density. The assumptions are that

the maximum value of J, J takes place at k = a; at this place, J

M’ PM

Jc = JO. At the plasma surface, the plasma current density is equal to

Zero.

The poloidal magnetic field is the sum of the magnetic field which
is produced by a conductor and that which is produced by plasma. More-
over, the magnetic field which is produced by plasma current does not
exist in the conductor.

The magnetic field of the conductor is

1'lca e 2
= — 1 1]
Bc(k) 7k L) Joﬂ uvk' dk
Jouoﬂuv
- Bk (0 < k < a) (45)
M k
A - T
Bc(k) TR J JOW uvk' dk
o
2
Jopoﬂuva

Similarly, the magnetic field of plasma is

H k _ |2 v
Bop (k) = 5 J ik 7. ¢ ¥ Fevk §a+l] dk’
o (1-a)
mJ U uv 3 2
_ o o k2 .2 l=2a . & 2
= ——— [~ 5 +5 ok +T 5= k-5(50" - 120+ 6) ] (47)

2(1-&)2
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Thus, the compound magnetic field is given by

Jouoﬂuv
BP(k) - Bc(k) " e—— K 0<k<ao (48)
BP(k) =B (k) + BPP(k)
J U Tuva J Tu uv 3 2
_ o k2 a2 1=32u, & a
= " - 5 [ 1 + 3 ok” + > k lzk(Sa 12a+6)]
2(1-q)

(49)

Equations (48) and (49) are plotted in Figure 9. In the range of

0 <k <a, there is no plasma, and the gradient of BP(k) is

d
d—kBP(k)<O, O‘.ikil.

Thus, the plasma has a paramagnetic character by the existence of the
conductor. Experimentally, this system gives good results as concerning
stability; however, the problem is to have a conductor in the plasma.

If very high temperature is applied to the conductor, it will melt down.
If this material problem can be solved, this system is the best way to

get a stabilized poloidal magnetic field.

4. Current with outside conductor

This system is to surround plasma with conductor. Even if high
current is applied to the conductor, the magnetic field which is pro-

duced by the conductor never exists in the plasma. Thus, the magnetic
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field distribution in plasma is the same with or without the magnetic

field of the conductor.

E. Effect of Conductor

If plasma is surrounded with a conductor, the position of plasma
is always balanced. If the magnetic axis of plasma slips off against
the center of the conductor, current flows in the toroidal direction
at the inner wall of the conductor, and this current yields a vertical
magnetic field, keeping the plasma in balance automatically. There-
fore, an external conductor is effective for stabilizing kink mode in-

stability.

F. Effect of Indentation

The characteristic of a bean-shaped plasma is to have an indenta-
tion. In an indented plasma, the relative elongation increases as com-
pared to D-shaped, elliptic-shaped, and circular-shaped plasma.

The poloidal beta depends only on plasma current; however, the
toroidal beta depends not only on the safety factor but also on the as-
pect ratio. If the poloidal beta and safety factor are fixed, a small
aspect ratio is desirable for the toroidal beta according to equation
(34). The indentation affects the aspect ratio, that is, the aspect
ratio gets smaller after applying the indentation according to equa-
tions (29) and (34). The indentation thus permits a high toroidal beta;
however, a critical indentation will exist according to Figure 3c, and

at this point cannot be increased further.
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G. Beta Value Analysis

The equations of the plasma beta are shown in equations (1) to (4).

They arise from the fundamental equations:

I xB=vp (50)

UxB=ud (51)
(e}

VeB=0 (52)

Equation (50) is the balance of forces, equations (51) and (52) are

Maxwell's equations.

-
Using the above equations and eliminating J gives

v =2 (@nE - ch—Z)} (53)
- :

-
In the above, the term (B'V)E is based on curvature of magnetic force

lines. If the curvature can be neglected, equation (53) can be expressed

as
B2
VP +-—) =0 (54)
2u
o
Thus,
28
P4+—=— {55)
U, 24y

where Bi is the magnetic field in plasma and Bo is the magnetic field

without plasma (P = 0).

According to the definition of plasma beta, equation (55) is
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2
Bt B B ] e (56)
32/2u B2 o
(o) o o

Considering the poloidal beta, we can neglect curvature because
consideration is focused on the plasma cross section. Therefore, equa-
tion (56) is expressed as

2

B_ (k)
A (57)

B, (1)

Bpk) = 1 - {

The average poloidal beta, <BP>, is

2
By (k)

2
Bp (1)

1 1l
B> = J BP dk = J (1 - ] dk (58)
o (o

¥

For example, if plasma current distribution is given by equation

(25), the poloidal beta distribution is

3

6 -1 (-3 +30% 10, 8

6 4 2
p 1 -15k " +18k -9k~ +1

046k

-k
and the average poloidal beta is

1 &
B, = JBP a5 = J [- k104 6% + 15k° + 18K* - 9k% + 1]dk =—38_ = 0.0329
A 1155

For constant plasma current, equation (37) gives

- 2
BP =1-k
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and the average poloidal beta is

= 0.667

wlro

1 1 2
<BP> - L BP dk L [1-k"]dk =

Roughly speaking, standard tokamak's circular-shaped cross sec-
tion) have beta values which are almost equal to 0.01 with the current
density distribution as given by equation (25).

It follows that a bean-shaped plasma cross section permits higher

beta values compared to a circular cross section.
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IV. SUMMARY AND CONCLUSION

From the preceding analysis and the discussion of the relation-
ship between beta value and bean-shaped cross section in toroidal
MHD stability, the following main conclusions are made:

1. Achieving a higher beta value depends strongly on the MHD
stability and plasma shape. That is, more poloidal mag-
netic field analysis must be required. So far, the high-
est beta value has been achieved by bean-shaped cross
sections experimentally.

2. For higher beta value, plasma current is very important.
That is, it is very important to control plasma current
or to put coils around the fusion reactor vacuum vessel,

so that the plasma current distribution has only one
maximal value near the magnetic axis.

3. From the theoretical analysis, the beta value of the
bean-shaped cross section is higher than other toroidal
systems.

So far, the poloidal magnetic field distribution produced by the plasma
current has been considered. Actually, the plasma cross section is con-
trolled by outer poloidal field coils. In this research, the effect of
the poloidal magnetic field produced by outer poloidal field coils has
been neglected. The combination of the poloidal magnetic field which is
produced by the plasma current and the poloidal magnetic field which is
produced by the outer poloidal field coils is very complicated to ana-
lyze. In the future, such an analysis must nevertheless be made. An

external poloidal field could produce much higher beta values and perhaps

stabilize the plasma under all conditions.
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