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CHAPTER 1. INTRODUCTION 

Many of the real life applications of image processing aim to describe and classify 

objects in images. Mail sorting, text reading, chromosome analysis, tumor detection, 

parts identification on assembly lines, non-destructive evaluation, motion control for 

robots, fingerprint matching, and target detection and identification are examples of 

such applications [1]. 

Any pattern recognition process can be divided into three major stages (Figure 

1.1) which are: 

1. Data presentation and feature extraction. 

2. Learning, or Training, involving the determination of optimum decision proce­

dures, which are needed in the identification and classification stage. 

3. Identification and classification. 

While extracting features from objects, we make little use of the position, size, 

or orientation of the object in the image. Rather, the information is contained in 

the shape of the object, which might be defined as properties of an object that are 

invariant under rigid-body motion [3]. It is rare that we want to recognize an object 

from a transformed version of it. An example of this is recognizing "6" from "9". 

Invariant recognition (recognition of visual patterns irrespective to their position, 
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Figure 1.1: Pattern recognition process. 

orientation, scale, and deformation) is one of the main concerns of researchers in the 

fields of pattern recognition and neural networks. Researchers have tackled this prob­

lem since the beginnings of the research on pattern recognition. Pitts and McCulloch 

[4] discussed in 1947 the perception of auditory and visual forms. They described 

a neural mechanism which exhibits invariant recognition of forms. They proposed 

averaging over a group of transformations to achieve invariance with respect to this 

group of transformations. 

Hu introduced the method of moments to achieve invariant recognition. He 

used the ordinary, geometric, moments and the methods of algebraic invariants [5]. 

Afterwards, other types of moments were introduced, such as Legendre moments, 

Zernike moments, rotational moments and complex moments [6, 7, 8]. 

Fourier descriptors, defined as the discrete Fourier transform of the complex 

combination of the coordinates of the boundary of the object, have been used for 

invariant recognition. They were used in character recognition, aircraft identification 
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and for non-destructive evaluation [1, 9, 10]. 

Stochastic models have been used to represent and classify boundaries. The 

coefficients of the autoregressive model of an image are invariant to translation, scale, 

and starting point [1]. 

Many researchers have found the application of artificial neural networks (ANN) 

to invariant pattern recognition particularly attractive because of the possible rela­

tionship between ANN and biological neural nets [11]. There are three techniques 

that render neural networks invariant to transformations [11]: 

1. Invariant feature space. 

2. Invariance by training. 

3. Invariance by structure. 

Invariant feature space includes using Fourier descriptors, method of moments, 

or any other invariant features of the object. These features are used as the input to 

the neural network. 

Invariance by training is achieved by presenting transformed versions of the input 

to the neural network in the training phase. The training patterns should be chosen in 

a way to represent the expected transformations of the patterns. A major drawback 

of this approach is the need for large networks and memory matrices to store these 

patterns. Another drawback is the poor understanding of the way the neural network 

chooses its decision surfaces and the difficulty understanding the generalization that 

the neural network is forming. 

Imposing invariance into the structure of the neural network is done by Cl·eat­

ing connections between the neurons which force transformed versions of the same 
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input to have the same output [11]. An example of this is Fukushima's model, the 

neucognitron, which w;.ts developed from 1980-1988 as a follow up to the cognitron 

neural network developed by Fukushima himself during the period 1969-1981. The 

neucognitron consists of 50732 processing elements divided into four layers, each layer 

consists of two sublayers. The input to the network is a 19 x 19 image. The first sub­

layer of the network extracts local features from the image such as lines and then the 

second sublayer re-expresses the responses of the first sublayer by combining nearby 

responses and giving insensitive response to small changes and distortions. Then, the 

local features are combined and passed to the second layer. This kind of process is 

run in all layers. The second sublayer of the fourth layer consists of ten output nodes 

tha t correspond to the ten possible classes. The neucognitron is invariant to scale 

and translation. However, it is a very complicated network and is considered to be 

one of the largest developed to date [12, 13]. 

Higher order, "a -11"" , neural networks, Figure 1.2, fall under the same category 

of the neucognitron. Maxwell utilized the concept of averaging proposed by Pitts 

and McCulloch along with higher order neurons to achieve invariance to translation, 

scale, and orientation [14]. Higher order neurons are neurons that have a prepro­

cessing stage in which functional polynomials are applied to the input of the neuron. 

Afterwards, it applies a nonlinearity to the sum of the preprocessing stage. Third 

order neural networks proved to be invariant to translation, scale, and orientation 

[8, 14, 15]. However, the combinatoric explosion of higher order terms as the size of 

the image increases has made the use of this network impractical. 

Widrow proposed a model that consists of ADALINE networks, which are in­

variant to translation and 90° rotation [16]. Fukumi, Omatu, Takeda, and Kosaka 
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Figure 1.2: Second order neural network. 

modified Widrow's network and proposed preprocessing retinal patterns with a rota­

tionally invariant fixed neural network followed by a trainable neural network [17J. 

Chan has proposed two networks based on the back-propagation neural networks. 

The first one is translation invariant and capable of multiple object recognition. It 

consists of two back-propagation neural networks [18J. The second network reduces 

the inhibitory effect of the back-propagation in the training phase. It is capable of 

multiple object recognition only [19J. 

Projection space presentation and manipulation were used for image filtering 

using one dimensional filters. It was also used for image analysis; algorithms have 

been developed to approximate Hough transform, compute the convex hull and other 

features of objects, and compute statistical features such as centroids and principal 

components of binary objects [20J. U and Flachs utilized the projection to extract 

global structural features for pattern recognition purposes [21]. 

Sanz, Hinkle, and Jain provided an efficient engine, Parallel Pipeline Projection 

Engine p3 E, for changing representation from image space to Radon space and 

back again [20]. In order to speed up the process, methods have been proposed for 
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computing fast Radon transform and fast inverse Radon transform [28]. 

In this thesis, an approach that falls under the invariant feature space category 

is presented. This approach is based on utilizing the projections (Radon transform, 

shadowgram, or gray sum) of the image to achieve invariant features. The singular 

values of the projection image, constructed by row-stacking each projection, are used 

as the invariant features. 

One of the most important applications of Radon transform is computerized to­

mography for which Hounsfield and Cormack have shared the Nobel prize in medicine 

in 1978. Klug was also awarded the Nobel prize in chemistry in 1982 for a series of 

papers on tomographic methods in electron microscopy. the Radon transform has 

other applications in the fields of radio astronomy, economics, and nuclear medicine. 

Outline 

This thesis is organized as follows: Chapter two overviews the definitions and 

properties of Radon transform and singular value decomposition. It also discusses the 

methods of moments and feed forward neural networks. Chapter three develops the 

projection-based invariant recognition system. Chapter four"illustrates the effective­

ness of the proposed method. Finally, Chapter five presents conclusions. Appendix 

one presents the proofs of the equations of Chapter four. 
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CHAPTER 2. OVERVIEW 

Introduction 

In this chapter, a mathematical overview of the transforms and the methods that 

are used in this work is presented. First, the Radon transform is discussed. After­

wards, singular value decomposition is presented along with some of its applications 

in image analysis. The back-propagation neural network is also presented. Finally, 

the method of moments is presented. 

The Radon transform 

In 1917, Radon presented a paper on the determination of functions from their 

integrals along certain manifolds. He derived an explicit formula for the reconstruc­

tion of a function on the plane given its integral over all lines [24]. 

The first applications of the Radon transform appeared in radio astronomy by 

Bracewell, and subsequently in electron microscopy by Klug and Vanstein [23]. The 

construction of tomographic images from projections appeared simultaneously with 

computers due to the extensive computations needed for tomographic reconstruction. 

In 1970, Hounsfield introduced the first computerized tomographic scanner, CT scan­

ner, for medical applications. He and Cormack, who developed the mathematical and 

computational aspects of the CT scanner, were jointly awarded the Nobel prize in 
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medicine in 1978. In 1982, Klug was awarded the Nobel prize in chemistry for a series 

of papers on tomographic methods in electron microscopy [25]. Radon transform has 

other applications including nuclear medicine <:nd economics [26]. 

Radon transform has been applied to image processing in areas other than tomo-

graphic reconstruction. It was used in image segmentation [1], structural extraction 

by projections. [21], determining the orientation of an object, recognition of Arabic 

characters [27], and one dimensional processing, filtering and restoration of images 

[20]. 

The parallel pipeline projection engine, p3 E, introduced by Sanz, Hinkle, and 

Jain is an efficient engine for transforming the image space to Radon space and vice 

versa [20]. Other methods and VLSI architectures have been proposed for fast Radon 

transform and Fast inverse Radon transform [28]. 

Definition 

The Radon transform, ray sum, shadowgram, or projections of a function, de-

noted as g( s, 0) is defined as its line integral along a line inclined at an angle 0 from 

the y axis at a distance s from the origin (Figure 2.1) [1]. That is 

g( s, 0) = R(f) J J f(x, y)8(x cos 0 + y sin 0 - s)dxdy (2.1 ) 

J f(s cos 0 - usinO,ssinO + u cos O)du, (2.2) 

-00 < s < 00, 0 ~ 0 < 1[" 

The definition of the Radon transform can be extended to n-dimensional func-

tions [23]. If points in ~n are designated by x = (xl, x2,···, xn), functions de-



•....•....... 
...... 

9 

s 

y 

x 

Figure 2.1: The Radon transform of an object 

fined on Rn by f(x) = f(x1, x2,···, xn), the volume element is designated by 

dx = dX1 dX2 ... dXn, and ( is a unit vector that defines the orientation of a hy­

perplane with equation 

(2.3) 

The Radon transform of f may be written as 

9(8, () = R(f) J f(x)8( (- x - 8 )dx (2.4) 

For two dimensional space 

( 
( 

c~sO ) 

smO 
(2.5) 
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If f(x) is defined on ?Rn then its Radon transform, g(s, (), would be defined on 

?R x Sn-1, where Sn-1 is the unit hypersphere in ?Rn . 

The inverse Radon transform, image reconstruction from its projections, can be 

found using the back-projection theorem which states 

f(x,y) = fo7r fJ(xcosO+ysinO,O)dO (2.6) 

where 

fJ(s,O) = _1 100 
[d9(t,O)]_1_ dt 

27r2 -00 dt s - t 
(2.7) 

The derivation of the back-projection theorem relies on the Fourier-slice theorem 

which states that the one-dimensional Fourier transform of the projection equals the 

polar Fourier transform of the image along the angle of that projection. That is 

G((,O) = Fp((,O) = F((cosO,(sinO) (2.8) 

Properties of the Radon transform 

The Radon transform has several useful properties. These properties can be 

utilized to achieve invariant features of the image in the Radon transform. These 

properties were used to process images using one dimensional systems. 

Let g( s, 0) be the projections of an image, two dimensional function, f( x, y) or 

fp{r, ¢» in the polar coordinates, then the following properties hold [1]: 



• Linearity 

• Space limitedness 

If 

then 

• Symmetry 

• Periodicity 

• Shift 

11 

f(x,y)=O , 

g(s,(})=O , 

D 
Ixl,IYI> 2" 

D 
lsi> v'2 

g(s,(}) - g(-s,(}±7r) 

g(s, (}) - g(s, () + 2k7r) 

k = integer 

(2.10) 

(2.11) 

R{f(x - xo, y - YO)} - g(s - xo cos () - yo sin (}) (2.12) 

• Rotation 

(2.13) 



• Scaling 

• Mass conservation 

• Convolution 

12 

R{f(ax,ay)} 
1 
~9(as,O) 

AI = J J f(x, y)dxdy = J 9(s, O)ds 

(2.14) 

(2.15) 

The Radon transform of the convolution is the convolution of the Radon trans-

forms [23]. 

R{h * h} 91 * 92 (2.16) 

Singular value decomposition 

Definition 

Let A be a linear operator between separable Hilbert spaces X, Y 

A:X-Y (2.17) 

The triple {un, Vn, O"n}n~O is called a singular value decomposition (SVD) of the 

operator A if 

{un}n~l is a complete orthonormal system in X, 

{vn}n~l is an orthonormal system in Y, 

and {O"n} is a set of non-negative and real numbers, 
then 

Aun = O"nVn and A*vn = O"nUn 

where A * is the adjoint of A 
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The singular values, O'n, are usually ordered such that 0'1 2: 0'2 2: ... 2: O'n > 0 [29]. 

The singular functions {un} are sometimes called the generalized eigenfunctions, 

since it can be shown that 

(A* A)un = 2 O'n Un (2.18) 

A can be constructed from the triple by 

(2.19) 

Back-propagation neural networks 

The term neural network, or more likely neuronal networks, originally referred 

to a network of interconnected neurons [30]. Neural networks have been studied to 

achieve human-like performance in the fields of speech and image recognition. 

Artificial neural networks (connectionist models, parallel distributed processing 

models, or neuromorphic systems) are structured based on our understanding of the 

biological nervous systems. They are basically constructed from simple processing 

units (neurons, nodes, or adalines). These processing units are connected with each 

other either fully or partially. Neural networks can be classified based on the pro­

cess done by the neuron, e.g., linear and nonlinear classifiers [31]. Neural networks 

are also classified based on the way the neurons are connected, e.g., feed forward 

and bidirectional associative me~ories. In this' section, the back-propagation neural 

network, which is a non-linear feed forward neural network, will be discussed. 

The Back-propagation neural network (the multi-layer perceptron) is a feed for­

ward neural network, i.e., there is no feedback connections between its layers and 
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between the neurons of the layers themselves. It consists of non-linear neurons (Fig­

ure 2.2). The neurons perform a weighted sum of their inputs and pass the sum 

through a non-linearity (Figure 2.3). That is 

Yi (2.20) 

where 

Yi is the output of node i 

Wji is the connection strength between neuron i and neuron j 

x j is the output of neuron j which is from the previous layer in feed forward networks 

(} j is an internal offset in the neuron j 

f(.) is the nonlinearity 

The training of the back-propagation is a generalization of the least mean square 

algorithm where the error is propagated from the output nodes to the input nodes. 

The following describes the algorithm [32]: 

1. The weights and the offsets are initialized using small random values. 

2. Desired inputs, X, and desired outputs, d, are presented to the network. 

3. The actual outputs of the neural network are calculated by calculating the 

output of the nodes and going from the input to the output layer. The most 

common non-linearity is 

f(a) 
1 

(2.21 ) 
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4. The weights are adap.ted by back propagating the error from the output to the 

input layer. That is 

(2.22) 

where the OJ is the error propagated from node j. If node j is an output node, 

then 

o· J 

However, if node j is not an output node, then 

where the sum is over the nodes of the following layer. 

5. This process is done over all training patterns. 

(2.23) 

(2.24) 

Kolmogorov proved that any continuous function f : [0, l]n ~ ?Rm , f(x) = y, 

can be implemented by a three layer network [12]. However, there is no proof for 

the convergence of the back propagation algorithm. Several modification on the 

back-propagation algorithm have been proposed to speed-up the convergence and to 

prevent convergence to a local minima in the weight space. 

Methods of moments 

Methods of moments have been used in several forms to extract invariant features 

from images. Hu first introduced invariant recognition using moments [33]. Based on 
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geometric moments and algebraic invariants, he derived a set of invariant features. 

Afterwards, orthogonal moments have been suggested, e.g., Zernike,pseudo Zernike, 

and Legendre moments. Other types of moments have been used too, e.g., rotational 

and complex moments [7]. 

In this section geometric moments, which are the most common type of mo­

ments used, and Zernike moments, which outperform other types of moments, will 

be discussed. 

Geometric moments 

Geometric moments are defined as the projections of the image, f(x, y), onto 

the polynomial xPyq. That is 

mpq J J xPyq f(x, y)dxdy (2.25) 

where mpq is the geometric moment of order (p + q) of f( x, y). The basis set {xPyq} 

is complete but not orthogonal [7]. 

The central moments are defined as 

JLpq (2.26) 

where 

x = mlO/mOO ' fj = mOl/mOO 
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The central moments are invariant to translation. They are used to derive the 

invariant features. 

If an image, f(x, y), is scaled by Q' then the normalized moments [1], defined as 

(2.27) 

are invariant to scaling. 

Hu used the algebraic invariants to derive these features that are invariant to 

translation, scaling, and rotation [33, 1, 34]: 

¢>1 - 1]20 +1]02 (2.28) 

¢>2 - )2 2 (1]20 - 1]02 + 41]11 (2.29) 

¢>3 2 ( 2 (1]30 - 31]l2) + 31]21 + 1]03) (2.30) 

¢>4 - 2 )2 (1]30 + 1]12) + (1]21 + 1]03 (2.31) 

¢>5 - (1]30 - 31]12)(1]30 + 1]12)[(1]30 + 1]12)2 - 3(1]21 + 1/03)2] 

+( 1]03 - 31]21)( 1]03 + 1]21)[( 1]03 + 1/2d2 - 3( 1]12 + 1/30 )2] (2.32) 

¢>6 = [ 2 2 (1]20 -1]02) (1]30 + 1]12) - (1]21 + 1/03) ] 

+41]11 (1/30 + 1]12)(1]03 + 1]21) (2.33) 

¢>7 - (31]21 -1]03)(1]30 + 1]12)[(1]30 + 1]12)2 - 3(1]21 + 1]03)2] 

+(1]30 - 31]21)(1]21 + 1]03)[(1]03 + 1]21)2 - 3(1]30 + 1]t21 (2.34) 

Zernike moments 

Zernike moments, AnI' of an image, f( r, ¢», are defined as its projections on a 

class of polynomials, called Zernike polynomials. These polynomials are separable in 
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the polar coordinates and are orthogonal over the unit circle [1, 8, 7, 35). That is 

n + 1 { rOO [ ]* AnZ = -7r- h7r io Vnz(r,4» f(r, </»rdrdO (2.35) 

Vnl are the Zernike polynomials and are defined as 

(2.36) 

where 

(n-IlI)/2 s (n - s)! n-2s 

~o (-1) ,(n+lll _ ), (n-111 _ ),r 
s- s. --r s. --r s. 

(2.37) 

The image can be reconstructed from the Zernike moments by 

00 00 

f(r,4» = L L AnlVn1(r,4» (2.38) 
n=O 1 

n-llI=even 
Ill~n 

It can be approximated by 

n 00 

f(r,4» L L AnlVnZ(r,4» 
n=O 1 

n-Ill=even 
Ill~n 

In pattern recognition applications, n usually equals 9, 10, or 12 (8). This results 

in using 28, 34, or 40 features respectively [35J. 

The performance of the Zernike moments has been shown to outperform other 

type of moments in terms of sensitivity to image noise, information redundancy, .and 

capability for image representation [7J. 
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Figure 2.2: A two layer feed forward neural network 

Figure 2.3: Neuron or computational element which does a weighted sum of its 
inputs and then performs a nonlinearity on the sum 
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CHAPTER 3. PROJECTION-BASED INVARIANT FEATURES 

Introduction 

The Radon transform representation of an image can be utilized to process it 

using one-dimensional signal processing techniques [20]. Moreover, features extracted 

from the Radon representation of the image have been used for pattern recognition 

purposes [37, 38, 39]. The Hough transform, which is a special case of the Radon 

transform, was used in image analysis for edge detection and feature extraction pur­

poses [41]. 

Any image can be approximately reconstructed from its projections. The angu­

lar resolution at which projections are taken depends on the maximum reconstruction 

error acceptable. The linearity, shift, rotation and scaling properties of the Radon 

transform can be utilized to achieve an invariant feature vector. Here, an algorithm 

that utilizes these properties to achieve invariance to translation, rotation and scaling 

is presented. The singular values of a matrix constructed by row-stacking of projec­

tions are used to construct the invariant feature vector. This feature vector will 

be used as input to a classifier which is here the back-propagation neural network 

followed by a maximum-out put-selector. A performance function is introduced to 

evaluate the performance of the recognition system. This performance function can 

also be used to indicate how closely the pattern matches the decision template. 
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Projection based invariance 

The invariance with respect to translation, rotation and scaling will be discussed 

separately. Afterwards, all procedures will be incorporated in a complete system that 

can achieve invariance to translation, rotation and scaling. 

A complete proof of the equations presented is in Appendix 1. 

Invariance to translation 

If an object is translated then, according to the shift property of the Radon 

transform, each projection will be translated by a distance which is a function of the 

translation distance, (xO' yO), and the projection angle, (). That is 

S(} = xO cos () + yo sin () (3.1 ) 

where s(} is the projection translation caused by a translation of (xO' YO) at a projec­

tion angle (). 

Centering each projection around its center of mass will eliminate the translation 

effect. This can be justified by the fact that centering each projection around its 

center of mass will result in centering the object around its center of mass. This is 

true because 

where 

s = 

J J f(x, y)dxdy = !vI 

Mx cos () + My sin () 

(3.2) 

(3.3) 

(3.4) 
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where s is the center of mass of the projection taken at angle (). The quantities rnO 

and rn1 are the average and first order moment of the projection. AI, Mx and J.\t[y 

are the average and the moments in the x and y directions of the object, respectively. 

Invariance to rotation 

Invariance to rotation of an object by an arbitrary angle is achieved by extracting 

features that are independent of the ordering of the projections. That is, if each 

projection is placed in a row of a matrix (Figure 3.1) the features must be i~dependent 

of the way the rows of the matrix are organized. There are a few algebraic parameters 

which are invariant to the order of the rows of a matrix but not all are distinct for 

each matrix, e.g., the trace. However, the singular values of the projection-matrix 

are invariant to the order of rows. This means that singular values are invariant to 

rotation of integer multiples of the angular resolution of projections. 

It is shown in Appendix one that the image can be represented as a sum of 

multiplications of the singular values with functions of the radial distance from the 

origin and of the angle taken from the abscissa. That is 

where 

Singular values of the Radon transform 

Right singular vector spanning the domain of the projections 

Left singular vector spanning the angle, (), of the projections 

runs over the rank of the projection-matrix. 

(3.5) 

The Radon transform is taken over [0°,180°). The symmetry property of the Radon 
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transform equates the projection at angle 0 with the abscissa reversed projection at 

angle 0 + 1800
• As a result, if the image is rotated then at least one row of the matrix 

will be reversed. Hence, the singular values will not be the same. However, taking 

projections over whole 3600 range would give invariance at increments of 1800 IN, 

where N is the number of projections taken over the image. This can also be done by 

utilizing the symmetry property, i.e., by reversing the projections alternately. This 

will result in a 3600 coverage. 

The rotation angle can be estimated by calculating the translation in the left 

singular vectors spanning the angle. This is because 

Rf(r,O+<I» = g(s,O+<I» 

where <I> is the angle of rotation. 

Invariance to scaling 

- L C1kuk(O + ¢)wk(s) 
k 

(3.6) 

If an object, f(x, V), is scaled by a scaling factor a, the scaled object, fa(x, V), 

will be 

fa(x,y) = f(ax,ay) (3.7) 

When the object is scaled, the left singular vector spanning the angle of the 

projection will not be affected. However, the right singular vector spanning the 

domain of the projections as in 2.3 will change. That is 

R{fa(x,y)} = ga(s,0) 
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g( as, 0) 

lal 
L ~k/2 uk(O) [JQwk(as)] 
k a 

where the last step is shown in Appendix one. 

(3.8) 

The right singular vector would be Vawk( as) and the singular values are f7k/ a(3/2). 

Consequently, when the object is scaled by a scaling factor of a, the /2 norm of the 

singular-value vector, i.e., Frobenius norm of the projection matrix, would be scaled 

bya-3/ 2. 

Constructing invariant feature vector 

The following material summarizes the projection-based algorithm (Figure 3.1) 

to achieve invariance to translation, rotation and scaling: 

1. Projections are taken over 3600
. In most practical systems, only 1800 coverage 

is available. However, the coverage can be extended to 3600 by alternately 

reversing the projections. 

2. Each projection is centered around its center of mass. This will center the 

image and introduce translation invariance in the extracted features. 

3. A projection image matrix, is constructed, where the row vectors are the cen-

tered projections. 

4. SVD is applied to the projection matrix. The order of the singular values is 

invariant to rotation with the angular resolution. 

5. The singular value vector is normalized to achieve invariance to scaling. 
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SVD 

=-

Figure 3.1: Steps to achieve invariant feature vector 

Recognition system 

After the feature vector is constructed, it is applied to the input of the recognition 

block or the classifier. The classifier used here is a back-propagation neural network 

followed by a maximum-output-selector. 

The adaptive nature of neural networks as well as their ability to generalize from 

training data justifies their use for classification in our system. They are expected to 

overcome the rotation resolution invariance problem. This will be illustrated by the 

results obtained for worst case resolution, i.e., when the angle of rotation taken is in 

the middle of the angular sampling period. 

The performance of the recognition system involves studying the recognition 

rate, the similarity of features extracted from patterns of the same class, and the 

differences in features extracted from patterns of different classes. To incorporate 
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these parameters, we consider a function that sums all the normalized differences 

between the output nodes and the output of the node corresponding to the correct 

class as a performance measure. That is 

N 
L Y(n) - Y(k) 
k=l 

P( n) = _k.:.....=f._n ___ _ 
N -1 

(3.9) 

where 

0::; Y(i) ::; 1 is the output of node i of the neural network 

n is the node corresponding to the correct output class 

N is the number of output nodes of the neural network 

This performance measure produces values between -1 and 1. It gives its best 

output, 1.0, when the output of the node corresponding to the correct class equals 

1.0 and the output of the rest of the nodes equal O. It gives its worse output when 

all the output nodes have values of 1.0 and the output of the node corresponding to 

the correct class equals O. 

This function is used to give an indication of how closely a pattern matches 

the template the system classified. This function is analogous to the membership 

function defined in fuzzy set theory [36]. Along with some defined rules, it can be 

used to give a syntactic description of the output of the neural network. vVhen this 

function is used as a membership function, its range will be [0,1]. This is because 

Y(n) ~ Y(k) for all k =f. n. Table 3.1 illustrates the effectiveness of this function 

when used for a neural network with three output nodes. 
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Table 3.1: Performance measure and membership 
valuesa 

Output of Performance Membership 
node 1 node 2 node 3 measure value 

1.000 0.000 0.000 1.000 1.000 
1.000 1.000 0.000 0.500 0.500 
1.000 1.000 1.000 0.000 0.000 
0.000 1.000 0.000 -0.500 1.000 
0.000 1.000 1.000 -1.000 0.500 

aThis is assuming the pattern tested belongs to Class 
1, i.e., the output pattern should be (1,0,0) 
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CHAPTER 4. RESULTS 

Introduction 

In this chapter, the proposed method is examined and its merits are illustrated. 

The method is then compared to the method of moments. The example chosen for 

testing (Figure 4.1) consists of staple remover, stapler, keys, hole punch and tape 

dispenser. The objects in this example are chosen because they contain similarities 

and differences among them. The staple remover and the stapler have the same 

general shape, i.e., the "V" shape. The hole punch and the tape dispenser have 

almost the same region of support. However, the keys have a different shape. 

The images were taken using an 8-bit black and white camera. They were 

displayed using Happi software, which was developed by the image processing group 

at Iowa State University. Happi was used along with other programs to transform 

the images. It was also used to create noisy versions of the images. 

The neural network used for classification has the same number of layers, hidden 

nodes and output nodes in all experiments conducted. It consists of three layers where 

the number of nodes in the input layer equals the length of the feature vector. The 

hidden layer consists of 14 nodes. The output layer consists of 5 nodes corresponding 

to the five output classes. 

The singular values are calculated using the subroutine provided by Press et al. 
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(a) Staple remover (b) Keys 

( c) Hole punch (d) Stapler 

(e) Tape dispenser 

Figure 4.1: Objects used in testing the method 
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Tahle -1.1: Featl1re yect.or length ('xperillH'lIt. 

Paramt't el' Vallie 
No, or projf'diolls Varia hIe 
No. of Traill. p a U('l'II s !j (Original) 
No. of Test. pat.t el'lls !)x 10 = 51) ('adl 

SIN 00 

[·10]. 

This chapter is organized al:! rullows: The secoml sed-ioll tiisclISSt"8 UIf' ,,{('pct 0(' 

I.IIE' 1I11ll1lwr or projert.iolJs tlsed t.o nmsl·L'ud t.he projc'cl.ioll matrix 011 recogllilion. 

'1'1](' t.hinl s('ct.ioll ilIl1st.l'at.es t.ltI' I'Ohl1st.lle8s of the extracted fl'at.lII'es whell I Ill' ohjc'('j 

is rol.ated or scaled. The fourt h sect.ion shl(lies Ule effect. of white noisc' added 10 I II(' 

ohjt'd. on r('cognit.ion. The fift.h sed-ion cli:;cuss('s comhined t.ransfurHwtiulIs. Finally 

I lIP Ilwlhod is compared with the methud or 1ll011lt'nt.s. 

Effect of feature vector length 

This f'xpel'iuwut. (T<lble -1. 1) is concluctc'd t.o df'lel'lllilu' t.he n'l'i<ltioll of I II(' 

r('cugllit.ioll rate with feat.Ltrf' yedol' h'lIgt.h. Changillg t.he It·llgt.h of t.he feahtre W'c\.OI' 

reslllis froll1 changing the angular rf'SOllltioll at which .. he projc3 d.ions are t<lkc'l1. 

('hallgillg 1.11f' anglliar rpsollll.ioll will affect moslly 1.11(' recognitioll of images rol"kd 

with atlglt>s thai. art" nol. illlf'g('r 1II111t.i"les of t.Iu> allgll!; .... resollliioll. 

To st.udy this ('f[cd., tell iLllage:; (Figure 1.2) rol al(,t! ill til(' illtag(' "loll<' h." ilti('g('1' 

III II II iplC's or 10% or HIE' allgnlar r('::;olul.ioll al'(' itSI'd for lesting. TIl<' 111'111',,1 111'1 work 

is Irailll''' IIsing tilt' [('(l.tlll"e wet.ors of the ol,jeds ill Figure' .1.1. 

Figure' LJ anel Figlll'C'lA silo,,' tilt' l'C'fognil.ion PC'ITC'lItagp <lnd 1.11(' pt"ri"OI'llHlIlI'(' 
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( a) 0° Rotation (b) 1 ° Rotation ( c) 2° Rotation 

(d) 3° Rotation ( e) 4° Rotation (f) 5° Rotation 

(g) 6° Rotation (h) 7° Rotation (i) 8° Rotation 

(j) gO Rotation 

Figure 4.2: Staple remover rotated with 0, 1, 2, 3, 4, 5, 6, 7, 8, and g degrees 
respectively 



Table -1.2: Feat lire vedor rubust.nt'ss experillwllt. 

Parameter Valll~ 

No. of project.ions 18 
No. of Traill. pat. tel'llS N/A 
No. of'.lf..st.. paHerm; !)x LO = !i0 
SIN 00 

measnre verslls t.he vedor length respedively. As e,·idC'llt.. t.he recognition (>('I'('('lltagf' 

reached 100';{, wheu using G or more proj<'dions to const.rtld. the projection-matrix. 

i.e .• an angnlat· resoilltion of :300 
01' less. This result:s ill reducing t.he si7.e of t.11f' 

projedion-lIIatl'ix P and the matrix P pT which is mwd t.o cakulate til(' sillglllcll' 

values. e.g .. to find t.he singular vailles of t.he projection-IlHlt.rix const.rllcted IIsillg (i 

projediolls. a (i x G mat.rix is used. This means a fast. [eat.ure ext.rad.ion systelll and 

a sma II nemal twt.work. 

Feature vector robustness 

The rot.ation invariance property is iIlust.rat('d by t.his eXIWrill1<'llt. (Tabl(' -1.1). 

The lengt.h of t.he feat.ure vedor used in this experiment. is 18, i.e .• anglliar resoilltion 

or LOa. Tt'll re»l'f'sent.at.ions of ea('h object. of Figure ·1.1 are generat.ed by rot.at.ill,!!; 

each obj('d hy integer llIult.iples of 10. Tahle ·1.:3 is a list of t.hp magnit 1I<I('s or tlH' first. 

P('l'c(,lItagp. rrlll%. which illdinlles 1.1)(' p(,l'('ellt.agC' or t.he spl'C'ad or Ill(' ,-alll(,s from 

t.lwir COIT('spon<iillg llIf'cUl for a II ohjects is sll<)\\,ll i II Tallie' -I. ~. TIlt:' an'rage' of rr I II"/.. 

percent.ages is :3.1 %. 

Th(' rot ation angle ea II 1>«, esli mat.ed from t.1lt' sh i I"t. in t.he ld'!. si 1l,!!;lIla I' n'('1 nt's 
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Figure 4.3: Recognition percentage versus. number of projections. It can be seen 
that the recognition was perfect when the number of projections used 
was above six 
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Figure 4.4: Performance measure versus number of projections. The performance 
measure stabilized around 0.87 when the number of projections used 
was above six 
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Table 4.3: The first six features of rotated staple remover. As seen, the features are 
almost constant against rotation 

Angle of 0"1 0"2 0"3 0"4 0"5 0"6 
rotation 
0 0.949880 0.253046 0.116033 0.089392 0.062695 0.047311 
1 0.949954 0.253400 0.115608 0.087676 0.063863 0.048238 
2 0.949549 0.254868 0.116049 0.088979 0.064080 0.048806 
3 0.950039 0.253376 0.115791 0.089452 0.064196 0.049605 
4 0.950269 0.252327 0.114461 0.091734 0.064976 0.051829 
5 0.950302 0.253028 0.117651 0.090796 0.061883 0.049290 
6 0.950132 0.254024 0.117760 0.090544 0.061863 0.049779 
7 0.950280 0.252846 0.119163 0.087849 0.060932 0.050372 
8 0.950314 0.252748 0.118294 0.088158 0.061528 0.047344 
9 0.950264 0.252315 0.118293 0.085925 0.062260 0.048379 

spanning the angle. To illustrate this fact, The left singular vector corresponding to 

the largest singular value of 0°, 10° and 20° rotated images of the staple remover 

are shown in Figure 4.5. The translation between each vector of them is one unit, 

i.e., the angle of rotation is 10°. 

The scaling invariance property is illustrated the same way (Table 4.5 and 

Table 4.6). Scaled images (Figure 4.6) with scaling factors of 0.2, 0.4, 0.6, 0.8, 1.0, 

and 1.2 are used in this experiment. The average of the 0"/ j.l% percentages is 6.48%. 

All the patterns used in this experiment were classified correctly by the neural 

network used in the previous experiment. 

The scaling factor can be estimated using Equation (3.8). Table 4.7 shows the 

estimated scaling factor. As evident, the estimation is almost the same as the original. 
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Table 4.4: Variance to mean ratio (percentage) of all the features of the rotated 
objects. The ratio is small and by the average it is 3.1%. This table 
further illustrates the robustness of the feature vector against rotation 

Feature Keys Staple Hole Stapler Tape 
number remover punch dispenser 

1 0.016 0.025 0.017 0.079 0.020 
2 0.328 0.292 0.031 0.383 0.631 
3 0.566 1.229 0.692 1.516 0.713 
4 1.557 1.834 1.204 5.107 0.300 
5 3.814 2.049 1.580 5.680 2.506 
6 2.999 2.691 5.286 6.313 2.429 
7 1.392 4.340 7.168 12.72 3.934 
8 3.091 5.914 2.261 6.657 2.462 
9 3.040 10.920 6.322 5.730 2.732 

10 3.783 8.483 4.480 5.705 2.181 
11 4.658 7.078 4.461 4.280 4.377 
12 4.769 7.213 5.708 6.597 2.717 
13 4.833 6.365 5.961 6.935 4.805 
14 5.572 6.157 7.513 5.906 2.911 
15 3.426 9.868 6.478 6.771 3.886 
16 5.083 8.869 6.633 3.636 4.325 
17 7.484 8.690 7.602 5.863 5.573 
18 9.800 6.164 7.458 5.452 7.813 

Average 2.059 3.715 2.903 4.989 1.741 

Table 4.5: The first six features of scaled stapler. As seen, the features are constant 
and robust against scaling 

II 
Scaling I 
factor II 
0.2 0.902867 0.363903 0.145755 0.125911 0.062013 0.055039 
0.4 0.904646 0.358199 0.152912 0.117272 0.074648 0.053142 
0.6 0.904751 0.357453 0.151978 0.120282 0.076433 0.051824 
0.8 0.904539 0.355983 0.155194 0.125554 0.075964 0.049724 
1.0 0.903940 0.355767 0.155259 0.126030 0.077862 0.050962 
1.2 0.904409 0.357483 0.155013 0.122711 0.076896 0.050097 
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Table 4.6: Variance to mean percentage of all the features of the scaled objects. The 
ratio is small and by the average it is 6.5%. This table further illustrates 
the robustness of the feature vector against scaling 

Feature Keys Staple Hole Stapler Tape 
number remover punch dispenser 

1 0.068386 0.032415 0.004781 0.071463 0.056927 
2 1.862529 0.931086 0.455430 0.759601 1.870536 
3 0.833467 1.028653 0.541184 2.187228 2.571677 
4 2.332124 2.138348 3.531025 2.665441 0.923069 
5 1.209885 2.517066 2.941441 7.346515 3.177121 
6 1.989057 3.809874 2.228511 3.542740 5.660154 
7 2.076525 2.244302 1.771226 3.704285 7.833734 
8 2.155904 8.808520 10.633659 3.874142 8.478910 
9 2.524689 16.365229 12.709072 2.227137 7.728633 

10 3.606891 11.691761 11.681385 7.543673 7.570441 
11 4.320522 10.603070 12.876406 8.542035 7.945292 
12 4.421000 15.615104 4.191956 9.326546 4.276928 
13 3.139513 8.984010 12.331057 18.669847 3.594523 
14 4.524668 4.823858 5.722368 13.996540 1.712528 
15 3.981825 4.570429 16.803171 12.159415 2.830502 
16 2.445495 3.401840 18.787466 12.033607 5.861289 
17 7.184366 15.953438 12.128682 6.145161 9.295919 
18 6.109355 25.314453 17.585051 7.935613 17.050816 
19 3.109910 8.261209 7.749619 5.653704 7.645201 
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Table 4.7: The estimated scaling factora factor using Equation (3.8) 

Original Keys Staple Hole Stapler Tape 
scaling remover punch dispenser 
factor 

0.2000 0.1995 0.2020 0.2000 0.2021 0.2006 
0.4000 0.4000 0.4003 0.4004 0.4005 0.4005 
0.6000 0.5997 0.5997 0.6000 0.6004 0.5998 
0.8000 0.8003 0.8007 0.8008 0.8013 0.8007 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1.2000 1.1940 1.1972 1.1983 1.1980 1.1978 

aThe scaling factor is determined relative to the objects of Figure 4.1 

Table 4.8: Effect of white noise experiment 

Parameter Value 
No. of projections 18 
No. of Train. patterns 5 (Original) 
No. of Test. patterns 5 x 4 = 20 each 
SIN Variable 

Effect of white noise 

This experiment (Table 4.5) is conducted to study the effect of white noise 

on recognition. The length of the feature vector in the experiment is 18. In the 

training phase, only the original non-noisy objects are used. Four transformed objects 

(Figure 4.7) of each object are used for testing; the original, translated by (-10,10), 

rotated by 45°, and scaled by a scaling factor of 0.5. White noise with zero mean was 

added to each testing image (Figure 4.8) Recognition percentage and performance 

measure for each SIN were calculated. Figure 4.9 and Figure 4.10 show the results 

obtained. 



38 

Table 4.9: Combination of transformations experiment 

Parameter Value 
No. of projections 18 
No. of Train. patterns 5 (Original) 
No. of Test. patterns 5 x 10 = 50 
SIN Variable 

Figure 4.11 shows the performance of each transformation done to the objects 

versus noise added. 

Combination of transformations 

This experiment (Table 4.9) is conducted to study the effect of combining trans­

formations. The length of the feature vector is 18. Five transformed objects (Fig­

ure 4.12) of each object are used for testing; scaled by 1.2 and rotated by 45°, scaled 

by 0.2 and rotated by 45°, scaled by 0.2, rotated by 45°, and translated by (-50, 50), 

scaled by 0.2, rotated by 45°, and translated by (-50, 0), and scaled by 0.2, rotated 

by 45°, and translated by (0, 50). White noise with zero mean was added to each 

testing image. Performance measure for each SIN was calculated. Figure 4.13 shows 

the result obtained. 

This result shows that the performance declines fast when the object is shrunk 

and translated. This results from the poor alignment of noisy-pulse-shaped projec­

tions. Better performance is expected if the projections were low-pass-filtered before 

constructing the projection matrix. 
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Comparison with the method of moments 

This experiment is conducted to compare the performance of the Radon-based 

invariant image recognition method with the method of Zernike moments. Moment­

based invariant image recognition compares well with the results of other popular 

invariant feature extraction [8]. The performance of the Zernike moments has been 

shown to be superior to the performance of other types of moments in terms of 

sensitivity to image noise and information content [7]. 

The same experiment conducted to study the effect of white noise on recognition 

was conducted here. The order of the Zernike moments used to conduct this exper­

iment was 11 and the classifier used was a three layer network with 40 input nodes, 

53 hidden nodes, and 5 output nodes. Figure 4.14 and Figure 4.15 show that the 

recognition percentage of the Radon-based invariant features is better than that of 

the Zernike moments. This is further illustrated by the performance measure where 

the performance of the proposed method is much better than that of the Zernike 

moments even when the recognition percentage is close. 
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(a) 0.2 Scaled (b) 0.4 Scaled 

( c) 0.6 Scaled (d) 0.8 Scaled 

(e) 1.0 Scaled (f) 1.2 Scaled 

Figure 4.6: Scaled images of the stapler 



42 

( a) Original (b) (-10, 10) Translation 

( c) 0.5 Scaling (d) 45° Rotation 

Figure 4.7: Transformation used to study the white noise effect 
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(a) SIN = lOOdB (b) SIN = 50dB (c) SIN = 25dB 

(d) SIN = I5dB (e) SIN = lOdB (f) SIN = 5dB 

(g) SIN = 3dB (h) SIN = 2dB (i) SIN = IdB 

Figure 4.8: A qualitative illustration for the noise added to the image of the keys 
when studying the effect of white noise on recognition 
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Figure 4.9: Recognition percentage versus SIN 
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Figure 4.10: Performance measure versus SIN 
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Figure 4.11: Performance measure of each transformed set versus SIN. The curves 
overlap. This further illustrates the robustness of the feature vector 
against the transformations and noise 



( a) Scale = 1.2, Rotation 
= 45° Translation = (0,0) 

(d) Scale = 0.2, Rotation 
= 45° Translation = (-
50,0) 
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(b) Scale = 0.2, Rotation 
= 45° Translation = (0,0) 

(e) Scale = 0.2, Rota­
tion = 45° Translation = 
(0,50) 

(c) Scale = 0.2, Rotation 
= 45° Translation = (-
50,50) 

Figure 4.12: The Combined transformation done to the staple remover 
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Figure 4.13: Performance measure versus SIN for combined transformations 
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0.00 20.00 40.00 60.00 SO.OO 100.00 

Figure 4.14: Recognition percentage versus SIN for Zernike moments and 
Radon-based features. As seen, the performance of the projec­
tion-based method is better than that of the method of the Zernike 
moments 
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Figure 4.15: Performance measure versus SIN for Zernike moments and 
Radon-based features. As seen, the performance of the projec­
tion-based method is better than that of the method of the Zernike 
moments 
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CHAPTER 5. CONCLUSIONS 

A discrete Radon transform method for invariant image analysis using artificial 

neural networks was developed. This method is based on utilizing the projections of 

the image to achieve invariant features. The singular values of the projection image, 

constructed by row-stacking each projection, are used as the invariant features. The 

feature vector is used as input to a back-propagation neural network followed by a 

maximum-out put-selector to classify the image. 

A performance function was introduced to evaluate the performance of the recog­

nition system. This performance function gives an output of 1 when there is no ambi­

guity in classification, an output of -1 when there is no ambiguity in misclassification, 

and an output of 0 when it is most ambiguous. This function can be used to give an 

indication of how closely a pattern matches the template the system classified as. 

This method is examined and its merits are illustrated. It is also compared 

with a leading feature extraction method, Zernike moments. The proposed method 

outperformed the method of Zernike moments in terms of recognition percentage, 

performance measure, sensitivity to image noise, and number of features used. 

The effect of noise was more evident when the objects were shrunk and trans­

lated. The projections were not centered correctly. This resulted in poor recognition 

rates. This affected all methods that center the image to introduce translation in-
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variance in the features. Low-pass filtering the projections is proposed to solve this 

problem. To overcome the problem of deformed projections, the projections are pro­

cessed before building the matrix and training the system. 

The discrete cosine transform (DCT) is a very close approximation to the Karhunen­

Loeve expansion of a first order stationary Markov sequence [1]. The Karhunen-Loeve 

expansion is the same as the SVD transformation for a square matrix except that 

the Karhunen-Loeve coefficients (the eigenvalues of the matrix) are the square of the 

singular values. Using the DCT instead of the SVD will result in a faster recognition 

system. 

The transformation parameters can be calculated. The translation and the scal­

ing factor can be calculated without any significant computation. However, the 

rotation angle requires calculating any left singular vectors. These parameters along 

with the membership value, which is calculated using the performance function pro­

posed, can be used to confirm the recognition of an object. They can also be used 

in building an intelligent vision system that can recognize two dimensional objects 

invariantly and perform some actions accordingly. 

This method can be extended to three dimensional object recognition where the 

system is trained using different views of the objects. The object is then classified as 

the template that has the closest view to that of the tested object. 
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APPENDIX DERIVATIONS 

Rotation invariance 

To derive the relation between singular values of the Radon transform of the 

rotated image and the image itself. The following results from the construction of 

the projection matrix 

g(s,O) = L ukuk(O)wk(s) (A.l) 

Is g(s, O)wk(s)ds = ukuk(O) (A.2) 

ieg(S,O)Uk(O)dO = ukwk(s) (A.3) 

where 

Singular values of the Radon transform 

Right singular vector spanning the s-axis of the projections 

Left singular vector spanning the angle, 0, of the projections 

runs over the rank of the projection-matrix. 

The Inverse Radon transform theory [IJ states that 

fer ¢» = _1_ {7r { (8g/8s)(s,0)J dsdO 
, 27r2 Jo J s r cos( 0 - ¢» - s 

(AA) 
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Substituting Equation (A.2) into Equation (AA) results in 

f(r,</J) (A.5) 

f(r,</J) (A.6) 

And this proves 3.5. 

Scale invariance 

To derive the relation between the singular values of the Radon transform of the 

scaled image and the image itself. 

Utilizing the scaling property of the Radon transform and the singular value 

expansion of the Radon transform of the scaled image. 

gs(s,O) -
g( as, 0) 

\a\ 
- ~ ~~Uk(O)wk(as) 

- L ~J2 uk(O)[vowk(as)] 
k a 

(A.7) 

(A.8) 

(A.9) 

This result is the SVD of the Radon transform of the scaled image. It can be 

shown that 

(A.lO) 

(A.ll) 



60 

This result proves Equation (3.8). 


