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I. INTRODUCTION

The pulsed neutron technique provides a powerful tool
for nuclear physics research, and for reactor physics research
in particular. Baslcally the technique consists of observe
ing the transient behavior of the neutron flux in a test
medium following a burst of fast neutrons. The transient bee
havior of the neutron flux may be considered as consisting
of the thermallizatlion of the neutrons followed by their dife
fusion in the test medium, The neutron flux may be repre-
sented by an infinite sum of terms similar to a Fourier serles,
The first term of a trigonometric series such as this is cal-
led the "fundamental” wave and the other terms are called
"harmonies®, Yeter, sraphite; and beryllium are materials
which are commonly used in pulsed neutron experiments, but
water has been investigated ﬁout extensively. The pulsed
neutron technigue can be used to determine capture ocross
sections, diffusion constants, neutron lifetimes, neutron
spectra, and reactivities,

Although it appears that this technique is capable of
yielding diffusion parameters of water with high accuracy,
early results contained dlscrepancies, Because of these dise-
orepancies lopez and Beyster (1) were prompted to investigate
the experimental procedures in an effort to find improvements
which would lead to more accurate and consistent results,

This investigation indicated that the magnitude of the effects



of higher harmonics may have been underestimated in previous
pulsed neutron measurements. The presence of longelived
harmonic modes constitutes an inherent complication for pulsed
neutron measurements, This complication is made even more
significant when the medium ig pulsed by an external neutron
source since a very unsymmetrical thermal flux is pmduced,

At the ssme time an external source is preferred because it
will not perturd the test medium., Lopez and Beyster (1, p.
193) reised two important and interesting questions

i, Is there a source distance "d" for a glven rectan-
gular tank which is optimum for estabilshing a onee
dimensional situstion?

2, Can a "delay time" ty after the neutron pulse be
experimentally determined, after which there is an
approximately one-dimensional harmonic situation?

In the following thesis these two questions are cone-

sldered while an investigation is made of experimental pro-
cedureg which permit the elimination or suppression of higher
harmonic modes in a water system, The elimination or sup-
pression of these higher harmonics allows the esimplifying as-
sumption of an essentlally one-dimensional situation, This
greatly reduces the number of texrms which must be considered
in the general solution of the neutron diffusion equation,
With the aid of these optimum experimental procedures the
effects of the higher harmonics will be minimized, and cone
sistent results should be easily obtained, The relative
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magni tudes of the higher hammonics, with respect to the fune
demental, is examined as a function of time, Also, this
thesle demonstrates the pulsed neutron technique for deterw
mining the abgsorption eross seotion and diffusion oconstant

of water,
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II. REVIEW OF LITERATURE

Early apparatus for neutron pulsing was developed and
desoribed by Manley et al. (2) and Haworth et al. (3) in 1941,
This apparatus, consisting of a neutron source, method of cone
trol, and recording circuits, was used by Manley et al. (4)
to determine the mean life of neutrons in water and the hy=-
drogen capture cross section. Manley made several measure-
ments in planes perpendicular to the axis of interest and
noted that over several diffusion lengths from 1t the neutron
density was essentially constant, Based on this observation
he made the conclusion that it would be possible to apply the
one-dimensional diffusion equation,

In 1953, von Dardel (5) made a survey of the possibilities
and limitations of the pulsed neutron technique as a source
of information on neutron diffusion parameters, This invese
tigation reported that the pulsing technique was a very use-
ful method for determining neutron diffusion parameters, but
that experimental procedures would have to be improved in
order to get more accurate results,

About one year later, von NDardel and Sjostrand (6) made
a detalled study, using the pulsing technique, of the decay
rate of the neutron flux from a moderator as a means of dee
termining diffusion parameters, In analyzing thelr data they
made this important observation (6, p. 1246), "The presence
of harmonic modes in the neutron distribution will make the



decay curve depart from the pure exponential decay of the
fundamental mode, and will make the measurements more dif-
ficult to interpret.”

Following the study by von Dardel and Sjostrand, the
pulsed neutron technique became a very popular and useful ree
search tool., Nelkin (7, p. 210) states, "There are, however,
considerable theoretical and experimental uncertainties re-
maining in ite application.” WNelkin (7) presents a detalled
discussion on the theoretica basis for interpreting pulsed
neutron measurements, He was the first to apply transport
theory to the problem, The fact that he realized the problem
of higher harmonics is evident from his (7, p. 216) state-
ment, "The most important experimental difficulty is probably
the isolation of the fundamental spatial mode,”

The early measurements made by the pulsed neutron teche
nique demonstrated that the method could produce accurate
results, "However, the early determinations of the thermal
absorption cross section a‘a by Manley, von Dardel and ¥gltner,
Scot et al., and von Dardel and Sjostrand, are not in very
good azreement,” report Lopez and Beyster (1). In thelr ine
vestigation they indicated that the magnitude of the effects
of higher harmonics may have been underestimated in aoné pre=
vious pulsed neutron measurements, This is belleved to be a
major source of discrepancy among the early neutron pulsing
results, Lopez and Seyster ralsed questions about what exe

perimental procedures could be employed to minimize the efe



fects of higher harmonics, and to make the one-dimensional
assumption more valid.

Keepin (8) suggests that the observed dlscrepancies among
pul sed neutron data may arise from, "... truncation errors
assoclated with (1) the use of only the zeroth and first
energy eigenfunctions, (2) the omission of terms higher than
Bu in the Ao least squares fit, and (3) the possible influe
ence of higher spatial modes on measured values of x°1.~ He
gives a valuable discussion on interpreting pulsed neutron
data, including a discussion of the "diffusion cooling" phe-
nomenon, Diffusion cooling refers to the preferential leakage
of higheenergy neutrons.

In view of these observations regarding discrepancies
induced as a consequence of higher harmonios, it is evident
that an investigation of procedures for accounting for the
influence of these harmonics is ilmportant, It i1s believed
that knowledge gained from such an investigation would enable
experimental procedures to be refined to yield more consistent
and accurate results. The following thesis 1s an examination
of the relative magnitudes of the harmonics as a function of
time and experimental geometry. An attempt is made to detere
mine some of the optimum experimental procedures for making

pul sed neutron measurements,



IIT. THEORY

Nelkin (7), Keepin (8) and Vertes (9) have published exw
tensive dlsoussions on the theoretiocal basis for interpreting
pul sed neutron measurements, The basic conolusion is that
the thermal neutron flux in a homogeneous moderator, following
2 burst of fast neutronsg, deceys such that it may bde repree
gsented by the exponential decay of a number of modes, Fach
of these modes represents a different neutron distribution
in the moderator, and they all venish at the extrapolated
boundary, If the neutron flux is decaying in its fundamental
mode only, then a single buckling may be assigned to the test
medium, A comprehensive examination of the question concermn-
ing what extrapolation distance is appropriate for pulsed
systems 18 given by Gelbard and Davis (10),

The following analysis for a nonemultiplying system 1s
based on the following assumptionss

1. A short burst of fast neutrons occurs near the test

system at time zero,

2, The fast neutrons are thermalized and result in a

themal flux distribution ¢(F).

3« The slowing down time is very short and #(F) appears

approximately at time zevo,

4, DAffusion theory is adequate,

5 "Diffusion cooling® is neglected, For a discussion

on "diffusion cooling" see Appendix A.
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According to one-veloolity diffusion theory, the basic
neutron balance equation for a bare homogeneous system is

nvzﬁ(s',t) - s.ﬁ(r.t) + 8= %e (1)

where
D = diffusion coefficient for flux
#(Pyt) = neutron flux = n(P,t)v
I ® macroscopic absorption cross section of the media
S = neutron "source term"
n = neutron density
v = neutron velooity
In the present case of & mn—m:.ﬁply&ng media S, the “source
temm", is zero, Since F(P,t) = n(P,t)v, equation (1) may be
written as

DPP(Pt) = T P(P,t) = & 2(Eat) (2)

Dividing through by D, equation 2 becomes,

Fh(r,e) - Pg(r,0) = A 2L (3)

2 g o2 (%)
It is desired to solve equation 3 with the following
boundary conditions,
(1) The flvy ‘e rverywhere finlte and nonenegative,
(11) The flux is zero at the extrapolated boundaries,
L1e24y #(T,t) = 0 where T Ls the extrapolated
boundary,

where



and the initial condition,
(111) #(P,0) = #(F).
To obtain the solution of equation 3, use separation
of variables and write
#(Pyt) = H(F)T(t) (5)
where H(F) is a funotion of F alone and T(t) is a function
of t alone, Making this substitution, equation 3 becomes

FH(P)N(E) = KPH(F)T(t) = & 2EXT(E) (6)

Dividing through by H(F)T(t),

CHE) | 42 . o *
- o = & ey S = - )

where o 8 is a separation constant,
The solution is now the produst of the solutions of the
two equations

* ey - - ®)
e oN

or,
%’- = « oDVat (10)
<2H(P) + o’H(F) = 0 (11)
where
o® = 0% - 1? (12)

The solution of equation 10 is easily found to be

ww>-mm€}m“ (13)
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In rectanguler coordinates, equation 11 is

2 2 2
< S g Shhd s
) d >

Assume that the varisbles x, ¥y, 2 are separable, so that it
is possible to write

H(P) = x(x) Y(y) Z(2) (15)
where X(x) is a funetion of x alone, Y(y) of y alone, and
Z(z) of z alone, Making this substitution, equation 14

becomes

2 2 2, 2
%i;gt-%ﬁt%i;f*a = 0 (16)
fach of the first three terms of equation 16 is a funce
tion of one independent variable only, and consequently its
value will be independent of the wvalues of the other tems,

Since az is a constant, the condition specified by equation
16 can be satisfied only if all the terms are constant, thus,

§.£-§ = oc? (17)
§$ - - (18)
%«ﬁ; = o | (19)

where cz, Dz. and Ez are positive real quantities, and

e el e +a’=0 (20)

The signs preceding cz. !32, and az were chosen for
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reasons of symmetry, boundary conditions, and simplicity.
The differential equation of the general fomm

%ﬁ-} * ofy 1600 i—? + 2% =0 (21)

has solutions which depend on whether t? 1s e positive or
negative quantity, When tz is positive, the solution may be
expressed as

X= Poos fx +Q sin I'x (22)

Whereas, if fz

is negative, the solution may be expressed as
X = P cosh fx + Q sinh fx (23)
where P and ( are arbitrary constants,

The proper solution in the present case can be deter-
mined from the boundary conditions., Figure 1 shows the ex-
perimental geometry for this analysis, Note that the die
mensions a, b, and ¢ include the extrapolation distances,

The flux is supposed to be everywhere finite and non-negative
and to vanish at the extrapolated boundaries, Also, the flux
distribution must be symmetrical in the x- and y-coordinates,
because the source ig at the center of the x,y=plane, The
flux will be distributed somewhat in the manner shown in
Pligure 2. The symmetry requirement rules out the sinh and
sine terms, since they are not symmetric., Thus, the Q's must
equal zero., Purthermore, the requirement that the flux go to
gero at the extrapolated boundary eliminates the cosh tem,
since the cosh fx increases steadily as x increases, Hence,
the only available solution is
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L rsctangular water
test assembly

accelerator
bean tube

tritium
target

Note: dimensions a, by, and ¢
include extrapolation
distances

FPlgure 1., Geometry of experimental setup
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beam

Figure 2, Expected initial thermal neutron flux distrie
bution.,
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X= P cos fx (24)
This means that r"’ must be positive to satisfy the roqiuro-
ments of this problem, From this it can be seen that if C°
and nz are pogitive, then they must be preceded by minus
signs, as in equations 17 and 18,

The constant, E, in equation 19 is preceded by a negative
sign because of boundary conditions, The form of the solution
containing cosh and sinh terms is ruled out, because the flux
mast go to zero at the boundaries, That leaves a solution
of the form of equation 22, The flux distribution may be
represented by a solution consisting of sine termms only. This
is possible since for the Zecoordinate the origin is at one
end of the distribution, instead of in the center,

¥With the assumption of separation of variables, boundary
condition 11 may be written as

a) ’(:i'o ¥y 2) = 0, 1-*-0"‘0"’“&!‘:%
B) #(x, 2% 2) =0, tees, F=Ovheny= 2P

e) #(xy ¥y ¢) = 0y Loeay # = O When z = ¢

d) #(xy ¥9 0) = 0y Le0ey # = 0 when z = 0

From the above considerations, it follows that the solue
tion of equation 17 must be of the form

X= P cos Cx (25)

In order to satisfy boundery condition iia, it is required
~ that cos OF equal zere, or
0B =(2m+1)F n=0,1,2,* (26)
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This condition implies that
Gp = (2m+1) 5, meo0,1,2 oo (27)
The general solution for equation 17 is then
X, ® B, 008 (2m + 1) 3 xo m = 0, 1, 2, ¢s¢  (28)
Similarly, boundary condition i and 11d are satisfied by
D, * (2n + l)g' n=0, 1, 2, *** (29)

s that :
Y, = Q, oos ‘2“*1)§y.n-0. 1, 2, wee (30)
It now remains to find a solution of equation 19, The
solution has the general form
Z= R sin Dz (31)
which must satisfy boundary conditions i, ile, and ii4d,

Henoce,
sin Do = 0 } (32)
and this implies that ‘
Dg ® (1 +1)my 1 =0, 1, 2, ¢ (33)
Therefore,
noe e (34)

and the general solution for equation 19 is given by

Zl - 31 sin (1 + 1’%!' 1=0, 1, 2, *o° (35)

Acocording to equation 15, the simplest solution for H(F),

L1ecey H(xy ¥y 2), 18 a product of X, ¥, and Z, But, since

the equation is linear, any sum of productsz will be a solu~
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tion, Hence,
A(P) = x(x) ¥(y) 2(z)

= ¥ 2 Sun1 oon(znﬂ)gxeos(mﬂ)

n_sin(l+1)
m=0 n=0 1-0 2;

| o
(36)
where 8.1 is a combination of arbitrarv constants,
Substituting the expressions for cz, Dz. and E‘a into
equation 20 ylelds

.[(2114»1);‘;]3 " i(zmx)g}z . {(ux)%r sdae 1309

Recalling that o was defined as {32 - kz. then

£ = [(z-mn] I(le)g}z * X(M)%Y (38)

Note thst/;iiuqn‘ll k plus the "buckling"., Hence, equation 38
may be written as
ALY S W (39)
Consequently, the solution for #(x, y, 2, t), which is
given by equation 5, becomes
#(xy vy 2y t) = H(F) (%)

o~ u -/’ zm‘t
“ mnl
= I 0
=0 nw0 180 A"“( o
un(z"”ﬁx w,(%mi)&, 101)2’ (50)

where Aml(o) is the combined constant 5mT(o). The coef=
ficlents A‘m(a) of the wvarious terms depend on the initial
themal neutron distribution,
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A decay constant L, is now defined as being

hamt ¥ am1 (M)

2. as given by equation 39, into this

Upen substituting 4’,‘1
defining equation

Aamy = Zg¥ * mnmz (42)

From the last equation it can be seen that the decay
depends on the buckling, L.e. Bmz. The higher modes have
larger bucklings and, therefore, larger decay constants,
Hence, the higher modes will decay much faster and the temm
with the smallest decay constant (the fundamental) will
eventually predominate,

At a fixed point, where x, y, and z are constant, the
cosine and sine terms of equation 40 will be constant, Ace
cordingly, the time decay of the fundamental mode of the
neutron flux at a fixed point in the water sample can be ree
presented by

Jt) = gye 000" (82)
where

‘o00 = Za¥ * n"'sc.'n:«u2 (43)

000
and #, 1s a new combined constant, As before, D is the dife
fusion coefficient for flux and Boooz is the geometrical
buckling of the fundamental mode; L and v have their usual
meanings,

The fundamental decay constant Aooo M8y be found by
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plotting the count rate at a fixed point in the water as a
function of time after the pulse, The resulting ocurve is
linear on semielog paper if the fundamental is the only mode
present, The slope of this line will then be the decay cone
stant A, .+ This is illustrated in Figure 3.

As shown in Figure 4, equation 43 is the equation of a
straight line with A ., being the dependent and B,.,° the
independent variasble, A plot of deocay constant Aoco BF 2
function of the moderator size or buckling, aaooz’ will
yield a straight line of slope Dv and intercept at zero
buckling of LaVe Thus, the neutron lifetime, 1 = (E‘ﬁ"i.
and the diffusion coefficlent, D° = v, can be determined,

If the neutron velocity is known, the macroscopic absorption
cross section E‘, diffusion length Lz - D/S:‘. and mean-free
path A, = 3‘%/" can also be determined, It is important to
note that these oaloulations are based on the assumption that
only the fundamental is present when the measurements are
taken.

Alternatively, measurements may be made before the
fundamental predominates. In this case a plot of ) ., &z a
function of Bom1 for various modes may be plotted, These
measurements will yleld the same information discussed above,
A single moderator size is used and the decay constants for
the various modes are plotted against the ocorresponding mode's
buckling. This procedure is especially useful for cases in
which by the time the fundamental is predominant, the neutron
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-) t
g(t) = g(0) e 000

log of fundeamental mode
flux

count rate

Channel number time

Flgure 3, FPFundamental mode count rate versus time
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Fundamental mode decay

constant, KOOO

Buckling, BOOOZ

FPigure 4, Decay constant versus geometrical buckling
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intensity is too low to make meaningful measurements.

Examining the genersl solution for the flux (equation 40)
it is seen that the time dependent part of the flux is the
sum of the exponentials with variable Agn1?

o -
g(t) = $(0) = e mal (4%)

meNyl
cgo) T o AT g )®

menyl
Since B“lz and Apny Gan take on 80 Vvery many values, CoOr-
regponding to all possible combinations of my, n, and 1, cale
culations for evaluating the diffusion parameters is extremely
complicated due to the number of exponential temms, Conse-
quently, it is very desirable to minimize the number of tems
and mnry the intcrprotation of the pulsed neutron measure~
ments, This is why a onee~dimensional situation ﬁma be so
advantageous.

The pulsed neutron sourae is a source of fast neutrons,
and may be considered as a point source in comparison with
the dimensions of the water sample., FPhysical arrangements
of the point source and water assembly can be made which will
minimize the number of terms in the general solution for the
flux, By symmetrically centering the isotropic source in a
lateral plane, as shown in Figure 1, there will be no even
hammoniocs excited along the lateral dimensions a and b,

This is true beocause the source would then be located at a
node for even harmonics. It also seems reasonable to assume
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that the initial magnitudes of the harmonics excited along
the lateral dimensions will be much less than those excited
along the ze-exis,; 1.2.p the axial dimension.

Since the Adistance between the source and various points
on the face of the water sample is different, the distridution
of incident source neutrons in this face, i,e.,, the x-y plane,
will vary with position, Neglectinz attenuation of the neute
ron beam, it may de assumed that

ﬂa-&‘z
2

where 4~ i1s the square of the distance from the source to
the fleld point of interest. Then, if 8 is the source strength

ﬂc;%

and

$-5

a
where XK is some constant of proportionality., Now, referring

g(0) = -‘:E

to Figure 5,

and

#(y) = Tﬁ'g

a - + 3y
From this it is seen that XS = ﬂ(o)d‘?. and therefore,
42
#y) = 5(0)?—:—;2
Hence, the geometricel effect on the initial thermal neutron
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water samp1e~\

targe t—\

Figure 5, Top view of water sample and target
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distribution along a lateral dimension may be approximately

descoribed by
2
(8a)” + ]

Here the source distance 4 has been expressed as "éa", "a"
being a lateral dimension of the face of the water sample,
This initial lateral flux distribution is plotted in Pigure
6 for various values of &, The fundsmental is expected to
be a cosine and this distridbution is represented by the
dashed line, The lateral thermal neutron distribution ape
pears to be closest to the cosine for values of § between 0,2
and 0,4, Therefore, it is expected that for k¥ » 0,3 the
initial neutron distribution will be distorted only slightly
from the pure cosine, or fundamental. Since the amount of
distortion from the pure fundamental is proportional to the
magnitudes of the amplitudes of the harmonics, it can be as-
sumed that the initial amplitudes of the lateral harmonics
are very small, Otherwise they would cause a greater dipe
tortion from the pure fundamental.

These considerations lead one to assume that it is pose
sible to walt until a relatively pure fundamental distribution
is established along the x- and y-coordinates, and then proe
ceed to take measurements along the ze-coordinate, The measuree
ments along the zeaxis should still ocontain an abundance of
harmonics. At this point, consider the following questions:

1, Is there a value of "§" for a given rectangular
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g(y)/8(0)

§=0,8

6=0,4
 cosine
$=0,2
0.14
0 : 0
-a/2 x

Figure 6, Initial thermel neutron flux for various values
of 6, Plotted from the equatign

%%‘%% 5 (k'blggb:- yz
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water sample which ig optimum for establishing a
one-dimensional situation, 1.e., 18 there an ope
timun source to sample distance?

2, 1Is there a delay time "t," following the neutron
pulse, after which there is approximately a one-
dimensional "harmonic" situation?

3. Iz there a walting time "t " following the neutron

~ pulse, after which there is approximately a onee
dimensional “"fundamental® situation, and can this
walting time be experimentally determined?

Quegtion 2 refers to the time required for establishing

a one~dimensional situation, whereas question 3 refers to a
waiting time which includes time for harmonics, higher than
the fundamental, in this direction to deocay.

An indication of the answers to these questions may be
obtained by examining equation 45, which describes the initial
thermal neutron distribution along a lateral axis, By means
of a harmonic analysis of curves from this equation for vare
ious values of &, the amplitudes A, of the odd harmoniocs may
be determined as a functions of the nomalized source distance
$a, Plgure 7 is a plot of the relative amplitudes of the
third and fifth harmonics with respect to the fundamental as
a function of &, One expects the amplitude of the thirad
harmonic to be greater than that of the fifth harmonic, and
from Figure 7 it is seen that the ratio A,/Ao is zero at ap-
proximately é = 0,3, Hence, this plot indicates an optimum



Relative harmonic content

Fig‘lre L/ 7%

=0,5 }
-1.0 3 4 4 >
0.5 = a0 1.5 2,0
6 (dimensionless)
"Estimated relative amplitudes of third and £ifth harmonics excited in

lateral dimensions as a function of normelized source distance.® (1)

42
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distance for minimizing harmonics of approximately 0O.,3a. It
must be remembered that this iz only an approximate answer
arrived at through use of an equation which is based on an
idealized situation.

In an actual situation, the third harmonic will mest
likely not be completely absent for & = 0,3, In other words,
the ratio A:,/A° will not actually be zero for & = 0,3, and
hence the third harmonic will still be contributing to the
initial neutron flux behavior. One purpose of this thewsis
is to examine how the initial lateral harmonics are actuslly
influenced by different values of §. That 18, it is attempted
to see Af & = 0,3 1g truly optinum, and to see how gensitive
the amplitudes are to &,

It is doubtful that a § can be found such that the inle
tial harmonics are eliminated completely., But, a & can be
found which will minimigze these harmonics. Once an optimum
$ is found, the remaining effects of the hammonics in the
lateral direction may be further diminished by walting until
they decay. Henoe, it is desired to find a delay time te
following the pulse, after which any remaining effects of the
third and higher harmonics are negligible, Of course, after
the third harmonic has become negligible, all higher harmonics
may also be neglected, The delay time may be determined by
finding the ratio AS/A' as a function of time and noting when
it becomes less than some arbitrary value, This is done by
Fourier-analyzing the time-dependent part of the lateral flux
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at some fixed point in the water sample. This will yleld the
anplitudes of the different modes as a function of time, A
Plot may then be made of ratios such as Ay/A, and Ag/A,.

From this plot it may be determined at what time the higher
harmonics become negligible with respect to the fmuontil.

How can meaningful measurements of the amplitudes of
the lateral flux modes be determined in the presence of
numerous axial harmonics? This certainly is not a oneedie
mensional problem, It is interesting and infomative to exe
plore this question before proceeding,

In the present case, the flux along the xecoordinate is
an exsmple of lateral flux., This lateral flux will serve to
illustrate an approach to the question mentioned above, By
taking y and z as constante cl and Cy respectively, equation
40 gives the following expregsion for the lateral flux in
the x-direction,

2
Blxsy = Cyp 2% Cpp t) = u.i: Aam o faml T e0st 2L, (4g)
where
Ay = Agny (0) ”t(zmﬂ%c ainu"“ﬁca (47)

2

Substituting @nl s 88 given by equation 38, into equation 46,

2

B(xy Cgp Cpo t) = T A% oxp ~{[x2+(zmx) +|(2n01) y
e e any WAl 2] g

2
+ [{14»1)31 Dvt cos (2m+l)g (48)
c 5"
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Zxpanding equation 483 the first five terms illustrate come
binations invelving the fundeamental mode in the x-coordinate,

and the next term illustrates one of a series of terms ine

volving the first harmonic in the x-coordinate, etoc., The

terms serve to show the general pattern of the complete

expansion,

B(xy Cyy Cpy t) = A'mup{- [ka +(§)2+(§)2*(§)2]Dve}eol 3‘3:

4

* Kgyemvie (@@ 2o B0 |ove oos 32

+ gqem - (o @2 R ova]ons

'y

. A;uezp{-»[kz*(ﬁ)z*(-?)zﬂ%u)z]m}”' o
&

+ A;!qup{.[1:%(%)3*(%!)34-(%)3]9“}&-

-+ 53&0
N Ai”up{-.{kz‘v(%ﬁ)zv(g)zﬂ%)z]m}wa %
&> BOse (39)

At a given time, 1.,2,, t = constant, equation 49 may bde

written as

#(x,y Cqs Coo t’c’) ® Aoe mn&x + A;ai oe.Ex + oo

where

R

Koo = Moo ™ | ¢ #D? +P? “®?|owe } (51)
From equation 50 it can be seen that, by factoring out
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like cosine tems, the lateral flux may be expressed in the

form,
B(xy Cqs Cps Cy) -Z«»:-E:*Beol%nz#ﬁml{n:
+ oo (52)
where
Ao A% * A%y * °°° (53)
Boang,, ¢ A%y + (54)

and similarly for C ete. Note that X contains only combine
ations of the fundamental in the x~coordinate with all other
harmonies, and B contains only combinations of the first
harmonic in the x-coordinate with all other harmonics, and
similarly for the other constants C, D, ete.

Now, for a fixed y and 2z and at a given time t, the
lateral flux may be expressed in the form of a cosine Fourier
series as shown by equation 52, Hence, by taking measure-
ments at a fixed y and 2 and at a given time, meaningful
measurements of the amplitudes of the lateral modes may be
made, By Pourier snalyzing these measurements, the composite
constants Ay By Cp *¢*, may be determined and the ratios B/%,
T/A, etc. may be found for given times, These ratios may
then be plotted as a function of time, From these plots, it
may be found at what time the higher lateral harmonics become
negligible, 1.,0,, ty could be determined,

It is important to realize that these composite cone
stants, such as A, consist of sums of more than one time varye
ing term, For instance,
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A® Ajoo * 4901 * **°

Y Y
= ASog © 00+ AJgy @ 0% ees (54)
where the exponential powers are of the fom

Yomi ® = fmzm (55)
"= Aam)
These composites are gonstant for a glven thﬁ but it is
evident from equation 54 that they do not decay as a simple
exponential as do the amplitudes of the modes in the axial
direction for a one-dimensional case. As a result, a plot
of log A versus time t would not be & strailght line.

After determining the delay time t,, the harmoniocs in the
axial direction may be examined, since for times greater than
t, an essentlally one-dimensional situation is established,
With such an arrangement the lateral harmoniocs may be neglecte
ed and only the lateral fundamental need be considered, By
making this assumption 3“12 beoones 30012 and the number of
terms which must be considered is greatly reduced,

Nowy if only the fundamental is present in the lateral
directions, 1.2,y x= and yedirections, and x and y are oone
stant, equation 40 gives the flux along the axial coordinate
as
#(Cys Cpo 2y t) = Bz, ¢)

= aggo #tnlz exp <[k + ()% + (B)? + (D)% ]owe

= aggy sindz exp «[i¥ +(D2H A2 |ove
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+ tgpp stn e exp =[x% + (D242 Jove
+ oes (55)
where
%01 * A“,.(O) cos §c1 cos §Cz (56)

Equation 55 may be rewritten to glve the axial flux as

#(z, t) = b sin Tz + b,ein s + vyetn Az + oo0 (57)

where the b%s are of the fom

2 2 2
by = sporem =i o[2f g (105 foe
-
. S (58)
It is evident from equation 58 that the amplitudes ho'
bl’ byy etcs of the various modes decay at different rates,
Thelir decay constants may now be written ae

hood = Ta¥ * DVByy” (59)
where 2 " 2
%o’ = (8] + ] + (4] (60)

When measurements are taken before the higher modes in
the zecoordinate have become negligible, a hammonic analysis
of equation 56 is necessary to determine the amplitudes Bys
bys Byy ***. A Fourler (leastesquares approximation) Hammonio
analysis for finding these amplitudes, in the onee~dimensional
case, is 11lustrated below (11)., Since in this investigation
measurements were made at five equally spaced points along
the axial coordinate, the following analysis is for thies
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special case, From this it is easily seen how to extend the
analysis to the general ocase of n equally spaced points.

At a given time, the flux along the zeaxis may look somew-
what as shown in Pigure 8, The flux at the five fixed points
at a given time may be expressed by equation 57 as

r(x,) = b, sin %’1 + b, sin -ziclzx + b, sin %1

* 00 4 b“ sin %1 (6")

£(z,) = b, sin Jz, + b, sin Lz, + v, sin Lg,

+ ees + b, sin -%3:2 (62)

LJ
.
L]

f(zg) = b, sin §z5 + b, sin 35‘1:5 + b, sin 20!.5

o0 4 bb sin %‘!ls (63)

At this point a rule stated by Wylie (12, p. 178) is useful,
Rulest If each of n linear equations in
the m unknowns
Xye Xpe *°% X, (n >m)
be multiplied by the coefficlent of
xy in that equation; the sum of the
resulting equations is the ith normal
equation [minimizing condition] in
the leastesquare solution of the

system,
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Figure 8,

Position along z-axis

Estimated flux along the Z~axis at some fixed time
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Hence, multiplying both sides of each egquation by the oo-
efficlent of b’ and then adding all equations glves

3 5
(F, T(%y) sinZzy =%, I sinJe, st Ze

5
+Dd xu-ﬁsmﬁ:
L2l "IN

+ 1, lfl sin m’lt sin %‘1

5
b, 12 sin ﬂct sin %:1

5
+%, I sin g, sin Iz, (64)

It can be estabilshed that
2ne1
T stndld an B .o, 1r 34k
xﬁl n n L ] J ,
= Ny it J=k (65)
Therefore, equation 64 reduces to

5 5
T f(z,) sin %:1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>