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CHAPTER 1. ABSTRACT

In this research we have developed a theoretical model for the cold fusion reaction
by solving the Schrodinger wave equation for a deuteron pair inside a palladium cell
until we get the asymptotic value of the wave function at the edge of the palladium
cell. The wave function carries all the information about the system, and from the
value of the wave function we can calculate the reaction rate constant as a function of
the energy of the system. We have calibrated this model by attempting to reproduce
the experimental d-d fusion reaction cross section. The results of our calculations
indicate the possibility of achieving a controllable high reaction rate by varying the
value of a negative potential applied to the cell, if a deuteron pair can be put in
the vacant site of a palladium atom with a reasonable probability. This theoretical
model might lead the experimental work toward the production of a predictable fusion

reaction rate.



CHAPTER 2. INTRODUCTION

On March 23, 1989 two noted chemists called a press conference at the Univer-
sity of Utah in Salt Lake City. The scientists, Martin Fleischmann and B. Stanley
Pons, announced that they had produced controlled nuclear fusion at room tempera-
ture in an electrochemical cell. “It was,” one scientist asserted, “as important as the
discovery of fire.” “Simple experiment results in sustained nuclear fusion at room
temperature for the first time. Break through process has potential to provide inex-
haustible source of energy,” read the headlines in the University of Utah’s release [1].
For over 100 hours, Fleischmann and Pons had produced pure energy in a tiny glass
jar, and the fuel they were using was as abundant as sea water.

A matter of days after the original announcement by Fleischmann and Pons, a
second group announced that it had discovered room-temperature fusion. Moreover
this announcement came from a university only forty miles away, in Provo, Utah.
The announcement from Brigham Young University was more guarded in its claims.
Although Brigham Young University’s scientists had not seen the same large amounts
of heat being produced as had the University of Utah team, neutrons were certainly
detected. Group leader Steven E. Jones said “The discovery of cold fusion opens the
possibility , at least, of a new path to fusion energy.” [1]. Over the next few weeks,

hopes were to rise and fall as evidence of new experiments from the United States, the



Soviet Union, Italy, India. C'zechoslovakia, and the United Kingdom began to come
in. At first some reports appeared to confirm the Fleischmann and Pons experiment;
then others questioned the whole idea of cold fusion. By mid-April of the same year
different laboratories were making almost daily conflicting claims.

[t is agreed that there is no clear understanding of how a fusion reaction can take
place at room temperature, and the controversies will continue unless an explanation
of how solid-state fusion might be theoretically modeled is made.

Fusion of deuterium and tritium is the principal means of producing energy in the
stars. In cold terrestrial conditions, however, the probability of two deuterium nuclei
to fuse is of the order of 10~"° s ! /(d—d)pair/2]. This is due to the repulsive Coulomb
barrier between nuclei. However, this probability may be increased dramatically by
replacing the electron in a hydrogen molecular ion by a more massive negatively
charged particle. Indeed the muon-catalyzed (a muon is a negatively charged massive
particle) fusion reaction has been demonstrated to be an effective means of rapidly
inducing fusion reactions in low-temperature hydrogen isotope mixture2]. We are
trying to see whether an equivalent effect can be produced by loading hydrogen
isotope nuclei into a highly negatively charged metallic crystalline lattice.

In this research we have worked on two problems:

First, we have calculated the reaction cross section using two forms of the nuclear
potential, and we have represented the wave function of a deuteron pair as a sum of
a wave going into the palladium cell and one scattered out of it. The change in the
outgoing wave has been calculated by simultaneously solving the wave function and
its derivative at the edge of the cell. From this change the reaction cross section was

calculated. Parameters of the potential model can be adjusted to make these results



agree with experiments.

The second problem was to calculate the reaction rate constant. This was done
by considering the same model of the nuclear potential as was used in the cross-
section calculation, and requiring that a deuteron pair be contained within a lattice
cell. For this system a complex energy eigenvalue can be found; the imaginary part
of the energy eigenvalue is related to the reaction rate constant.

Two models of the nuclear potential were considered in this study. The first and
the easier to apply was the square well nuclear potential. The second model, more
detailed and more realistic, was a Woods-Saxon nuclear potential. The two models
(square well and Woods-Saxon) gave similar results for the reaction cross-section and
for the reaction rate constant.

We assume in this thesis that a lattice cell as we have calculated contains two
deuterons. A multiplicative factor on the reaction rate is the probability that a site
will contain more then two deuterons. This probability is being investigated by Ms.
Suneeta Singh. Thus, our work is considered an attempt to improve the theory of .

“cold fusion.”



CHAPTER 3. LITERATURE REVIEW

Nuclear fusion of deuterium can take place through one of the following reactions:

2D+ D —3 T(1.01MeV) +' H(3.02MeV) (3.1)
D 4+2D —* He(.82MeV) + n(2.45MeV) (3.2)
2D +2 D —* He(.0T6MeV) + (23.772MeV) (3.3)

The products of these reactions are the signatures of a (D-D) fusion reaction. Skepti-
cism was growing over cold fusion because the original experiment reported by Pons
and Fleischmann claimed the production of huge quantities of heat, but only very
small amounts of fusion by-products were detected. Although many scientists con-
tend that the heat must be of a chemical origin, this has never been proved. However,
" two scientists from the University of Utah, Cheves T. Walling and Jack Simons|3],
propose that two deuterons can fuse to form an excited helium-4 nucleus which packs
24 MeV of internal energy. Normally such a nucleus will fragment into helium-3 and
a neutron, or a tritium and a proton. But when the excited helium-4 is formed inside
the electron-rich palladium lattice, they claim it can return to the ground state by
transferring its excess energy to the electrons. This process results in stable helium-
4 and heat. Pons and his coworker, graduate student Marvin Hawkins, have used

mass spectrometry to analyze the gas produced in the electrolytic cell. According to



Walling they got “a very appreciable helium-4 peak.” The heat produced in the ex-
periment seems to correspond to about 24 M eV’ per helium-4 nucleus detected. That
is what one would expect if internal conversion were the overriding pathway.

On April 12, 1989 at the 197th annual meeting of the American Chemical Society
in Dallas, Pons reiterated how the Utah experiment involved passing an electrical
current through heavy water and into a palladium electrode. Fusion in the rod
produced four watts of energy for every watt used to run the cell. He even produced
a picture of a test tube labeled “The Utah Tokamak.” 1. The major question in the
cold-fusion claim was: could the energy release be explained in some other, chemical
way ! Cold fusion depends critically upon the fusion of deuterium nuclei in the
palladium electrode. The effect could not happen if light water were substituted
for heavy water: calculations suggested that quantum tunneling would be unable to
fuse light hydrogen nuclei, and no heat would be observed. But since light water is
chemically identical to heavy water, if the heating effects are due to some chemical
reaction and not nuclear, then nothing should change if light water were substituted in
the cell. This was the critical experiment: repeat the steps as the original experiment
but substitute light water for heavy water. If true cold fusion has been taking place,
it will now stop; and no heat will be observed. But if the heat is the result of some
unknown chemical effect, then the same heat production will be found with light as
with heavy water. This key experiment (using the light water instead of heavy water)
had already been carried out by Steven Jones at Brigham Young University and the
results showed no heat or neutrons produced [1].

On April 17, 1989 Pons announced that in one cell the fusion reaction had

been sustained for 800 hours and was producing eighty times more energy than it



consumed [1]. The power output was now up to sixty seven watts per cubic centimeter
of electrode. Nineteen new fuel cells were being set up and the design for a small
scale power reactor was under way. Scientists at Stanford University confirmed cold
fusion but at a much lower heat production. In addition they performed a control
experiment in which they repeated the whole procedure using ordinary light water
in place of heavy water. The two cells were run for two weeks. As predicted by
Fleischmann and Pons, since light water is chemically similar to heavy water but
in nuclear terms quite different, the heating effect was not seen with light water.
Two researchers at the University of Florida’s Department of Nuclear Engineering
Sciences, Glen J. Scoessow and John A. Wethington, claimed to have detected tritium
during the cold fusion process (an important clue that fusion was actually taking
place) but not when light water was used. [1].

On May 22-25, 1989, a workshop on Cold Fusion Phenomena was sponsored
by the U.S. Department of Energy and hosted by the Los Alamos National Labora-
tory. This workshop was devoted to understand a complex. exciting, and potentially
highly exploitable phenomenon of nuclear fusion at room temperature. The workshop
brought key workers in the area of cold fusion from all around the world to a scientific
forum, results were compared and debated on a scientific plane. The workshop began
the process of bringing cold fusion research out of the bright glare of press confer-
ences and back to in-depth probing and questioning. Some of the papers presented
in the workshop were a search for experimental and theoretical insight into the phe-
nomenon, others were reports of failed trials to reproduce the experiment, and one
paper was an attempt to explain the results of Pons and Fleischmann’s experiment

on a metallurgical background. Here is a brief description of some of the papers that



were presented there:

A paper presented by K.L. Wolf and coworkers [4] from the C'yclone Institute and
the Department of Chemistry of Texas A& M University. The paper reports some
positive results for neutron emission and for tritium detection from the Fleischmann-
Pons type of electrolytic cells. The experimental investigation was conducted on
samples of palladium and titanium metals which have been loaded with deuterium
through the electrolysis of D,O and by absorption of D, gas. In approximately
200 experiments on 25 cells, statistically significant evidence for neutron emission
was obtained in three separate experiments from one palladium cathode, the neu-
trons detected were at energies around 2.45M eV which corresponds to the reaction
in equation 3.2. The results for tritium were more encouraging since nine Pd-Ni
electrolytic cells have shown levels that are factors of 10 — 10® above background.

Another study reported by Tsang-Lang Lin and Chi-Chang Liu from the Depart-
ment of Nuclear Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan/|5]
stated that they have repeated the cold fusion experiment by electrolyzing heavy
water with 0.1 LiOD, with palladium rod as the cathode and platinum wire as the
anode. They claimed that neutrons bursts were detected during a period of about
7 hours after electrolyzing for 11 days, the highest burst being 240 neutrons/5 min.
while the background was 1. cpm.

A group of scientists from the Department of Chemistry in the University of
Rome, Italy, in cooperation with four other research institutes in Italy[6] reported
that they had tried to reproduce the experiment using a sintered palladium electrode
instead of a cast metal electrode (which was used by Pons and Fleischmann [7]).

After six days of electrolysis at 200m A /cm? they detected a simultaneous emission of



neutrons, tritium excess in the electrolytic solution, and rapid temperature increase.
During the event which lasted 4 minutes they counted 7.2 * 10° neutrons; tritium
was also detected in an excess quantity corresponds to (2.14 + .04) = 10'* atoms
related to the solution volume of 41ml, while the palladium electrode temperature
reached 150°C'. But the energy production in this experiment was higher than the
amount of neutrons and tritium detected, which suggests that there may be helium-4
production. In the discussion after presenting this paper it was recommended to
analyze the cathode and to look for helium-4.

The above was a brief description of some of the papers which reported a success
in detecting some of the by products of nuclear reactions. On the other hand, there
was enormous number of papers which reported failure to find evidences of nuclear
reactions. One of these papers reported a collaborative effort of a team which was
formed at Los Alamos and supported by the U.S. Department of energy to investi-
gate the claim that cold fusion may be occurring in electrochemical cells [8]. They
have used palladium cathodes and platinum anodes in a LiOD solution electrolyte.
Four electrochemical cells were constructed and operated for 3-5 weeks under various
geometrical and electrical conditions. No conclusive evident was found for the pro-
duction of neutrons above levels consistent with background. In subsequent precision
calorimetric experiments performed in closed cells, there was no generation of “excess
heat.”

A paper presented by Ali AbuTaha [9], suggested that the palladium may have
been the fuel in the electrochemical cell instead of the deuterium. The paper states
that a considerable strain energy is stored in metals and alloys when processed from

the ore. The energy balance is disturbed when cracks nucleate, grow, and propagate
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within the bulk. Deuterium induces and propagates cracks in palladium and other
metals and alloys. The sudden discharge of fracture energy during crack propagation
generates a considerable amount of heat. The heat produced by the work-of-fracture
can be substantial and can account for the excess enthalpy reported in cold fusion
experiments. The paper claims that in all the cold fusion experiments, the release of
heat was reported for a limited period of time {120 hours in the Pons and Fleischmann
experiment ) and this is due to the fact that the amount of fracture work that can be
done on a metal is limited. The paper also explains the partially vaporized palladium
sample in the Pons-Fleischmann experiments by a considerable power that can be
generated if the fracture energy is released in shorter periods, this phenomena is
known as the short-time release of fracture energy “The explosi\-fe crack propagation
can be violent enough to produce traces of fusion by-products.” The paper ends up
with a conclusion that the fuel in the cold fusion experiment reported by Pons and
Fleischmann was the palladium and not the deuterium.

Theoretical studies of the cold fusion phenomena were also conflicting, just as
the experiments were. One of these studies was performed by a group of researchers
- from the Physics Department at Iowa State University [10]. They used the WKB
approximation to calculate the Gamow transmission coefficient through a potential
barrier for hydrogen-like ions confined in a potential well. Their calculations showed
a fusion reaction rate of 107%%/d — d/s (which is very low for all practical usages).

On the other hand, a paper written by Mario Robinowitz [11] suggested that
“it appears that hitherto unconsidered physical mechanism must be present in the
solid that are not present in the liquid.” The paper claimed that there may be two

means by which the fusion reaction rate in solids can be increased by several orders
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of magnitude over that in liquids. These are:

e It is possible for the effective mass of the deuterium nuclei in a solid to be
sufficiently less than the mass of deuterons in free space to increase the tunneling

coefficient by many orders of magnitude.

e There may be preferential pathways in a solid that decrease the degree of free-
dom so that the fusing particle is confined essentially to one or two dimensional
motion in the solid, that is the particle is able to move only in certain channels.
Decreasing the dimensionality or the degrees of freedom, decreases the number

of ways potentially colliding particles can miss each other.

Robinowitz goes on to claim that these two factors (the tunneling and the fusion
probabilities) tend to be magnified by several orders of magnitudes in solids. The
paper, however, assumed that the collision frequency is the same in solids as it is
in the liquid state and in ordinary solid solutions. However, an article written by
Bernard I. Spinrad from lowa State University, Department of Nuclear Engineering
'12], suggested that a high negative voltage applied on a metal into which deuterium
is soaked should be just as effective as high-mass negative charges in permitting close
approach of two deuterons to each other. “Another way of thinking about this is
that the large negative potential effectively adds kinetic energy to the deuterons.”
This research was built on Dr. Spinrad’s ideas of increasing the collision frequency by
applying a high negative voltage to the cell, hence increasing the kinetic energy of the
deuterons, and also of assuming that there is a preferential pathway for deuterium in
solids.

In summary, three different scenarios for cold fusion have arisen. These are:
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e Pons and Fleischmann have discovered controlled nuclear fusion, and practical

applications are around the corner.

o The energy released within the Pons and Fleischmann experiment has nothing
to do with any nuclear process, and is, for example, of chemical origin, or it is

due to a destruction of the palladium metal.

o Nuclear fusion does indeed take place, but at the extremely low levels detected
by Jones at Brigham Young University [2/. The phenomenon is of considerable

scientific importance, but has no immediate relevance as a new energy source.
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CHAPTER 4. THE MODEL

Introduction

At the beginning we need to define the word “cell”. It has been established by
neutron-diffraction studies, that hydrogen or deuterium atoms occupy the octahedral
interstices of the face center cubic (FCC) palladium lattice, to give an H deficient
NaCl structure in PdH [13]. The FCC structure of a palladium cell requires 14 atoms
of Pd; 8 of them are shared by 8 neighboring cells each, and 6 of them are shared
by 2 neighboring cells each, so the actual number of atoms per palladium cell equals
8(1/8) + 6(1/2) = 4 atoms. As a result of electrical deuteration of a palladium
cathode, we can reach the structure of PdD, this means that the combined number
of Pd and D atoms in a PdD cell is 8. Knowing that the PdD has a cell parameter of
4.07A at room temperature [13], by simple calculations we find that the sphere which
contains one atom in this structure has a radius of 1.26 = 10° F'm. In our calculations
we have assumed a value of 125000 Fm, and the cell in this case is defined as the
sphere which contains only one atom. This is effectively the volume within which a
deuteron is normally to be found.

When a direct current is passed through a metallic conductor, macroscopic move-
ment of lattice atoms may occur. This phenomenon is usually called electromigration.

Electromigration is analogous to ionic transport in solid electrolytes in that the pres-
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ence of an electric field provides the driving force for atomic transport. Although the
migrating atom is acted upon by a constant external force, the atom is not uniformly
accelerated because of interactions between the solute and the surrounding lattice,
but the migrating atom still moves through the crystal with a macroscopically con-
stant velocity proportional to the average electric field present [14 . The ratio of the
velocity of migration to the applied potential is called the electric mobility. It should
be noticed that it may be possible for an atom to be acted upon by a very large
external force, yet have a very low migration velocity because of a high resistance to
atomic transport in the lattice. However in this research we are assuming that the

deuterium is free to move inside the palladium crystal.

Description of The Model

The model assumes that there exists a vacancy in a palladium deuteride lattice
cell (the number of vacancies can be increased by several orders of magnitude by
quenching the palladium) and the deuterons inside the palladium have preferential
pathways toward these vacancies . As a result of the electrical deuteration process a
deuteron exists in the palladium lattice. Another deuteron is introduced into the cell
driven by a force due to the voltage applied to the electrochemical cell. It is further
assumed that the center of mass of the two deuterons is fixed at the cell center.
It is also assumed that the wave function of the deuteron pair is periodic. These
assumptions, made to simplify calculations, are reasonable for deuterons confined in
a single cell. The following approximations were made to calculate the wave function

of the deuteron pair:
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l. The nuclear potential is approximated by the optical model. This is a simple
model used to account in a general way for elastic scattering in the presence of
absorptive effects. In this model we represent the nuclear potential in terms of

a complex potential {7(r):
Ur) = V(r) + W(r) (4.1)

where the real functions V" and W are selected to give the potential its proper
radial dependence. The real part V/(r) is mainly responsible for elastic scat-
tering, and the imaginary part :W(r) is responsible for absorption. Before
applying the optical model we need to choose a form for the real part of the
potential. Two forms were applied in this research: the first was a square well,
and the second form was the Woods-Saxon, which is a more detailed form that
was expected it gave better fit to the experimental D-D fusion reaction cross

section |7 than the square well.

2. When calculating the D-D fusion reaction cross section, the cell radius was
assumed to be 250000 F'm. This exaggerated value was used to assure that the
wave function reaches its asymptotic value at the edge of the cell. The actual
value of the radius (R ~ 125000 F'm) was used when calculating the reaction

rate constant.

3. The delocalized deuteron pair has very low energy (mostly thermal). We have
set this energy to zero and adopted as the eigenvalue of the system a negative
potential acting on the site. How this site voltage relates to the potential

applied on the palladium cathode requires further investigation.
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Schrodinger Equation

The system in our model consists of two deuterons. and we are going to calculate
the wave function of this system. To do so, we are going to convert the two-body
problem into one particle problem by separating the coordinates of center of mass
from the relative coordinates. The Hamiltonian in this case has the following general
form:

H = Eli + Pz'—’

2m,  2m,

+ Ul = ral) (4:2)

where P, and P, are the momenta of the first and second particles, and r, — rs is

the distance between the two particles, and the Schrodinger equation has the form:

—h*_, A i :
[—V2 - — V3 +U(lrr =) = E ¥ (4.3)
2my 2ms, -~ '
== 2T
let r=|ry—rq and R = Lt L ML (4.4)
mi + mo
Substituting equation 4.4 into equation 4.3 we get:
h? g & & R B & P
g - =} I ) [ S S SIS S A- |+[. F—E
2(my + mg)( axX: ' ay? @ 8z? A QM({J’J‘Z ’ dy? e A (r)y "

my+m3

(4.5)
where ¢ = ¥/(r, R) is a function of the relative coordinates r(z,y, z) and the coordi-

nates of the center of mass R(\X.,}, 7). The Hamiltonian is the sum:
i = Hrp + H. (46)

and each of the sub Hamiltonians has a complete set of eigenfunctions. Hence all the

eigenfunctions of equation 4.5 can be obtained by assuming that v’ is a product :

u'(P,R) = ur(r)ﬁcm(R) (47)
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and the energy is also a sum:

E =FEgr+ E, (4.8)
such that
h?
— —————V*m(R) = Epthem(R) (4.9)
2(my + ma)
and
K2 4 .
==, ﬂ\_'t,(r) + U(r).(r) = E . (r) (4.10)

where 4 is the reduced mass = ™74, Since in our system we are assuming that the
center of mass is fixed at the cell center , then Ex = 0, and we are only left with
equation 4.10 to describe the system. At this point £ = E, = applied voltage by the
third approximation above. Equation 4.10 says that the relative motion of a system

of two particles subject to central forces can be treated like a one-body problem if

the reduced mass is used.

Eigenfunction

The eigenvalue of the cell problem is the value of E which solves equation 4.10 and
satisfies the boundary conditions. We have assumed that the delocalized deuteron
pair has very low energy, and we have adopted as the eigenvalue of the system the
(negative) potential of the palladium cathode. With this eigenvalue equation 4.10
should satisfy the boundary condition ¢/(R) = 0. If it did not satisfy this condition
, then the eigenvalue should be iterated till the above condition is satisfied within
a pre-determined tolerance value, or till the number of iterations exceeds a certain
number. The iteration formula is derived as the following:

The wave equation is converted into spherical coordinates, and the equation we
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are solving is:
h?

l)il

-

oy + U(r)oo = Eoto (4.11)

where ¢ is the exact wave function = r = . (r), @y is the value we are calculating,
and r is the separation distance between the two particles. The boundary conditions
are o(0) = ¢*(0) = o(R) = ¢*(R) = 0. Multiplying equation 4.11 by the complex
conjugate of the wave function and integrating all terms we get:

R E'_’ R R
/ —l—gﬁg@.dr + / G'D(JU(D‘{iJ" = / EQQ‘JQQD'(J‘T (412)
0 2p Jo Jo
Integrating the first term in the above equation by parts and applying the boundary
conditions @'(R) = ¢* (R) = 0 where o is the exact wave function; we get
R hZ R h? . 2
f S gystdr = / —po5—¢"dr — ——6"(R)64(R) (4.13)
0 a“p 0 24
Then equation 4.12 becomes:

R ﬁ2 ot h? R R
ﬁ/ oo —o" dr — —o"(R)¢y(R) +/ ol 0" dr = Eo/ Gp0"dr (4.14)
0 2p 2p 0 0

Now take the complex conjugate of the exact wave equation and multiply it by oq

and integrate to get:

R X R R
/ —pg—0" dr + / oot p*dr = f oo E* o dr (4.15)
0 2p 0 0

Subtracting equation 4.15 from equation 4.14, we find
2

B R 5
—ﬂo'm)oa(m*f %(t-’—ff'w*dr:(EnE‘)f dod'dr.  (4.16)
0 0

Sy do(U = U*)g*dr — E6°(R)6h(R)

= [By—E =
foﬂ Go0* dr

(4.17)
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Since ¢* appears as a “weighting function” in numerator and denominator , we expect
that using ¢} for ¢* will be a good approximation. Thus the new value of E can be
obtained from the relation:

B os(R)SH(R) — [ do(U — U*)opdr

E*= Ey +
fﬂR Podydr

(4.18)

Reaction Rate Constant

Once we have got a reasonable approximation of the eigenvalue, the eigenfunction
of the system is given by introducing a time dependence. If E is now the total energy

of the particle asymptotically, we would have:

o(r,t) = f(t)=o(r)

L do(r,t)
Eo(r.t) = —ik
o(r,t) ! g7
p(r,t) = eF" g(r) (4.19)
if £ = E,.eag + iEimaginary
= §(rt) = FrM mEmth gy (4.20)

multiply the above equation by the complex conjugate of the wave function:
6" (r.t)o(r.t) = e 2B o(r)g*(r) (4.21)

but ¢¢* = density of matter = p
50 p = poe 2Bmt/h = 5 e At

and the reaction rate constant is:

 2E,

A
h

s7'/(D — D)pair (4.22)



CHAPTER 5. REACTION CROSS SECTION AND REACTION
RATE CONSTANT

The model was first calibrated by attempting to reproduce the experimental D-D
reaction cross section. The nuclear potential was first assumed to be a square well;

then.the calculations were repeated using a Woods- Saxon potential.

Square Well

This is an oversimplification of the problem, but it is sufficient for at least some
qualitative conclusions. The range of the strong attractive nuclear forces is taken
to be the radius of a helium atom (1.25 = .05)A"* Fm rounded upward, an actual
value of 2.1 F'm was used. Beyond this distance the only force in the system is the
- Coulomb repulsive force. The depth of the nuclear potential is a fitting parameter,
i.e there is no exact way for calculating its value, though the following method was
used to get a first estimate of the real part of the strength of this potential; then
by trial and error the exact real and imaginary parts which give the best fit to the
experimental cross section were obtained. The nuclear potential is represented by a

three dimensional square well, as shown in figure 5.1.

Vir) = -V for »< R,

= 0 for r> R, (5.1)
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Figure 5.1: The square-well potential is an approximation to the nuclear potential,
the depth of the well is — V4

Note that we are ignoring the electrical repulsion of the two deuterons here,
because this repulsion is very small compared to the attractive force due to the
nuclear potential.

The assu:ﬁption that only s-wave interactions exist in the system requires that
the angular momentum of a deuteron should be zero. The wave function of the
system ¥(r) consists of a superposition of radial and angular wave functions, but for
s-waves the angular function is 1. If we define the radial part of ¥)(r) as ¢(r)/r, then
we can write the Schrodinger wave equation as

~h?d%¢
o g T V(1)8(r) = Ed(r). (5.2)

The solution for this differential equation is given by

d(r) = Asinkyr + B cosk;r for ref, (5.3)
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where k) = V 2“(‘2:‘”)
H(7) = Ce ™" 4 De*” for r >R, (5.4)
p—
where ky = ':’;E . The boundary conditions are

1. &(r) is finite as r — 2
2. olry —0asr — 20

From the first boundary condition we must have ) = 0, and from the second condition
we must have B = 0. Applying the continuity condition on &(r) and dé(r)/dr at
r = R, we obtain

kl cot klR,,_ = —Jlm‘-z. (55)

Substituting for k; and k, we get

] 7 / -
o V.f—;ﬁE R, V/M _ _V_M (5.6)

E E

let (/=2E B = § = constant, and

[E W)
Y E

= B %

[1
|
S

— — tan br = = substituting the following numerical values:
1. The binding energy E is obtained from the mass defect of helium= —25. MeV.
2. h is Planck’s constant= 6.58217 x 10716 eV s.

3. p is the reduced mass of the deuteron pair= 938.0700206 MeV /c>
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we get the following transcendental equation
— tan(2.19504197)x = = (5.8)

The only unknown in the above equation is V5. Solving equation 5.8 numerically, the
result is 50.92 MeV. This value is only a first estimate of the real part of the nuclear
potential. The actual value of the real and imaginary parts of the potential are found
by looking for a value with a real part around the above calculated value and an
imaginary part with a value around 10% of the real part such that the potential will
give best estimate of the D-D experimental cross section. This value was found to be
(51.37 = 10° + i4.367 = 10°) eV. This result was obtained by numerical integration of
the wave equation. Starting with a zero initial value for the radial part of the wave
function, and 1. for the first derivative, the second through the seventh derivatives

were calculated using the Schrédinger wave equation as follows:

d0(0) = 0
P(0) = 1
" 2
&u(0) = ﬁ—‘;(—E—Io)eo
(vt 2p r o LUt _
&i0) = h%(wao}% (5.9)

where 15 is the depth of the square well nuclear potential = (51.37 * 10% + /4.367 =
10%)eV. Starting from a zero separation distance between the two deuterons, and
using Taylor series we have calculated the wave function to a high precision at a
point further out. The process was repeated all through the cell until the separation

distance was equal to the diameter of the cell 500000 F'm. The actual equation used
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was:
do(r + H) = do(z) + Hop(x) + H ol(x)/2! + -+ + H 0} (z)/6! (5.10)

A similar relation was used to calculate the first derivative. The step H is given by

-6 - ; [ o [ v 1/6
H = [107° % T20( ¢, + 204 )/ dg"|

(5.11)

At a separation distance of 2.1 F'm and beyond, the only force in the system is the
Coulomb repulsive force, and 1§ in equations 5.9 is given by

C 1.44+10°

r

Vir)

where V' is in MeV, and r is the separation distance in between two deuterons. Thus
and when calculating the derivatives of the wave function, the potential should be
differentiated also.

To reduce the numerical error accumulation in the process of calculating the
wave function, the reasoning of the WKB method was employed to separate the
wave function into two real functions with complex coefficients, as follows:

At a separation distance of 2.1 Fm the square well nuclear potential is zero and
the radial part of the wave function can be approximated by a superposition of Bessel

functions with complex coefficients:

oo(r) = Azlh(z)+ Bzk,(r)

Azly(z) — B.I‘A-o(.l')]% (5.13)

o(T)

where Iy, I,, Kg,and K, are the modified Bessel functions of the first and second

kinds. The argument x is given by

A* . kT
r = —— arcsin( \

: ) + VAZp — k2p2
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ﬁ?
[2uE
k= wave number = 4/ “q
V s
d: /)2
= = /= -k (5.14)
dr r

and r is the separation distance between the two deuterons. A and B are the com-
plex coeflicients, found by solving equations 5.13 simultaneously at r= 2.1 Fm. The
numerical integration was carried out for the two separate real functions and the
complex coefficients were saved till the separation distance was equal to the diam-
eter of the cell. At this point the eigenfunction of the wave equation is given by a

superposition of the following functions:
¢r = AF; ¢r = BFg (5.15)

and the derivative of the eigenfunction is also given by the superposition of the
following functions

&, = AF, & = BFy (5.16)

~ where Fj, Fy, Fy, Fj. are real functions. At this point the wave function represents
a superposition of an incident and scattered wave. The change in the outgoing
(scattered) partial wave is accounted for by introducing the complex coeflicient uq,

(The interaction is assumed to be only with s-waves). Thus, the wave function is:

‘ € ke ihr -
¢0: ﬂt{e ke —,uoek ) (51()
and its derivative is
c ; ;
oh = —i(—ike ™ — ikpge'*") (5.18)
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. . e _ . 4 " 2
Solving 5.17 and 5.18 simultaneously, we get the following expression for |ug

\
ol* = | —=2 (5.19)
0
T ko
Substituting 5.15 and 5.16 into equation 5.19
L FPeEp P
, |t ETEE e
ol = ; (5.20)
5 F‘;-or%F}\.
= F[+§FK

where B and A are complex constants. Let B/A = Re + iJ , substitute this into

equation 5.20 and simplify the expression to get

A.kJ(Fx F| — Fi Fy)
(F{ — ReFyg + kFy)* + (kFy + kReFyx — JFg)?

1 — |pol> = (5.21)

The constant jy was introduced to account for the change in the outgoing partial s-
wave. A reduction in the amplitude of the wave suggests that there are fewer particles
coming out than there were going in. The rate at which particles are disappearing
is the difference between the incoming current and the outgoing current, and the

reaction cross section is given by 15
0. = A1 — |pol?) (5.22)

where A = \/2r is called the reduced deBroglie wavelength. A\ = k™!, and the last

term in the above equation is given by equation 5.21.

Woods-Saxon Form of the Potential

The square well is not realistic, simply because the nuclear potential does not

have a sharp edge. Actually the nuclear charge and matter distribution falls smoothly



27

Rn
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Figure 5.2: A realistic form for the potential is the Woods-Saxon potential, the
distance “a” is called the “skin thickness.”

to zero beyond the main radius. A more realistic form of the potential is the Woods-
Saxon potential:

. N (5.23)

L4ea

which is shown in figure 5. The parameters R, and a give, respectively, the mean
radius and the skin thickness. The skin thickness is defined as the distance over which
the potential changes from .9V; to .1V,. Again R, ,a, and Vj are fitting parameters,
their values are adjusted to give the best fit to the experimental D-D reaction cross
section [15]. The following values where obtained for these parameters:
Vo = (51.37 * 10% + i7.848 * 10°) eV
a=.631 Fm and B, = 1575 Fm.

The forces in the system are:

1. Attractive force due to the Woods-Saxon nuclear potential.
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2. Repulsive force due to the Coulomb potential.

These two forces act against each other until the separation distance equals 10 F'm.
After the separation distance exceeds 10 F'm, the nuclear force is very small, so that
practically the only force that exists in the system is a pure Coulomb repulsion. As
we have done in the square well form of the potential, at a certain distance, when
the nuclear attractive force is weak compared to the Coulomb repulsive force, the
WKB method was used, and the radial part of the eigenfunction for the Schrodinger
equation can be written in the form of equations 5.9. A correction factor on the
Coulomb potential was used to account for the shielding of the two positive charges
of the deuteron pair due to the presence of 4 electrons inside the cell, three valence
electrons of the palladium atom and 1 electron from the deuterium atom. The four
electrons are uniformly distributed in the cell (This is a conservative assumption,
because if one of the electrons is closer to the deuterium atom, its shielding effect will
be larger and this will reduce the repulsive force between the two positive charges by
a great amount.) such that their density is 4*3/47 = R®, and at radius r the electrons
inside r act like a central charge of 47/ R®. This charge acts separately on each of
the two deuterons, yielding an additional (attractive) potential of —8r%e?/R* for the
two deuteron system.

The reaction cross section was calculated using this form of the nuclear potential.
Table 5.1 shows the values of the D-D cross section obtained by using the square well
form and then the Woods-Saxon form compared to the standard values obtained
experimentally.

As it was expected the Woods-Saxon form is more realistic, and it gives a better

fit for the true values of reaction cross section. Figure 5.3 shows the reaction cross



Table 5.1: Fusion reaction cross sections as functions of the system energy

| Energy | Experimental value[15] | Square Well® | Woods — Sazon®

| KeV mb mb : mb \
11 758 .7838 | 71 ‘
15 2:22 2.220 2.220 ‘

20 4.99 4.911 ' 4.96 ‘

30 12.75 11.749 | 12.13 |

|40 22.1 18.81 19.87 |
50 30. 25.22 21.21 !
60 34.9 30.76 33.88 |

a. Radius of the cell= 250000 Fm.
V = (51.37 = 10°% + i4.367 = 10°%)eV.
b. Radius of the cell = 250000 F'm.
V = (51.37 x 10°® + i7.848 % 10%)eV.
Skin thickness = .631 Fm.

A= 1.575 Fm.

sections for both models compared to the reaction cross sections obtained experimen-

tally.

Reaction Rate Constant

The reaction rate constant, which is given by equation 4.22, was calculated for
both forms of the nuclear potential. The results showed a slight increase of the
reaction rate constant when the Woods-Saxon potential was used, but the square
well potential still showed to be a good approximation.

Before calculating the reaction rate constant we need to find an eigenvalue for
the cell. As was explained in the previous chapter this is done by iterating equation
4.18.The integrals in this equation were calculated numerically all through the cell,
from a zero separation distance to the edge of the cell (The actual cell radius was

used =125000 F'm). A new value for the energy is obtained from equation 4.18.
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Figure 1. Comparison of the experimental reaction cross seclions for the
fusion reaction with those oblained theorelically by using the
square well and Wood-Saxon nuclear potentials.
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is used to calculate the wave function and its derivatives along with their complex
conjugates. The integrals in equation ?? are calculated again, and another value of
the energy was obtained. The process was repeated until the number of iterations
exceeds a certain value, or the change in the energy is less than a pre-set value. The
energy obtained in the above process is a complex number, and it is taken as the
eigenvalue of the cell. As was shown in the previous chapter, the imaginary part
of this eigenvalue is responsible for the absorption of particles in the system. The

reaction rate constant is calculated using equation 77 which is rewritten here:

28 1

A= S~Y/(D — D)pair (5.24)

Table 77 shows the energy eigenvalue and the corresponding reaction rate constants
obtained for the two forms of nuclear potential:

Figure 7?7 shows the reaction rate constant as a function of the energy of the
deuteron pair (The voltage applied to the lattice). The reaction rate constant
has a suitable value for practical usages at an applied voltage of 400 V. However,
the reaction rate can be increased by several orders of magnitude if the site voltage
- 1s increased. Practically, it is not difficult to apply a voltage of several thousands
of volts to an electrochemical cell. However, it remains to be investigated how this

applied voltage translates into a site voltage.
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Fusion reaction rate constant as a function of the system energy eigen-

Square Well®

Woods — Saron

5

Energy (eV)

Reac. Rate Cons.
(per second)

Energy(eV) | Reac. Rate Cons.

(per second)

10.0043411
14.8647220
25.0361217
49.9133860
99.8594709
200.468394

1 50000.1305

I
|
u

60000.7705

129492284 x 10122
450693798 * 1098
271039311 = 10~ 72
560661574 = 107
637014272 % 10~2°
464405994 = 10716

238836101 = 10**
38097 = 10'*

9.92969984

| 15.1140380
| 24.7653660

50.0870709

| 99.8944151

201.160690

49994.7464
59997.6600

386935602 = 10~
54532347 = 10~%

530966854 = 10~°%%
925649399 = 10 %

299839016 = 10 *% |
176241614 = 1071 ||

101922547 = 10*®
166156978 = 10*°

| 300.197438 | 213262776 « 10710 | 300.102797 | .824439830 = 10~1°
399.029355 | 496035291 « 1077 | 400.753020 | .208443334 « 10°° |
500.178676 | .112797925« 10~% | 500.732673 | .442359127 « 10+ |
999.573148 | 7.0679 1000.63905 | 27.0254 |
| 2001.76995 | 100721.979 | 2001.89475 | 377871.0 |
| 3002.85741 | 7244569.24 | 2997.74189 | 26871214.2 |
13997.2455 | 93389927 .4 | 4002.715 | 354826427.0 I
4997.02063 | 547562253.0 | 4998.73 206862373 = 1010 |
11000.2783 | .7827599 = 10! 11001.1810 | .29886 « 10* |
19995.7615 ‘ 1196336 = 10'° ‘ 19997.4238 | 468805384 « 10
29999.8055 ‘ 5226378 x 10'* | 30006.6919 | 211245092 « 10
1 39990.8643 | 128 x 10** | 40005.7981 | 533275004 x 101

a. V = (51.37 = 10° + 14.367 = 10°)eV
b. V = 51.37 x 10® + i7.848 % 10%)eV

R, =1.575 Fm Skin thickness = .631 Fm




Reaction Rate Constant, 1/s
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Figure 2. The reaction rate constant as a function of the energy of the deuton pair
for both models of the nuclear potential.
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CHAPTER 6. CONCLUSION

The striking conclusion of this research is that the cold fusion reaction can be
made to happen at various reaction rates. A high energy deuteron confined in the
palladium can increase the reaction rate by several orders of magnitude. I[f such
energy, of the order of of 1 KeV, can be acheived by electrical means, this could control
the power production level in the electrochemical cell. The reaction rates obtained
above can be translated into energy production if we know how many deuterons are in
the palladium cathode (The extent to which we can pump deuterons into the cathode
before it starts bubbling off as gas at the surface of the metal). Simply, not all the
lattice cells in the palladium cathode are occupied by deuteron pairs. The amount
of deuterons that can be soaked into the palladium depends on the way in which the
metal was formed, and the finishing of the surface.

Cold fusion is a new field of science, and it opens the door for a wide range of
new knowledge. A lot of research is still needed to reach a complete understanding
of the new phenomenon. Scientists need to research in the mechanisms of a new and
unknown phenomenon that is capable of generating large excursions of heat from a
palladium electrode that has been saturated with deuterium. A variety of physics
and chemistry pathways and theories will have to be explored. The understanding

of this phenomenon will also require a detailed study of the process of electrolysis
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along with an understanding of the physical. metallurgical, and chemical changes
that are taking place in the electrode. Moreover, studies are needed in the field of
material science, especially metal structure and the electrodiffusion of hydrogen and
deuterium in metals.

Finally, this work is a step on the long way to a complete understanding of the

new and promising phenomenon of cold fusion.
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APPENDIX A. THE UTAH CELL

The Utah fusion cell[l] contains 99.5% heavy water with 0.5% light water.( Also,
0.1 M of LiOD was added to the cell.)
Electrical current for a given area of electrode surface: Highest used was 512m.A/cm?.
Neutron flux: 4000./sec for the .4em diameter electrode.
Heat output: Up to 1224.% of break even value (that is . up to 21W/em? of the

electrode.

C'onfigurations:
e Negative electrode: a palladium sheet. Positive electrode: platinum sheet.

e Negative electrode: 10 cm palladium rods with diameters of 1.,2., and 4.mm.

Positive electrode: platinum wire wound on a cage of glass rods.

o Negative electrode: a palladium cube (lem = lem = Lem). In this case the elec-
trode heated to its melting point (1554 degrees Celsius) vaporized and destroyed

part of the cupboard housing experiment.
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APPENDIX B. COMPUTER PROGRAMS

TS .FOR

THIS PROGRAM IS USED TO GENERATE THE WAVE FUNCTION AND ITS
DERIVATIVE WHICH ARE USED TO CALCULATE THE REACTION
CROSS-SECTION.

THIS PROGRAM USES THE SQUARE WELL AS THE NUCLEAR POTENTIAL.
THE PROGRAM USES THE WKB APPROXIMATION TO CALCULATE THE
WAVE FUNCTION BEYOND R=2.1 Fm.

REAL*8 X,X1,E,FI,FID,FK,FKD
COMPLEX*16 F1,F2,F3,F4,F5,F6,F7,F8,V1,V2,V3,Z,H
COMPLEX*16 V4,V5,V6,F11,F22,A,B,COEF

X=(0.D0,0.0D0)
F1=(0.D0,0.D0)
F2=(1.D0,0.D0)

E=(60000.D0,0.0D0)

Z=(4.8182D-8,0.0D0)

OPEN (UNIT=11,status=’UNKNOWN’ ,FILE=’SS.DAT’)
J=0
IFLAG=1
DO 50 I=1,100000000

IF (X.LT.2.1) THEN
Vi=(51.37D6,4.373D6)
F3=(-E-V1)*F1x*Z
F4=(-E-V1)*F2x*Z
F5=(-E-V1)*F3%Z
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F6=(-E-V1)*F4x*Z
F7=(-E-V1)*F5x%Z
F8=(-E-V1)*F6=*Z

ELSE

IF (IFLAG.EQ.1) CALL BES(X,X1,F1,F2,F11,F22,Z,E,A,B)
IFLAG=0

Vi=(1.44D6)/(X)

V2=(-1.44D6)/ (X*x2)

V3=(2.D0%1.44D6)/ (X**3)

V4=(-6.D0*1.44D6) / (X**4)

V5=(24.D0*1.44D0) / (X**5)

V6=(-120.D0*1.44D6) / (X**6)

F3=(-E+V1)*F1%Z
F4=((-E+V1)*F2+V2xF1)*Z
F5=((-E+V1)*F3+2.DO*V2*F2+V3%F1)*Z
F6=((-E+V1)*F4+3.D0*V2%F3+3 . D0Ox
V3*F2+V4xF1)*Z
F7=((-E+V1)*F5+4 . D0O*V2%F4+6 .D0Ox*
V3*F3+4 .DO*V4*xF2+V5%F1)*Z
F8=((-E+V1)*F6+5.D0*V2%F5+10.D0*
V3%F4+10.D0%*V4*F3+5 .DO*V5*F2
+VE*F1)*Z

ENDIF

H=(ABS(1.D-6%720.D0*(F2+.2D0*F3)/F8) ) **
(1.D0/6.D0)
X=X+H

IF (X.GT.500000.) GOTO 250

F1=F1+H*F2+ (H**2)*F3/2.D0+
(H**3)*F4/6 .D0O+ (H**4) *F5/24 . DO+ (H*x*
5)*F6/120.D0

F2=F2+H*F3+ (H**2)xF4/2 . DO+
(H**3)*F5/6 .D0+ (H**4) *F6/24 .DO+ (H**
5)*F7/120.D0
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50 CONTINUE

250 X=X-H
WRITE(11,41) X,F1,F2

41 FORMAT(F15.4,G16.9,G16.9,G16.9,G16.9)
H=500000.-X

F1=F1+H*F2+(H**2)*F3/2.D0+
+ (H*x%*3)*F4/6 .DO+ (H**4)*F5/24 .DO+ (H**5) *F6/120.D0

F2=F2+H*F3+(H**2)*F4/2.D0+

+ (H*%3)*xF5/6 .DO+ (H**4)*F6/24 .DO+ (H**5) *F7/120.D0
X=X+H
OPEN (UNIT=50,STATUS=’UNKNOWN’ ,FILE=’S.DAT’)
COEF=B/A

IF (J.EQ.0) THEN
FI=DBLE(F1)
FID=DBLE(F2)
WRITE(50,55) X,FI,FID
ELSE
FK=DBLE(F1)
FKD=DBLE(F2)
WRITE(50,56) X,FK,FKD,COEF,E
ENDIF
55 FORMAT(F10.2,G16.9,G16.9,G16.9,G16.9)
56 FORMAT(F10.2,G16.9,G16.9,G16.9,G16.9,/,G16.9,G16.9,G16.9)
F1=F11
F2=F22
=%t
J=J+1
IF(J.EQ.1) GOTOD 1
344 STOP
END

SUBROUTINE BES (X,Xi,F1,F2,F11,F22,Z,E,A,B)
REAL*8 X,X1,T,R,E

COMPLEX*16 I0,I1,KO0,K1,SPIN

COMPLEX*16 LAM,LAMSQ,K,KSQ,DXDR
COMPLEX*16 Z,A,B,F1,F2,F11,F22

CALL UNDERO (IFLAG)



LAMSQ=Z*1.44002E6

KSQ=Z*E

LAM=SQRT(LAMSQ)

K=SQRT (KSQ)

x=2.1

R=(LAMSQ/K)*DASIN(K*SQRT(X)/LAM)+SQRT (LAMSQ*X-KSQ*X**2)

DXDR=SQRT(LAMSQ/X-KSQ)

T=R/3.75

IF (R.LT.3.75) THEN

10=1.+3.5156229*T**2+3 0899424 *T**4+1  2067492%t **6
+.2659732*xt*%x8+ ,0360768*t*x*x10+ . 004581 3% t*%12

I1=(.5+.87890594xt**2+ 51498869*t**4+ 15084934*t**6

+.02658733%T**x8+_.00301532*T**10+.00032411*T**12)/R

ELSE

I10=(.39894228+.01328592*tx*(-1)+.00225319*t**(-2)-.0015

7565xt*%x(-3)+.00916281*t*x*(-4)-.02057706%T*=(-5)+.02635537*

Txx(-6)-.01647633*T*x(-7)+.00392377*T*x(-8))/(DSQRT(R) *EXP(-R))

I1=(.39894228-.03988024*t*x*(-1)-.00362018*t**(-2)+.00163801
*xtxx(-3)-.01031555*t**(-4)+.02282967*t**(-5)-.02895312*¢t
**%(-6)+.01787654*t**(-7)-.00420059*t**(-8))/(DSQRT(R) *EX
P(-R))

ENDIF

KO=(1.25331414-.07832358%2 . /R+.02189568%(2./R) **2
-.01062446% (2. /R)**3+.00587872%(2./R)**4-.002
51540%(2./R)**5+.00053208* (2. /R)*=6)/(DSQRT(R) *EXP(R))

K1=(1.25331414+.23498619*%(2./R)-.03655620% (2. /R)**2
+.01504268* (2. /R) **3-,00780353* (2. /R) *x*4
+.00325614x*(2./R) **5-.00068245%(2./R) **6) / (DSQRT(R)

*EXP(R))

IF (X.GT.2.3) goto 4

B=(I0*F1-F2*I1/DXDR)

A=(F1*K0+F2*K1/DXDR)

F1=R*I1

F2=R*I0*DXDR

F11=R*K1

F22=-1.*R*K0O*DXDR

X1=X

RETURN

END
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TW.FOR

THIS PROGRAM IS USED TO GENERATE THE WAVE FUNCTION AND ITS
DERIVATIVE WHICH ARE USED TO CALCULATE THE REACTION CROSS-SECTION.
THIS PROGRAM USES THE WOODS-SAXON POTENTIAL AS THE

NUCLEAR POTENTIAL. AND THE WKB APPROXIMATION FOR

CALCULATING THE WAVE FUNCTION BEYOND R=10. Fm.

REAL=8 X,X11,Y11,Y,X1,E,R,A,RO,FI,FID,FK,FKD
COMPLEX*16 F1,F2,F3,F4,F5,F6,F7,F8,V1,V2,V3,Z,H,COEF
COMPLEX*16 V4,V5,V6,F11,F22,V0,B,C
X=0.00000000002
F1=(0.D0,0.D0)
F2=(1.D0,0.D0)

R=250000.

v0=(51.37d6,7.848d6)

a=0.631

r0=1.575

x1=Dexp(2) *Dexp(-r0/a)

E=(15000.D0,0.0D0)

Z=(4.8182D-8,0.0D0)

OPEN (UNIT=11,status=’UNKNOWN’,FILE=’SS.DAT’)
J=0
IFLAG=1
DO 50 I=1,100000000

IF (X.LT.10.0) THEN

vl this is the nuclear potential which is a Wood’s-Saxon potential.
f3-f8 are the second through seventh derivatives of the wave function.
y=exp((x-r0)/a)
yll=x+x*y
Vi=(x*(-v0)-x1*(exp(x/a)-1))/(y11)
v2=(-v0-(x1/a)*exp(x/a)-vi*(1+y+x/a*xy))/yi1
v3=(-(x1*exp(x/a))/ax*2)-(vi*x/(a**2))*xy-2*vixy/a-v2xx*y/a
-2*v2*(y+1)/y11
v4=(((-x1*exp(x/a))/a**3)-3*vixy/a**2-vi*x*y/a*x*3-5xy2*y/a
=3%y3= (y+1)-2%v3*x*ky/a-2xy2*x*xy/a**2) /y11
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vE=(-x1*exp(x/a)/a*x*4-10%y2*y/a**x2-4xylxy/ax*3-3*xy2*xx*y/a**3
—vi*x*ky/a*x*x4-10%v3*xy/a-4*v3*(y+1) -3xvéd*x*xy/a-4*xy3*x*y/
a**2)/y11

v6=((-x1*exp(x/a)/a**5)-24xy3xy/a*x*2-17*y2xy/a*x*x3-Exvi*xy/a*x*4
—THy3kxky/arx3-4xy2xxxy/axkd-vikxxy/ax*5-17*vd*xy/a-5xv5*x(1+y)
-4xyS*xx*xy/a-T*vd*x*xy/a*x*2) /y11

F3=-(E+V1)*F1%Z

F4=-((E+V1)*F2+V2x%F1)*Z

F5=-((E+V1)*F3+2.DO*V2*F2+V3%F1)*Z

F6=-( (E+V1)*F4+3.DO*V2%F3+3 . DO*V3*F2+V4*F1)*Z

F7=-((E+V1)*F5+4.DO*V2%F4+6 .DO*V3xF3+4  DO*xV4*F2+V5*F1)*Z

F8=-((E+V1)*F6+5.D0*V2%F5+10.D0*V3%F4+10.D0*V4*F3+5 . DO*V5*F2
+V6%F1)*Z

ELSE

IF (IFLAG.EQ.1) CALL BES(X,X11,F1,F2,F11,F22,Z,E,B,C)
IFLAG=0

V1=(1.44D6)/(X)-(2.%1.44D6*X*x=2)/R**3
V2=(-1.44D6)/(X**2) -4 .%1.44D6%X/R**3
V3=(2.D0*1.44D6)/ (X**3)-4.*1.44D6/R*=3
V4=(-6.D0*1.44D6) / (X**4)

V5=(24 .DO*1.44D0) / (X**5)
V6=(-120.D0*1.44D6) / (X*x6)

ENDIF

F3=(-E+V1)*F1x*Z

F4=((-E+V1)*F2+V2xF1)*Z

F5=((-E+V1)*F3+2.D0O*V2*F2+V3%F1)*Z

F6=((-E+V1)*F4+3.D0O*V2*F3+3.D0*V3*F2+V4*F1)*Z

F7=((-E+V1)*F5+4 .D0*V2%F4+6 .DO*V3%F3+4 . DO*V4*F2+V5%F1)*Z

F8=((-E+V1)*F6+5.D0*V2%F5+10.D0*V3%F4+10.D0*V4*F3+5.DO*V5*F2
+VE6*F1)*Z

H=(ABS (1.D-6%720.D0*(F2+.2D0*F3)/F8))**(1.D0/6.D0)
X=X+H

IF (X.GT.500000.) GOTO 250
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F1=F1+H*F2+(H**2)*F3/2.D0+
(H**3) *F4/6 .DO+ (H**4) *F5/24 . DO+ (H**
5)*F6/120.D0

F2=F2+H*F3+(H**2)*F4/2.D0+
(H*=3)*F5/6 .D0O+ (H**4)*F6/24 . DO+ (Hxx*
5)*F7/120.D0

CONTINUE

X=X-H

WRITE(11,41) X,F1,F2
FORMAT(F15.4,G16.9,G16.9,G16.9,G16.9)
H=500000.-X

F1=F1+H*F2+(H**2)*F3/2.D0+
(H**3) *F4/6 .DO+ (H**4) *F5/24 . DO+ (H**
5)*F6/120.D0

F2=F2+H*F3+ (H**2)*F4/2.D0+
(H**3)*F5/6 .DO+ (H**4) *F6/24 . DO+ (H**
5)*F7/120.D0
X=X+H
OPEN (UNIT=50,STATUS=’UNKNOWN’,FILE=’S.DAT’)
COEF=B/C
IF (J.EQ.0) THEN
FI=DBLE(F1)
FID=DBLE(F2)
WRITE(50,55) X,FI,FID
ELSE
FK=DBLE(F1)
FKD=DBLE(F2)
WRITE(50,56) X,FK,FKD,COEF,E
ENDIF
FORMAT(F10.2,G16.9,G16.9,G16.9,G16.9)
FORMAT(F10.2,3G16.9,/,3G16.9)
F1=F11
F2=F22
X=X11
J=J+1
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IF(J.EQ.1) GOTO 1
344 STOP
END

SUBROUTINE BES (X,X11,F1,F2,F11,F22,Z,E,B,C)
REAL*8 X,X11,T,R,E
COMPLEX*16 1I0,I1,K0,K1
COMPLEX=*16 LAM,LAMSQ,K,KSQ,DXDR
COMPLEX*16 Z,C,B,F1,F2,F11,F22
CALL UNDERO(IFLAG)
LAMSQ=Z=*1.44002E6
KSQ=Z*E
LAM=SQRT(LAMSQ)
K=SQRT(KSQ)
x=10.
9 R=(LAMSQ/K)*DASIN(K*SQRT(X) /LAM)+SQRT (LAMSQ*X-KSQ*X*x*2)
DXDR=SQRT (LAMSQ/X-KSQ)
T=R/3.75
IF (R.LT.3.75) THEN
I0=1.+3.5156229%T*%2+3,0899424*T*x*4+1,.2067492%t**6 .

+ +.2659732%t**8 . +.0360768%t*%10.+.0045813%t*x12,
I1=(.5+.87890594*t**2 .+ 51498869*t**4 + 15084934xt**6 .

+ +.02658733xT**8 .+ .00301532*T**10.+.00032411%T*=12.) /R
ELSE
I10=(.39894228+.01328592*t*x*(-1.)+.00225319*t*x*(-2.)-.0015
T565*%t*%x(-3.)+.00916281*t*x* (-4, )-.02057706*T**(-5.)+,.02635537*
T**(-6.)-.01647633*T**(-7.)+.00392377*T**(-8.))/(DSQRT(R) *
EXP(-R))
I11=(.39894228-.03988024*t**(-1)-.00362018%t*x*(-2)+.00163801

*t*x(-3)-.01031555%t%% (-4)+,02282967*t**(-5)- . 02895312%t
*%(=6)+.01787654%t**(-7)-.00420059*t*=(-8))/(DSQRT(R) *EX
P(-R))
ENDIF
KO=(1.25331414-.07832358*2. /R+.02189568* (2. /R) **2
+ -.01062446% (2. /R)**3+.00587872% (2. /R) **4-.002
+ 51540%(2./R)**5+.00053208*(2./R)**6)/ (DSQRT (R) *EXP(R))
K1=(1.25331414+.23498619%(2./R)-.03655620%(2./R)**2
+.01504268%* (2. /R)**3-,00780353% (2. /R) **4
+.00325614*(2./R)**5-.00068245%(2./R)**6) / (DSQRT(R)
*EXP(R))

+ o+

+



IF (X.GT.10.1) goto 4
B=(I0*F1-F2*I1/DXDR)
C=(F1*K0+F2*K1/DXDR)
F1=R*I1

F2=R*I0=*DXDR

F11=R*K1
F22=-1.*R*KO*DXDR
T11=%

RETURN

END
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FINA.FOR

THIS PROGRAM IS USED TO CALCULATE THE REACTION RATE CONSTANT.
IT USES A SQURE WELL AS THE NUCLEAR POTENTIAL.

REAL*8 X,R,Y1,Y2

COMPLEX=*16 F1,F2,F3,F4,F5,F6,F7,F8,V1,V2,V3,Z H,E
COMPLEX*16 V4,V5,V6,CF1,CF2,CF3,CF4,CF5,CF6,DER,DEI, INT
COMPLEX*16 PR,FPR,FINT,CV1,CFD10,CC,Y3,Y4

THE ENERGY OF THE SYSTEM.

E=(11000.D0,0.D0)

J=0

R=500000.
OPEN (UNIT=50,STATUS=’UNKNOWN’ ,FILE=’INT.DAT’)
OPEN (UNIT=51,STATUS=’UNKNOWN’,FILE=’sum.DAT’)

X=(0.D0,0.0D0)

THE WAVE FUNCTION AND ITS FIRST DERIVATIVE.
F1=(0.D0,0.D0)
F2=(1.D0,0.D0)
J=J+1
WRITE(50,%*)
WRITE (50, *)
WRITE(50,7)J
FORMAT(I8)
INT=0.0
FINT=0.0

Z=(4.8182D-8,0.0D0)

DO 3 I=1,100000000
IF (X.LT.2.1) THEN

vl this is the nuclear potential which is a square well
f3-f8 are the second through seventh derivatives
of the wave function
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V1=(51.37D6,4.367D6)
F3=(-E-V1)*F1xZ
F4=(-E-V1)*F2xZ
F5=(-E-V1)*F3%Z
F6=(-E-V1)*F4xZ
F7=(-E-V1)*F5%Z
F8=(-E-V1)*F6*Z

ELSE

this is the colomb barrier and its derivatives, plus the
screening effect.

the f’s are the wave function derivatives

V1=(1.44D6)/(X)-(8*X**2)/R**3
V2=(-1.44D6)/ (X*x2)-16%X/R**3
V3=(2.D0*1.44D6)/ (X*%3)-16/R**3
V4=(-6.D0%1.44D6) / (X**4)
V5=(24.D0*1.44D0) / (X*x5)
V6=(-120.DO0x*1.44D6) / (X**6)

F3=(-E+V1)*F1%*Z

F4=((-E+V1)*F2+V2*F1)*Z
F5=((-E+V1)*F3+2.DO*V2*xF2+V3*F1)*Z
F6=((-E+V1)*F4+3.D0O*V2*F3+3.D0x*

V3*F2+V4*F1)*Z

F7=((-E+V1)*F5+4 .D0*V2*F4+6 .D0x*
V3*xF3+4 . DO*V4*F2+V5*F1) *Z
F8=((-E+V1)*F6+5.D0*V2%F5+10.D0*
V3*F4+10.D0*V4*F3+5 . DO*VE*F2

+V6*F1)*Z

ENDIF

this is the steps we are moving from the center of the cell
towared the edge,in order to calculate the wave function.

H=(ABS(1.D-6%720.D0*(F2+.2D0*F3)/F8)) **
(1.D0/6.D0)

X=X+H
IF (X.GT.R) GOTO 250
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these are the complex conjugates of the wave
function and its derivatives and the complex conjugate
of the nuclear potential.

CV1=DCONJG (V1)
CF1=DCONJG(F1)
CF2=DCONJG(F2)
CF3=DCONJG(F3)
CF4=DCONJG(F4)
CF5=DCONJG(F5)
CF6=DCONJG(F6)

FPR 1s the value of the last part in the iteration formula.

FPR=(H* (F1*CF1)+(H*%2)/2.%(F1*CF2+F2*CF1)+ (H**3) /3.*( (F1*xCF3/2.D0
) +F2*CF2+(F3%CF1/2.D0) ) +(H*%*4) /4. % ( (F1%*CF4/6.D0)+(F2*CF3/
2.D0)+(F3*CF2/2.D0)+(F4*CF1/6.D0) )+ (H**5) /5 .=( (F1*CF5/24
.D0)+(F2*CF4/6.D0)+(F3*CF3/4.D0)+(F4*CF2/6.D0) + (F5*CF1

/24.D0) )+ (H**6) /6 .*((F1*CF6/120.D0)+(F2%CF5/24 .D0) + (F3=CF

4/12.D0)+(F4*CF3/12.D0)+(F5%CF2/24 .D0)+(F6*CF1/120.D0)

)+ (H*xx7) /7 .%((F2*CF6/120.D0)+(F3*CF5/48.D0) +(F4*CF4/36.D0

)+(F5*CF3/48.D0)+(F6*CF2/120.D0) )+ (H**8)/8.*( (F3*xCF6/240.

DO)+(F4*CF5/144 .D0) +(F5%CF4/144 .D0) +(F6*CF3/240.D0) ) +(

H**9) /9 .+ ((F4*CF6/720.D0)+(F5%CF5/576.D0) + (F6*CF4/720.D0))

+(H**10)/10.*((F6%CF5/2800.D0)+ (F5*CF6/2800.D0) )+ (H**11) /11 .%(F6

*CF6/14400.D0))

PR is the value of the first part in the iteration formula.
PR=FPR* (V1-CV1)

FINT is the last integral in the iteration formula.
INT is the first integral in the iteration formula.

FINT=FINT+FPR
INT=INT+PR

F1=F1+H*F2+(H**2)*F3/2.D0+
(H**3)*F4/6 .D0O+ (H**4) *F5/24 . DO+ (H**
5)*F6/120.D0

F2=F2+H*F3+ (H**2)*F4/2 . DO+ (H**3)*F5/6 .DO+ (H**4) *



250

32

51

F6/24 .DO+(H**5)*F7/120.D0
CONTINUE
This part of the program is to calculate the wave
function and the integral of page X7 exactly at the
edge of the cell.
X=X-H
H=R-X

OPEN(4,’SS.DAT’)
WRITE(4,32)X,F1,F2

F1=F1+H*F2+ (H**2)*F3/2.D0+
(H**3)*F4/6 .DO+ (H**4) *F5/24 .DO+ (Hx*x*
5)*F6/120.D0

F2=F2+H*F3+ (H**2)*F4/2 .D0+ (H**3)*F5/6 . DO+ (H*x*4) *
F6/24 .DO+(H**5)*F7/120.D0

X=X+H

OPEN(1,’S.DAT’)

WRITE(1,32)X,F1,F2
FORMAT(F15.4,3X,G16.9,G16.9,4X,G16.9,G16.9)

V1=(1.44D6)/(X)-(8%X**2)/R*x3
V2=(-1.44D6)/(X**2)-16*X/R**3
V3=(2.D0%1.44D6)/ (X**3)-16/R**3
V4=(-6.D0*1.44D6) / (X*=*4)
V5=(24.D0*1.44D0) / (X**5)
V6=(-120.D0*1.44D6) / (X**6)
F3=(-E+V1)*F1x%2Z
F4=((-E+V1)*F2+V2xF1)*Z
F5=((-E+V1)*F3+2.DO*V2*F2+V3*F1)*Z
F6=((-E+V1)*F4+3.D0xV2*F3+3 .D0*
V3*F2+V4*F1)=Z
F7=((-E+V1)*F5+4 . DO*V2*F4+6 .DOx*
V3*F3+4 . DO*V4*F2+V5%F1) *Z
F8=((-E+V1)*F6+5.D0*V2*F5+10.D0x
V3*F4+10.D0*V4*F3+5 . DO*V5*F2
+VE*F1)*Z

CV1=DCONJG(V1)
CF1=DCONJG(F1)



+ + + + + + + o+ o+ o+ 4+

CF2=DCONJG(F2)
CF3=DCONJG(F3)
CF4=DCONJG(F4&)
CF5=DCONJG(F5)
CF6=DCONJG(F6)

FPR this is the value of thelast part in the iteration formula for
the energy (page x7 from the notes).

FPR=(H* (F1*CF1)+(H*%2) /2. % (F1*CF2+F2*CF1) +(H**3) /3 .*( (F1*CF3/2.D0
)+F2%CF2+(F3*CF1/2.D0) ) +(H*x*4) /4. ( (F1*CF4/6.D0)+ (F2*CF3/
2.D0)+(F3=CF2/2.D0)+(F4*CF1/6.D0) )+ (H**5) /5.*((F1*CF5/24
.D0)+(F2*CF4/6.D0)+ (F3*CF3/4.D0)+(F4*CF2/6.D0) + (F5*CF1

/24.D0) )+ (H**6) /6 .*((F1*CF6/120.D0)+(F2*CF5/24.D0) + (F3*CF

4/12.D0)+(F4*CF3/12.D0)+(F5+CF2/24.D0)+(F6*CF1/120.D0)

)+ (H**7)/7 .*((F2%*CF6/120.D0)+(F3*CF5/48 .D0) +(F4*CF4/36.D0

)+ (F5*CF3/48.D0)+(F6*CF2/120.D0) )+ (H**8) /8 .%( (F3*CF6/240.

DO)+(F4*CF5/144 .D0)+(F5*CF4/144.D0) +(F6*CF3/240.D0) )+(

H*%9) /9. ((F4*CF6/720.D0)+(F5*CF5/576.D0)+(F6*CF4/720.D0))

+(H*%10)/10.* ((F6*CF5/2800.D0) + (F5*CF6/2800.D0) )+ (H**11)/11.*(F6

*CF6/14400.D0))

PR this is the value of the first part in the iteration formula for
the energy (page X7 from the notes)

PR=FPR*(V1-CV1)
INT=INT+PR
FINT=FINT+FPR

CFD10=DCONJG(F2)
CC=(2./9.6364E-8)*F1%(CFD10)
Y1=DBLE(CC)

Y2=DBLE(FINT)

¥3=DBLE(INT)

Y4=INT-Y3

WRITE(50,19)I

WRITE(50,20)Y4
WRITE(50,21)Y2
WRITE(50,22)Y1
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DER=(Y3+Y1)/Y2
DEI=Y4/Y2

E=E+DER
E=E+(0.D0,1.D0)*DEI

WRITE(50,*)
WRITE(50,8) E
WRITE(50,9)DER
WRITE(50,10)DEI

IF(CDABS(DER) .LT.1.D-15) GOTO 66
IF(J.GT.3) GO TO 66
GO TO 6

FORMAT (2X,’NO. OF ITERATIONS=’,I8)
FORMAT (2X,’INT.=’,G16.9,2X,G16.9)
FORMAT (2X,’FINT.=’G16.9,2X,G16.9)

FORMAT(2X,’CC =’G16.9,2X,G16.9)
FORMAT(4X,’DE REAL =’,G16.9,3X,G16.9)
FORMAT (4X,’THE ENERGY=’,G16.9,3X,G16.9)
FORMAT(4X,’DEIMAG. =’,G16.9,3X,G16.9)
STOP

END
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FINAL11.FOR

THIS PROGRAM USES A WOOD’S-SAXON NUCLEAR POTENTIAL AND
FOR THE COULOMB BARRIER, AND THE SCREENING POTENTIAL DUE
TO THE ELECTRON DISTRIBUTION WITHIN THE CELL.

THE RADIUS OF THE CELL IS 125000. Fm.

REAL*8 X,R,Y1,Y2
COMPLEX*16 F1,F2,F3,F4,F5,F6,F7,F8,V1,V2,V3,Z,H,E
COMPLEX*16 V4,V5,V6,CF1,CF2,CF3,CF4,CF5,CF6,DER,DEI, INT
COMPLEX*16 PR,FPR,FINT,CV1,CFD10,CC,Y3,Y4,y,y11,v0O,LAMDA
IK=1
The energy of the cell.
E=(100.D0,0.D0)
J=0
the radius of the cell in Femto-meters.
R=125000.
OPEN (UNIT=50,STATUS='UNKNOWN’,FILE=’INT8.DAT’)
OPEN (UNIT=51,STATUS='UNKNOWN’,FILE=’sum.DAT’)
X=.00000000002
the wave function and its first derivative.
F1=(0.D0,0.D0)
F2=(1.D0,0.D0)
J=J+1
WRITE(50,x)
WRITE(50,*)
WRITE(50,7)J
FORMAT (18)
INT=0.0
FINT=0.0

Z=(4.8182D-8,0.0D0)

v0=(51.37d6,7.848d6)

a=0.631

r0=1.575
x1=exp(2)*exp(-r0/a)

DO 3 I=1,100000000
IF (X.LT.10.0) THEN

vl this is the nuclear potential which is a Wood’s-Saxon potential.
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£3-f8 are the second through seventh derivatives of the wave function.
y=exp((x-r0)/a)
yli=x+x*y
Vi=(x*(v0)-x1=(exp(x/a)-1))/(y11)
v2=(v0-(x1/a)*exp(x/a)-vix(1+y+x/a*xy))/yl1
v3=(-(x1*exp(x/a))/a**2)-(vi*x/(a**2))*y-2*viky/a-v2*x*y/a
-2*%v2*(y+1) /y11
vd=(((-x1*exp(x/a))/a*x*3)-3*yilxy/a*x*2-vi*xx*ky/a*x*x3-5*xy2*y/a
-3xy3x (y+1) -2*v3*xxxy/a-2xv2*x*xy/a**2) /y11
vE=(-x1*exp(x/a)/ax*x4-10*v2*y/a*=x2-4xyl*xy/a**3-3xy2*x*y/a*x*3
—vixxxy/a**x4-10%v3*y/a-4*v3*(y+1)-3*xvéx*x*xy/a-4*xv3xxxy/a**2)/y11
v6=((-x1*exp(x/a)/a**5)-24*y3xy/ax*2-17*y2*y/a**3-5*xvi*xy/a**4
+ =Txy3*xxy/a*x3-4*y2*xx*y/a*xd-vikx*xy/a*x*5-17*vd*xy/a-5xv5*x(1+y)
-4xybxx*y/a-T*véxx*xy/a*x*2)/y11

F3=-(E+V1)*F1xZ

F4=-((E+V1)*F2+V2*F1)*Z

F5=-( (E+V1)*F3+2.DO*V2xF2+V3%F1)*Z
F6=-((E+V1)*F4+3.D0*V2*F3+3 .D0* V3*xF2+V4xF1)xZ
F7=-((E+V1)*F5+4 . DO*V2*F4+6 .DO*V3*F3+4 . DO*V4xF2+V5*F1)*Z
F8=-((E+V1)*F6+5.D0*V2*F5+10.D0*V3*xF4+10.D0*V4*F3+5 . DO*V5*F2
+V6*F1)*Z

ELSE

this is the colomb potential and its derivatives, and the screening
potential due to the electron distribution within the cell.
the f’s are the wave function derivatives.

V1=(1.44D86)/(X)-(2.%1.44d6*X*%2)/R*x*3
V2=(-1.44D6)/(X**2)-4.%1_ 44d6%X/R**3
V3=(2.D0*1.44D6)/(X*%*3) -4 .%1.44d6/R**3
V4=(-6.D0*1.44D6) / (X**4)
V5=(24.D0*1.44D0) / (X**5)
V6=(-120.D0%1.44D6) / (X**6)

ENDIF

F3=(-E+V1)*F1*Z
F4=((-E+V1)*F2+V2*F1)*Z
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F5=((-E+V1)*F3+2.DO*V2*F2+V3*F1)*Z
F6=((-E+V1)*F4+3.D0O*xV2*F3+3 . DO*V3*xF2+V4xF1)=Z
F7=((-E+V1)*F5+4.D0O*V2xF4+6 .DO*V3xF3+4 DO*V4*xF2+V5*F1)=Z
F8=((-E+V1)*F6+5.D0*V2*F5+10.D0*V3*F4+10.D0*xV4*F3+5 . DO*VE*F2
+V6*F1)*Z

this is the steps we are moving from the center of the cell
towared the edge in order to calculate the wave function.

H=(ABS(1.D-6%720.D0*(F2+.2D0*F3)/F8))*x*(1.D0/6.D0)

X=X+H
IF (X.GT.250000.) GOTO 250

these are the complex conjugates of the wave
function and its derivatives and the complex conjugate
of the nuclear potential.

CV1=DCONJG (V1)
CF1=DCONJG(F1)
CF2=DCONJG(F2)
CF3=DCONJG(F3)
CF4=DCONJG(F4)
CF5=DCONJG(F5)
CF6=DCONJG(F6)

FPR this is the value of thelast part in the iteration formula.

FPR=(H*(F1*CF1)+(H*=2) /2. % (F1*xCF2+F2%CF1)+(H**3) /3. *((F1*xCF3/2.D0
) +F2%CF2+ (F3%xCF1/2.D0) )+ (H**4) /4. ( (F1=CF4/6.D0)+ (F2*CF3/
2.D0)+(F3*CF2/2.D0)+(F4*CF1/6.D0) )+ (H*x5) /5.% ((F1*CF5/24
.D0O)+(F2*CF4/6.D0) +(F3*CF3/4.D0)+(F4*CF2/6.D0)+(F5%CF1

/24.D0) )+ (H**6) /6 .*((F1*CF6/120.D0)+(F2*CF5/24 .D0) + (F3*CF

4/12.D0)+(F4*CF3/12.D0)+(F5%CF2/24.D0)+(F6%CF1/120.D0)

)+ (H*%*7)/7 .*x( (F2%CF6/120.D0)+ (F3*CF5/48 .D0) +(F4*CF4/36.D0

)+ (F5*CF3/48.D0)+(F6%CF2/120.D0) )+ (H**8)/8.*( (F3*CF6/240.

DO)+(F4*CF5/144 .D0)+(F5*CF4/144 .D0) +(F6*CF3/240.D0) ) +(

H*x9) /9. .* ((F4*CF6/720.D0)+(F5%*CF5/576.D0) + (F6%CF4/720.D0))

+(H*%*10)/10.*((F6%CF5/2800.D0) + (F5*CF6/2800.D0) )+ (H**11) /11 .*(F6

*CF6/14400.D0))



250

42

(o3 |
e |

PR  this is the value of the first part in the iteration formula.

PR=FPR*(V1-CV1)
FINT this is the last integral in the iteration formula.
INT this is the first integral in the iteration formula.

FINT=FINT+FPR
INT=INT+PR

F1=F1+H*F2+ (H**2)*F3/2 . D0+
(H**3)*F4/6 . DO+ (H**4)*F5/24 .DO+ (H**

+

+ 5)*F6/120.D0
F2=F2+H*F3+ (H**2)*F4/2 . D0+ (H**3)*F5/6 . DO+ (H**4 ) *
+ F6/24.D0+ (H**x5)*F7/120.D0
CONTINUE
X=X-H
H=250000.-X

OPEN(4,’SS.DAT’)
WRITE(4,42)X,F1,F2

F1=F1+H*F2+ (H**2)=F3/2 .D0+
(H**3)*F4/6 .DO+ (H**4)*F5/24 DO+ (Hx*x
5)*F6/120.D0

F2=F2+H*F3+ (H**2)*F4/2 D0+ (H**3)*F5/6 . DO+ (H**4)

+ F6/24 .DO+(H**5)*F7/120.D0

X=X+H

OPEN(1,’S.DAT?)
WRITE(1,42)X,F1,F2
FORMAT(F15.4,3X,616.9,G16.9,4X,G16.9,G16.9)

V1=(1.44D6)/(X)-(2.%1.44d6*X**2) /R*x*3
V2=(-1.44D6)/(X**2)-4 .%1.44d6%X/R**3
V3=(2.D0*1.44D6)/ (X**3) -4 .%1,44d6/R=**3
V4=(-6.D0*1.44D6) / (X**4)
V5=(24.D0*1.44D0) / (X**5)
V6=(-120.D0*1.44D6) / (X*%6)
F3=(-E+V1)*F1*Z
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F4=((-E+V1)*F2+V2xF1)*Z
F5=((-E+V1)*F3+2.DOxV2*xF2+V3*F1)*Z
F6=((-E+V1)*F4+3.D0O*V2xF3+3.D0*
V3*F2+V4xF1)*Z
F7=((-E+V1)*F5+4 . DO*V2*F4+6 .D0Ox*
V3%*F3+4 .DO*V4*F2+V5xF1)*Z
F8=((-E+V1)*F6+5.D0*V2%F5+10.D0*
V3*F4+10.D0*V4*F3+5 . DO*V5*F2
+V6xF1)*Z

CV1=DCONJG(V1)
CF1=DCONJG(F1)
CF2=DCONJG(F2)
CF3=DCONJG(F3)
CF4=DCONJG(F4)
CF5=DCONJG(F5)
CF6=DCONJG(F6)

FPR=(H* (F1*xCF1)+(H**2) /2. % (F1*CF2+F2%CF1)+ (H**3) /3 .%( (F1*CF3/2.D0
)+F2%CF2+ (F3%CF1/2.D0) ) +(H**4) /4. ((F1*xCF4/6.D0)+ (F2%CF3/
2.D0)+(F3*CF2/2.D0)+(F4*CF1/6.D0) )+ (H=**5)/5.%( (F1*CF5/24
.D0O)+(F2*CF4/6.D0)+(F3*CF3/4.D0)+(F4*CF2/6.D0) +(F5*CF1

/24.D0) )+ (H**6) /6. *((F1*CF6/120.D0) +(F2*CF5/24.D0) + (F3*CF

4/12.D0)+(F4*CF3/12.D0)+(F5*CF2/24.D0)+(F6*CF1/120.D0)

)+ (H*x7)/7.*((F2*CF6/120.D0)+(F3%xCF5/48 .D0) +(F4*CF4/36.D0

)+(F5%CF3/48.D0)+ (F6*CF2/120.D0) )+ (H**8)/8.*( (F3*xCF6/240.

DO)+(F4*CF5/144 .D0) +(F5%CF4/144 .D0) +(F6*CF3/240.D0) )+(

H*x*9)/9.% ((F4*CF6/720.D0)+(F5*CF5/576.D0)+(F6%CF4/720.D0))

+(H**10)/10.*((F6*CF5/2800.D0)+(F5*CF6/2800.D0) )+ (H**11) /11 .x(F6

*CF6/14400.D0))

PR=FPR*(V1-CV1)

INT=INT+PR
FINT=FINT+FPR

CC=(2./9.6364E-8) *xCF1*F2
Y1=DBLE(CC)
Y2=DBLE(FINT)
Y3=DBLE(INT)
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Y4=INT-Y3

WRITE(50,19)I
WRITE(50,20)Y4
WRITE(50,21)Y2
WRITE(50,22)Y1
DER=(Y3+Y1) /Y2

DEI=Y4/Y2

E=E+DER
E=E+(0.D0,1.D0)*DEI
LAMDA=2 .*DEI/6.58217E-16
WRITE(50,*)

WRITE(50,8) E
WRITE(50,9)DER
WRITE(50,10)DEI
WRITE(50,11) LAMDA

IF (CDABS(DER) .LT.1.D-15) GOTO 66
IF(J.GT.2) GO TO 66

GO TO 6

FORMAT(2X,’NO. OF ITERATIONS=’,bI8)
FORMAT(2X,’INT.=’,G16.9,2X,G16.9)
FORMAT(2X,’FINT.=’'G16.9,2X,G16.9)
FORMAT(2X,’CC ’G16.9,2X,G16.9)

FORMAT(4X,’DE REAL =’,G16.9,3X,G16.9)
FORMAT (4X,’THE ENERGY=',G16.9,3X,G16.9)
FORMAT(4X,’DEIMAG. =’,G16.9,3X,G16.9)
FORMAT (4X,’ LAMDA =’ 2G16.9)

STOP

END



