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ABSTRACT 

The human operator models have been reviewed. Those 

include the continuous and discrete performance and learning 

models. Appropriate relationships are derived to tailor the 

models for the use of the Kalman filter in prediction of 

future data on operator error rate . Detailed presentation 

is made of the Kalman filter methodology. This is applied 

to both the performance and learning models. The observa-

bility and controllability problems are discussed. A general 

review of the least square error fitting and the impulse 

moment updating methods is also given. A comparison is made 

between the methods discussed here and the Bayes estimation 

technique. The data of operator errors in BWR's and PWR's 

are collected. The proper collapsing and smoothing of the 

data taking into account the plants availability is made. 

The effect of age, power and the type of the reactor on the 

operator error rate is studied. The problems with the 

available data are discussed and certain suggestions are 

made . A simple statistical code is developed to treat the 

problem. 

It is found that for Pressurized Water Reactors there 

is a direct correlation between operator error rate and 

facility size; the larger the PWR, the greater the number of 

errors committed. While for Boiling water Reactors, reactor 
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size does not seem to have any direct affect upon the 

operator error rate, though the overall error rate for 

BWR' s was larger and considerably more scattered with respect 

to facility age than similar effects for PWR's . Also, the 

assumption of constant parameter in the learning function 

for both BWR's and PWR's can not be satisfied, s o a time 

variant learning parameters are estimated for both BWR ' s 

and PWR's. 
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I. INTRODUCTION 

There is always the question, "Why bother to devise a 

model to fit the data? Why not just use the data?" If we 

are only interested in frequent historical events and in 

one set of results, this would be reasonable. If, on the 

other hand, we wish to forecast future performance from past 

data , not only is a model (however crude) essential for 

describing the trend, but also some effective predictive 

method , such as the Kalman filter, is essential. Further-

more, we must mathematically model the data, especially when 

the data available is scarce and when dealing with rela-

tively rare events. In other instances, we may wish to 

compare historically the performance of different operators, 

different groups of operators, different shifts, even 

similar functions under the control of different plant 

managers . Under those circumstances, a model is the most 

compact way of describing the trend. Vast quantities of 

data may thus be compressed into lists of parameters which 

may be easily interpreted. Where the scatter varies 

statistically from one case to another, statistical proper-

ties such as variance may also be used to advantage to 

condense the data. 

In the case of nuclear power plants, the data base 
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under consideration are the operator errors extr acted from 

Licensee Event Reports (LER's) . The data are random in 

nature , and in order to facilitate retrieval of useful 

information , predictive modeling is necessary. 

The nuclear i ndustry and power generation companies 

in specific , are very concerned about the safe and 

economical operation of nuclear power plants . The data 

base has shown that operator error directly effects these 

goals. Operator errors have caused plant shutdown , delays 

and reductions in e l ectrical generation, and in a few 

cases low level radiation release. The object then is to 

determine first , if an unacceptable level of operator 

errors now exists , a nd if so , the determination of 

methods that can reduce the error rate to an acceptable 

level. Data modeling techniques are extremely useful for 

this purpose. 

The reduction of operator errors to an acceptable 

level necessitates the pvoper design of nuclear power 

p lants from the viewpoint of Human-Factor-Engineering to 

ease the operation , and a proper choice of training 

periods . The comparison of estimated learning models 

for different designs can provide certain guidelines for 

better design , and the period of training can be chosen 

from the estimated model for some initial acceptable 
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number of operator errors. In system availability analysis 

in nuclear power plants , human reliability is one of the 

most important factors, so a model for human error is 

necessary for such an analysis. 

An attempt has been made in this thesis to construct 

a model for operator error rate for two different types of 

LWR's (PWR's and BWR's) with respect to power rate and 

time. If learning parameters are time variant , a time 

variant learning model parameter has been estimated. 

To construct an operator error rate model the followin g 

major steps have been taken: 

a. Smoothing the data extracted from LER's; 

b . Estimating a static model (time invariant model); 
and 

c. Estimating a dynamic model (time variant model). 

To smooth the data two methods have been introduced; window 

and integral smoothing . Only integral smoothing was used 

in this study. Least-square-method and Impulse-moment-

updating were used for static estimation and Kalman filter-

ing was used for dynamic estimation. 

The only reference found similar to this study for 

dynamic estimation of operator performance using Kalman 

filtering was written by H. Sriyananda and D. R. Towill in 

1974 (7). In this study only forward Kalman filter had been 

used and the main object was prediction of human operator 
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performance in industry, which can be considered as a 

primary study of human dynamic modeling. 

The operator error rate model and its theoretical 

justification is discussed in Chapter II. The static and 

dynamic estimation theory is explained in Chapter III 

and Chapter IV respectively. Data collection and 

smoothing techniques are discussed in Chapter V and 

Chapter VI. The explanation of (OPEXM-K) code and the 

results can be found in Chapter VII and Chapter VIII. 
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II. OPERATOR PERFORMANCE MODELS 

A. Exponential Model 

The human operator performance model may be repre-

sented by 

where 

ye = initial performance 

Ye + .Yf = final performance 

l = learning time constant. 

( 1) 

The model is illustrated in Figure 1. The first data point 

is considered at t = 0, and t = l implies that y = y + c 
0.63 yf. Therefore, if l = 6 weeks the y = ye + 0.63 yf 

is at the 7th week. Scatter from the original curve can 

be random (white noise), periodic, or indicate a false 

ceiling by virtue of a plateau effect (8). 

Determination of the model parameters is done through 

estimation of ye and yf by inspection of historical data. 

By changing the form of Equation (1) into a logarithmic 

form 

(2) 

which is a straight line. l can be estimated from the 
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Fig ure 1. The human performance exponential model 
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slope of the graph shown in Figure 2. 

The impulse response can be derived in the form, 

h (t) =~ dt ( 3) 

The Laplace transformation of h(t) gives the system transfer 

function, H(s), as, 

H(s) = J:h(t)e-st dt 

= l + ST 
( 4) 

Thus, the block diagram shown in Figure 3 can be used to 

describe the observed-improvement by a constant parameter 

exponential model of the type given by Equation (1). 

1. Theoretical justification 

The validity of the exponential model given in Equation 

(1) has been verified in practice by successful application 

to many case studies (7, 3 ). However, some theoretical 

justification is obtained by considering the speed-skill 

acquisition hypothesis of Crossman, in which the improvement 

curve is explained in terms of the operator's experimenting 

with alternate methods, rejec ting the less successful ones 

and retaining the better ones (3) . 

Crossman developed this argument further by considering 
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Figure 3 . Improvement exponential model 
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a task with r alternate methods with performance times 

stepped from 1 to r units. After assuming an initial equal 

probability for choosing any of the r methods, it is 

assumed that for task (n+l) , the probability of choosing 

method (i) is reduced by an amount proportional to the 

difference between the task time using method i and the 

average task time at task n multiplied by the probability 

of choosing method i for task n. 

2. Time conservative operator 

Using the interpretation given by Crossman (3), the 

exponential model holds everywhere except at t h e origin . 

The theory necessitates a second order transfer function 

for good matching , but may be approximated by an exponential 

model with time delay as shown in Figure 4 . The operator 

improvement rate in a selective process may be represented 

analytically by 

Ye' t < e ; 
(5) 

y = t-e 
Ye + yf[l-exp(~T-)] , t > e ; 

where e is the time at which the exponential curve starts 

to rise. The learning lage transfer function becomes 



y 
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TIME 

Crossman operator im~rovernent curve 
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H(s) = l+s-r ( 6) 

and the block diagram of the learning lag is also as shown 

in Figure 3. The details of the block diagram is illustrated 

in Figure 5, where 

n = old task number, 

n+l = new task number, 

i =method index, i = 1,2, ... ,r, 

t. =execution times, i = 1,2, ... ,r, 
1 

k = human operator selective constant, 

T(n) = old task average time, 

T(n+l) = new task average time, 

Pi (n) = old probability of using method i, 

Pi(n+l) =new probability of using method i, 

oP . (n) = change in probability of using method i. 
1 

3. Modification to permit time-varying parameters 

Assume that 

Ct= -1/-r, 

Thus, Equation (1) can be written in the differential 

form, 

~= dt ay + c , 

( 7) 

( 8) 

( 9) 
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Figure 5. Block diagram of Crossman human operator s e lective p r ocess 
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d a de 
dt = dt = o. (10) 

The changes in a and c during the estimation procedure can 

be covered by noise parameters which can be included in 

the formulation of the model. 

B. Linear Discrete Model 

The advantages of discretizing the exponential model 

are: 

1. in practice , data are available only at discrete 
intervals, and 

2. the computation for a discrete model is very much 
simpler than for a continuous model. 

The model is approximated by the discrete form 

( 11) 

(12) 

(13) 

These equations are nonlinear. To linearize Equation (11) 

we may expand the parameters about the estimated values 

o f Yt' a t and ct in a Taylor's series, that is 

where ( A) is used to designate estimated values. 

Equations (12), (13) and (14) can then be represented 
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in the matrix form 

y yD.t - ayD. t 

1 60] :i + 

1 c t 

0 (15) 

c t+D. t 0 0 t 

C. Instantaneous Error Rate Model 

1. Continuous learning model 

The instantaneous operator error rate may be repre-

sented by a model similar to the performance model which 

represents an increase in learning or a decrease in error 

rate . The dynamic learning model can take either of the 

two forms 

-t/T 
>.. = a(l+be ) 

di..= -(ab/T)e-t/T 
dt 

(16) 

(17) 

The differential form given in Equation (17) may be written 

in the form of Equation (9) by defining 

a = -1/T 

C = a/T 

Thus, 

(18) 

(19) 



:\ 
a{l+b) 

a 

16 

- - - - ----===-------------

t 

Figur e 6 . Learning mo de l 
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di. 
dt = CLA + c ( 20) 

and 

(21) 

These equations can be represented by the matrix form 

0 1 

0 0 (22) 

0 0 

where ( 0

) is used to indicate the time differential . 

2 . Linear discrete learning model 

Equation (20) may be rewritten in the discretized 

form 

( 23) 

then 

(24) 

and similarly 

(25) 

and 

(26) 

The nonlinear relationship of Equation (24) can be 

linearized by the same method as that used in Equations 

(11) and (14), thus, Equation (22) becomes 
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[

+6.tit 

= 0 

0 

(27) 1 

0 

The same procedure can be used to discre tize and linearize 

the form given by Equation (17) . 
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III . ESTIMATION TECHNIQUES 

Once a model is developed to describe a given phenomenon 

or behavior and is justified by using field data, then by 

means of different estimation techniques the parameters 

of the model can be determined. Modern estimation tech-

niques can be divided into two categories: 

1 . Static estimation 

2. Dynamic estimation 

The "least square error " fitting and "impulse moment" 

updating are considered static estimators and they will be 

discussed in this chapter. The Kalman filter which is 

considered as dynamic estimator , will be discussed in the 

next chapter. To use the model parameters in Kalman filter 

process as initial conditions, one can filter the data and 

estimates the time dependence of model parameters. By 

means of Kalman filter , the false ceiling or plateau can 

be detected . Kalman filter can be used as a predictor as 

well . 

A. Static Estimation Techniques 

1. Least square estimation 

The static least square method whic h is used as one 

of the a priori estimation, is based upon Taylor series 

expansion of learning or performance function at points of 
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estimation. Assuming z = ~ and the estimated value of (y) 
T 

at time (T.) as (y.), o ne can write 
1 1 

y. = f (y I yf I z I T.) 
1 c 1 

(28) 

with the first order expansion as 

Z, T.) + ~f 6Yf + ~fz 6z + ~ f 6y (29) 
1 oyf o oyc c 

in which 

at = 1 ay 
c 

(30) 

at = (1-exp(-T.Z)] ay f 1 
(31) 

at = yf T . exp( -T .Z) . 
1 1 

(32) 

Substituting Equations (30 , 31, and 32) in Equation (29) 

results in Equation (33) 

+ [T. · yf · exp(-T.Z) 6 z] 
1 r 1 

(33) 

where subscript " r " is the number of iterations. 

The estimation can be done in the sense of the 

least square method by minimizing the sum of error squared 

values as follows 
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N 
L {y.-y -y (1-exp(-T.Z )) - 6yc 

i=l i er fr i r 

Assuming (34) 

( 3 5) 

and substituting Equation (35) into Equation (34) the 

simplified error squared value can be obtained as; 
N 
L {6y.-6y -(1-exp(-t.Z )) 6yf 

i=l i c i r 

- - 2 - yf t.exp(-t.Z )6Z } . r i i r 
(36) 

To get the local minimum of the sum of errors squared, the 

fol lowing constraints have to be met; 

oE2 
0 o6yc = (37) 

oE2 
0 a6yf = (38) 

oE2 
0. o6Z = (39) 

The above constraints will result into the following set 

of simultaneous equations; 

( 4 0) 

(41) 

( 4 2) 
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where the parameters are defined as; 

N 
s1 = E t::,y. ( 4 3) 

i=l l. 

N 
s2 = E t::,y . [ 1-exp ( -T. Z ) ] (44) 

i=l i i r 

N 
s3 = Yfr E 6 y. x T. x exp (-TkZr) ( 4 5) 

. 1 l. 1 i= 

Rl = N ( 4 6) 

N 
R2 = E [ 1-exp ( -T . Z ) ] (47) 

i=l i r 

N 
R3 = Yfr E T. exp (-T. Z ) ( 4 8) 

i=l ]_ 1 r 

N 
Ql = E [ 1-exp (-T. z ) ] ( 4 9) 

i=l i r 

Q2 
N - 2 

= E [ 1-exp ( -T . z ) ] (SO) 
i=l 1 r 

N 
Q3 = Yfr E [1-exp(-T . Z )]T . exp(-T . Z ) ( 51) 

i=l 1 r 1 1 r 
N 

pl = Yfr E [T . exp(-T.Z )] (52) . . 1 l 1 r 1= 
N 

p2 = Yfr E [ 1-exp ( -T. Z ) ] T. exp (-T. Z ) (53) . 1 i r 1 l. r i= 

2 N - 2 p3 = Yfr E [T. exp ( -T . Z ) ] • (54) 
i=l l 1 r 
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The new iterated parameters can be obtained by 

Y = y + 6y c(r+l) er c (55) 

( 56) 

( 5 7) 

The number of necessary iteration can be determined by 

putting an accuracy condition on the estimated parameters. 

2 . Impulse moment updating 

Impulse moment updating was first introduced by 

Ba Hli (5) to estimate the coefficients of a transfer 

function . This method is modified to estimate the 

parameters of a learning curve model as follows ; 

Consider the exponential model for performance as 

given in Equation (1), if we define y-y as inspection c 
task , that is 

y-yc = yf[l- exp(-t/T)] 

then in the system shown in Figure 7 the input can be 

defined as effort. Unit step may be assumed as a 

( 1) 

normalized effort . The transfer function of the system 

or the Laplace transform of the impulse response is 
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E_F_F_o_R~T~ .... ~1~~-H-(-s)~__,~~Y_-Y_c=--~·~ 

Fig ure 7. Inspection task performance 
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H ( s) 
yf 

= l+TS (58) 

or 

H ( s) = f "h(t) exp(-st)dt (59) 
0 

where 

h ( t) 
yf -t/T -- e . T (60) 

Expanding Equation (58, 59) is the "s" domain, we get 

H(s) = J:h(t)dt - sJ:th(t)dt + ~~ J: t
2
h(t)dt + ... 

(61) 

H ( s) 2 3 = Yf (1- Ts + (TS) - (TS) + . .. ) 

00 

n n = £: yf(-1) ( TS) . 
n= O 

(62) 

Equating Equation (61) with Equation (62) term by 

term results in 

(63) 

00 

(64) 

By using the " Ba Hli " approach (5 ) , the left hand 

side of Equation (63) and Equation (64) can be evaluated 

as follows 
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( 65) 

where {f 0 } is the output sequence set of the system, that 

is 

{ f. } is the input sequence set to the system 
1. 

{f .} = {f.l' f . 2, f . 3, ... } 1. 1. 1. 1. 

(66) 

( 6 7) 

and {h }A denotes the area under the impulse response curve 

corresponding to the time sequence which is the unit 

response. Using Equation (65, 64, 63) the model parameters 

c an be estimated, that is 

and 

T = 

N 
E { h } . 

i=l Ai 

N 
2: t . {h}A 

i=l 1. i 
N 
2: {h } A . 

i=l 1. 

(68) 

(69) 

where ti is a weighted time between two adjacent points 

when data are sampled in different time intervals, which may 

be assumed as 

t. 
1. 

Another formula which is usually used instead of 

(70) 
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Equation ( 6 9) in the case of exponential models is 

1 N-1 ti+ti+l 
T = L: (yi+l-yi) yf i=O 2 (71) 

This formula resulted from impulse moment updating for 

special case of the learning performance of operator. 

A simpler approach than impulse moment updating can 

be used to derive Equation (71). The shaded area in Figure 

8, that is , 

shaded I: -t/T area = y -y (1-e )dt = YfT f f ( 7 2) 

N-1 l.\t. 
shaded area = L: ( y. + 1 -y. ) t. + l 

i=O l l l -2-

N-1 ti+ti+l 
= L: (yi+l-yi) 

i=O 2 ( 7 3) 

Equating Equation (72) with Equation (73) will be resulted 

in Equation (71) . 

Impulse moment updating may result in wrong esti-

mation especially if there is too much scattering at 

large intervals of time. 



u 
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Figure 8 . 
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Illustration of impulse moment updating 
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IV. KALMAN FILTER 

A. Definitions and Notations 

1. A "consistent" estimate of a system vector ~; 

that is x, is one which converges to the true values of 

~' as the number of measurements increases. 

2. A minimum variance (unbiased) estimate has the 

property that its error variance is less than or equal 

to that of any other unbiased estimate. 

3. A linear continuous dynamic system may be repre-

sented by the state vector and the observation vector 

x = F(t) x(t) + L(t) u(t) + G(t) w(t) (74) 

z = H(t) x(t) + v(t) ( 7 5) 

where w(t) is the system noise and v(t) is the observation 

noise. 

4. A linear discrete dynamic system is represented 

by the state vector and the observation vector 

( 7 .6) 

( 7 7) 

where wk and vk are the system and the observation noise 

vector respectively. 
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5 . The continuous controllability matrix is 

(78) 

6 . The discrete controllability matrix is 

( 79) 

7. The continuous observability matrix is 

(80) 

8 . The discrete observability matrix is 

(81) 

9 . The system error may be represented by 

x = x - x ( 8 2) 

where the tilde is used to designate estimation errors . 

10. The continuous system error covariance is 

p = E [ (x-E (x)) (x-E (x)) T] = E [x XT] (83) 

11. The discrete system error covariance is 

(84) 
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12. The white noise error covariance is 

E [ (G(t)~(t)) (G(T}~( T }) T) = G(t}Q(t}G(t} To (t-T} (85) 

where Q(t) is spectral density matrix. 

13. The white sequence noise error covariance is 

T 
T rkokrk 

E [ ( r kwk f ( r w ) J = { - p- p 0 

k = p 
(86) 

k -f p 

for equivalent continuous syst em of the discrete syst em 

o f vice versa, it can be shown 
t 

f 
k+l T T 

= <j>(tk+l ' T)G(T}Q(T)G(T} <j>(tk+l'T) dT 
t 

k (87) 

14. The continuous observation noise covariance is 

T R = E [ (~-H~) (!- Hx) ] ( 8 8) 

15 . The discrete observation noise covariance is 

(89) 

16 . "A" is positive definite if 

T z Az > 0 for all ~ -f 0 ( 9 0) 

and "A" is positive-semi-definite if 

T z Az > 0 for all z ~ O ( 91) 
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For example, Q as below is positive definite 

1 0 
Q = (92) 

0 0 

and R is positive semi-definite 

1 0 
R = (93) 

0 1 

17. The notations (-) and (+) are used to denote 

the time immediately before and immediately after a dis-

crete measurement, respectively. 

B. Discrete Kalman Filtering 

To use Kalman filter to study operator learning process, 

we are more interested in discrete form, because of in-

herent recursive characteristics of discrete. The Kalman 

filter would be easier to use computer programming con-

sidering a discrete system represented by 

(94) 

(95) 

The priori estimate of the system at time tk is 

denoted ~k(-). We seek an update estimate xk(+) based on 

the use of the measurement ~k; that is 

(96) 



33 

where Kk and Kk are time variant parameters , which can be 

found later on . By definition, 

( 9 7) 

(98) 

substituting Equation (95), Equation (97) and Equation (98) 

into Equation (96), we get 

( 9 9) 

To have unbiased estimates, the following conditions are 

required for white noise sequences 

E [ ] = 0 -k (100) 

f or unbiased estimate , 

( 101) 

( 10 2) 

By using the above conditions the expected value of Kk is 

( 10 3) 

Thus , the estimator take the form 

(104) 
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or 

(105) 

and 

(106) 

1. Error covariance update 

The expression for the change in the error covariance 

matrix, Pk' when a measurement is employed can be derived 

as follows, from Equation (107) 

( 10 7) 

Substituting Equation (106) into Equation (107) 

( 10 8) 

By definition 

(109) 

( 110) 

and, as a result of measurement errors being uncorrelated 

{111) 
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Thus, 

( 112) 

2 . Optimum choice of the Kalman gain 

The parameter Kk shall be chosen such that a weighted 

scalar sum of the diagonal elements of the error covariance 

matrix Pk( +) is minimized thus, for the cost function we 

choose 

where " S " is positive- semi-definite matrix. The optimal 

estimate is independent of "S", hence, we may as well 

choose S = I, yielding 

(114) 

This is equivalent to minimize the length of the esti -

mation error vector . To find t he value of Kk which pro-

vides a minimum , it is necessary to take the partial 

derivative of Jk with respect to Kk and equate it to zero. 

Use is made of the relation for the partial derivative of 

the trace of the product of two matrices A and B (with B 

symmetric). Thus , 

~A(trace(A BAT)) = 2 AB ( 115) 
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and if S = I, then 

When 

then 

which is the Kalman gain. Thus, 

= [I-K H ]P (-) k k k 

(116) 

(117) 

( 118) 

(119) 

The extrapolation of the above quantities between measure-

ments is, 

~ (-) = -k ( 120) 

(121) 

A timing diagram for linear discrete Kalman filter is 

shown in Figure 9 and a summary of the parameters involved 

is given in Table 1. 
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Hk-1,Rk-l Hk , Rk 

<Pk-1, Qk- 1 " " x ( - ) x (+) ~k (-) 4 ( +) Pk, Qk - k-1 -k- 1 > 
pk- 1 ( - ) pk- 1 ( +) pk (-) pk ( +) 

.... 
TIME 

Fi<;; ure 9 . Tining diagram for linear discrete Kalman 
filter (7) 

> 
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Table 1 . Summary of the Kalman filter equations 

System model 

Measurement model 

Initial conditions 

Other assumptions 

State estimate 
extrapolation 

Error covariance 
extrapolation 

State estimate update 

Error covariance 
update 

Kalman gain matrix 

E [x(O) l = g_0 

T E[wkv. ] = 0 for all j,k 
- J 

_8.k(+) 

= p (+)H TR -1 
k k k 

3 . A simple form of the Kalman gain 

If we get the inverse of Pk(+) we will have 

Pk(+) - 1 = 

(120) 

(121) 

(104) 

( 11 7) 

( 12 5) 

( 122) 



thus, 

or 

+ R ]-1 
k 
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C. Propagation of Errors and Optimal 
Propagation 

Consider the problem of estimating the state of a 

dynamic system in which the state vector x is shown at 

some time tk with an uncertainty expressed by the error 

covariance matrix 

The error in the estimate at tk+l is unbiased if 

and the expected value of the error is 

( 123) 

(124a) 

( 12 5) 

(104) 

( 12 6) 

(127) 
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By definition, 

(128) 

Thus , 

(129) 

Assuming a consequence of the fact that rk~k is white 

sequence 

(130) 

Thus 

(131) 

Optimal prediction can be thought of, quite simply, 

in terms of optimal filtering in the absence of measure-

ment errors (thus , R-l ~ 0 and hence K ~ O). Therefore, 

if measurements are unavailable beyond some time, t 0 , the 

optimal of ~(t) for t ~ t 0 given x(t0 ) must be obtained from 

(132) 

and 

x(t) = F(t)x(t) + L(t)u(t) (continuous system). (133) 
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The corresponding equation for uncertainty in the 

optimal predictions, given P(t0), are 

for single time stage in discrete system or 

dP = FP + PFT + GQGT dt 

for continuous system. 

D. Optimal Filter Smoothing 

(135) 

An optimal smoother can be thought of as a suitable 

combination of two optimal filters, Figure 10. One of the 

filters, called a "forward filter'', operates on all the 

data before time t and produces the estimate xf(t); 

the other filter, called a "backward filter'', operates on 

all the data after time t and produces the estimate ~b(t). 

Together these two filters utilize all the available in-

formation. 

0 t T 

~~~~~~~~~-+ 

forward filter backward filter 

Figure 10. Forward and backward filters 
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Three types of optimal smoothing are possible 

1. Fixed .internal smoothing: the initial and final 

times (O to T) are fixed and the estimate ~(t/T) is sought 

as T increases . 

2. Fixed point smoothing: ~(t/T) is sought as T 

increases, with t considered constant. 

3. Fixed- lag smoothing: ~(T-~/T) is sought as T 

increases, with ~ held fixed , 

Assuming the estimate of ~ is a linear combination of 

backward and forward estimates, thus 

( 136) 

and the estimation error is 

(137) 

For unbiased filtering errors , ~f (t) and ~b(t) , we 

wish to obtain as unbiased smoothing error, x(t/T), that is 

E[x(t/T)) = 0. (138) 

Thus , 

A ' = I - A (139) 

Therefore, 

x(t/T) = ~f(t) + (I-A)xb(t). (140) 

Computing the smoother error covariance , we find 
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P(t/T) = E[x(t/T)x(t/T)T] = 

and optimization of the smoother will give " A'' , thus 

aP(t/T) = 0 (142) a A 

or 

2APf{t) + 2(I-A)Pb(t) (-I) = O. ( 14 3) 

Then A is given by 

(144) 

or 

I-A (145) 

Also, 

P ( t/T) 

(146) 

By systematically combining factors in each of the 

two right-side terms of this equation, we arrive at a far 

more compact result, that is 



Thus , 

or 

P(t/ T) 
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= p (P +P )-l(P -l+P -1)-1 
b g b f b 

-1 -1 -1 + Pf(Pf+Pb) (Pf +Pb ) 

(P(t/ T))-l 

Consequently , 

x ( t/T) 

or 

x(t/T) 

E. The Choice of Initial Covariances' 
Values 

(147) 

(148) 

(149) 

(150) 

(151) 

(152) 

The steps which should be considered in applying the 

Kalman filter into a problem are: 

1. to construct a dynamic system model for the 
problem, 

2. to calculate the initial values of the system 
covariance matrix, and 
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3. to find the behavior of the system covariance 
matrix with respect to time. 

A dynamic system model for both cases of discrete and 

continuous situations was derived in Chapter II (pages 15 

and 16) . To calculate the initial values of the system 

covariance matrix , the standard deviation of the data 

from the static model should be estimated. Since the 

model in hand which is represented by Equation (15) for 

the discrete case or Equation (22) for the continuous 

case is neither controllable nor observable (Appendix A), 

it would not be possible to determine the standard devia-

tion for each element of covariance matrix. The lack of 

observable data for a and c makes the calculation of the 

initial values of those elements of the system covariance 

matrix which are related to the standard deviation of 

a and c , almost impossible . The l ack of controllability 

of the system may cause unstability of the parameters a 

and c. 

To overcome the above complications which are due to 

the poor model , certain assumptions may be made. The 

unstability of the Kalman filter can be prevented by 

proper choice of initial covariance matrices ' elements . 

To find the proper initial values , one has to solve the 

characteristic differential equation for a system co-

variance matrix of the form 
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( 15 3) 

where Q is a constant symmetric matrix . The time dependence 

of the system noise covariance matrix can be covered by 

suitable choice of o b servation noise covariance matrix . 

To simplify the problem one can assume very small values of 

Q's element with respect to the values of P's elements. 

Therefore; 

Q(j) << P(i , j) 

Q(i , J) = 0 

if i = J 

if i f j . 

From Equation (27) it can be shown that, 

G = I (identity matrix) 

To solve Equation (153) assuming a diagonal initial 

(154) 

(155) 

(156) 

system covariance matrix , the most important terms from 

the viewpoint of stability can be found for large va l ue of 

t as follows : 

P(l,l) ( 15 7) 

P(l,2) = P(2,l) ( 158) 
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P(l,3) P(3 , l) -033 
t (159) = = a 

P(2 , 2) = 0 22t + p22(0) (160) 

P(2 , 3) = P(3 , 2) = 0 (161) 

P(3 , 3) = P33 (0) + 033t . ( 162) 

To choose the proper initial values to stabilize the Kalman 

filter; considering that we are interested in less devia-

tion, the following relations between the elements of "P" 

and "O" can be constructed 

033 
pll (O) 

2a 2 1 = . 
T 3 max 

( 16 3) 

0 22 = 
p22 (O) 

- a T max 
(164) 

0 11 = 033 ( 165) 

where T is the maximum time under consideration . The max 
initial values used in this study are 

2 2 0 0 s Yo 

Po = 0 - as 2 0 ( 16 6) 

0 0 2 2 2 
(a s Yo ) 
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2 2 p 11 ( 0 ) 
0 0 l 3 a 

Tmax 

0 p22(0) 
Q = - a 0 (167) T max 

0 0 2 2 pll(O) 
3 a 

Tmax 

and 

R = s292 (168) 

where R is the observation noise covariance and 2 is the s 

standard deviation of the data from static model . However, 

the chosen values yielded satisfactory estimates. 
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V. OPERATOR ERROR DATA COLLECTION 

A. Definition of Operators Under Study 

Data of operator error were extracted from "LER" 

by the Iowa State University, Engineering Research Insti-

tute Nuclear Safety Research Group (ERI-NSRG) . The data 

were only extracted for those operators classified as 

follows: 

Senior control operator: 

The duties of a senior control operator are to 

instruct , train and assign work to personnel engaged in 

controlling the operation of the reactor-generator unit 

and associated equipments. 

Control operator: 

Control operators are responsible for the actual 

control and operation of the reactor-turbine-generator 

unit and associated equipments . 

Equipment operators: 

Equipment operators are responsible for the operation 

and inspection of individual equipment throughout the plant 

(assisting the control room operators), and the other 

operations of radwaste system. 

Other operation personnel were not included in this 

study. 
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B. Data Collapsing for BWR's 

Data related to operator errors for 24 BWR's power 

plants which are listed in Table 2 were available from the 

year 1972 up to 1978. The calculated availability is 

given in Table 3 . Under the assumption that the avail-

ability of a plant in a month of a year is the same as 

the availability of that plant in that year, the data 

were collapsed for each 2 month of operation. The equiva-

lent number of operator errors versus the age of equiva-

lent plant is given in Table 4. However, the assumption 

of uniform availability distribution through a year is not 

rigorous, but is satisfactory due to lack of complete in-

formation about power plants availability. 

The effect of the power level on operator errors can 

be estimated by considering only those plants with the 

same power. The datawerecollapsed for seven BWR's with 

power levels between (750 to 1000 MWe), and seven BWR's 

with power levels between (500 to 750 MWe), the list of 

power plants for each case and the collapsed data are 

given in Tables 5 through 8. 
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Table 2. The list of BWR ' s power plants 

Name of Plants 

Peach Bottom 3 
Pilgrim ..!. 

Quad Cities 2 
Quad Cities 1 
Vermont Yankee 1 
Edwin Hatch 1 
Humboldt Bay 
Lacrosse 
Millstone 1 
Monticello 1 
Nine Mile Point 1 
Oyster Creek 1 
Peach Bottom 2 
Big Rock Point 
Brown ' s Ferry 2 
Dresden 1 
Brown's Ferry 1 
Brown's Ferry 3 
Brunswick 1 
Brunswick 2 
Cooper ..!_ 
Dresden 2 
Dresden 3 
Duane Arnold 
Fitzpatrick 1 

Code 

126B 
136B 
143B 
142B 
180B 

58B 
81B 
92B 

104B 
109B 
llOB 
119B 
125B 
016B 
024B 
054B 
023B 

25B 
26B 
27B 
43B 
55B 
56B 
57B 
62B 



Table 3. The availability of BWR' s from 1972 to 1977 

Age 
Initial Commercial Availability at: Name at Code 

Criticality Criticality 72 73 74 75 76 77 72 

Peach Bottom 3 126B 8 , 7 , 74 12 , 23,74 100.0 87 . 2 80.1 62.21 

Pilgrim _! 136B 6,16,72 12,0,72 100 .0 74.4 76 . 8 89.2 79.0 61.4 

Quad cities 2 143B 4 , 26 , 72 3 ,10 , 73 65.0 87.7 84.9 52.3 83 . 8 87 . 9 

Quad cit ies 1 142B 11,18,71 2 ,18,73 79.3 87 . 9 64.6 86.9 72 . 9 80.2 

Vermont Yankee 1 180B 3,24 , 72 10,30,72 100. 0 74 . 4 76 . 8 89.2 79.0 85 .1 

Edwin I Hatch 1 58B 9 ,12 , 74 1 2 , 31 , 75 3.9 76.2 88.0 66 . 3 
V1 

Humboldt Bay 3 86.8 81B 2 ,16 , 63 8 , 0 , 63 83.0 89 . 3 84.4 84.7 46.8 0 t-' 

Lacrosse 17.0 92B 7,11,67 9, 1 3 , 69 70.6 58. 0 89.4 71. 7 49 . 8 33.7 

Millstone 1 10.0 104B 11,26,70 3 , 0 , 71 60.0 46.4 80.9 78.1 83.5 89 . 6 

Monticello 3.75 109B 12,10,70 6 ,30,71 83 . 9 71. 3 79.6 73.6 93.7 79.9 

Nine Mile Point 1 16.0 H OB 9 , 5 ,69 12,0,69 72 . 0 80.0 72.9 77 .8 94 . 4 55 .1 

Oyster Creek _! 20 . 5 ll9B 5,3,69 12 , 0 , 69 82 . 4 74 . 0 72 . 2 75.5 80 . 0 70 .l 

Peack Bottom 2 1 25B 9 ,16 ,73 7,5,74 92 . 7 77 .4 70 . 0 55 . 2 

Big Rock Point 76.0 16B 9,27 , 62 3,29 , 63 81.8 80 .5 70.8 60 . 3 51.4 73.4 

Brown's Ferry 2 24B 7 , 20 , 74 3 ,1, 75 95.2 72.6 100.0 79 . 5 



Table 3 (Continued) 

Age 
Initial Corrunercial A vai labil i t y at: Name at Code 

72 Criticality Criticality 72 73 74 75 76 77 

Dresden 1 10 4 54B 11,5, 59 7 , 4 , 60 79.9 76.6 36 . 6 58 . 6 85.8 66 . 9 

Brown ' s Ferry 1 23B 8 , 17 , 73 8 , 1 , 74 88.2 94.3 22 .1 62 . 9 66 . 4 

Brown ' s Ferry 3 25B 8 , 8 , 76 3 ,1, 77 88 . 5 

Brunswick 1 26B 11 , 8 , 76 3,18,77 56 . 7 

Brunswick 2 27B 3 , 20 , 75 10,3 , 75 95 . 5 59 . 9 55 . 7 

Cooper .!_ 43B 2 , 21 , 74 7 ,1, 74 61.2 85 . 4 76 . 9 71.9 
Ul 
N 

Dresden 2 NA 558 1,7, 70 6 ,19,72 64.6 95 . 0 66 . 8 57 . 8 78 . 3 71. 2 

Dresden 3 2. 56B 1,31,71 10 ,16 , 71 92.7 75 . 5 68.5 53 . 0 83.8 76 . 6 

Duane Arnold 578 3 , 23,74 2,1,75 64.0 83.0 79 . 7 78.9 

Fitzpatrick 1 62B 10,17,74 7 , 28 ,75 74 . 0 74.3 68 . 4 
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Table 4. The average number of operator error s versu s age 
for BWR ' s power plants 

Age of Average number Age of Average number 
the of operator the of operator 
power error power error 
plant per 2 months plant per 2 months 

0 1. s 80 0.0 
2 .69 82 o.o 
4 .29 84 . s 
6 .S2 86 o.o 
8 .776 88 o.o 

10 . 6S6 90 o. o 
12 . 83 92 1. 0 
14 .81 94 . s 
16 . 6S 96 0.0 
18 . 77 98 1. 
20 .8S 100 . 33 
22 .39 102 0 
24 . 2 104 . 33 
26 .21S 106 o. o 
28 .416 108 0.0 
30 . 34 110 1. 0 
32 . 4 112 o. o 
34 .1 114 o.o 
36 . 2 116 o. o 
38 .18 118 l.S 
40 0 . 0 120 1. 
42 .02S 122 . s 
44 .114 124 o.o 
46 .28S 126 o. o 
48 .28S 128 0 . 0 so . s 130 1. 
S2 . OS 132 0 . 0 
S4 .167 134 0 . 0 
S6 . 143 136 o. o 
S8 1.3 138 1 . 
60 .83 140 0 . 0 
62 . s 142 o.o 
64 .33 144 o.o 
66 o.o 
68 0.0 
70 1. 
72 0.0 
74 o. o 
76 . s 
78 o.o 



54 

Table 5 . The name and code of the BWR's with the power 
levels f rom 750 to 1000 MWe 

Name of BWR's power 
plants (750 <P<l000 MWe) 

Dre sden 2 

Dresden 3 

Fitzpatrick 

Hatch 1 

Peack Bottom 2 

Quad Cities 1 

Quad Cities 2 

Code 

55B 

56B 

62B 

58B 

125B 

142B 

143B 

Table 6 . The name and code of the BWR's with the power levels 
from 500 to 750 MWe 

Name of BWR's power plants 
with (500 <P <750 MWe) 

Duane Arnold 

Mill stone 1 

Monticello 

Nine Mile Point 1 

Oyster Creek 1 

Pilgrim 1 

Vermont Yankee 1 

Code 

57B 

104B 

109B 

llOB 

119B 

136B 

180B 
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Table 7. The collapsed data for operator errors in BWR's 
with the power levels from 750 to 1000 MWe 

Age of plant 
in month 

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 
52 
54 
56 
58 

Average number 
of operator 
failure per 

2 month 

0.8 
0.38 
0.24 
0.56 
0.975 
0.38 
0.5 
0.87 
1.56 
0.56 
1.16 
0.97 
0.54 
0.17 
0.0 
0.43 
0 . 175 
0.5 
0.25 
0.25 
0.0 
0.25 
0.0 
o. o 
0.0 
0.5 
1.0 
1.0 
0.0 
0.0 
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Table 8 . The collapsed data for operator errors in BWR ' s 
with the power levels from 500 to 750 MWe 

Age of plant Average number of 
in month operator error in 

2 months 

0 4 . 0 
2 1.17 
4 0 . 38 
6 o.o 
8 0 . 55 

10 0 . 72 
12 0.24 
14 0 . 4 
16 0.34 
18 0 . 34 
20 0 . 63 
22 0.743 
24 0.143 
26 0 . 285 
28 0 . 43 
30 0.53 
32 0.53 
34 0 . 6 
36 0.17 
38 o. o 
40 0.34 
42 0.17 
44 0 . 0 
46 0 . 04 
48 0 . 2 
50 0.25 
52 0.0 
54 0 . 15 
56 0.36 
58 0.25 
60 o.o 
62 o.o 
64 0.0 
66 o. o 
68 o. o 
70 0.0 
72 0.0 
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C. Data Collapsing for PWR ' s 

Data related to operator errors for 30 PWR's power 

plants which are listed in Table 9 , are available from the 

year 1972 up to 1978. The ca l culated availability of PWR's 

power plants are given in Table 10. The availability was 

considered to be uniformly distributed throughout the year . 

The collapsed data of the average number of operator failure 

are given in Table 11. 

To study the effect of power , seven PWR's which are given 

in Table 12 with the power between 400 to 600 MWe, and 10 

PWR ' s which are given in Table 13 with the power between 800 

to 12 00 MWe, were collapsed . The collapsed data of the two 

cases are given in Tables 14 and 15, respectively . 

D. Problems Related to Data 

The data calcul ated accordin g to the procedure ex-

plained in Chapter V, pages 49-57 for two types of LWR 's 

do not fit the exponential learning curve . The reasons for 

lack of fitness may be explained as follows : 

1 . Dif ferent operators under different management 

working with different power plants which are 

constructed by different vendors, can make different 

number of errors. 
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Table 9. The list of PWR ' s power plants the data of which 
were collapsed 

Name of power Code Name of power Code plant plant 

San Onofre l lSOP Turkey Point 4 177P 

Haddam Neck l 73P Zion l 193P 

H. B. Robinson 2 78P Zion 2 194P 

Robert E . Ginna 147P Crystal River 3 44P 

Indian Point 2 83P Arkansas l 007P 

Kewanee 89P Calvert Cliffs l 32P 

Main Yankee 97P Ft. Calhoun 1 64P 

Millstone 2 lOSP Yankee- Rowe 192P 

Oconee l ll6P Calvert Cliffs 2 33P 

Oconee 2 117P 

Salem 1 148P 

Surry 1 168P 

Surry 2 169P 

Three Mile Island 1 174P 

Trojan 1 178P 

Oconee 3 118P 

Palisades 1 120P 

Point Beach 2 139P 

Prairie Island 1 140P 

Prairie Island 2 141P 

Rancho SeCo 144P 



Table 10. The a ge of PWR ' s power plants at 1972 and their availabilities from 1972 to 19 77 

Code Commercial Age Availabilit}'. at: Na.me and at 72 Start- up in year 72 73 74 75 76 77 Type 

Arkansas l 7P 12,19,74 68 . 3 80.8 59 . 9 76.8 

Calvert Cliffs 1 32P 5 , 8 , 75 90 . 4 96 .1 72 .1 

Cook 1 48P 8 , 27 , 75 74.0 74.3 76 . l 

Crystal River 3 44P 3 ,1 3 , 77 83 . 8 

Davis Besse 1 45P 11,20 , 77 81. 2 

Farely .!_ 87P 12,1,77 68.8 U1 
l.O 

Ft. Calhoun 1 64P 9 , 26 , 73 92.0 86.5 70.4 71.6 79 . 4 

Ginna 147P 7 ,1, 70 1.1 72 . 0 95 . 3 62.9 81.5 69.0 85 . 5 

Ha darn Neck l 73P 1,1,68 3.55 90.8 58.1 96.2 88 . 7 87.3 83 . 9 

Indian Point 2 83P 8 , 1,73 52.8 62.6 77.6 37.0 75 . 7 

Indian Point 3 84P 8 , 30 ,76 78.8 74 . 9 

Kewaunee 89P 6 ,1 ,74 78 . 6 90 . 8 84.9 79.9 

Main Yankee 97P 1 2,28,72 89 . 4 69 . 8 82 . 8 95 . 6 82 . 2 

Millstone 2 105P 1 2 , 26 , 75 79 . 9 95.4 65 . 7 



Table 1 0 (Continued) 

Code Commerc i a l Age Availability at: Name and at 72 72 77 Type Start-up in year 73 74 75 76 

Oconee 1 116P 7 , 1 5 ,73 92 . 0 62 .2 79 . 6 60 . 8 62 . 3 

Oconee 2 117P 9 , 9 , 74 71.1 75 . 5 64 . 5 60.7 

Oconee 3 118P 1 2 ,16 , 74 47 .9 79 . 5 71. 2 74 . 8 

Palisades 120P 1 2 ,31,71 61.1 47 . 6 7 .6 66.8 59.0 91. 4 

Point Beach l 138P 12,21,70 0.937 74 . 5 78 . 7 85 . 9 72 . 4 84 . 8 88 . 6 

Point Beach 2 139P 10,1,72 14 . 6 9 4 . 8 82 . 7 96 . 8 91. 8 86.0 O'I 
0 

Prairie I s land l 140P 12 ,16 , 73 48 . 9 89 . 8 79 . 5 85.l 

Prairie I s land 2 141P 1 2 , 21,74 97 . 3 78 . 5 89 . 2 

Ranc ho SeCo 144P 4,17,75 48 . 6 57 . 8 77 .l 

Robinson 2 78P 3 , 7 ,71 0.384 88 . 7 79 . l 86 . 2 74.5 87.5 85 . 2 

Sal em l 1 48P 6 , 30 , 77 42 . 9 

San Onofre l 1 50P 1 , 1,68 3 . 0 80.2 63 . 7 94 .9 88 .l 71. 2 63 . 7 

Surry l 168P 12,22 , 72 49 . 2 79 . l 59 . 2 65 . 9 69 . 0 76.l 

Surry ±._ 169P 5 , 1 , 73 98.9 62 .7 8 1. 3 53 .4 68.3 



Table 10 (Continued) 

Code 
Commercial 

Age Availability at: Name and at 72 Start-up 72 73 74 75 76 77 Type in year 

Three Mile I s land 1 174P 9,2,74 88 . 9 84 . 8 73 .4 8 0 .9 

Tro jan 178P 5 , 20 , 76 92 . 6 

Turkey Point 3 176P 1 2 ,14,74 73 .3 82 . 8 77.7 80 . 4 

Turkey Point 4 177P 9 , 7 ,73 83.7 76.7 73 . 4 69 .4 63. 7 

Yankee Rowe 192P 7 ,1, 61 8.5 55.2 72 . 7 72 . 0 84.4 91. 2 73.9 

Zion 1 19 3P 12,31,73 75 . 2 59.0 80.0 64 .2 74 . 2 
O'I 

Zion 2 194P 9,17 , 74 36.2 88 . 9 63 . 3 75 . 9 
....... 
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Table 11. The age of PWR's power plants versus the average 
number of operator errors per two months 

Age of Average Age of Average 
power number power number 
plant of failures plant of failures 
in months in months in months in 2 months 

0 1.24 80 . 0 
2 .92 82 . 0 
4 . 5 84 . 0 
6 .627 86 . 0 
8 . 49 88 . 0 

10 .54 90 . 0 
12 .61 92 .o 
14 .24 94 . 0 
16 .53 96 . 0 
18 .47 98 .o 
20 . 68 100 . 0 
22 .27 102 . 5 
24 .267 104 . 0 
26 . 37 106 .o 
28 . 3 108 .o 
30 . 5 110 . 0 
32 .31 112 . 0 
34 . 31 114 . 0 
36 . 46 116 . 0 
38 .167 118 . 0 
40 . 22 120 . 0 
42 . 1 122 . 0 
44 . 0 124 . 0 
46 . 0 126 . 0 
48 . 0 128 . 0 
50 . 11 130 . 0 
52 . 0 132 . 0 
54 .285 134 . 0 
56 .143 136 . 0 
58 . 0 138 . 0 
60 . 0 140 . 0 
62 . 0 142 . 0 
64 . 167 144 . 0 
66 . 0 146 . 0 
68 . 0 148 1. 0 
70 . 0 150 . 0 
72 . 0 152 . 0 
74 . 0 154 . 0 
76 . 0 
78 . 33 
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Table 12. The names, power rates, and the codes of PWR's 
with power from 400 to 600 MWe 

Name 

Ft. Calhoun 

Kewaunee 

Point Beach 1 

Point Beach 2 

Prairie Island 1 

San Onofre 1 

Ginna 

Electrical 
power rate 

MWe 

457 

535 

497 

497 

530 

430 

490 

Code 

64P 

89P 

138P 

139P 

140P 

150P 

64P 

Table 13. The names, power rates, and the codes of PWR's 
with power levels from 800 to 1200 MWe 

Electrical 
Name power rate Code 

MWe 

Oconee 1 887 116P 

Oconee 2 887 117P 

Oconee 3 887 118P 

Salem 1 1090 148P 

Palisades 1 805 120P 

Millstone 2 830 105P 

Zion 1 1040 193P 

Zion 2 1040 194P 

Surry 1 822 168P 

Surry 2 822 169P 
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Table 14 . The average number of operator errors in 2 months 
for PWR's with power levels from 4- 0 to 600 MWe 

Age of PWR ' s 
power plant with 
power rates 
(400 <P <600 MWe) 

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
so 
S2 
S4 
S6 
S8 
60 
62 
64 
66 
68 
70 
72 
74 
76 

Average no. 
of operator 
errors in 

2 months 
. s 
. 7S 
. 2S 
. S7S 
. 17S 
. 0 
. 24 
. 3 
.SS 
. 28 
.23 
• 0 
. 33 
. 66 
. s 
.66 
.0 
• 4 
• 8 
. 2 
• 0 
• 0 
• 0 
• 0 
. 0 
.2S 
• 0 
. 0 
• 0 
. 0 
. 0 
. 0 
. s 
. 0 
• 0 
• 0 
. 0 
. 0 
• 0 

Age of PWR ' s 
power plant with 

power rates 
(400 <P <600 MWe) 

78 
80 
82 
84 
86 
88 
90 

Average no . 
of operator 
errors in 

2 months 
. 0 
• 0 
. 0 
. 0 
• 0 
• 0 
. 0 
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Table 15. The average number of operator errors in 2 
months for PWR's with power levels from 800 to 
1200 MWe 

Age of PWR's power plants 
with power rates 

(800 <P <l200 MWe) 

0 
2 

4 

6 

8 

10 
12 
14 
16 
18 
20 
22 
24 

26 
28 
30 
32 
34 

36 
38 

40 

42 

44 
46 

Average number of 
operator failures 

in 2 months 

l. 4 
l. 0 

• 7 
l. 0 

.66 

l. 0 

.95 

. 5 
• 6 

. 5 

. 5 

. 5 

.48 

. 3 

. 28 

. 72 

.72 
• 34 

• 2 

. 26 
o.o 
o.o 
0.0 
o.o 
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2. Random delay in reporting the data, e . g ., six 

months period report or the data which are re-

ported one month or so after the event occurrence , 

can accumulate in a point and make false peak 

(the date of events is not given in LER) . 

3 . The number of plants , the data of which were 

collapsed, decreases by age . For the ages above 

9 years in PWR's and 10.5 years in BWR's the 

data is only available for one power plant . This 

inherent characteristic of the data available 

makes the number of collapsed data variable by 

age , which along with (1) and (2) can cause lots 

of fluctuation. 

4. The availability calculated is for one year 

while the availability for each month is not 

known. 

All the problems mentioned above can cause too much 

scattering which may completely cover the learning charac-

teristic of the data. The only persuading factor among so 

many problems was the decreasing trend of the average number 

of operator errors by increasing the age of the power plants , 

which strongly supported the idea of learning of operators . 

To estimate learning model parameters special treatment 

of the data is required. 
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VI. SPECIAL SMOOTHING 

A. Window Smoothing 

One of the simple smoothing methods which can be used 

in presence of scattered data is the ''window smoothing" . 

If the slope of two adjacent points of the data is very 

sharp, then by this method one can decrease this slope. The 

shape of the window and the block diagram of window smoothing 

method are given in Figures 11 and 12,respectively. To use 

this method let us consider the following definitions: 

8 = the discrete input time interval 

T = the time delay for window sampling 

W = the width of the window 

TT = the total period of time, for which data is 
available. 

Those parameters are related by the following relationships 

T = K ' 8 

W = KT 

TT = mT 

where K' , Kand mare some arbitrary integers. 

It would be easy to derive the output-input relation 

from the block diagram given in Figure 10, that is, 

iK'+K 
E f (n8 ) 

n=iK ' 
(169) 

The task is how to determine Kand K' . To obtain the 
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w (t) 

Time 
mT mT+W 

Figure 11. The shape of the window starting at mT with 
a width W 



ZERO DELAY 

WINDOW-GENERATOR 

UNIT DELAY 

WINDOW-GENERATOR 

2- UNIT DELAY 

WINDOW-GENERATOR 

m-UNIT DELAY 

WINDOW-GENERATOR 

• 

69 

AVERAGING 
PROCESSOR 

AVERAGING 
PROCESSOR 

AVERAGING 
PROCESSOR 

AVERAGING 
PROCESSOR 

FiCJur e 1 2 . The b l ock diagram of "window smooth ing " 
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maximum number of smoothed data the value of K' can be chosen 

as uni t y . To calculate K, we need to know the smoothing 

factor which can be determined by natural slope of t h e 

data itself , e . g ., one can make the limitation that the 

slope of two adjacent points shouldn ' t exceed a certain 

limit, or the difference between the two slopes of three 

adjacent points shouldn ' t exceed a certain limit . 

However , by constructing a proper limitation the K 

value for each point can h e calculated. In modern data 

smoothing , usually the value of K' is chosen as unity and 

the value of K is chosen as 3 and it is constant for all 

points. The process of forward and backward smoothing is 

possible. More study is needed for this type of smoothing 

and a computer code should be written which is beyond t he 

scope of this study . 

B. Integral Smoothing 

The integral smoothing is used in this study to smooth 

the data because of simplicity . The idea behind it , is to 

eliminate the sharp slopes of a curve by integration . 

Considering a simple learning process as defined before in 

Equation (16) . 

A = a(l+be- t/T) . (16) 
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By an integration process we define y . as 
1 

( 170) 

where " t. " is the l ength of time from " O" to t he occurrence 
1 

of the " ith" point of data . 

- t . / T 
y . = at . - abTe 1 + abT 

1 1 

or z. can be defined as 
1 

-t./T 
z . = y.-at. = abT(l- e 1 

) • 
1 1 1 

( 171) 

(172) 

The function z. has the same form as the performance func-
1 

tion defined in Equation (1) with the differenc e t hat Ye 

is equa l to zero. 

The problem with this type of smoothing is t hat, 

the value of "a" should be at least roughly estimated . Then 

a set of new data can be calculated as follows : 

z = m 

m 
E A.t.+1-t. - at for all m = l , n . . 1 1 1 1 m 

1= 
( 173) 

The new data has a form of the performance model with initial 

performance equal to zero . The static and dynamic estimation 

process can be used for the new set of data. 

In the statistical code developed in this s tudy, the 

iteration on the value of "a" is considered. The initial 

value of "a" is assumed as the final value of A, 



(~LT) 
oo+-".l-

· E = (L/ ".l--aq+T)E w11 
co+-".l-

= '( W1'1 
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VII. STATISTICAL CODE DEVELOPMENT 

An Operator Error Exponential Model (OPEXM-K) code 

is developed for data smoothing, prediction and updating 

using the Kalman filter technique. The OPEXM-K code is 

especially developed for exponential operator error rates 

or performance . The least error squares (LE) and the 

impulse moment (IM) techniques are incorporated in the 

code for data smoothing . The OPEXM-K code is a simple 

statistical code developed to manipulate all types of 

exponential data. Two types of static estimations and 

Kalman dynamic filtering which were explained in Chapters 

III and IV, are included in this computer program.ming . A 

subroutine is developed to calculate the autocorrelation 

function of observation noise and to modify the static esti-

mation in order to result in white noise process . 

A brief discussion of each subroutine is given below. 

The program listing is given in Appendix C. 

A. L-E Subroutine 

The L-E subroutine is based on the least square 

estimation technique which was explained in Chapter III, 

Section A.l. This subroutine can manipulate both learning 

and performance or any type of exponential curve . The choice 
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of initial values is of great importance. Testing this 

subroutine showed that if the initial values of exponential 

model is wrongly chosen or the data points are very 

scattered , the convergence can never be obtained due to 

oscillatory behavior of estimation. So, enough attention 

should be given to initializing the parameters. 

B. I-M Subroutine 

The I-M subroutine is based on the impulse moment 

updating technique which was explained in Chapter III, 

Section A. 2. Testing this subroutine showed that the 

less scatter data for large values of time gives the 

better estimation. The initial value for this subroutine 

comes from the output of the L-E subroutine. 

c. C-M Subroutine 

There is always the question that, the Kalman filter 

equations obtained in Chapter IV are developed under the 

assumption of white noise process. There is no assurance 

that the deviation of data from the static model estimated 

by either least square or impulse moment updating is a white 

noise . So, the C-M subroutine modifies the static estima-

tion parameters in such a way that the deviation from real 

data be almost a white noise process . Also, the auto-
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correlation of static error and the variance of the error 

related to static estimation can be calculated by this sub-

routine . 

D. KALM Subrou tine 

The KALM subroutine is based on the Kalman filtering 

and prediction technique which was explained in Chapter IV. 

This subroutine is three dimensional subroutine written only 

for the case of exponential model . The forward and back-

ward estimation , the c o variance matrix related to forward 

and backward estimation and the optimal smooth estimation 

can be calculated in this subroutine . 

E . R-M Subroutine 

The R- M subroutine is an extra subroutine which is 

included in this program to calculate the time between 

fail ure from the failure rate . The re l iability of an 

operator 

R= 

thus 

dR = dt 

can be defined as; 

1-e 
-J>(t)dt 

f (t) 
-J>(t)dt 

= - ). (t)e 

( 175) 

(176) 
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The mean time between failure ''MTBF" can be defined at any 

time as the first moment of f (t) in the form of ; 

(177) 

The time between failure at time tK can be defined as 

TBF(tk) = (tk . MTBF(tk) - tk-l . MTBF(tk-l))/(tk-tk-l). 

(178) 

The above procedure is written in discrete form in subroutine 

R-M. The time between failure obtained from this subroutine 

is much smoother than the real life time between failure 

data. 
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VIII. CONSTRUCTION OF OPERATOR ERROR RATE MODEL 

A. Static Operator Error Rate Model 

1. BWR's operator error rate model 

The data points are smoothed by the integration 

smoothing techniques for three cases of interest. The 

smoothed data and related "A" value for each case are 

given in Tables 16 , 17, and 18, respectively. 

The static estimations from impulse moment updating and 

least square techniques are given in Table 19. In the 

least square techniques result , the initial value for the 

smoothed data can be used for calculation of the delay time 

before the learning process. To do that , consider Equation 

(5) and Figure 4. Thus, the integration smoothing can be 

define d as 

J
e ft. I 

zi =Yi - ati = 
0
a(l+b)dt' + 

8
1 a(l+be-ct )dt' - ati 

inste ad of Equation (172). 

Therefore, 

zi = abe + ab/ c(e-c e - e-cT). 

Assuming c8 << l or 8 << T we get 

-c e e ~ l if c e << 1 

z. =ape + ab/c(l-e-cT). 
l. 

(179) 

(180) 

(181) 
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Table 16. The smoothed data for all BWR's with A = . 5 
error/4 months 

Time z. 
l. 

Time z . 
l. 

0 o.o 76 6.86 

4 1.69 80 6.36 

8 2 .0 84 6.36 

12 2 .93 88 5.86 

16 4.19 92 6.86 

20 5.9 96 7.36 

24 5.7 100 7.19 

28 5.65 104 7.02 

32 5.9 108 7.52 

36 5.78 112 7.02 

40 5.3 116 6.52 

44 5.2 120 8.5 

48 5.5 124 8.5 

52 5.25 128 8.0 

56 6.2 132 8.5 

60 7.58 136 8.0 

64 6.86 140 8.5 

68 7.36 144 8.0 

72 6.86 



79 

Table 17. The smoothed data for BWR's with power rate from 
750 to 1000 MWe (initial value of A = .2 errors/ 
4 months) 

Time z . 
l 

0 .0 0.0 

4.0 1.0 

8.0 1.58 

12.0 2.73 

16.0 3.9 

20.0 5.82 

24.0 7.75 

28.0 8.26 

32 . 0 8.49 

36.0 8 . 96 

40.0 9.26 

44.0 9 . 3 

48.0 9.1 

52 . 0 9.4 

56.0 11.2 

60 . 0 11 .0 
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Table 18. The smoothed data for BWR's with power levels 
from 500 to 750 MWe (A= .15 error/ 4 months) 

Time z . 
1 

0.0 o.o 
4 . 0 5.02 

8.0 5.25 

12.0 6 . 37 

16.0 6.86 

20.0 7.39 

24 .0 8.61 

28 .0 8.89 

32.0 9.7 

36.0 10.7 

40.0 10.7 

44.0 11.1 

48.0 10.9 

52 .0 11.3 

56.0 11.3 

60.0 11.7 

64 . 0 11.6 

68 .0 11.4 

72.0 11.3 
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Table 19. The static learning parameters for BWR ' s for three 
different cases 

Title 
of Techniques A B c e A.B 

data 
All Least 
BWR ' s square 

method 0.112 2.18 .0306 3 . 9 0 . 244 

Impulse 
moment 
updating 0.125 1. 96 .0306 0 0.245 

Those Least 
BWR's square 
with method 0.004 206.8 . 0735 1.5 0 . 827 
power 
500 to Impulse 
750 MWe moment 

updating 0.0377 22.00 .0735 0 0 . 829 

Those Least 0 . 0627 7.68 .0438 -1.3 0.4815 
BWR's square 
with method 
power 
750 to Impulse 0.0417 11.56 . 0438 0 0.482 
1000 MWe moment 

updating 

To compare Equation (181) with the performance equation 

defined in Equation (1), the value of e can be calculated 

approximately from 

( 18 2) 

The static estimation model for each case is given in Table 

20. 
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Table 20. The smoothed data for all PWR ' s , the initial value 
of "A" is chosen as 0.08 errors/ 4 months 

Time z . 
]_ 

Time z . 
]_ 

0 . 0 0 . 0 6.80 9.42 

4 . 0 2.08 72.0 9.34 

8.0 3 .1 2 76.0 9.26 

12 . 0 4.8 80 . 0 9.55 

16.0 4.84 84.0 9 . 47 

20.0 5 . 76 88.0 9.38 

24 . 0 6.64 92.0 9.31 

28 . 0 7.15 96 . 0 9 . 23 

32.0 7.91 100.0 9 . 15 

36.0 8 .4 5 104.0 9.57 

40.0 9.00 128.0 9.11 

44.0 9.24 152 .0 9.61 

48.0 9 . 16 156.0 9.57 

52.0 9.19 

56.0 9.38 

60 .0 9.46 

64 . 0 9.38 
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To explain the results given in Table 19 is better to 

consider the expression 

A = a + abe-ct + E(t) ( 18 3) 

where E (t) is the scattering of the data and comparable to 

"a". 

For values of "t" not too large considering "b" much 

larger than unity, the following approximation can be 

made , 

- ct A = abe . (184) 

For the larger values of "t" the error rate equation 

can be approximated as; 

A = a+ E(t). (185) 

Assuming that "a" is estimated from the final value of 

"A", thus the expectation of "a" can deviate from the real 

mean value of "a" by the expectation of " E". Anyway, to 

compare the different learning parameter estimations it is 

sufficient to compare the produc t of "ab" and "c" . The 

following results can be obtained from Table 19. 

a . In BWR ' s with power range between 500 to 750 MWe, 

more error is expected but, the operator learning speed is 

faster than the other BWR's due to the larger value of "c". 

The final error rate cannot be exactly determined due to high 
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scattering for large values of "t". 

b. In BWR's with power range between 750 to 1000 MWe, 

less error is expected, but the learning speed is slower 

than in the case of 500 to 750 MWe BWR's. The final error 

rate "a" can not be determined exactly due to high scattering 

for large values of "t". 

c. The estimation of all BWR's shows the least 

number of errors but, the slowest speed in learning. 

d. The expected range for the final error rate can be 

estimated for all BWR's as 

0.004 < A < 0.125 errors/month. 

e. The assumption of delay time in learning process 

leads to better estimation. 

f. The negative value of delay time estimation for 

BWR 's power between 75 0 to 1000 MWe may be due to lack 

of data at early stage of start-up experience which can 

result in underestimating the age of the plant. 

2. PWR's operator error rate model 

The data are smoothed by the integration smoothing tech-

niques for three cases of interest. The smoothed data and 

related "A" value are given in Tables 20, 21, and 22 

respectively. The static estimation result from programming 

for all the cases are given in Table 23. As the process 
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Table 21. The final data for PWR ' s with power levels from 
400 to 600 MWe (the initial value of "A" is 
chosen equal 0.0 errors/4 months) 

Time z . Time z. 
l. l. 

0 0. 0 68 . 0 8.15 

4 1 . 25 72.0 8 . 15 

8 2 . 075 76.0 8.15 

12 2 . 25 80.0 8 . 15 

16 2.79 84.0 8 . 15 

20 3 . 62 88.0 8 . 15 

24 3 . 85 92.0 

28 4.84 

32 6.0 

36 6 . 4 

40 7.4 

44 7 . 4 

48 7 . 4 

52 7 . 65 

56 7 . 65 

60 7.65 

64 7 . 65 
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Table 22 . The final data for PWR ' s with power levels from 
800 to 1200 MWe (the initial value of "A" 
is 0.1 errors/ 4 months) 

Time z. 
l 

0.0 0.0 

4.0 2.3 

8.0 3.9 

12.0 5.46 

16 . 0 6.89 

20 . 0 7.81 

24 .0 8.71 

28.0 8 . 39 

32 . 0 9.29 

36 . 0 10.25 

40.0 10 . 6 

44 . 0 10.5 

48 . 0 10.4 
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Table 23. The learning parameters for PWR's for three 
cases of interest 

Title 
of 

data 

All 
PWR 
plants 

Those PWR ' s 
with power 
rate be-
tween 400 
to 600 
MWe 

Those PWR ' s 
with power 
rate be -
tween 800 
to 1200 
MWe 

Technique 

Least 
square 
method 

Impulse 
moment 
updating 

Least 
square 
method 

Impulse 
moment 
updating 

Least 
square 
method 

Impulse 
moment 
updatin g 

A B c e A.B 

0 . 0231 21 . 13 .051 0 . 1 0.4881 

0 . 0212 22 . 977 .051 o.o 0.4871 

0 . 00243 140.6 .042 - . 43 0.3416 

0 . 0224 34.0 .07324 . 015 0.7616 

0.0224 34 . 0 . 07324 0 . 0 0 . 7616 

explained in Chapter VIII, Section A.l , the comparison be-

tween different cases are as follows: 

a. The PWR's with power between 400 to 600 MWe shows 

much lower number of errors than other cases. The negative 

delay time may be due to lack of data at early stages of 

start- up experience , which can result in underestimating 

the age of the plant . The very low value of "A" leads u s to 
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the conclusion that , the number of operator errors in this 

case can decrease to one error in thirty-four years. The 

impulse moment updating did not give an acceptable result 

for "A" (A<O), thus it is not considered as a good esti -

mation . 

b. The PWR's with power between 600 to 1200 MWe show 

higher number of errors than any other case. The value 

of "A" leads us to the conclusio n that even for ver y old 

plants we expect to see at l east one error in each four 

years . 

c . The estimation for average PWR ' s; neglecting the 

effect of power , gives us number of errors more than PWR's 

with power between 400 to 600 MWe and less than PWR's with 

power between 800 to 1200 MWe which is confidentially 

acceptable. 

B . Dynamic Operator Error Rate Model 

1. BWR's operator error rate model 

The initial value of parameters from static estimation 

are used fo r Kalman filtering. The output of the Kalman 

fi lter is the dynamic behavior of the model. In three cases 

of BWR study, the values of A, B and C are given in Tables 

24, 25 and 26. The graphs of real data and two dynamic 

estimators are also given in Figures 13, 14 and 15, 

r espectively. 
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Table 24 . Two dynamic estimation for learning parameters of an 
average BWR 

Initial Im,eulse moment updatin9 Least sg,uare method static model 
A B c A B c Time 

0 . 0 . 1248 1.963 0 . 03062 0.119 .9381 0.05325 
4. 0 . 1248 3 .352 0.03062 0 . 1119 l. 268 0 . 05457 
8 . 0 .1248 2.978 0.08709 0 . 1119 1.430 0 . 05443 

12 . 0 .1248 3 . 038 0 . 0846 0 .1119 1.798 0 . 05397 
16 . 0 . 1 248 3.314 0 . 081 53 0 . 1119 2.227 0.05097 
20.0 .1248 3 . 665 0 . 07566 0 .1119 2.576 0 . 04334 
24.0 .1248 3.666 0 . 07232 0 .1119 2 . 475 0 . 03742 
28.0 .1248 3.635 0.07119 0 . 1119 2.353 0.03482 
32.0 .1248 3 .631 0 . 07071 0.1119 2.287 0.03426 
36 . 0 .1248 3.615 0.07132 0 .1119 2 .227 0 . 03536 
40.0 . 1248 3 .58 0 . 07232 0 . 1119 2.153 0 . 03675 
44 . 0 . 1248 3.492 0 . 07338 0.1119 2.032 0 . 03788 
48. 0 .1248 3.442 0.07341 0 . 1119 1.957 0 . 03804 
52.0 . 1248 3. 472 0 . 03708 0 . 1119 1.972 0 . 03791 
56 . 0 . 1248 3.467 0 . 0 7293 0 . 1119 l. 979 0.0381 
60 . 0 .1248 3 . 701 0.0732 0.1119 2 .215 0 . 0384 
64 . 0 . 1248 4.053 0.07355 0.1119 2 . 548 0 . 0386 
68 . 0 . 1248 4.050 0.07325 0 . 1119 2.536 0.03826 
72 . 0 . 1248 4.153 0 . 07291 0 .1119 2 . 622 0.03796 
76 . 0 .1248 4 .108 0 . 07291 0.1119 2.559 0 . 03790 
80.0 . 1248 4 . 098 0 . 07299 0.1119 2.533 0.03798 
8 4. 0 . 1248 4 . 016 0.07325 0.1119 2.44 2 0.03813 
88.0 . 1248 3.991 0.07325 0 . 1119 2.41 8 0 . 03815 
92 . 0 . 1248 3.922 0 .07315 0 .1119 2.365 0.03816 
96.0 .1248 4.092 0. 07 311 0 . 1119 2 .543 0.03826 

100.0 .1248 4.24 0 . 0732 0 . 1119 2 .696 0.03843 
104 . 0 .1248 4 . 279 0.03714 0 . 1119 2.745 0.03847 
108 . 0 .1248 4.299 0.03707 0 . 1119 2. 777 0.03848 
112.0 .1248 4.404 0 . 07307 0 .1119 2.883 0.03852 
116 . 0 .1248 4.367 0.07293 0 . 1119 2.867 0 . 03848 
120 . 0 . 1248 4.344 0.07285 0 . 1119 2.871 0.03850 
124. 0 .1248 4 . 657 0 . 07301 0.1119 3 . 155 0 . 03837 
128. 0 .1248 4 . 747 0. 0729 0 .1119 3 . 228 0 . 03808 
132.0 . 1248 4.740 0 . 0728 0.1119 3 .216 0 . 03785 
136 . 0 .1248 4 . 805 0 . 07263 0 . 1119 3 .262 0 . 03747 
140.0 .1248 4. 776 0 . 07266 0 . 1119 3 . 229 0.03737 
142 . 0 . 1248 4.812 0 . 07249 0 . 1119 3 . 253 0 . 03701 
144 . 0 . 1248 4.781 0 . 07260 0 . 1119 3 .223 0 . 03704 
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Table 25. Dynamic estimation for BWR ' s {500<P<740) 

Initial 
static Im.12ulse moment updatins;r Least S9_Uare method 

model A B c A B c 
Time 

0.0 .03766 21. 97 .07354 .004068 106.9 0.1292 

4.0 . 03766 33.04 . 07354 .004068 161.2 0 .1169 

8.0 .03766 31. 74 .1732 .004068 159.4 0.1142 

12.0 .03766 32 . 52 .168 . 004068 169.3 0.1098 

16.0 . 03766 33.59 .1659 .004068 177 .6 0.1076 

20 . 0 .03766 34 . 96 .1636 .004068 189.0 0.1054 

24.0 .03766 37.39 .1605 .004068 209.3 0.1027 

28.0 .03766 38.74 .1585 .004068 219.5 0 .1005 

32.0 . 03766 40.47 .1563 .004068 232.3 0.09786 

36.0 .03766 42.24 .1536 .004068 244 . 6 0.0946 

40 . 0 .03766 42.93 .1522 .004068 248.2 0.09279 

44.0 . 03766 43.63 .1508 .004068 252.2 0.09115 

48. 0 . 03766 43.87 .1504 .004068 253.3 0 . 0906 

52.0 .03766 44.3 .1496 .004068 256.5 0.08961 

56.0 .03766 44.51 .1493 . 004068 258.5 0 . 0890 

60 . 0 . 03766 44.98 .1484 .004068 262.8 0.08789 

64.0 .03766 44.98 .1484 .004068 263.4 0. 0877 

68 . 0 .03766 44.89 .1485 . 004068 263.2 o. 08777 

72.0 44.78 .1487 . 004068 262.7 0 . 08789 
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Table 26. Dynamic estimation for BWR ' s (750<P<l000) 

Initial 
static Im,Eulse mome nt u2datin9 Least ssuare method 

model A B c A B c 
Time 

0.0 0.04171 11. 56 0 . 04382 0.06268 1.229 0 . 03936 

4.0 0.04171 6.324 0 . 04 382 0.06268 1. 856 0 . 05066 

8 . 0 0.04171 3.286 0.05196 0 . 06268 2 . 066 0.05625 

12.0 0 . 0 4171 5.303 0.05453 0.06268 3.534 0 . 06126 

16.0 0.04171 6 .957 0 . 05325 0 . 06268 4.743 0 . 06102 

20.0 0. 04171 8.784 0.0465 0.06268 6 .l15 0.05467 

24 . 0 0 . 04171 9.362 0.03373 0.06268 6.544 0 . 0403 

28.0 o. 04171 8 .517 0 . 0244 0 . 06268 5.956 0 . 02975 

32.0 0.04171 7.661 0.02059 0.06268 5 .417 0 .02618 

36 . 0 0 . 04171 7 .193 0.01938 0 .06268 5.161 0 .0256 

40. 0 0 . 04171 6.983 0.01973 0.06268 5.049 0 . 02664 

44.0 o. 04171 6.88 0.02073 0.06268 4.951 0 . 02808 

48.0 0.04171 6.815 0.02167 0.06268 4.847 0 .02915 

52.0 0.04171 6.997 0 . 02186 0.06268 4.969 0.02918 

56.0 0.04171 7 . 372 0.02193 0.06268 5 . 31 0.02894 

60.0 0.04171 7.085 0 . 02274 0 . 06268 5 .146 0 . 02950 
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By comparison among dynamic estimation for three cases , 

the following results can be obtained. 

1 . The value for "C" is decreasing for all three cases 

of study which can be related to the inertia of learning. 

In other words, the operator does not improve as fast as he 

improved before. This can be due to operator negligence 

after becoming confident on the job. 

2. The product of "A.B" is increasing with time for 

three cases of study but the effect of time (age) is more 

dominant, so the number of operator errors per unit time 

will tend to decrease. However, the increasing trend of 

(A . B) products shows that, unfortunately, the expert operator 

does not pay enough attention to the task, as he had paid 

before . 

3. The response of learning with respect to power in 

BWR's is kind o f a confusing issue due to different behavior 

of learning parameters. The following behavior can be seen 

in dynamic estimation of different power BWR ' s, even though 

the number of operator errors is in the same range; 

a . Learning in small power BWR ' s is faster than 

large BWR's (the value of "C" for small BWR's is larger 

than the value of "C" for large BWR's). 
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b. The product (A.B) in large BWR's is smaller 

than small power BWR's. This behavior can be explained 

as the optimum stress on operator in the case of 

BWR's with power between 750 MWe to 1000 MWe (the 

operator is aware of the importance of operation) . 

2. PWR ' s operator error rate model 

The initial value of the parameters from static esti-

mation is used for Kalman filtering . The output of Kalman 

filter is the dynamic behavior of the model . In three 

cases of the PWR study, the values of A, B, and C are given 

in Tables 27 , 28 and 29. The graphs of real data and two 

dynamic estimations are also given in Figures 16, 17 and 

18, respectively. 

By comparison among dynamic estimation for three cases , 

the following results can be obtained: 

1. The average behavior data for PWR's, which is 

obtained from collapsing the total PWR data, is not time de-

pendent. The only scattering in dynamic estimation of 

parameters comes from random noise scattering with vari-

ances less than covariance matrix diagonal elements . There-

fore, the data can be best approximated by white noise 

scattering , which is not time dependent . This allows the 

construction of a constant parameter learning curve for 

PWR's. 

2. The effect of power in PWR's is very important. 
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The PWR's with power between 400 MWe to 600 MWe have very 

good learning characteristics. The operator has the ability 

to reduce the number of errors to one error in 30 years. 

Since the average value of ''T" is 2 years for this PWR's, 

it can be expected that constant error rate happens after 

10 years. 

To compare Figure 18 with Figure 17 and Table 29 with 

Table 28, the effect of the increase of power can be 

simply observed by the higher values of A, (A.B) and total 

number of errors. Comparing the values of C for both cases 

shows slightly faster learning in large PWR's than small 

PWR's. 



Tabl e 27. Dynamic estimation for PWR' s 

I ni t ia l I mEul se moment u2dating Least square method s t atic mode l 
A B c A B c Time 

0 . 02118 23 . 01 0 . 05092 .02314 7.498 0 . 06964 
4 . 02118 24 . 46 0.05092 .02314 16.73 0.08645 
8 . 02118 20.00 0 . 08058 . 02314 1 7 .1 7 0 . 0 79 19 

1 2 . 02118 22 .14 0 . 07325 . 02 314 19 . 38 0.07224 
16 . 02118 21.80 0.07202 . 02314 19 . 00 0 . 07076 
20 . 02118 22 . 82 0.07013 .0231 4 19.90 0 . 06880 
24 . 02118 24. 21 0.06852 .02314 21. 13 0 . 06711 
28 . 02118 25 . 21 0 . 06733 .02314 21.99 0 . 06584 
32 . 02118 26 . 43 0 . 0659 . 02314 23.04 0 . 06 429 
36 . 02118 27.28 0 . 06449 . 02314 23.76 0 . 06277 
4 0 • 02118 27.93 0 . 06307 . 02314 24.29 0 . 061 25 
44 .02118 28 . 13 0 . 0622 .02314 24 . 41 0 . 06035 
4 8 . 02118 27.95 0 . 06207 . 02314 24 . 22 0 . 06024 l.O 

co 
52 . 02118 27.83 0 . 06205 . 02314 24 . 08 0 . 06025 
56 . 02118 27.87 0 . 06194 . 02314 24.09 0 . 06016 
60 . 02118 27 . 83 0 . 06195 . 02314 24 . 03 0.06019 
64 . 02118 27.65 0.06207 .02314 23 . 84 0 . 06033 
68 .02118 27 . 56 0 . 06211 . 02314 23.73 0.06039 
72 .02118 27.37 0 . 062 19 . 02314 23 . 53 0.06047 
76 . 02118 27 . 22 0.06223 . 02314 23 . 37 0 . 06051 
80 . 02118 27. 49 0 . 062 14 .02314 23 . 6 0 . 0604 3 
84 . 02118 27.38 0 . 06217 .02314 23 . 48 0.06046 
88 • 02118 27 . 20 0 . 06221 .02314 23.28 0 . 06051 
92 . 0 2118 26 . 86 0 .06227 . 02314 22 . 91 0 . 06058 
96 . 02118 26.86 0 . 06227 .0231 4 22.91 0.06058 

100 • 02118 26 . 81 0.06228 .02314 22 . 84 0 . 06059 
104 .02118 27. 19 0 . 0622 1 .02314 23 . 17 0 . 06052 
128 . 02118 26 . 85 0.06226 . 0231 4 22 . 84 0.06059 
152 . 02118 27 . 26 0.06226 . 02314 23 . 16 0.06059 
156 • 02118 27.27 0.06226 . 02314 23.16 0.06059 
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Table 28. Dynamic estimation for PWR's (400 <P <600 MWe) 
Initial 
static Least square method 

estimation A B c 
Time 

0 0 . 002434 26.68 0.04733 
4 0.002434 68.32 0.05934 
8 0.002434 81. 51 0 . 05617 

12 0.002434 73.98 0.05685 
16 0.002434 79.98 0.05728 
20 0 . 002434 98.97 0.05835 
24 0 . 002434 107.4 0.05844 
28 0.002434 128.2 0.05852 
32 0.002434 148.6 0.05664 
36 0.002434 154.2 0.05304 
40 0.002434 158.5 0.04819 
44 0 . 002434 154.1 0.04558 
48 0.002434 150.3 0.04477 
52 0.002434 148 . 6 0 . 04442 
56 0 . 002434 146.6 0.04479 
60 0.002434 145.0 0 .•04511 
64 0 . 002434 144.0 0.04525 
68 0 . 002434 146 . 4 0.04489 
72 0 . 002434 146.4 0.04484 
76 0.002434 146 . 0 0.04494 
80 0.002434 145 . 4 0.04504 
84 0.002434 144.8 0.04501 
88 0 . 002434 144.3 0.04509 
92 0.002434 144.1 0.04510 
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Table 29. Dynamic estimation for PWR's (800 <P <l200 MWe) 
Init i al 

e stimation Im12ulse moment updating Least square method 
method A B c A B c 

Time 

0 .0 229 33.26 . 07324 .0224 11.94 .08187 

4 .0 229 25.4 .07324 .0224 25.98 .07324 

8 .0229 21.62 .08117 .0224 22.12 .08113 

12 . 0229 23.26 .07195 .0224 23.79 .07191 

16 . 0229 24.55 . 064 2 5 .0224 25.11 .06422 

20 .0229 24 . 94 . 05941 . 0224 25 .51 . 05938 

24 .0229 25 . 24 .05648 .0224 25 . 83 .05644 

28 .0229 24.43 .05703 . 0224 25.00 .05698 

32 .0229 25.14 .0555 .0224 25.72 .05545 

36 . 0229 26.22 . 05377 . 0224 26.83 .05371 

40 . 0229 26.5 .05300 .0224 27.12 .05295 

44 .0 229 26.13 .05317 .0224 26 .74 .05311 

48 .0229 25.79 .05341 .0224 26.4 0 .05334 
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IX . SUMMARY AND CONCLUSIONS 

This study has attempted to give insight into the re-

lationship among nuclear reactor type , age and power rating 

(size) with respect to operator error rates. It has shown, 

in Chapter VIII, that for Pressurized Water Reactors there 

is a direct correlation between operator error rate and 

facility size; the larger the PWR, the greater the number of 

errors committed . While for Boiling Water Reactors , reactor 

size does not seem to have any direct affect upon the 

operator error rate, though the overall error rate for BWR's 

was larger a nd considerably more scattered with respect to 

facility age than similar effects for PWR ' s. The effect of 

size on the operator error rate for PWR ' s might be explained 

because PWR system complexity increases with facility size 

much more so than system complexity for BWR's. But since 

comparable system complexities and the number of design 

changes are greater for the BWR , the overall error rate is 

larger for BWR's . 

Accordingly, it can be concluded that a constant 

operator error rate model is not an appropriate assumption 

for real life operator data, and should not be used for 

probabilistic analysis . The time varying operator error 

rate developed here by the Kalman filtering dynamic 
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estimation is more appropriate for this purpose. However, 

if a time invariant model is to be used it has been shown 

that a time invariant model with delay will describe the 

operator learning process better than the classical 

nondelay time invariant model. 
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X. RECOMMENDATIONS FOR FURTHER WORK 

Further work recommended to enhance the study completed 

are as follows: 

1. To collapse the data in an accurate manner, monthly 

availability is more suitable than yearly availability. The 

data should be collapsed according to the power, design , and 

type of reactors with respect to availability of operation, 

and age. 

2. To smooth the data by the window smoothing method 

explained in Chapter VI, Section A, a computer code should be 

deve loped. 

3. To estimate the static and dynamic es timation the 

(OPEMX- K) computer code which have been developed here can 

be used . 

4. Once the learning parameters for different designs 

are obtained then a comparison between different design 

learning parameters can be made for recognization of an 

optimum design . 
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XIII. APPENDIX A 

A. Stability o f Linear Time Invariant System 

Definition 1: 

We say that the system ~· (t) = A~(t) is stable if 

(Euclidean) norm I !x(t) I I rema i ns bounded as t +00 for every 

solution x(t) of the system. We call the system strictly 

stable if it is stable and if; 

Lim I lx(t) I I = 0 for any solution of ~(t) of the system 
t +oo 

If there is a solution x(t) such that, 

Lim I I x ( t) I I = 00 

t +oo 

Then the system is unstable. 

Definition 2 : 

The system x(t) = Ax(t) is stable if and only if real 

points of all the eigenvalues of matrix A are negative or 

zero . The system is strictly stable if and only if real 

points of all the eigenvalues of matrix A are negative. 

B . Linear Dynamic System 

Definition: 

A dynamic system is linear if it is of the form; 

~(t) = A(t)~(t) + B(t)!!_(t) 

y_(t) = C(t)x(t) + D(t)!!_(t) 

(Al) 

(A2) 
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where 

A ( t) is nxn matrix of valued function or constant 

B ( t) is mxn matrix of valued function or constant 

c ( t) is pxn matrix of valued function or con stant 

D ( t) is pxm matrix of valued function or con stant 

X ( t) t u (t) and y(t) are state variable , input and output 

vector . 

If the matrices A, B , C and D are constant, then the 

system is called time invariant. 

C. The Control Problem 

Suppose initially x = ~O at t = t 0 and we wi sh to 

convert to ~l ' at t = t 1 (~1 is called the "target" ) with 

a suitable choice of u. Control may be arbitrary or may 

restraint to be in a set of values (e.g . , lu. l<M. for some 
l l 

2 2 2 M. or u 1 +u2 + ... +u <M) . Associated with the control is a 
i m -

functional called cost function; 

t 

J(~o , to , x,t , ~) = K(~l ' tl) + f L(~, U , T)dT (A3) 
to 

where K is a function of the final state and L is a 

function of x , ~evaluated at t = T . 

The problem is called "optimal control " if we wi s h to 

minimize or maximize J. 
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D. Reachable State 

Definition: 

A state ~l is reachable if there is an admissible 

control u such that ~O' t 0 can be converted to x 1 by 

applying the control at some finite time t 1 ~ t 0 . 

E. Controllability 

Definition: 

A system is said to be controllable if it is possible 

to find a control vector v(t) which is specified finite 

time tf will transfer the system between two arbitrarily 

specified finite state ~O and ~f · 

F. Observability 

Definition: 

A system is said to be observable if measurements of the 

output y contains sufficient information to enable us to 

completely identify the state x. 

G. Won Ham Theorem 

Definition: 

To move the poles of a system to any arbitary points with 

a state variable feedback 

µ = -Kx (A4) 
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where K is constant , it is necessary and sufficient for the 

system to be completely controllabl e. 

H. Autocorrelation Function 

Definition: 

The autocorrelation function describes the general 

dependence of the values of the data at one time on the 

values at another time . Autocor relation function can be 

defined as; 

R (T) = lim 
- x 

1 JT T O ~(t)~(t+T )dt (AS) 
T +oo 

The value of autocorrelation function for T=O i s equal to 

the second moment of probability function of x , so in the 

case that the mean value of x is equal zero (white noise ) , 

the n 

2 a = R (0) 
- X - X 
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XIV. APPENDIX B 

A. Comparison Between Maximum Likelihood 
and Least Square Estimation 

Considering that the measurement, ~ and the real value 

of the parameter, x are linearly related 

z = Hx + v (Bl) 

where v is an lxl noise vector. If l >n, then the measure-

ment set contains redundant information. 

In the least square sense of estimation, one chooses 

as ~ that value which minimizes the sum of squares of the 

deviations, z. - 2 . , that is; 
-1 -1 

The resulting least-squares estimate is; 

If we are interested in minimizing the weighted sum 

of squares of deviations, then 

(B4) 

- 1 where R is an lxl symmetric, positive definite weighting 

matrix. The weighted least squares estimate is 

(BS) 
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This result doesn ' t make any sense , if we don ' t know the 

logic behind the weighting matrix. From the probabi l istic 

point of view , one may use the maximum " likelihood" 

philosophy , which is to take as x that value which max i -

mizes the probability of the meas urements ~ that actually 

occur red , taking into acc ount known s tatistical properties 

of v. Assuming v is taken as a zero mean , Gaussian distribu-

ted observation with covariance matrix R, we have 

1 1 T - 1 
= (2n)l/2 IRll/2 exp[ - 2(z- Hx) R (z- Hx)] . (B6) 

To maximize P(~/x) we should minimize the term between 

the brackets . 

Another approach is Bayesian estimation , where 

statistical models are available for both x and z , a n d - -

one seeks the a posteriori condition density function , 

P(~/~) , since it contains all the statistical information 

of interest . 

p (y~) = 

In general 

p (y~) p (~) 

p ( z) (B 7) 

where P (~) is the a priori probability density function of 

x , and P(z) is the probability density function of the 

measurements . According to the criterion of optimality 

one can compute~ from P(~/~) , for example , if the object 

is to maximize the probability that ~ = x , the solution is 
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i =mode of P(~/~). (B8) 

When the a priori density function P (x) is uniform (which 

implies no knowledge of ~ between its allowable limits) , 

this estimate is equal to the maximum likelihood estimate. 

If the object is to find a generalized minimum variance 

Bayes ' estimate , that is , to minimize the cost function, 

where S is an arbitrary, positive semidefinite matrix , we 

simply set 

aJ = 0 (BlO) 

to find , independent of S, that 

X = J:
00
J:

00 
•• • J:

00 
xP(~/~)dx1dx2 . .. dxn = E(~/~) (Bll) 

which is a conditional mean estimate . Thus 

(Bl2) 

where L(i) is a scalar "loss function " of the estimation 

error 

x = SC-x (Bl3) 

Then we can get the estimate for }{ as follows : 

(Bl4) 
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which is similar to l east square mean method with a dif-

ference in one term P 0 , which is the a priori covariance 

matrix. 
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R-M 
SUB. 

I-M 
SUB . 

L-E 
SUB. 

C-M 
SUB. 

1----- C-M 
SUB. 

Fiyure Cl . The flow chart of main program 

KALM 
SUB. 

KALM 
SUB . 
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INITIATE THE VALUES 
FOR X ( 1 ) , X ( 2) , X ( 3) & P, Q, R 

CONSTRUCTION OF FORWARD FILTER 
IF K1 = 11 - FORWARD DYNAMIC ~ ESTIMATION AND . 

SYSTEM PREDICTION 

CONSTRUCTION OF BACKWARD 
DYNAMIC SYSTEM 

BACKWARD FILTER 
ESTIMATION 

• w 

OPTIMAL SMOOTH 
ESTIMATION 

' ~ 

CALCULATION OF 
LEARNING PARAMETERS 

PRINT OUT 

· ~ 

RETURN 

Fiqure C2 . Flow chart for Kalman subroutine 
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CALCULATION OF ERROR 
FUNCTION OF STATIC 

ESTIMATION 

COUNTING THE NUMBER 
OF POSITIVE AND NEGATIVE 

ERRORS 

CHANGE THE 11A11 VALUE 
TO MAKE THE MEAN OF 

ERROR EQUAL ZERO 

CALCULATE THE 
NEW SMOOTHED 

DATA 

FI ND THE AUTO-
CORRELATION FUNCTION 

PRINT OUT 

STOP 

figure C1 . rJow chart of C-M subroutine 
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IO:> CONT I NUE 
Y'F G=DINl - Cl l> 
Y'C C= Jlll 
A=A / 4 • 
l\N =N• 3 
WR I TE (6 • 2 7 2 ) ( I , D ( l) • DEL T ( I l , l = I , N) 

272 FCRMAT( Sx . 12 . • DATA= • . E 1 5 . 3 .' TIME JNTERVAL = '.E15.3 ) 
I FIDl . EO . O) GC T03 
CALL RM ( D , OELT,N,TTXoDINoDMTbF,T8Fo F l 

J l F(D2 . EO . Cl GO T04 
..;o TOS 

4 C ALL IM( D , DELToTTX , Y'CO oYF C oTO ,N) 
CALL CM ( O , F ,Y CO,Y'FO , TO, N, S I G ,TTX,DIN,A) 
t.l3=03 + I 
CALL K AL ~ (D , D~LT.PN o XO .XN, CO . FO , PO . FM.G , PP .H . B . c .r.rrx . SIG o D2 . D3 . 

lN.Dt.z.zv.NN ,Y CO,Y'FO . TO.OD.ODELToA) 
D3=D3-I 

5 IF( D3 . EO o0 lGOT06 
GO T07 

6 CALL LE ( D ,TT x , vco .vFo. rc.E.Nl 
.) 2= 1 
CALL CM( D , F , YCO,YF O , TO ,P\, S IG , TTX,D!N,AI 
C ALL K ALM( i) , DCLT . PN,XO ,XN,QC , FO , PO , F M, G , PP . H.a.c.T.TT X . SIG . o~ . o3. 

1N .D1.z . zv . NN .YC0 0YFO. TO .DD.OOELT .AJ 
7 >TOP 

EN.:> 

sueMOUTIN E RM ( O. OELT . N.TT . O!N.OMTBF .TBF . Fl 
D I MEN S I 0 N 0 ( N ) , 0 EL T ( N l , 0 l N ( N l , D MT 13 F ( N l , T 8 F ( N l , F ( N ) , TT ( N) 
OIN<l l =O lll•OELTI 1l 
0081 = 2 · " 
·JIN ( I ) = I ( ( ( 0 ( I ) - 0 ( I - 1 l ) /2 ) +0 ( I -1 ) J • OEL Tl I J ) +O IN ( I -1 ) 

8 CC l\TI NUE 
u 091 = l , N 
F (l l=O(ll•I EXP(- O IN(I))) 

c; CCNT INUE 
SU M=O 
OO lOJ = loN 
5U M=S UM+ F ( J l• DELT ( J I 

10 CONTINUE 
)OtlK= l , N 



50 
51 
52 

5 4 
55 
56 
57 

1 1 
F(Kl=F ( Kl/SUM 
CONTINUE 

122 

OM Tt3F ( l ) = F ( l ) * ( OEL T ( I ) * • 2 ) 
TBF( 1l =O loC 1t3F(1 I 
.)0 12K=2 • N 
OM TBF ( K )= ( ( ( ( F ( K) HT (KI )- ( F ( K- 1) •T TC K- 1) ) I/ 2 ) +-F ( K- 1 ) *TT( K- 1 ) ) 
OMT BF ( K l =CMTBF(Kl•OELT(Kl+-OloCT BF ( K-1 ) 
TBF(K l = (T T ( K )* DMTBF ( K l-TTIK-1 l•O MT BF ( K- 1 l l /OELT ( K I 

58 1 2 CC~Tl~UE 

59 WRl T: ( 6 , l :; ) (K ,TBF(K) , CEL T( K) , K= l , N) 
60 1 3 FORM4 T( 5X .' TM E BE TW EEN F4 lLUi;. E1•.1 2 .•1 = •. e 1 2 . s . cx. • o= ··El2 . 5 1 
61 002~0J=l.~ 

62 OEL T(Kl = T8F(KI 
63 2 00 CCNTI~~E 

64 
t; 5 

66 
67 
68 
6<; 

R~ TUR " 
:NO 

5uBROUT ! NE LE ( O.T T.YC C. YF O. TO. E . N) 
O IMEN S ION O(N) , TTIN I 
TO= l /TO 
K= O 

70 1 4 K=K+l 
7 1 lF(K, GT.l01GuT020 
1-c 
73 
74 
75 
76 
77 
78 
79 
80 
8 1 
82 
83 
84 
85 
8C. 
87 
88 
89 
90 
91 
92 
93 
<;4 
95 

51=0. 
5 2 =0. 
SP.3=0 • 
q2 =0. 
RP 3=0 • 
0 1 =O. 
02 = 0 . 
CP'?=O. 
i>P l =O. 
PP.3= 0 , 
OU 15 I = 1 , N 
PEXP= EXP (-TTIIl•TOI 
FPEXP= l. -PEXP 
OELY= C <l 1-(YCO+YFO • FPEXPl 
5 1 =0cLY+ S l 
52 =0ELY• FPEXP +S2 
SP3=0ELY• TT(!l•P E XP +SP3 
0 l =FPEXP+C1 
1)2 =fl' EXF ••2+02 
OP3=FPEXP•TT(l)• PEXP+CP3 
».:> l =TT(I l•PEXP+PPl 
PP3= (TTIIl• PEXPl••2 +PP3 
R2 =FPEXP + R2 
Rl>3=TT ( I I • PEXP+RP3 

96 1 5 CCNT l~UE 

97 
98 
9c; 

l 00 
101 
10 2 
1 03 

S3 = YFO • SP 2 
RJ= YF Q•f; P:! 
<J.3 =YFO• Ci>:; 
0 1 :: YFO • PPl 
IFIYF O, L E.O,) GOT 0 16 
P3 = 1YFO•• c •l*IPP3 J 
GC T0 1 7 

10 4 16 ~3 =((-YF C l•• 2 1• PP3 

1 05 1 7 P2=03 
106 
107 
108 

~ l =N 

.>ELYC =02•P3• S l+03•Pl• S2+0l•P2 • S 3-P2• 03• Sl-O l•P3•S2-Pl•02• S3 
OELYF=R3•P2• S l+Rl • P3 • S2 +R2 • P l•S3-R'*P3• S l -R3 • .:> l•S2-R l•P2•S3 



123 

109 JELTO =R2 • 03• S l+R3•0l•S2+Rl•02 •S3-R3•02•Sl-Rl•03•S 2 -R2*0l•S3 
110 JEL=Rl•02•P3 + 0 1•P2•R3+~1•R2•03-(Rl•P2*03+01•~2•P3+Pl•02•R3) 

111 OELYF=OEL~F/08.. 

11 2 OELYC=OEL ~C/OCL 

113 JELTO=OELTO/OEL 
114 E l=ABS(OELYFJ 
115 E2= ABS ( OEL YC J 
116 E3=AuS ( CELTO l/TO 
117 WRITE C6. 97 1l E2 .El.E3 
116 9 71 FORMAT( 5X .'LE .E RRORolN YCC YFO T0•.3E6.2J 
119 IF1El.LE.E)GOT018 
120 YFC =YFG+OELYF 
121 GO TOl 9 
122 18 I F CE2.LE. E l GOT02 1 
123 
124 
125 
126 

2 1 

YCC= YCO+O EL YC 
GOT022 
IF(E3 .L E . E IGOT02 0 
TO=TO+DEL TO 

127 19 IF<E2 .LEe E l GOT022 
128 YCO=YCO+ OELYC 
129 22 IF(E3.LE.EJ GO T014 
l 3C YFO=YFO+CELYF 
131 GOTOl4 
1~2 2 0 TO=l/TO 
133 W R I TE l 6e2~ 1YCO ,YFOoTO .K 

134 23 "'JRMAT( 2X e • YCO= • oFI 0. 5 • •YF G=• ,FI Oe 5 •'TO=• oFlO . 5 ,' K= ' o (3, 'Li: OUT') 
135 RE TURN 
136 

137 
136 

E NO 

S~dROUTINE c ~1 0 . F.YC00YF00TO.N. S I G0 TT0D IN.A) 

.:> IMENSICN O(NJ ,F(N) oTT(N)eOJN(N) 
139 K:!=O 
140 27 K3=K3+1 
141 K 1 = O 
1 42 
143 
144 
145 
146 
147 
148 
l 4 <; 
150 
151 
152 
1 !: :! 
154 
155 
156 
157 

25 
500 

24 

26 

K2=0 
SUM=O, 
D024J=1 oN 
F ( J l = (O(JJ - (YCO+YFO•<t-EXP(-T T(J) /TO) )))/ABS (YFC) 
IF(F(J)eG1.0o)GOT025 
K2=K2 +l 
GO T0500 
Kl =K l +1 
SU,.=SU M+ F (J) 
CONT INUE 
SUM=SUM/N 
WRJTE(6,26)KloK 2 oSUM 
FO ._MA T ( 5X ,' NU MBER OF• • 5 X, ' PSI TI VE = • o I 2, 5X ,' NEG= • , 12 , •ME w=• , Fl 0 • 5) 
SS =O • 
D083l=l e N 
SS=SS +T T ( l) 

158 63 CONTINUE 
159 EEE=SUM•N•YFO/ SS 
160 00651=1,N 
lt:l DC ()=0( I> -EEE •TT( I) 
lt.2 es CONT I NUE 
163 A=A+~EE 

164 WRITE(6e84l EEEeA 
165 84 FORMAT(/o'OEVJATICN FROM A= '• E 10e 3e /o10Xe'A= 1 ,El0e3J 
166 IF(K3.EC.2)GOT028 
167 GOTD27 



1 68 
1 6<; 
I 70 
I 7 l 
17 2 
173 
1 74 

2 6 
29 

KK=O 
KK = KK + l 
F F = O. 
"II =N-KK +I 
I = KK- I 
i:>030J = l ,N l 
FF =F C J l•F(J+I I +FF 

17 5 ~o CO"I TIN Uc 
1 76 i)l"I CKK l = FF/Nl 
177 I F (KK.EC . l\IGOTOl 59 
1 78 GO T 029 

124 

1 79 1 5 9 WIHTE. 1 6 . ~ llC D I N (l).l = l• N) 

160 3 1 FORMAT(5X, 'A UT OC ORRELLATICN= ', E l 2 e 3 1 
1 6 1 
162 2 71 Fur;MAT( 5X.' NEW VALUES OF YC C YFO r o •. 3 Fl0. 3 J 
183 IFCOIN(l leEO . C .l C.O T016o 
184 GO T 0 1 67 
le5 106 D lN< l> = o.1 
166 167 S Li=O IN(ll•IYF0 •• 2 l 
l e7 WRIT: <6.1¢6lSI G 
l 86 I 6S F G RMA T ( 3 0 X , ' S l G= ' , FI 0 • 7 ) 
169 RE TURN 
1 90 E" O 

191 s u~~O UT I NE KALM(O, OELT.PN , xO . xN.CO . FO . PLJ , FM . C. . PP , H . B . C .T.T T . S I G . 
l i:> 2 , 03 . N,Ql, l e ZY . NN,YC C ,YFQ,TO , OO , DDELT,AI 

I <; 2 0 I ME N S I C N D ( N l , De LT I N I , P N ( 3 , 3 l , X 0 ( 3 I • X N ( 3 l , 00 ( 3 • 3 ) • F 0 ( 3 • 3 I • Z ( N • 6 ) • 

1 93 
1 <; 4 
1 95 

I PO ( 3 , 3 ) , F MC 3 , 3 l , G ( 3 ) , PP (3, 3 l , H ( 3, 3 l, B ( 3, 3 l , C ( 3 • 3 l •TT ( N) • Z Y ( NN • 6 ) • 
200 ( N ) , OOEL T(Nl 

11\TEvE R 01 , 02,03 
I F I Ol. :O .ll GO T 038 
w r; 1r: 15,3c; 101 

196 .:; 9 FORMAT( 5X ,' KALMAN F I LTER OUTPur •. s x . •PERFCRMANCE•. 2x .• ::ll = 'ol 2 ) 
1 <;7 GC TO~ l 

1 <;8 38 wr;1rE 16 .40l O I 
199 40 FQ RMATC5x,•KALMAN FILTER OUTPUT 'o 5X o'L E ARNING',2Xo'Ol= '• I2 1 
200 4 l IF (02 . eo .1 l GOT042 
2 0 I 
2 0 2 43 F Ol'M A T( 5 X o' OATA FROM LEA 5 1 SOUARE 'o 5X o' 02 = ' ,12) 
20 3 4 2 I F ( 03 , E 0 • I l GOT u 4 5 
2 04 ~ RIT€ ( 6 ,44)0 3 

205 44 FOl'MATC 5X ,' 0 ATA FR0 "4 1"4PULSEM0"4ENT ' , 5x , ' 03= ', 12) 
2 0 ¢ 45 XO Cll = Y CO 
2 07 X0 ( 2 ) =- (l /TO l 
208 
2 09 
2 10 
21 1 
2 12 

X 0 1 3 l = CV CC+ YF 0 )/T O 
.)(46 1 = l , 3 
OC47J-= 1 , 3 
P C I I, J l = O . 
00 (1,Jl = O• 

2 13 FQ (J ,J l = O. 
2 l 4 4 7 C C I\ T I NU E 
215 46 C C NT l"UE 
216 PQ( loll =S I G 
217 
218 
2 1 9 
2 20 
22 1 
222 

PO C2 , 2 ) = - I X0 ( 2 l•SIG l / YFO 
PQ(3 , 3 1 =5 1G/ (T 0•• 2 1 
00 (1, 1)= (2 .•P O(l ,l) ) / (3,•CT 0 ••2 l 
00 ( 2 ,2l =FC (2, 2 l/(TO • TI 
O'J C 3 , ~ l =OC C 1 , 1 l 
WRIT E C 6 , 4 8 l ( C 1 , J , P O ( 1 , J ) , 0 0 C I , J l , J = 1 , 3 I , I = l , 3) 

223 48 F'J RMATc2x .1 2 . 2x .1 2 .• Po = •.e1 2 .3, • oo= • .e12 . 3> 



12 5 

224 ~O=S I G •( XC l11•• 2 1 

225 FC ( 2 , l l =O• 
226 FO l 3 oll = O. 
227 F 0 ( 3 . 2 1= 0 , 
228 F0 ( 2 , :! l = O• 
..?29 F0(2 o 2 l = l• 
230 F0 ( 3 , 3 ) = 1 , 
2:!1 009001 = 1,N 
2:!2 )0 (11 =0 ( 1) 
233 OOEL T( Il =OELHII 
2:! 4 900 CO NTINUE 
235 NN l =N- 1 
236 Kl =O 
23 7 4S Kl =Kl+ l 
238 IF( Kl . t:0 . £ 1GO T09 01 
2 39 .:;Q T09 0 2 
2 4 0 9 01 00903J= l• ~N l 

24 1 DO ( Jl=O < ~-J+ ll 

242 OD ELTIJ+l l = OEL T(N- J +ll 
2 4:! 903 CC~Tl~UE 

2 44 i>O (NI =O ( I I 
2 4 5 DDELT (ll = l -T T( N) 
246 902 D050K = l, N 

IF(Kl . EC . 2 1GOT0910 247 
248 
2 4 9 
250 
25 1 

FO( l, 11 = 1.+X0(2) • OELT(K) 
FC (l, 2 l =XC(l l• ~ELT(KI 

FO ( l ,.Jl =OEL T( Kl 
UO =-X0 ( 2 )•X0 (1 l• DEL T( K ) 

2~2 GC T09 11 
253 9 1 0 FQ (l,1 1= 1.-X0(2l•DDELT ( K) 
25 4 
255 
256 

258 
259 
260 
2 l: 1 
2 62 
263 

F 0 (1 , 2 l = XC(l)•OO ELT ( K I 
FO (l, :! l =DOELTI KI 
JO =X0 ( 2) •XO(ll•i>DEL T! K l 

XN ( 2 ) = X 0 ( £ ) 
X1'( 3 l = XQ ( ,:; I 
CALL MUL T (FQ, PQ ,FM,O .Ol 
CALL MUL T( F M, FQ , P0 ,1.l 
OC5 11 = 1. 3 
0052 J = l . 3 

264 .:>N (l,J l =P C(l , J l+ OO(l, J l 
265 52 CC NTl~UE 

2 66 5 1 CC NT(~UE 

267 AA =PN(l , l l+RO 
268 D059L = l, 3 
2l:9 
27 0 
2 71 
272 

v (L l =F N(L oil /AA 
XO ( L l = XN(L l+G (L l • IDO(K l -XN( lll 
L 1 =L 
I F ( Kl . EO . 2 ) L l =L+ 3 

273 Z ( K, Lll = XC ( L ) 
2 7 4 5 9 CONT I NUE 
27 5 RO=S I G•((>O<ll/YF 0 1•• 2 1 
2 76 PP (l, 2 1 = 0 
2 7 7 
278 
2 79 
280 
28 1 
282 
2€3 

PP (l, ll= l, -G ( ll 
PP (!, 3 1= 0. 
PP ( 2 , 1 J =-C ( 2 1 
l>P ( 3 • 1 ) =-<; ( 3 l 
PP ( 2 . 2 1= 1. 
PP 12 . :n = o . 
PP ( J . 3 l =1, 



28 4 
285 
2 8~ 

287 
288 
28~ 

290 
291 
292 
293 
294 
295 
296 

126 

PP ( 3 , 2 l =O . 
C ALL MULT(PP , PN , PO.O. ) 
r<2 =3•( Kl - ll+l 
o<) =.3 •( K- l H · l 
l Y ( K 3 • K 2 l =PO ( l • I 
Z Y( KJ , K ~ +ll = PO( l . 2 ) 
l Y( K.3 . K2+2) =..>0 (1 .3) 
ZY(K.JH , o<2) =P0 ( 2 .tl 
ZY ( K3 +1,o< 2 +1) = P OC2 . 2 1 
lY(K3 +l , K2 +2) =P0 ( 2 , 3 ) 
ZY ( K3 + 2 . K2 l ="0 ( 3 . I) 
ZY( K3 +2 , K£ +l) =P0 ( .J , 2 ) 
ZY ( l<3 +2 , K2+2 ) =P0 ( 3 , 3 l 

2 97 5 0 CO NTINUE 
2 98 IF( K l.E O.l )GO T09 04 
299 u O T0 90 5 
.300 9 0 4 XN(l) = FO(l.tl• XO( l)+F O( l, 2 l•X0(2l+FO(l, .J l•X0( 3 )+UO 
301 XO (ll =XN (l) 
3 0 2 XN ( 2 l =X0 ( 2 ) 
303 X"-( 3 l = XO ( :'. l 
3 04 WRIT E ( t>,906 )( XN ( 11.! = 1·3 1. T 
.30 5 906 FJ~MAT( SX ,' PE RoJIC TI CN ' , .) ( 2X , E l 2 . 3 ), F l0o 5 l 
306 9 72 FOR MATC 5x .• ERROR IN cov·. 3~ 1 0 . l ) 

3 07 WR ITE (6, 9 7 2 )(( PN(l,J),J= l, .J l,1 = 1, 3 i 
.308 c;o s I F (K 1.Ea . 2 ) GO T05.3 
309 GCT049 
.310 53 WR1 TE (6,70)Kl 
311 70 FOJ;MAT( 5X ,' FO RWAR D FIL TER !::STl'4ATI CN ', 5X ,' BAC KWAR D F ILTER' . 2X .12l 
3 1 2 WRIT E (6,71l(( Z (l,J),J= 1.6 ).! = l,N) 
3 1 3 71 F ORMAT(5 X. 3E l 2 . 3 . 5X , JE 1 2 . 3 l 
.J i4 JC 7 2 J = 1 , N 
3 15 N7 =3 •(J-1)+1 
.J16 
317 
318 
319 
320 
32 1 
3 22 
323 
32 4 
.325 
326 
32 7 
328 
329 
3.JO 
331 
332 
.J33 
334 
335 
3 3C. 
33 7 

·~tl =NN+l-( :'. •J) 

P 0 (1,l) =l Y(N7+1, ~ l • ZY(N7+2, 3 l -l Y ( N7+ 1, .J l• ZY(N7+2,2) 

PU (lo 2 l = ZY(N7+2 , 2 1•ZY(N7, .J J-ZY(N7 , 2 l•ZY ( N7 + 2 , J I 
PO (l, 3l = ZY(N7 , 2 l• ZY(N7+1, 3 l-ZY(N7, .J l• ZY(N7 +1, 2 ) 
PO ( 2 • 1 ) = Z Y ( N 7 + 2 , l ) * Z Y ( N 7 + l • 3 ) - z Y ( N 7 + l , l ) * Z Y ( N 7 + 2 • 3 ) 
~ 0 ( 2 , 2 l =Z Y( N7,l)• ZY(N7+ 2 , 3 l -ZY(N7+ 2 , l)*ZY(N7 , 3 ) 

P0 ( 2 ,31 =Z Y(N7+1,I l•ZYCN7o3l-ZY(N7,l)*ZY(N7+1, 3 ) 
P O ( 3 , l ) = l Y ( N7 + 1, l l * ZY ( N 7+ 2 , 2 ) - z Y ( N7 + l, 2 ) • ZY ( N 7+ 2, l ) 
PO ( 3 , 2 ) = ZY ( N 7 +2 , l ) • Z Y ( N7 , 2 ) -ZY ( N7, l ) • Z Y ( N 7 +2 , 2 ) 
~0( .J ,3l =Z Y(N7, l) •ZY(N7+ l, 2l-ZY(N7,2l*ZY(N7+ 1,1l 

::> c T= Z Y ( ,._ 7 • l ) •PO ( l , l I +l Y ( N 7, 2 ) •P O ( 2 , l ) + l Y (I\ 7, 3 J •PO ( 3 , l) 
~~( t,ll = lY(N8+1 , 5 l•ZY(N8+ 2 , 6 l -ZY(N8+1, 6 )•LY(N8+2 , 5 ) 

"N(l,21 =Z Y(N8+ 2 , 5 l*ZY( N8 , 6 l -ZYIN8 . 5 l•ZY(N 8 +2. 6 l 
~N (lo3l =Z Y(N8 , 5 l•ZY(N8 +1, 6 l -Z Y( N8 , 6 l•ZY( NO+ l, 5 l 

PN( 2 , ll =Z Y(N8 + 2 , 4l•ZY (N8+ 1, 6 l -ZY (N 8 +1,4)• Z Y(N8 +2 , 6) 
PN( 2 , 2 l =Z Y(N8 , 4 l• ZY(N 8 +2 , 6 l -Z Y(N8+ 2 ,4l• ZY(N8, 6 l 
~N ( ~ ,.Jl =Z YIN8+1 , 4J•ZY( N8 .6) -ZY ( N0 ,4l• ZY( N8+1 • 6l 
..>N(.J ,ll= ZY(N8+ 1, 4l • ZY(N8+2 . 5 l-ZY (N 8 +1, 5 l• Z YIN 8 +2,4J 
~N(3 , 2 l =ZY(N8 +2,4 1• ZY ( N8 , 5 l -ZY (N8 ,4l*ZY(Nd+2, 5 1 

P"- ( 3 ,3l = ZY(N8,4l•ZY(N8+1 , 5 l -ZY ( N8 , 5 )•ZY ( N8+1 , 4) 
:3ET=Z Y(l\ !'! , 4 l•? N( l ,1 l+Z Y(N 8 , 5 l•P N ( 2 ,tl+ ZY(N8,b)•PN(3, ll 
#R IT E (6, 2 C l l ~ET , BE T 

338 2 01 FOR'4AT( 5 X,'DETOF »F=• .El0.4, !>X, • DETOFPtl= ' , E t0.4) 
339 IF(DE T. EO .O. l GO TU72 
3 40 
3 41 
342 
3 4 3 

I F CBET .eo . o . l GO TO lOOO 
)073 ~ = 1. 3 
) Q74L = I , 3 
PO (M,Ll = PO(M,Ll/OET 



3 44 
3 4 5 

D l\(M , L l =P l\(M .L ) /BET 
OO (M, L l = PC (M. L l•PN(lol,L ) 

346 74 CONT I NUE 
347 7 2 COl\T l ~UE 
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348 
349 
3 5 0 
.351 
3 5 2 
.35 3 
354 
.355 
3 5 <. 
35 7 
358 
3 5 9 

F ~(l,ll = C0 ( 2 , 2 1 • 00 ( .3 , 3 1 -0 C ( 2 , 3) • 00 ( .3 , 2 1 

FM ( 1 • 2 I = 00 ( 3. 2 I • 00( 1 , 3 1-0 0 ( 1 • 2 ) • 00 ( 3 • ..5 ) 

F M ( l, .3 1= CO I I , 2 1• ) 0 ( 2 ,.3)-00 ( 1, 3 ) • 00(2 , 2 1 
F M ( 2 . l I = c u ( 3 . 1 ) • OO ( 2. 3 ) -0 0 ( 2 . 1 ) • cc ( 3 . 3) 
F M I 2 , 2 I = CC ( I , l I• 0 0 ( .3 , 3 ) -0 0 I 3 , 1 I • 00 ( I , ::! l 
F M < 2 . 3 > = o o < 2 • 1 1 • o o < 1 • .3 1 -o o < 1 • 1 > • o o < 2 • 3 1 
F M( 3 , 11 = 0 0 ( 2 , 11• (.) 0 ( 3 . 2 1-00 1 2 . 2 1•00 ( 3, 1 I 
FM ( 3 , 2 1 =CC ( 3 , 1 I• 00 ( I , 2 I -00 ( 1, I I •OO ( 3 , 2 I 
F M ( .3 , 3 ) = 00 ( I , I I • 00 ( 2 , 2 I -OC ( 1, 2 I • CO ( 2, I I 
OF = F •" (I , 1 I • OO ( 1 •I ) • F M ( 1• 2 I • OO ( 2 , I) •FM( 1, 3 l • OO ( 3 , I I 
0075M = I , 3 
0 076L= 1 , .J 

3 f0 F M( M, Ll = F M(M,Ll /OF 
36 1 7 6 CONT INUE 
3f2 75 CCNT l ll.U E 
3f.3 00901 = 1 • .3 
364 
365 

LL =N-J• 1 
G ( I I = P O < I , 1 I • Z I J , 11 • P 0 I I, 2 I • z ( J , 2 l •PO( I , 3 I• Z I J , 3 ) + PN ( I , I I* Z (LL, 4 I 

l + P NI I , 2 l • Z ( LL , 5 ) + PN ( I , .3 l • Z (LL , 6 I 
366 9 0 CON TI NUE 
367 00930 I = I, .3 
368 l ( J , ll = F M( l, ll•G(ll •FM( l, 2 1• G1 2 l+F M(J, 3 l • G ( 3 1 
.36<; 93 0 CONTI NUE 
3 70 GO T 072 
37 1 ICOO l(J.IJ = Z (ll.• l-J,41 
372 Z (J,2l = Z < ~• l -J . 5 l 

373 l ( J , 3 l = Z l ll.H-J . 6 1 
37 4 72 CO NTINUE 
3 7 5 MRITE ( 6 ,7 7) 0 1 
.376 77 FORMATl5X .•Tt-tC S MOOTH KALMAN RO::SUL T' .1 2 1 
3 7 7 1111 R l T '=C ( 6 • 'e ) ( D ( I ) • ( z ( l • J ) • J = 1 • 3 ) • I = 1 • N ) 
3 78 1e F CR MAT ( 5 x .• o= •.4 E l 5 o4) 
3 7 9 00 4 54 1= 1·" 
380 BF = ( Z (l, 3 l•Z (l,ll•Z ( t,2>l/A 
38 1 CF = - L C l , 2 1 
382 WR ITE ((>.4 56 )A,UF, CF ,TT(ll 
383 456 FORMAT( 2X ,' L E ARNING PARAM ET ERS ' . ~El0.4,'TIME= •, Et0 , 4 ) 

3E4 TNF= A•TT (I l •A•BF • ( I . - EX P ( -CF • TT (I ) I I /CF 
2 8 5 4 55 F0hMAT(1Q X ,•TO TAL NUMBER OF ERR0 h ', 2X , E IOo 4 ) 
386 # RI TE ( 6 ,455)TNF 
.387 454 CONTI NUE 
388 RE TURI\ 
389 E NO 

.3 90 SU9RO v T INE MULT(H. B . c . z 11 
3 91 D IMENSICN H ( .3 ,31, 813 , 3 ) ,C( .3 .3) 
.392 0086 1 = 1.3 
393 006 7L = l, 3 
394 5U lol =O , 
.3S5 0098J = l, 3 
3<;6 I F ( Z l oEO ol.> GCT089 
3<; 7 SU M=H (I , J I • B ( J ,L) + S UM 
.3<. 8 GO T 0 8 8 
399 89 5UM=H(l , J l•8 (L, J l•SUM 
4 00 8e CC l\Tl l\UE 
4 01 C ( I.L I = SUM 

7 

;.; 
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40 2 e7 CCN TI"UE 
40 3 Be CONT I "UE 
40 4 HE T U ~N 

40 5 E"O 

406 ~vaROUTINE IM( O, OELT ,TT, YCO oYFG ,TO ,N) 
407 ~ IMENS IL N C!Nl, OELT(NJ,TT( N ) 
40 8 c.:=o. 
40 9 C l =TT(ll• C (l) /2 , 
4 10 00 10 0 1=2 · " 
4 1 1 C 0 =CO + ( C ( I l -0 ( I - 1 l ) 
412 C 1 =C 1 + ( D ( I I -D ( 1-1 l l • ( (TT! I ) +TT< 1- 1 l l 1 2 l 
4 1 3 100 CO "TI "UE 
4 I 4 T 0 =C 1 /C 0 
41 5 YF= CU 
4 16 * RI TE (6 ,10 1lTQ, YF 
41 7 101 FORMA T! 2X .'IM OUT PU T TQ: • . E: 12 , 3 ,• 1F (T Q , LE . OI SCATTE E ' ,•YF= • , E12.3 l 
4 16 YC =D < ll 
41 ~ 

42C 


