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CHAPTERl. ABSTRACT 

In this research we have developed a theoretical model for the cold fusion reaction 

by solving the Schrodinger wave equation for a deuteron pair inside a palladium cell 

until we get the asymptotic value of the wave function at the edge of t he palladi um 

cell. The wave function carries all the information about the system, and from the 

value of the wave function we can calculate the reaction rate constant as a function of 

the energy of the sys tem. We have calibrated this model by attempting to reproduce 

the experimental d-d fusion react ion cross section. The result s of our calculations 

indicate the possibility of achieving a controllable high reaction rate by varying the 

value of a negative potential applied to the cell, if a deuteron pair can be put in 

the vacant site of a palladium atom with a reasonable probability. This theoretical 

model might lead the experimental work toward the production of a predictable fusion 

reaction rate. 



CHAPTER 2. INTRODUCTION 

On :\larch 23. 19 9 two noted chemi t called a pres conference at the Cniver-

ity of tah in alt Lake City. The sc ientists, :\-Iartin Fleischmann and B. ' tanley 

Pons . announced that they had produced controlled nuclear fusion at room te mpera-

ture in an electrochemical cell. '"It was ... one scienti t asse rted . "as important a t he 

di scovery of fire.'· "Simple experiment result in sustained nuclear fus ion at room 

temperature for the fir st time. Break through process has potential to provide inex-

haustible source of energy," read the headlines in the University of Utah's release [l ]. 

For over 100 hours, Fleischmann and Pons had produced pure energy in a tiny glass 

jar. and the fuel they were using wa a abundant a ea water. 

A matter of days after the original announcement by F leischmann and Pons, a 

second group announced that it had discovered room-temperature fusion. 1oreover 

thi s announcement came from a university only forty miles away, in Provo. Ctah. 

The announcement from Brigham Young C niversity was more guarded in its claims. 

Although Brigham Young U niversity 's cienti st s had not seen the same large amounts 

of heat being produced as had the University of tah team, neutrons were cer tainly 

detected. Group leader Steven E. Jones said "The discovery of cold fu sion opens the 

possibili ty , at least. of a new path to fu sion energy." ) ]. O ver t he next few wee ks, 

hopes were to ri se and fall as evidence of new experiments from the l-nited tates . the 
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Soviet Cnion, It aly. India. C'zecho lornkia. a nd the Cnited Kingdom began to come 

in. At fir st some report s appeared to confirm the f'lei schmann and Pons experiment; 

then ot hers questioned the whole idea of cold fu sion. By mid-April of the same year 

differen t laboratories were making almost daily confl icting claims. 

It. is agreed that there is no clear understanding of how a fusion reaction can take 

place at room temperature . and the controversies will continue unless an explanat ion 

of how solid-s tate fu sion might be theoret ically modeled is made. 

Fusion of deuterium and tritium is the principal means of producing energy in the 

s tars . In cold terrestrial conditions. however . t he probability of two deuterium nuclei 

to fuse is of the order of 10-•o s - 1 (d - d)pair :2J. This is due to the repulsive Coulomb 

barrier between nuclei. However, thi s probability may be increased dramatically by 

replacing the electron in a hydrogen molecular ion by a more massive negatively 

charged particle. Indeed the muon-catalyzed (a muon is a negatively charged massive 

particle) fusion reaction has been demonstrated to be an effective means of rapidly 

inducing fusion reactions in low-temperature hydrogen isotope mixture[2]. We a re 

trying to see whether an equivalent effect can be produced by loading hydroge n 

isotope nuclei into a highly negatively charged metalli c crystalline lattice. 

In thi s research we have worked on two problems: 

First, we have calculated the reac tion cross section using two forms of the nuclear 

potential , and we have represented the wave function of a deuteron pair as a sum of 

a wave going into the palladium cell and one scattered out of it. The change in the 

outgoing wave has been calculated by simultaneously solving the wave function and 

it s deri vat ive at the edge of the cell. From this change the reaction cross section was 

calculated. Parameters of the potential model can be adjusted to make these results 
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agree with experiments. 

The second problem was to calculate the reaction rate constant. This was done 

by considering the same model of the nuclear potential as was used in the cross-

section calculation, and requiring that a deuteron pair be contained within a lattice 

cell. For this system a complex energy eigenvalue can be found; the imaginary part 

of the energy eigenvaiue is related to the reaction rate constant. 

Two models of the nuclear potential were considered in this study. The first and 

the easier to apply was the square well nuclear potential. The second model, more 

detailed and more realistic , was a \i\Toods- Saxon nuclear potential. T he two models 

(square well and \i\Toods-Saxon) gave similar result s for the reaction cross-section and 

for the reaction rate constant. 

We assume in this thesis that a lattice cell as we have calculated contains two 

deuterons. A multiplicative factor on the reaction rate is the probabili ty that a site 

will contain more then two deuterons . This probability is being investigated by Ms. 

Suneeta Singh. Thus, our work is considered an attempt to improve the theory of 

"cold fu sion." 



.s 

CHAPTER 3. LITERAT U RE REVIEW 

~ udear fusion of deuterium can take place through one of the following reactions: 

2 D - 2 D - 3 T ( 1. 0 l 1W e V) ~ 1 H ( 3. 0 2 .VI e \ . ) 

2 D- 2 D - 3 H e(. 2J/d') - n(2.-l.5 Jle \ ') 

2 D +2 D - 4 He( .076M e\ .) + 1(23.772.U e \/ ) 

( 3.1) 

( 3.2) 

(3.3 ) 

The products of these reactions are the signatures of a (D-D ) fusion reaction. Skepti-

cism ,.,·as growing over cold fusion because the original experiment reported by Pons 

and Fleischmann claimed the production of huge quantities of heat, but only very 

small amounts of fusion by-products were detected. Although many scient ists con-

tend that the heat must be of a chemical origin, thi s has never been proved. However , 

two scientists from the Cniversity of Utah. Cheves T. Walling and Jack Simons[3], 

propose that two deuterons can fuse to form an excited helium-4 nucleus which packs 

24.WleV of internal energy. Normally such a nucleus will fragment into helium-3 and 

a neutron, or a tritium and a proton. But when the excited helium-4 is formed inside 

the electron-rich palladium lattice, they claim it can return to the ground state by 

transferring its excess energy to the electrons. This process results in stable helium-

4 and heat . Pons and his coworker, graduate student Marvin Hawkins, have used 

mass spectrometry to analyze the gas produced in the electrolytic cell. According to 
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Walling they got ·'a very appreciable helium-4 peak."' The heat produced in the ex-

periment seems to correspond to about 241\l e V per helium-4 nucleus detected. That 

is what one would expect if internal conversion were the overriding pathway. 

On April 12. 1989 at the 197th annual meeting of the American Chemical Society 

rn Dallas , Pons reiterated how the Utah experiment involved passing an electrical 

current through heavy water and into a palladium electrode. Fusion in the rod 

produced four watts of energy for every watt used to run the cell. He even produced 

a picture of a test tube labeled '·The Utah Tokamak." [1; . The major question in the 

cold-fusion claim was: could the energy release be explained in some other, chemical 

way ? Cold fusion depends critically upon t he fusion of deuteri um nuclei in the 

palladium electrode. The effect could not happen if light water were substituted 

for heavy water: calculations suggested that quantum tunneling wo uld be unable to 

fuse light hydrogen nuclei, and no heat would be observed. But since light water is 

chemically identical to heavy water , if the heating effects are due to some chemical 

reaction and not nuclear, t hen nothing should change iflight wate r were substituted in 

the cell. This was the cri tical experiment : repeat the steps as the original experiment 

but substitu te light water for heavy water. If true cold fusion has been taking place, 

it will now stop ; and no heat will be observed. But if the heat is t he result of some 

unknown chemical effect, then the same heat production will be found with light as 

with heavy water. This key experiment (using the light water instead of heavy water) 

had already been carried out by Steven J ones at Brigham Young Uni versity and the 

results showed no heat or neut rons produced [l ]. 

On April 17, 1989 Pons announced that in one cell t he fusion reaction had 

been sustained for 800 hours and was producing eighty times more energy than it 



con umed l ' . The power output wa now up to ixty ::.e,·en watts per cubic cent imeter 

o f elect rode. :\ineteen new fuel cells were being e t up and the design for a -mall 

cale power reactor was under way. 'cientists at tan fo rd Cniversity confirmed cold 

fusion but at a much lower heat product ion . In addition they performed a control 

experiment in which they repeated the whole procedure using ordinary light water 

in place of hea,·y water. The two cells were run for two weeks. A predicted by 

Fleischmann and Pons, since light water is chemically similar to heavy water but 

in nuclear terms quite different. the heating effect was not seen with light water. 

Two researchers at the Cniversit y of Florida's Department of :\'"uclear Engineering 

ciences. Glen .J. Scoessow and J ohn A. Wethington , claimed to haYe detected tritium 

during the cold fusion process (an important clue that fusion was actually taking 

place ) but not when light water was used. [l ]. 

On May 22-2.5 , 1989, a workshop on Cold Fusion Phenomena was sponsored 

by the C. . Department of Energy and hosted by the Los Alamos National Labora-

tory. This workshop was devoted to understand a complex. exciting, and potentially 

highly exploitable phenomenon of nuclear fusion at room temperature. The workshop 

brought key workers in the area of cold fusion from all around t he world to a sc ientific 

forum . results were compared and debated on a scientific plane. The workshop began 

the process of bringing cold fusion research out of the bright glare of press confer-

ences and back to in-depth probing and questioning. Some of the papers presented 

in t he workshop were a search for experimental and t heoretical insight into the phe-

nomenon , others were reports of failed trials to reproduce the experiment, and one 

paper was an attempt to explain the results of Pons and Fleischmann 's experiment 

on a metallurgical background. Here is a brief description of some of the papers that 



were presented there: 

A paper presented by K.L. Wolf and coworkers [4] from the Cyclone Institu te and 

the Depar t ment of Chemistry of Texas A& M University. The paper reports some 

positive result s for neut ron emission and for t ritium detection from the Fleischmann-

Pons type of electrolytic cells. The experimental inves tigation was conducted on 

samples of palladium and titanium metals which have been loaded with deuterium 

through the electrolysis of D 2 0 and by absorpt ion of D2 gas. In approximately 

200 experiment s on 25 cells, statistically significant evidence for neut ron em1ss1on 

was obtained in three separate experiments from one palladium cathode . the neu-

t rons detected were at energies around 2.45AI e V which corresponds to the reaction 

in equation 3.2. The result s fo r t ri tium were more encouraging since nine P d-Ni 

electrolytic cells have shown levels that are factors of 102 - 106 above background. 

Another study reported by Tsang-Lang Lin and Chi- Chang Liu from the Depart-

ment of Nuclear Engineering, National Tsing-Hua University, Hsin-Chu , Taiwan[.5] 

stated that they have repeated the cold fusion experiment by electrolyzing heavy 

water with 0.lNI LiOD , with palladium rod as the cathode and platinum wire as t he 

anode. They claimed that neutrons bursts were detected during a period of about 

7 hours after electrolyzing for 11 days, the highest burst b eing 240 neutrons / 5 min. 

while the background was 1. cpm. 

A group of scientists from t he Department of Chemistry in the University of 

Rome, Italy, in coop eration with four other research institu tes in Italy[6] reported 

that they had tried to reproduce the experiment using a sintered palladium electrode 

instead of a cast metal electrode (which was used by Pons and Fleischmann [7] ). 

After six days of electrolysis at 200mA/ cm 2 they detected a simultaneous emission of 
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neutrons . tritium excess in the electrolytic solution. and rap id temperat ure increase. 

Duri ng the event which lasted -l minutes they counted 7.2 x 105 neutrons; t ri tium 

was also detected in an excess quantity corresponds to (2.14 = .04) "' 10 14 a toms 

related to the solution volume of 4lml, while the palladium electrode temperature 

reached l.50°C. But the energy prod uct ion in this experiment was higher t han the 

amount of neutrons and tritium detected. which sugge t that the re may be helium-4 

production. In the discussion after presenting thi s paper it was recommended to 

analyze the cat hode and to look for helium-4. 

The a bove was a brief description of some of the papers which repor ted a success 

in detecting some of the by products of nuclear react ion . On the ot her hand , t here 

was enormous number of papers which reported failure to find eYidences of nuclear 

reactions. One of these papers reported a collabo rat ive effort of a team which was 

formed at Los Alamos and supported by the U.S. Department of energy to investi-

gate the claim that cold fusio n may be occurring in elect rochemical cells [ ] . They 

have used palladium cathodes and platinum anodes in a LiOD solut ion electrolyte . 

Four electrochemical cells were const ruc ted and operated for 3-.5 weeks under various 

geometrical and electrical conditions. No conclusive evident was found for the pro-

duction of neutrons above levels consistent with background. In subsequent precision 

calorimetric experi ments performed in closed cells , there was no generat ion of ·'excess 

heat." 

A paper presen ted by Ali AbuTaha [9], suggested that the palladium may have 

been t he fuel in the electrochemical cell instead of the deuterium. The paper states 

that a considerable strain energy is stored in metals and alloys when processed from 

the ore. The energy balance is disturbed when cracks nucleate , grow. and propagate 
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within the bulk. Deuterium induces and propagates cracks in palladium and other 

metals and alloys. The sudden di scharge of fracture energy during crack propagation 

generates a considerable amount of heat. The heat produced by the work-of-fracture 

can be substantial and can account for the excess enthalpy reported in cold fusion 

experiments. The paper claims that in all the cold fusion experiments . the release of 

heat was reported for a limited period of time ( 120 hours in t he Pons and Fleischmann 

experiment ) and this is due to the fact that the amount of fracture work that can be 

done on a metal is limited. The paper also explains the partially vapori zed palladium 

sample in the Pons-Fleischmann experi ments by a considerable power that can be 

generated if t he fracture energy is released in shorter periods, this phenomena is 

known as the short-time release of fracture energy "The explosive crack propagation 

can be violent enough to produce traces of fusion by-products." The paper ends up 

with a conclusion that the fuel in the cold fusion experiment reported by Pons and 

Fleischmann was the palladium and not the deuterium. 

Theoretical studies of the cold fusion phenomena were also conflicting, just as 

the experiments were. One of these studies was performed by a group of researchers 

from the Physics Department at Iowa State University [10]. They used the WKB 

approximation to calculate the Gamow transmission coefficient through a potential 

barrier for hydrogen-like ions confined in a potential well. Their calculations showed 

a fusion reaction rate of 10-64 / d - d/ s (which is very low for all practical usages). 

On the other hand, a paper written by Mario Robinowitz [11] suggested that 

"it appears that hitherto unconsidered physical mechanism must be present in t he 

solid that are not present in the liquid." The paper claimed that there may be two 

means by which the fusion reaction rate in solids can be increased by several orders 
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of magnitude over that in liquid . These are : 

• It is possible for the effecti,·e mass of the deuterium nuclei in a olid to be 

sufficiently less t han the mass of deuterons in free space to increase t he tunneling 

coefficient by many orders of magnitude. 

• There may be preferent ial pathways in a solid that decrease the degree of free-

dom o that the fusing particle is confined essentially to one or two dimensional 

motion in the solid , that is t he particle is able to move only in certain channels. 

Decreasing the dimensionality or t he degrees of freedom . decreases the number 

of ways potentially colliding part ides can miss each other. 

Robinowi tz goes on to claim that these two factors (the tunneling and the fusion 

probabili t ies) tend to be magnified by several orders of magni tudes in solids . The 

paper. however, assum ed that the colli sion frequency is the same in solids as it is 

in the liquid state and in ord inary solid solutions. Howe\·er. an article written by 

Bernard I. Spinrad from Iowa State University. Department of 1 uclear Engineering 

[12]. suggested t hat a high negative voltage applied on a metal into which deuterium 

is soaked should be just as effect ive as high-mass negative charges in permitting close 

approach of two deuterons to each other . " Another way of thinking about t hi s is 

that the large negative potential effectively adds kineti c energy to t he deuterons." 

This research was built on Dr. Spinrad's ideas of increasing t he collision frequency by 

applyin g a high negat ive voltage to the cell, hence increasing the kineti c energy of t he 

deuterons, and also of assuming that there is a prefe rential pathway for deuterium in 

solids . 

In summa ry. th ree different scenarios for cold fus ion have arisen. These are: 
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• Pons and Fleischmann ha\·e di co\·erecl cont roll ed nuclear fu sion, and practical 

app lications a re around the corne r. 

• The energy released within the Pons and Fleischmann experiment has nothing 

to do with any nuclear process , and is, for example . of chemical origin, or it is 

due to a dest ruct ion of the palladium metal. 

• .'.'J uclear fusion does indeed take place, but at the ext remely low levels detected 

by J ones at Brigham Young l ' ni\·ersity [ 2 ~ . The phenomenon is of considerable 

scientific importance. but has no immediate relevance as a new energy ou rce. 
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CHAPTER 4. THE MODEL 

Introduct io n 

At the beginning we need to define the word ''cell" . I t has been established by 

neutron-diffraction st udies, that hydrogen or deuterium atoms occupy the octahedral 

interstices of the face center cubic (FCC) palladium lattice, to give an H deficient 

NaCl structure in PdH [13]. The FCC st ructure of a palladium cell requires 14 atoms 

of Pd; 8 of them are shared by 8 neighboring cells each, and 6 of them are shared 

by 2 neighboring cells each, so the actual number of atoms per palladium cell equals 

8( 1/ 8) + 6(1 / 2) = 4 atoms. As a result of electrical deuteration of a palladium 

cathode, we can reach the st ructure of PdD , this means that the combined number 

of Pd and D atoms in a PdD cell is 8. Knowing t hat the PdD has a cell parameter of 

4.07 A at room temperature [13], by simple calculations we find that the sphere which 

contains one atom in this structure has a radius of 1.26 * 105 Fm. In our calculations 

we have assumed a value of 125000 Fm, and the cell in this case is defined as the 

sphere which contains only one atom. This is effectively the volume within which a 

deuteron is normally to be found. 

W hen a direct current is passed through a metallic cond uctor, macroscopic move-

ment of lattice atoms may occur. This phenomenon is usually called electromigration. 

Electromigration is analogous to ionic transport in solid electrolytes in t hat the pres-
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ence of an electric field pro\·ides the dri\·ing force for atomic transport. Although the 

migrating atom is acted upon by a con lant external force, the atom is not uniformly 

accelerated because of interactions between the solu te and the surrounding lat t ice, 

but the migrating atom still moves through t he crystal wi th a macroscopically con-

stant velocity proportional to the average electric field present [1-l]. The ratio of the 

velocity of migration to the applied potential is called the electric mobili ty. It should 

be noticed that it may be possible for an atom to be acted upon by a very larue 

external force . yet have a very low migration velocity because of a high resistance to 

atomic transport in the lattice. However in thi research we are assuming that the 

deuterium is free to move inside the palladium crystal. 

D escription o f The Model 

The model assumes that. there exists a vacancy in a palladium deuteride lattice 

cell (the number of vacancies can be increased by several orders of magnitude by 

quenching the palladium) and the deuterons inside the palladium have preferential 

pathways toward these vacancies . As a result of the electrical deuteration process a 

deuteron exists in the palladium lattice. Another deuteron is introduced into the cell 

driven by a force due to the voltage applied to the electrochemical cell. It is further 

assumed that the center of mass of the two deuterons is fixed at the cell center. 

It is also assumed that the wave function of the deuteron pair is periodic. These 

assumptions, made to simplify calculations, are reasonable for deuterons confined in 

a single cell. The followi ng approximations were made to calculate the wave funct ion 

of the deuteron pair: 
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l. The nuclear potential is approximated by the optical model. This is a simple 

model used to account in a general way for elastic scat tering in t he presence of 

abso rp t ive effects . In t hi s mode l we represent t he nuclear potential in terms of 

a complex potential U( r ): 

C(r) = V(r ) _j_ i W (r) ( 4.1 ) 

where the real functions l . and W are selected to give the potential its proper 

radial dependence. The real part \ ·(r) is mainly responsible for elastic scat-

tering, and the imaginary part i H"(r) is responsib le for absorption. Before 

app ly ing the optical model we need to choose a form for the real part of the 

potential. Two forms were applied in th is re earch: the first was a squa re well, 

and t he second fo rm was the Woods-Saxon, which is a more det ailed fo rm t hat 

was expected it gave better fit to the expe rimental D-D fusion reaction cross 

sec tion [?] t h an the square well. 

2. W hen calculating the D-D fusion reaction cross section . the cell radius was 

assumed to be 250000 F m . This exaggerated value was used to assure that the 

wave function reaches its a ymptotic value at the edge of t he cell. The actual 

val ue of the radius ( R :'.:::'. 125000 Fm) was used when calculating the reaction 

rate constant. 

3. The delocalizecl deuteron pair has very low ene rgy (m ostly t hermal ). We have 

set thi s energy to zero and adopted as the eigenvalue of t he system a negative 

potential act ing on the site. How this si te voltage relates to the potent ial 

a pplied on the palladium cathode requires furt her investigation. 
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Schrod inger Equat io n 

The system in our model consi b of two deutcrons . and we are croing 10 calculate 

the wave function of this sy t em. To do so . we are going to convert the two-body 

problem into one particle problem by separat ing the coordinates of center of mass 

from the relati\·e coordinates. The Hamiltonian in this case ha t he following general 

form: 

( .f .2 ) 

where P1 and P2 are the momenta of the firs t and second particles, and r 1 - r2 ts 

the distance between the two particle. and the Schrodinger equation has the form: 

let and 
m 1 r 1 , m 2 r 2 R = ----

ubstituting equation .f.4 into equat ion ·l.3 we get: 

(.f.3 ) 

( 4.4) 

(J2 {)2 
- -r -)1_(' - C(r) il· = Eu· fJ y2 (J:;2 . 

( 4.5 ) 

where v = i..•(r. R ) is a function of the relative coordinates r(x,y. :: ) and the coordi-

nates of the cent er of mass R(X. } -. Z). The Hamilto ni an is the sum: 

( 4.6) 

and each of the sub Hamiltonians has a complete set of e igenfunctions. Hence all the 

eigenfunctions of equation 4.5 can be obtained by assuming that l,.' is a product : 

ii• ( r, R} = 1t•r( r }1+-'cm ( R ) (4.7) 
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and the ener?;y i also a sum: 

( 4. ) 

uch that 

( 4.9) 

and 

(4.10 ) 

whereµ is the reduced mass = 171 1+1712 
• ince in our ystem we are assuming that the 

m1 m.2 

center of ma is fixed at the cell center . then ER = 0. and we are only left with 

equation 4.10 to de cribe the ystem. At thi point E = Er= applied voltaue by the 

third app roximatio n above. Equation 4.10 says that the relatiYe motion of a ystem 

of two p a rticles subjec t to central forces can be treated like a one-body problem if 

the reduced m ass is used. 

Eigenfun ction 

The eigenvalue of the cell problem is the value of E which solves equation 4.10 and 

sati sfies t he boundary conditions . \Ve have assumed that the delocalized deuteron 

pair has very low energy. and we have adopted as the eigenvalue of the system t he 

( negati ve) potential of the palladium cathode. With thi s eigenvalue equation 4.10 

should sati sfy the boundary condition it< ( R) = 0. If it did not sati sfy this condition 

, the n the eigenvalue should be ite rated till the above condition is satisfied within 

a pre-dete rmined tolerance value, o r till the number of iterations exceed s a certain 

number. The it eration formula is deri ved as the following: 

The wave equat ion is converted into spheri cal coordinates, and the equation we 
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a re olving i 
') 

h• II [ . £ o0 - ( r )oo - oOo 
'111 

( 4.11 ) 

where o is the exact waYe function - r"' L'r(r), o0 i the value we are calculating, 

and r is the separa tion distance be tween the two partic les . The boundary conditions 

are o( O) = o ·(O) = o( R ) = o · ( R ) = 0. l\Iultip lying equation 4.11 by the compl• x 

conjugate oft he wa,·e function and integratina all term we get: 

( R - _n.
2 

cP~<P · dr + ( R <;>oU ¢ • dr - { R Eo <Po9' dr 
l o 2µ l o l o 

( 4.12) 

Integrating the fi r t term in the above equation by part and applyina the boundary 

condition o'( R) = o ·' ( R ) = 0 where o is the exact wa,·e fu nction: we get 

l
R n2 1 R n2 

II • • " - -C> <P dr = - <J>o-<P dr 
0 2µ 0 0 2µ 

Then equation 4.12 becomes: 

h2 
-
2 

<P. ( R)<I>~( R ) 
/l 

1
R n2 11 f't2 l R l R - oo-

2 
o· dr - -. o · ( R )o~( R ) - o0 C o· dr = £ 0 0 0 0 · dr 

0 µ 2µ 0 0 

(4 .13) 

(·Ll.f ) 

~ow t ake the complex conj ugate of t he exact wave equation and multiply it by <Do 

and integrate to get: 

1
R n2 1 R 1 R -00 -. o ·" dr + o0 [ .. o · dr = 0 0 E · o · dr 

0 2µ 0 0 
(4.1.S ) 

Subt racting eq uation 4.1 .5 from equation 4.14 1 we find 

n2 1R iR 
- 2<t>' ( R )d>~( R ) - <i>o( C - C' )d>*dr = (Eo - £ •) o0 6 ' dr . 

µ 0 0 
(4. 16) 

- . r0R <l>o( U - [ .. )q;' dr - ri
2

2 d>'(R)d>~( R ) 
Eo - E . - J< µ 

- foR <Po</>' dr 
(4.17) 
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Since d>* appears as a "weighting function" in numerator and denominator , we expect 

that using d:>~ for ¢» will be a good approximation. Thus the new value of E can be 

obtained from the relation : 

fi 
2 d>* ( R ) ¢/ ( R) - f R d>0 ( F - [ r * ) o • dr 

E • _ E 2µ o o Jo o 
- 0 + R f0 90</>~dr 

( 4.18) 

Reaction Rate Constant 

Once we have got a reasonable approximation of t he eigenvalue. the eigenfunction 

of the system is given by introducing a time dependence. If Eis now the total energy 

of the particle asymptotically, we would have: 

</>( r, t ) 

E</>( r, t) 

</>(r,t) 

if E = Ereal + iEimaginary 

f ( t) * ¢( r ) 

-in d<f>( r, t ) 
dt 

ei Et/li <D( r) 

multiply the above equation by the complex conjugate of the wave function: 

</>*(r , t) <f>(r, t) = e-2Ermt / fi <f>(r)¢>*(r) 

but </></>* = density of matter = p 

so p = po e- 2Ermt/n = Poe->.t 

and the reaction rate constant is: 

s- 1 
/ ( D - D )pair 

( 4.19) 

(4.20 ) 

(4.21 ) 

( 4.22) 



20 

CHAPTER 5. REACTIO N CROSS SECTION AND REACTION 

RATE CONSTANT 

The model was fir t calibrated by a tt empting to reproduce the experi mental D-D 

reaction cro sect ion. The nuclear po tential was first a urned to be a quare well ; 

t hen.the calc ul ations were repeated u ing a \Vood - Saxon potential. 

Squ are W ell 

This is an ove r implification of the problem, but it i suffic ient for at least some 

qualitative conclusions . The range of the strong att racti,·e nuclear fo rces is taken 

to be the radius of a helium atom (1.2.S = .0.5) .--l. 1 3 Fm rou nded upward. an act ual 

value of 2.1 Fm was used. Beyond t his distance the on ly force in the system is the 

Coulomb rep ulsive force. T he depth of the nuclear potential is a fitting parameter, 

i.e there is no exact way for calculat ing its rnlue. though t he following method was 

used to get a first estimate of the real part of the st rength of this pote ntial ; then 

by t rial and e rror the exact real and imaginary parts which give t he best fit to the 

experimental cross section we re obtained . The nuclear poten ti al is represented by a 

t hree dimensional q uare well , as shown in figure .5 .1. 

i · ( r) f or r <. Rn 

for r '> Rn (.S .l ) 
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Enc1gy 

..._ _________ £1;nJ11!j he>'!)':j 

o~ llt l ivtn 

Oeplh or 
- Vo 1--------~ polenlial well 

Figure 5.1: The square-well pote11Lial is an approximation to the nuclear potential, 
t.h e depth of the well is - V0 

Note that we are ignoring the elect ri cal repulsion of the two deuterons here, 

because this repulsion is very small compared to the attractive force due to the 

nuclear potential. 

The ass umption that onl y s-wave interactions exist in the system requires that 

the angular momentum of a deuteron should be ze ro. The wave function of t he 

system 1/,i(r) consists of a superposition of radial and angular wave functions, but for 

s-waves the angular function is 1. If we define the radial part of ¢i(1·) as </J(r) / r, then 

we can write t he Schrodinger wave equation as 

- Ii 2 d2 </> 
2m dr2 + V(r)</>(r) = E</>(r). ( 5.2) 

The solution for this differential eq uation is given by 

J or r < Rn (.5.3) 



where k1 = 2µ( E + Vo) ,,,. 
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where k2 = j¥ . The boundary conditions are 

l . <P( r) is finite as r - oo 

2. <h( r) - 0 as r - 0 

( 5 .4 ) 

From the first boundary condition we must have D = 0, and from the second condi t ion 

we must have B = 0. Applying the continuity condition on <h(r) and d<f>(r) / dr at 

r = Rn we obtain 

( .s.5 ) 

Substituting for k 1 and k 2 we get 

tan J- 2 µ E * R J-( E + V0 ) = -J-( E + V0 ) 
!i 2 n E E ( 5.6 ) 

let j¥ Rn = b = constant, and 

=x ( 5.7) 

===;> - tan bx = x substituting the following numerical values: 

1. The binding energy E is obtained from the mass defect of helium= - 25. MeV. 

2. Ii is Planck's constant= 6.58217 * 10-16 eV.s. 

3. µ is t he reduced mass of the deuteron pair= 938 .0700206 Me V / c2 
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we get the following transcendental equation 

- tan(2.19.504197 ).r = .r ( .).8) 

The only unknown in the above equation is Vii. Solving equat ion .) .8 numerically, the 

result is .50 .92 IeV. This val ue is only a first estimate of the real part of the nuclear 

potential. The actual value of the real and imaginary parts of the potential are found 

by looking for a value with a real part around the above calculated value and an 

imaginary part with a val ue around 103 of the real part such that the potential will 

give best estimate of the D -D experimental cross section. This value was found to be 

(51.37 * 106 + i4.367 * 106
) eV. This result was obtained by numerical integration of 

the wave equation. Start ing with a zero initial value for the radial part of the wave 

function, and 1. for the fir st derivat ive, the second through the seventh derivati ves 

were calculated using the Schrodinger wave equation as fo llows: 

<Po ( 0) 

</>~( O) 

</>~( O) 

0 

1 

2µ t;2( - E - Vo) <i>o 

2µ . 
= t;2( - E - 110 ) 4>~' ( .5.9) 

where V0 is t he depth of t he square well nuclear potential = ( 51.37 * 106 + i4 .367 * 
106 )e V. Starting from a zero separation distance bet ween the two deu terons, and 

using Taylor series we have calculated the wave function to a high precision at a 

point further out. The process was repeated all through the cell until t he separation 

distance was equal to t he diameter of the cell 500000 Fm. The actual equation used 
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was : 

( .5.10 ) 

A similar relation was used to calculate t he fir st derivative. The step H is given by 

H = 10 - 6 "' 720(0~ - . 20~) / C)~" 116 ( 5.11 ) 

At a eparation distance of 2.1 Fm and beyond. the only force in the sy tern is the 

Coulomb repulsive force. and i 0 in equations 5.9 is given by 

\ '(r) = 1.44*10
6 

( .5 .12 ) 
r 

where \i is in Me V. a nd r is t he separation distance in between two deuterons. Thus 

and when calculating the derivatives of the wave fu nction. the potential shou ld be 

differentiated also. 

To red uce the numerical error accumulat ion in the process of calculat ing the 

wave function . the reasoning of the WKB met hod was employed to separate the 

wave function into two real funct ions with complex coeffic ients . as follows : 

At a separation distance of 2.1 Fm the square well nuclea r potential is zero and 

the radial part of the wa ve functio n can be approximated by a superposition of Bessel 

functions with complex coefficients: 

<Do( r ) 

¢~( r) 

A x11(x) + B x K i(x) 

[ 
dx 

A :c!o(x) - Bx K o(x) ]-
dr 

(.5.13) 

where 10 , 11 , K0 ,and K 1 are the modified Bessel funct ions of the firs t and second 

kinds. The argument x is given by 

x = 
_x2 kJr 
- arcsin(--) + JPr - k2r2 
k .\ 



k 

dx 
dr 

·) ? 
-/LC 

n2 

2.s 

2/1 E 
u•ai•e numbe r = V 11 2 

( .5.14) 

and r is the eparation distance between the two deuterons. A and B are the com-

plex coefficients . found by solving equations .) .13 simultaneously at r = 2.1 F m . The 

numerical integratio n was carri ed out for the two separate real functions and the 

complex coefficien ts were saved ti ll the separation dis tance was equal to the diam-

ete r of the ce ll. At thi s point the eigenfunction of the wave equation is given by a 

superposition of the following functions: 

(}) r = A.Fr ( .S.15) 

and the de ri vat ive of the eigenfunction IS also given by the su perposi ti on of the 

fo llowing func tions 

o~ = AF; (j)'r; = BF~ (5 .16 ) 

where Fr , FK , F; , Fk are real functions . At thi s point the wave function rep resents 

a superposition of an incident a nd scattered wave . The change in t he outgoing 

(scattered ) partial wave is accounted for by introducing the complex coefficient µ 0 , 

(The interaction is ass umed to be only with s-waves ). T hus, the wave function is: 

,i.. C '( -ikr ikr) '+'O = - i e - ;Loe 2k 
(5 .1 7) 

a nd its derivative is 

I C · · -1kr · ikr d>0 = 
2

k i( - ike - ikµ 0 e ) ( 5 .1 ) 
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Solving 5.17 and .5.1 simultaneously, we get the following expression for IPo 2 

2 
1 + ~ 

1k<P 

1 - ~ 
ik<P 

(.5 .19) 

Substituting 5.15 and .5.16 into equation .5.19 

( .5.20) 

where B and A are complex constants . Let B / A. Re + i ] , subst itute this into 

equation .5 .20 and simplify the expression to get 

I 
2 4.kJ(FKFf - F';;FI) 

1 - /lo = -------------------
(Ff _._ ReF~ + kFr )2 + (k Fr + kReFK - J Fk )2 

( 5.21 ) 

The constant llo was introduced to account for the change in t he outgoing partial s-

wave. A reduction in the amplitude of the wave suggests that there are fewer particles 

coming out th an t here were going in. The rate at which particles are disappearing 

is the difference between the incoming current and the outgoing current, and the 

reaction cross section is given by [15] 

( .5.22 ) 

where ~ = >.. / 27r is called the reduced deBroglie wavelength. ~ = k- 1 , and t he last 

term in the above equation is given by equation 5.21. 

Woods-Saxon Form of the Potential 

The square well is not realistic, simply because the nuclear potential does not 

have a sharp edge. Actually the nuclear charge and matter distribution falls smoothly 
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v 

F igure .5.2: A realistic form for the potential is the Woods-Saxon potential, the 
di stance "a" is cal led t he "skin thi ckness." 

to zero beyond the main radius. A more realistic form of the potential is the Woods-

Saxon potential: 
-Vo v = ----=-r-R" 

1 + e " 
( .5.23) 

which is shown in figure .5. T he parameters Rn and a give, respectively, the mean 

radius and the skin thickness. T he skin thickness is defined as the distance over which 

the poten t ial changes from .9\/0 to .1 \10 . Again Rn, a, and V0 are fitting parameters, 

their values are adjusted to give the best fit to the experimental D-D react ion cross 

section [15]. The following values wher.e ob tained for these parameters: 

llQ = (51.37 * 106 + i7.848 * 106 ) eV 

a= .631 Fm and Rn = 1.575 Fm. 

The forces in the system are: 

l. Attractive force due to the Woods-Saxon nuclear potential. 
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2. Repulsive force due to the Coulomb potential. 

These two fo rces act against each other until the separation distance equals 10 Fm. 

After the separation distance exceeds 10 Fm . the nuclear force is very small , so that 

practically the only force that exists in the system is a pure Coulomb repulsion. As 

we have done in the square well form of the potential. at a ce rtain di stance , when 

the nuclear attractive force is weak compared to the Coulomb repulsive force , the 

WKB method was used , and the radial part of the eigenfunction for the Schrodinger 

equation can be written in the form of equations .5.9. A correction factor on the 

Coulomb potential was used to account fo r the shielding of the two positive charges 

of the deuteron pair due to the presence of 4 electrons inside t he cell, three valence 

elect rons of the palladium atom and 1 electron from the deuterium atom. The four 

electrons are uniformly di stributed in the cell (This is a conservat ive assumption, 

because if one of the electrons is closer to the deuterium atom. its shielding effect will 

be larger and thi s will reduce the repulsive force between the two positive charges by 

a great amount.) such that their density is 4 * 3 / 47r * R3 • and at radius r the electrons 

inside r act like a central charge of 4r3 / R 3 . This charge acts separately on each of 

the two deuterons, yielding an additional (attractive) potential of -8r 2 e2 / R3 for the 

two deuteron system. 

The reaction cross section was calculated using this form of the nuclear potential. 

Table 5.1 shows the values of the D-D cross section obtained by using the square well 

form and then t he Woods-Saxon form compared to the standard values obtained 

experimentally. 

As it was expected the Woods-Saxon form is more realistic , and it gives a better 

fit for the true values of reaction cross section. Figure 5.3 shows the reaction cross 
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Table .5 .1: Fusion reaction cross sections as function s of the sys tem energy 

E nergy Exper im ent al ua l ue[l5 ] 
KeV mb 

11 .758 
15 2.22 
20 4.99 
30 12.75 
40 22.l 
50 30.6 
60 34.9 

a . Radius of the cell= 2.50000 Fm. 
V = ( 51.37 * 106 + i4 .367 * 106 )e V. 
b. Radius of t he cell = 250000 Fm. 
V = (51.37 * 106 + i i.848 * l06 )eV. 
Skin thickness = .631 F m . 
Rn = 1.575 Fm. 

I 

S quare W ell0 i-r oods - Sa:ronb 
mb mb 

.7838 .771 
2.220 2.220 
4.911 4.96 
11.749 I 12.13 
18.81 I 19.87 
2.5 .22 27.21 
30.76 I 33.88 II 

sections for both models compared to the reaction cross sections obtained experimen-

tally. 

Reaction Rate Constant 

The reaction rate constant , which is given by equation 4.22 , was calculated for 

both forms of t he nuclear potential. The result s showed a slight increase of the 

reaction rate constant when the Woods-Saxon potent ial was used , but the square 

well potential still showed to be a good approximation. 

Before calculating the reaction rate constant we need to find an eigenvalue for 

the cell. As was explained in the previous chapter this is done by iterating equation 

4.18.The integrals in thi s equation were calculated numerically all through the cell, 

from a zero separation distance to the edge of the cell (The actual cell radius was 

used = 125000 F m). A new value for the energy is obtained from equation 4.18. 
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is used to calculate the wave fun ctio n and it s derivati ves alo ng wit h their complex 

conjugates. T he integrals in equation '?? are calculated again , a nd another value of 

t he energy was obtained. T he process was repeated until the number of iterations 

exceeds a cert ain value, or the change in the energy is less t han a pre-set value. The 

energy obtained in the above process is a complex number , and it is taken as the 

eigenvalue of the cell. As was shown in the previous chapter , the 1magrnary part 

of this eigenvalue is responsible for the absorption of particles in the system. The 

reaction rate cons t ant is calculated using equation ?? which is rewritten here: 

,\ = 
2 E [ m 5- 1 / ( D - D ) pa ir 

n. ( .5 .24 ) 

Table ?? shows the energy eigenvalue and the co rresponding react ion rate constant s 

obtained fo r the two forms of nuclear potential: 

Figure ?? shows the reaction rate constant as a function of the energy of the 

deuteron pair (The voltage applied to the lattice ). T he reaction rate constant 

has a suitable value for practical usages at an applied voltage of 400 V. However , 

the reaction rate can be increased by several orders of magnitude if the si te voltage 

is increased. Practically, i t is not difficult to apply a voltage of several thousands 

of volts to an electrochemical cell. However, it remains to be investigated how t his 

applied voltage t ranslates into a site voltage. 
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Table .5 .2: Fusion react ion rate constant as a fun ction of the system energy eigen-
\'alues 

ff oods - Saxon6 

Energy ( e \: ) Reac. Rate Cons. 
(per second) 

Energy(eV ) Reac. Rate Cons. 
(per second ) 

10 .0043411 
14 . 647220 
25.0361217 
49 .9133 60 
99 .. 594709 
200.46 394 
300.1 9743 
399.0293.5.5 

.1294922 4 * 10- 12 2 

.4.5069379 * 10- 98 

.271039311 * 10- 72 

.. 560661.574"' 10 - 47 

.637014272"' 10 - 29 

.464405994 "' 10- 16 

.213262776"' 10- 10 

.49603.529 1 "'10- • 

9.929699 4 .3 6935602 "' 10 - 93 

15.1140380 .. 54.532347"' 10- 83 

24.76.53660 .. 530966 54"' 10 - 68 

.s o.0870709 
99. 9441.'.)1 
201. 160690 

.92.5649399"' 10 - 46 

.299 39016"' 10- 28 

.176241614"' 10- 15 

300. 102797 . 24439 30 * 10- 10 

400.753020 .20 443334 * 10- 6 

500.178676 .112797925 * 10- 4 .500 .732673 
999.57314 7.0679 1000 .63905 
2001.76995 100721.979 2001. 9475 
3002 . 5741 7244569 .24 2997.741 9 
399 7 .245.5 933 9927.4 4002.715 
4997 .02063 .54 75622.53.0 499 . 73 
11000.27 3 .7 27599 * 1011 11001.1810 
19995.761.5 .1196336 * 10 13 19997.4238 
29999. 055 .5226378 * 1013 30006 .6919 
3999 0. 643 .12 "' 10 14 40005.79 1 
50000. 1305 .23 36101 "' 10 14 49994.7464 
60000 . 7705 .3 097"' 1014 .'.)9997.6600 
a . V = (.51.37"' 106 + i4.367"' 106 )e V 

.442359127 * 10- 4 

27.02.54 
377 71.0 
26 71 214.2 
354 26427.0 
.206 62373"' 1010 

.29 6 * 1012 

.46 05384 * 1013 

I .21124509 2 * 10 14 

.. 53327.5094"' 10 14 

.10192254 7 "' 10 15 

.1661 5697 * 10 15 

b. V = .51.37 * 106 + i7.848 * 106 )eli 
Rn= 1.575 Fm S kin thickness = .631 Fm 
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for both models of the nuclear potential. 
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CHAPTER 6 . CONCLUSION 

The striking conclusion of thi s research is that the cold fusion reac tion can be 

made to happen at various reaction rates. A high energy deuteron confined in the 

palladium can increase the reaction rate by seve ral orders of magnitude. If such 

energy, oft he order of of 1 Ke V, can be achei ved by electrical means. t hi could control 

the power production level in the electrochemical cell. The reaction rates obtained 

above can be translated into energy production if we know how many deuterons are in 

the palladium cathode (The extent to which we can pump de uterons into the cathode 

before it starts bubbling off as gas at the su rface of the metal). Simply. not all the 

lattice cells in the palladium cathode are occupied by deuteron pairs. The amount 

of deuterons that can be soaked into the palladium depends on the way in which the 

metal was formed, and the finishing of t he surface. 

Cold fusion is a new field of science, and it opens the door for a wide range of 

new knowledge. A lot of research is still needed to reach a complete understanding 

of the new phenomenon. Scientists need to research in t he mechanisms of a new and 

unknown phenomenon that is capable of generating large excursions of heat from a 

palladium electrode that has been saturated with deuterium. A variety of physics 

and chemistry pathways and theories will have to be explored. The under tanding 

of this phenomenon will also require a detailed study of the process of electrolysis 



along with an unders tanding of the physical. metallurgical. and chemical changes 

that are taking place in the electrode. :\loreo\·er , st udies are needed in the field of 

material cience. especially met al t ructu re and the elect rodiffusion of hyd rogen and 

deuterium in me tals . 

Finally. thi work is a step on the long way to a complete understanding of the 

new and promi ing phenomenon of cold fusion. 
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APPENDIX A. THE UTAH CELL 

The Ft a h fu ion cell[l ] contain 99.53 heavy water with 0 .. 5% light water.( Also. 

0.1 ::\f of Li OD was added to the cell.) 

Electrical current for a given area of electrode surface: Highest used was .51 2m .-l. / cm 2 . 

:\eutron flux: ·!:000. sec for the .4cm diameter electrode. 

Heat output: l"p to 122-1.o/c of break even value (that is . up to 2Ur ; cm 3 of the 

electrode. 

Configurations : 

• egati ve electrode: a palladium sheet. Positive electrode: platinum sheet . 

• egative elect rode: 10 cm palladium rods with diameters of 1.,2., and 4.mm. 

Positive electrode: platinum wire wound on a cage of glass rods. 

• Negat ive elect rode: a palladium cube ( l cm * l cm * l cm ). In this case the elec-

t rode heated to its melting point ( 1554 degrees Celsius) vaporized and des troyed 

part of the cupboard housing experiment. 
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APPENDIX B. COMPUTER PROGRAMS 

TS .FOR 

C THIS PROGRAM IS USED TO GENERATE THE WAVE FUNCTION AND ITS 
C DERIVATIVE WHICH ARE USED TO CALCULATE THE REACTION 
C CROSS-SECTION. 
C THIS PROGRAM USES THE SQUARE WELL AS THE NUCLEAR POTENTIAL. 
C THE PROGRAM USES THE WKB APPROXIMATION TO CALCULATE THE 
C WAVE FUNCTION BEYOND R=2.1 Fm. 

REAL*8 X,X1,E,FI,FID,FK,FKD 
COMPLEX*16 F1,F2,F3,F4,F5,F6,F7,F8,V1,V2,V3,Z,H 
COMPLEX*16 V4,V5,V6,F11,F22,A,B,COEF 

X=(O.DO,O.ODO) 
F1= (0 .DO,O.DO) 
F2=(1.DO,O.DO) 

E=(60000.DO,O.ODO) 
Z=(4 .8182D-8,0.0DO) 
OPEN (UNIT=11,status='UNKNOWN ' ,FILE='SS.DAT') 

J=O 
IFLAG=1 

1 DO 50 I=1,100000000 

IF (X.LT.2.1) THEN 
V1=(51.37D6,4 .373D6) 
F3=(-E-V1)*F1*Z 
F4=( - E-V1 )*F2*Z 
F5=(-E-V1)*F3*Z 



F6= (-E-Vl ) *F4*Z 
F7= (-E- Vl ) *FS*Z 
F8=(-E-Vl ) *F6*Z 

ELSE 
IF (IFLAG.EQ.1 ) 
IFLAG=O 

40 

CALL BES (X,X1,Fl,F2,F11,F22,Z,E,A,B ) 

Vl= ( l . 4406)/(X) 
V2= (-1 . 44D6 )/(X**2) 
V3= (2 . DO*l . 44D6 )/(X**3 ) 
V4= (-6 .DO*l .44D6)/(X**4 ) 
V5= (24 .D0*1.44DO)/( X**5 ) 
V6= (-120. DO*l.44D6)/(X**6 ) 

F3= (-E+Vl ) *Fl*Z 
F4= (( -E+Vl ) *F2+V2*Fl) *Z 
F5= (( -E+Vl ) *F3+2. DO*V2*F2+V3*Fl )*Z 
F6= (( -E+Vl ) *F4+3.DO*V2*F3+3.DO* 

+ V3*F2+V4*Fl ) *Z 
F7= (( -E+Vl)*F5+4.DO*V2*F4+6.DO* 

+ V3*F3+4.DO*V4*F2+V5*Fl ) *Z 
F8= (( -E+Vl ) *F6+5 .DO*V2*F5+10.DO* 

+ V3*F4+10.DO•V4*F3+5 .DO*V5*F2 
+ +V6*Fl ) *Z 

END IF 

H= (ABS (l .D-6*720 . DO* (F2+.2DO*F3 ) /F8 )) ** 
+ (1 .D0/6 .DO) 

X=X+H 

IF (X.GT.500000 .) GOTO 250 

Fl=Fl+H*F2+ (H**2 )*F3/2 . DO+ 
+ (H**3)*F4/6.DO+(H**4)*F5/24 .DO+ (H** 
+ 5)*F6/120.DO 

F2=F2+H*F3+ (H**2 ) *F4/2 . DO+ 
+ (H**3)*F5/ 6 .DO+(H**4) *F6/ 24 .DO+(H** 
+ 5)*F7/120.DO 



--11 

50 CONTINUE 

250 X=X-H 
WRITE (11,41 ) X,F1,F2 

41 FORMAT (F15.4,G16 .9 ,G16 .9,G16 .9,G16 .9) 
H=500000. -X 

F1=F1+H*F2+ (H**2 ) *F3/2.DO+ 
+ (H**3)*F4/6 .DO+(H**4) *F5/ 24 .DO+(H**5 ) *F6/120.DO 

F2=F2+H*F3+ (H**2 ) *F4/2.DO+ 
+ (H**3 ) *F5 /6.DO+(H**4) *F6/24.DO+ (H**5)*F7/120 . DO 

X=X+H 
OPEN (UNIT=50,STATUS= 1 UNKNOWN 1 ,FILE='S . DAT') 

COEF=B/A 
IF (J. EQ .O) THEN 

FI=DBLE (F1 ) 
FID=DBLE (F2 ) 
WRITE(50,55 ) X,FI,FID 

ELSE 
FK=DBLE (F1 ) 
FKD=DBLE(F2 ) 
WRITE (50 ,56 ) X,FK,FKD,COEF,E 

END IF 
55 FORMAT (F10 .2,G16 . 9,G16 .9 ,G16 .9,G16 .9) 
56 FORMAT (F10.2,G16.9,G16.9,G16 .9,G16 .9,/,G16 .9,G16 .9,G16.9) 

F1=F11 
F2=F22 
X=X1 
J=J+1 
IF(J.EQ.1 ) GOTO 1 

344 STOP 
END 

SUBROUTINE BES (X,X1,F1,F2,F11,F22,Z,E,A,B) 
REAL*8 X,X1,T,R ,E 
COMPLEX*16 I O, I1,KO, K1,SPIN 
COMPLEX*16 LAM,LAMSQ,K,KSQ,DXDR 
COMPLEX*16 Z,A,B,F1,F2,F11,F22 
CALL UNDERO ( IFLAG ) 



LAMSQ=Z*l.44002E6 
KSQ=Z* E 
LAM=SQRT (LAMSQ ) 
K=S QRT (KSQ) 
x=2.l 

9 R= (LAMSQ/K )*DASIN( K*SQRT (X)/LAM ) +SQRT ( LAMSQ*X- KSQ*X**2) 
DXDR=SQRT (LAMSQ /X-KSQ ) 
T=R/3.75 
IF (R.LT .3.75) THEN 
IO=l.+3.5156229*T**2+3.0899424*T**4+1 . 2067492*t**6 

+ + .2659732*t**8+.0360768*t**l0+ .0045813*t** l2 
Il= (. 5+.87890594*t**2+.51498869*t**4+.15084934*t**6 

+ + . 02658733*T**8+. 00301532*T**l0+ .000324ll*T**l2)/R 
ELSE 
I 0=(.39894228+.01328592*t**( -1 ) +.00225319*t**(-2)-.0015 

+ 7565*t** (-3) + .0091628l*t** ( -4) -.02057706*T**(-5)+ .02635537* 
+ T** (-6)-.01647633*T** (-7) +.00392377*T** (-8))/(DSQRT (R)*EXP ( -R)) 

Il= (.39894228- .03988024*t**(-1)-.00362018*t**(-2) +.00163801 
+ *t**(-3)-.01031555*t**(-4 ) + .02282967*t**(-5)-.02895312*t 
+ **(-6)+.01787654*t**(-7)-.00420059*t**(-8))/(DS QRT (R)*EX 
+ P(-R)) 

END IF 
KO=( l .25331414-.07832358*2./R+.02189568*(2./R)**2 

+ -.01062446*(2./R)**3+. 00587872* (2./R)**4- .002 
+ 51540*(2./R)**5+.00053208*(2./R)**6)/(DSQRT(R)*EXP(R)) 

Kl =( l . 25331414+.23498619*(2./R)-.03655620*(2./R)**2 
+ +.01504268* (2./R)**3- . 00780353* (2./R)**4 
+ + .00325614*(2./R)**5-.00068245*(2./R)**6)/(DSQRT(R) 
+ *EXP(R)) 

IF (X.GT .2.3) goto 4 
B=(IO*F1-F2*Il/DXDR) 
A=(F1*KO+F2*Kl/DXDR) 
F1=R*I1 
F2=R* IO*DXDR 
Fll=R*Kl 
F22=-1.*R*KO*DXDR 
Xl=X 
RETURN 
END 



c 
c 

TW. FOR 
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C THIS PROGRAM IS USED TO GENERATE THE WAVE FUNCTION AND ITS 
C DERIVATIVE WHICH ARE USED TO CALCULATE THE REACTION CROSS-SECTION. 
C THIS PROGRAM USES THE WOODS-SAXON POTENTIAL AS THE 
C NUCLEAR POTENTIAL . AND THE WKB APPROXIMATION FDR 
C CALCULATING THE WAVE FUNCTION BEYOND R=1 0. Fm . 

REAL*8 X,X11,Y11,Y,X1,E,R,A,RO, FI,FID,FK,FKD 
COMPLEX*16 F1,F2 , F3,F4,F5,F6,F7,F8, V1 ,V2 , V3, Z,H,COEF 
COMPLEX*16 V4,V5, V6,F11,F22,VO,B,C 
X=0.00000000002 
F1= (0 .DO,O.DO ) 
F2= (1.DO, O.DO ) 

R=250000. 

v0= (51.37d6,7.848d6) 
a=0.631 
rO=l.575 

x1=Dexp (2)*Dexp (-r0/a) 
E=(15000 . DO,O .ODO ) 
Z=(4.8182D-8,0.0DO) 
OPEN (UNIT=ll,status='UNKNOWN' ,FILE='SS.DAT') 

J=O 
IFLAG=l 

1 DO 50 I=l,100000000 

IF (X.LT.10.0) THEN 

c vl this is the nuclear potential which is a Wood ' s-Saxon potential. 
c f3-f8 are the second through seventh derivatives of the wave functi on . 

y=exp((x- rO)/a) 
yll=x+x*y 

Vl=(x*(-vO)-xl*(exp(x/a)-1))/(yll) 
v2=(-v0-(x1/a)*exp (x/a)-v1*(1+y+x/a*y) )/y11 
v3=(- (xl*exp (x/a))/a**2)- (vl*x/ (a**2 ))*y-2*vl*y/ a-v2*x*y/ a 

+ -2*v2*(y+1 )/y11 
v4=(((-xl*exp(x/a) )/a**3)-3*vl*y/a**2-v1*x*y/a**3-5*v2*y/a 

+ -3*v3*(y+1) -2*v3*x*y/a-2*v2*x*y/ a**2)/y11 
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v5= (- x1*exp (x/a)/a**4-10*v2*y/a**2-4*v1*y/a* *3-3*v2*x*y/ a**3 
+ -v1*x*y/a* *4- 10*v3*y/a-4*v3* (y+1 )-3*v4*x*y/a-4*v3*x*y/ 
+ a**2 ) /y11 

v6=(( -x1*exp (x/a )/a**5)-24*v3*y/a**2-17*v2*y/a**3-5*v1*y / a**4 
+ - 7*v3*x*y/a**3-4*v2*x*y/a**4-v1*x*y/a** 5-17*v4*y/a-5*v5* (1 +y ) 
+ -4*v5*x*y/a-7*v4*x*y/a**2)/y1 1 

F3=-(E+V1 ) *F1*Z 
F4=- ((E+V1 )*F2+V2* F1 )*Z 
F5=- ((E+V1 )*F3+2 . DO*V2*F2+V3*F1 )*Z 
F6=- ((E+V1 )*F4+3.DO*V2*F3+3.DO*V3*F2+V4*F1 )*Z 
F7=- (( E+V1)*F5+4 . DO*V2*F4+6.DO*V3*F3+4 . DO*V4*F2+V5*F1 )*Z 
F8=- (( E+V1 )*F6+5 .DO*V2*F5+10.DO*V3*F4+10.DO*V4*F3+5 . DO*V5*F2 

+ +V6*F1 ) *Z 

ELSE 

IF ( IFLAG . EQ .1) 
IFLAG=O 

CALL BES (X,X11 , F1 , F2, F11 , F22,Z,E,B,C ) 

V1=(1.44D6 ) / (X) - ( 2.*1.44D6*X**2 ) /R**3 
V2= (- 1.44D6)/(X**2 ) -4. *1. 44D6*X/R**3 
V3=(2 . D0*1 . 44D6)/(X**3)-4 .*1 .44D6/R**3 
V4=(-6.D0*1 .44D6)/(X**4) 
V5=(24.D0*1.44DO) /(X**5 ) 
V6=(-120. D0*1 .4406 ) / (X**6) 
END IF 

F3= (-E+V1)*F1 *Z 
F4= (( -E+V1 ) *F2+V2*F1 ) *Z 
F5= (( -E+V1 ) *F3+2.DO*V2*F2+V3*F1 )*Z 
F6= (( -E+V1 )*F4+3 .DO*V2*F3+3 . DO*V3*F2+V4*F1 ) *Z 
F7= (( -E+V1 ) *F5+4.DO*V2*F4+6.DO*V3*F3+4.DO*V4*F2+V5*F1 ) *Z 
F8= (( -E+V1 ) *F6+5 . DO*V2*F5+10 .DO *V3*F4+10.DO*V4*F3+5 .DO*V5*F2 

+ +V6*F1)*Z 

H=(ABS(1 . D-6*720.DO* (F2+ .2DO*F3 ) /F8 ))**( 1 . D0/6 . DO ) 
X=X+H 

IF (X.GT .500000.) GOTO 250 



F1=F1+H*F2+ (H**2)*F3/2.DO+ 
+ (H**3 ) *F4/ 6.DO+(H* *4)*F5/24.DO+ (H** 
+ 5) *F6/120 .DO 

F2=F2+H*F3+ (H**2)*F4/2.DO+ 
+ (H**3)*F5/6.DO+ (H**4)*F6/24 . DO+ (H** 
+ 5)*F7/120 .DO 

50 CONTINUE 

250 X=X-H 
WRITE (11 ,41 ) X,F1,F2 

41 FORMAT (F15.4,G16.9,G16.9 , G16 .9 ,G16 .9) 
H=500000. -X 

F1=F1+H*F2+ (H** 2)*F3/2.DO+ 
+ (H**3)*F4/6.DO+(H**4)*F5/24 .DO+(H** 
+ 5)*F6/120.DO 

F2=F2+H*F3+ (H**2 )*F4/2 . DO+ 
+ (H* *3)*F5 / 6.DO+(H**4)*F6/24.DO+ (H** 
+ 5)*F7/120.DO 

X=X+H 
OPEN (UNIT=50,STATUS='UNKNOWN' , FILE= ' S.DAT' ) 

COEF=B/ C 
IF (J.EQ .O) THEN 

FI=DBLE (F1 ) 
FID=DBLE (F2 ) 
WRITE (50,55 ) X, FI ,FID 

ELSE 
FK=DBLE (F1 ) 
FKD=DBLE(F2 ) 
WRITE(50,56) X, FK,FKD ,COEF,E 

END IF 
55 FORMAT (F10.2,G16 .9,G16.9,G16.9,G16 .9) 
56 FORMAT (F10 .2,3G16.9, /,3G16.9) 

F1=F11 
F2=F22 
X=X11 
J=J+1 



IF(J.EQ.1) GOTO 1 
344 STOP 

END 
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SUBROUTINE BES (X,X11 ,F1,F2,F11,F22,Z,E ,B,C) 
REAL*8 X,X11,T,R,E 
COMPLEX*16 IO,I1,KO,K1 
COMPLEX*16 LAM,LAMSQ,K,KSQ,DXDR 
COMPLEX*16 Z,C,B,F1,F2,F11,F22 
CALL UNDERO(IFLAG) 
LAMSQ=Z*1.44002E6 
KSQ=Z*E 
LAM=SQRT(LAMSQ) 
K=SQRT(KSQ) 
x=10. 

9 R=(LAMSQ/K)*DASIN(K*SQRT(X)/LAM)+SQRT(LAMSQ*X-KSQ*X**2) 
DXDR=SQRT (LAMSQ/X- KSQ ) 
T=R/3.75 
IF (R.LT.3.75) THEN 
I0=1.+3.5156229*T**2+3.0899424*T**4+1.2067492*t**6. 

+ +.2659732*t**8.+.0360768*t**10 .+ .0045813*t**12. 
I1=(.5+.87890594*t**2.+.51498869*t**4.+.15084934*t**6. 

+ +.02658733*T**8.+.00301532*T**10.+.00032411*T**12.)/R 
ELSE 
I0=(.39894228+.01328592*t**(-1.)+.00225319*t**(-2.)-.0015 

+ 7565*t**(-3.)+.00916281*t**(-4.)-.02057706*T**(-5.)+.02635537* 
+ T**(-6.)-.01647633*T**(-7.)+.00392377*T**(-8.))/(DSQRT(R)* 
+ EXP( - R)) 

I1=(.39894228-.03988024*t**(-1)-.00362018*t**(-2)+.00163801 
+ *t**(-3)-.01031555*t**(-4)+.02282967*t**(-5)-.02895312*t 
+ **(-6)+.01787654*t**(-7)-.00420059*t**(-8))/(DSQRT(R)*EX 
+ P(-R)) 

END IF 
K0=(1.25331414-.07832358*2./R+ . 02189568*(2./R)**2 

+ -.01062446*(2./R)**3+.00587872*(2./R)**4-.002 
+ 51540*(2./R)**5+.00053208*(2./R)**6)/(DSQRT(R)*EXP(R)) 

K1=(1.25331414+.23498619*(2./R)-.03655620*(2./R)**2 
+ +.01504268*(2./R)**3-.00780353*(2./R)**4 
+ +.00325614*( 2./R)**5- .00068245*(2./R)**6)/(DSQRT(R) 
+ *EXP(R)) 



IF (X. GT . 10 .1 ) goto 4 
B= ( IO*F1- F2*I1 /DXDR) 
C= (F1 *KO+F2*K1 /DXDR) 
F1=R*I1 
F2=R*IO*DXDR 
F11=R*K1 
F22=-1 .*R*KO*DXDR 
X11=X 
RETURN 
END 
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FINA . FOR 

c THIS PROGRAM IS USED TO CALCULATE THE REACTION RATE CONSTANT. 
c IT USES A SQURE WELL AS THE NUCLEAR POTENTIAL. 
c 

REAL*8 X,R,Y1,Y2 
COMPLEX*16 F1,F2,F3,F4,F5,F6,F7,F8,V1,V2,V3,Z,H,E 
COMPLEX*16 V4,V5,V6,CF1,CF2,CF3,CF4,CF5,CF6,DER,DEI,INT 
COMPLEX*16 PR,FPR,FINT,CV1,CFD10,CC,Y3,Y4 

c THE ENERGY OF THE SYSTEM. 
E=(11000.DO,O.DO) 
J=O 
R=500000. 

OPEN (UNIT=50,STATUS='UNKNOWN' ,FILE=' INT .DAT') 
OPEN (UNIT=51,STATUS='UNKNOWN' ,FILE=' sum .DAT' ) 

6 X=(O.DO,O.ODO) 

C THE WAVE FUNCTION AND ITS FIRST DERIVATIVE. 
F1=(0.DO,O.DO) 
F2=(1.DO,O . DO) 

J=J+1 
WRITE(50,*) 
WRITE ( 5 0 , *) 
WRITE(50,7)J 

7 FORMAT(I8) 
INT=O.O 
FINT=O.O 

Z=(4.8182D-8,0.0DO) 

DD 3 I=i,100000000 
IF (X.LT.2.1) THEN 

c vi this is the nuclear potential which is a square well 
c f3-f8 are the second through seventh derivatives 
c of the wave function 



Vl= (Sl.3706,4.36706 ) 
F3= ( -E-V1) *F1*Z 
F4=( -E-V1)*F2*Z 
F5=(-E-V1)*F3*Z 
F6= ( -E-V1) *F4*Z 
F7= (-E-V1)*F5*Z 
F8= ( -E-V1 ) *F6*Z 

ELSE 
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c this is the colomb barrier and its der ivatives, plus the 
c screening effect . 
c the f ' s are the wave function derivatives 

V1=(1.4406)/(X) - (8*X**2)/R**3 
V2= (-1.4406)/(X**2 ) -16*X/ R**3 
V3= (2 .00* 1 . 4406 )/( X**3 ) -16/R**3 
V4=(-6.00*1.4406)/(X**4 ) 
V5= (24 .00*1.4400)/(X**5 ) 
V6=(-120.00*1.4406)/(X**6 ) 

F3=(-E+V1)*F1*Z 
F4= (( -E+V1)*F2+V2*F1 ) *Z 
F5= (( -E+V1) *F3+2.00*V2*F2+V3*F1 )*Z 
F6= (( -E+V1 ) *F4+3 . 00*V2*F3+3.00* 

+ V3*F2+V4*F1 ) *Z 
F7= ((-E+V1) *F5+4 .00*V2*F4+6 .00* 

+ V3*F3+4.00*V4*F2+V5*F1 ) *Z 
F8= (( -E+V1)*F6+5 .00*V2*F5+10.00* 

+ V3*F4+10 .00*V4*F3+5.00*V5* F2 
+ +V6*F1 ) *Z 

ENO IF 
c this is the steps we are moving from the center of the cell 
c towared the edge ,in order to calculate the wave functi on. 

H= (ABS ( 1 .0-6*720.00*(F2+ . 200*F3)/F8 )) ** 
+ ( 1 .00/6 .00) 

X=X+H 
IF (X.GT .R) GOTO 250 
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c these are the complex conjugates of the wave 
c function and its derivatives and the complex conjugate 
c of the nuclear potential. 

CV1=DCONJG (V1) 
CF1=DCONJG (F1 ) 
CF2=DCONJG (F2 ) 
CF3=DCONJG (F3 ) 
CF4=DCONJG(F4) 
CFS=DCONJG (FS ) 
CF6=DCONJG(F6) 

c FPR is the value of the last part in the iteration fornrula. 

FPR=(H* (F1*CF1 ) +(H**2 )/2 .*(F1*CF2+F2*CF1 ) +(H* *3)/3. *((F1*CF3/2.DO 
+ ) +F2*CF2+ (F3*CF1/2 . DO )) +(H**4)/4 .*((F1*CF4/6 .DO)+( F2*CF3/ 
+ 2 .DO) +(F3*CF2 /2 .DO) +(F4*CF1/6.DO)) +(H**5)/5 .*-(( F1*CF5 / 24 
+ .DO)+(F2*CF4/6.DO)+(F3*CF3/4.DO)+(F4*CF2/6.DO)+(F5*CF1 
+ /24.DO))+(H**6)/6.*((F1*CF6/120.DO)+(F2*CF5/24.DO)+(F3*CF 
+ 4/12.DO)+(F4*CF3/ 12 .DO ) +(F5*CF2/24.DO ) +(F6*CF1 / 120. DO ) 
+ )+(H**7)/7.*((F2*CF6/120.DO)+(F3*CF5/48.DO)+(F4*CF4/36.DO 
+ )+(F5*CF3/48.DO)+(F6*CF2/120.DO))+(H**8)/8.*((F3*CF6/240. 
+ DO ) +(F4*CF5/144.DO ) +(F5*CF4/144.DO)+ (F6*CF3/240.DO)) +( 
+ H**9) / 9.*( (F4*CF6/720.DO) +(F5*CF5/576 . DO)+ (F6*CF4/ 720.DO)) 
+ +(H**10)/10 .*((F6*CF5/ 2800.DO) +(F5*CF6/2800.DO) ) +(H**11 )/11 .* (F6 
+ *CF6/14400.DO)) 

c PR is the value of the first part in the iteration fornrula. 
PR=FPR* (V1-CV1) 

c FINT is the last integral in the iteration formula. 
c INT is the first integral in the iteration formula. 

FINT=FINT+FPR 
INT=INT+PR 

F1=F1+H*F2+(H**2 ) *F3/2.DO+ 
+ (H**3)*F4/6.DO+(H**4)*F5/24.DO+(H** 
+ 5)*F6/120 . DO 

F2=F2+H*F3+ (H**2)*F4/2.DO+(H**3 ) *F5/6 .DO+(H**4) * 
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+ F6/24.DO+(H**5)*F7/120.DO 
3 CONTINUE 

c This part of the program is to calculate the wave 
c functi on and the integral of page X7 exactly at the 
c edge of the cell. 

250 X=X-H 
H=R-X 

OPEN ( 4, 'SS. DAT') 
WRITE (4,32 )X,F1,F2 

F1=F1+H*F2+ (H**2)*F3/2.DO+ 
+ (H**3)*F4/6.DO+(H**4)*F5/24.DO+(H** 
+ 5)*F6/120 . DO 

F2=F2+H*F3+(H**2)*F4/2.DO+(H**3)*F5/6.DO+(H**4 ) * 
+ F6/24 . DO+(H**5)*F7/120 .DO 

X=X+H 
OPEN(1, 'S. DAT ') 
WRITE(1,32 )X,F1,F2 

32 FORMAT(F15.4,3X,G16.9,G16.9,4X,G16.9,G16.9) 

V1=(1.44D6)/(X)-(8*X**2)/R**3 
V2=( -1.44D6) /(X**2)-16*X/R**3 
V3=(2 . D0*1.44D6)/(X**3)-16/R**3 
V4=(-6.D0*1.44D6)/(X**4) 
V5=(24.D0*1.44DO)/(X**5) 
V6=(-120.D0*1 . 44D6)/(X**6) 
F3= (-E+V1)*F1*Z 
F4=((-E+V1)*F2+V2*F1)*Z 
F5=((-E+V1)*F3+2.DO*V2*F2+V3*F1)*Z 
F6=((-E+V1)*F4+3.DO*V2*F3+3.DO* 

+ V3*F2+V4*F1)*Z 
F7=((-E+V1)*F5+4.DO*V2*F4+6.DO* 

+ V3*F3+4.DO*V4*F2+V5*F1)*Z 
F8=((-E+V1)*F6+5.DO*V2*F5+10.DO* 

+ V3*F4+10.DO*V4*F3+5.DO*V5*F2 
+ +V6*F1)*Z 

CV1=DCONJG(V1) 
CF1=DCONJG(F1) 



CF2=DCONJG(F2) 
CF3=DCONJG(F3) 
CF4=DCONJG(F4) 
CFS=DCONJG(FS) 
CF6=DCONJG(F6) 

c FPR this is the value of thelast part in the iteration formula f or 
c the energy (page x7 from the notes ). 

FPR= (H*(F1*CF1 ) +(H**2 )/2 .* (F1*CF2+F2*CF1 ) +(H**3)/3. *((F1*CF3/ 2 . DO 
+ ) +F2*CF2+ (F3*CF1/2 .DO))+(H**4)/4 .*((F1*CF4/ 6.DO ) +(F2*CF3/ 
+ 2.DO)+(F3*CF2/2.DO)+(F4*CF1/6.DO) ) +(H**5)/5.* ((F1 *CF5 /24 
+ .DO)+( F2*CF4/6 .DO ) +(F3*CF3/ 4.DO)+( F4*CF2/6. DO ) +(FS*CF1 
+ /24.DO )) +(H**6 )/6 .* ((F1*CF6/ 120.DO) +(F2*CF5/24.DO) +(F3*CF 
+ 4/ 12 . DO ) +(F4*CF3/ 12 .DO) +(FS*CF2 /24 .DO) +(F6*CF1/120.DO) 
+ ) +(H**7 )/7. *((F2*CF6/ 120 .DO) +(F3*CF5/ 48 .DO) +(F4*CF4/ 36 . DO 
+ )+(FS*CF3/48.DO)+(F6*CF2/120 . DO))+(H**8)/8.*( (F3*CF6/240. 
+ DO)+(F4*CF5/144.DO)+(FS*CF4/144.DO)+(F6*CF3/240.DO)) +( 
+ H**9)/9 .*((F4*CF6/720.DO) +(FS*CF5 /576. DO) +(F6*CF4/720.DO)) 
+ +(H**10)/10.*((F6*CF5/2800.DO)+(FS*CF6/2800.DO)) +(H**11 )/11. *(F6 
+ *CF6/14400 .DO)) 

c PR this is the value of the first part in the iteration formula f or 
c the energy (page X7 from the not es) 

PR=FPR* (V1- CV1) 
INT=INT+PR 
FINT=FINT+FPR 

CFD10=DCONJG(F2) 
CC=(2./9.6364E-8)*F1*(CFD10) 
Y1=DBLE(CC) 
Y2=DBLE (FINT) 
Y3=DBLE (INT ) 
Y4=INT- Y3 

WRITE(50,19)I 
WRITE (50,20)Y4 
WRITE ( 50, 21)Y2 
WRITE(50,22)Y1 
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DER= (Y3+Y1 ) /Y2 
DEI=Y4/Y2 
E=E+DER 
E=E+ (O.D0,1.DO ) *DEI 

WRITE (SO,*) 
WRITE (S0,8) E 
WRITE (50 ,9 ) DER 
WRITE (SO , 10) DEI 
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IF (CDABS(DER) . LT . 1.D- 15 ) GOTO 66 
IF (J.GT .3) GO TO 66 
GO TO 6 

19 FORMAT ( 2X, ' NO. OF ITERATIONS= 1 ,I8 ) 
20 FORMAT ( 2X,'INT.= ' ,G16 .9,2X , G16 . 9) 
21 FORMAT ( 2X, 'FINT.='G16 . 9,2X,G16.9) 
22 FORMAT(2X, ' CC =' G16 .9,2X,G16 .9) 
9 FORMAT(4X , 'DE REAL =' ,G16.9,3X ,G16.9) 
8 FORMAT (4X,'THE ENERGY=',G16 . 9,3X , G16 .9 ) 
10 FORMAT (4X, ' DEIMAG. = ' ,G16.9,3X,G16 .9) 

STOP 
END 
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C FINAL11.FOR 

C THIS PROGRAM USES A WOOD'S-SAXON NUCLEAR POTENTIAL AND 
C FOR THE COULOMB BARRIER, AND THE SCREENING POTENTIAL DUE 
C TO THE ELECTRON DISTRIBUTION WITHIN THE CELL. 
C THE RADIUS OF THE CELL IS 125000. Fm. 

REAL*8 X,R,Y1,Y2 
COMPLEX*16 F1,F2,F3,F4,FS,F6,F7,F8,V1, V2 , V3 ,Z,H,E 
COMPLEX*16 V4,VS, V6,CF1,CF2,CF3,CF4,CFS,CF6,DER,DEI,INT 
COMPLEX*16 PR,FPR,FINT ,CV1 ,CFD10,CC ,Y3,Y4,y, y11,v0, LAMDA 

IK=1 
c The energy of the cell. 

E= ( 100.DO,O.DO) 
J=O 

c the radius of the cell in Femto-meters . 
R=125000. 

OPEN (UNIT=SO,STATUS= 1 UNKNOWN 1 ,FILE= 1 INT8 . DAT' ) 
OPEN (UNIT=51,STATUS=' UNKNOWN ' ,FILE= ' sum.DAT' ) 

6 X=.00000000002 
c the wave function and its first derivative. 

F1= (0. DO, O. DO ) 
F2= (1.DO, O.DO) 

J=J+1 
WRITE(SO,*) 
WRITE(SO,* ) 
WRITE(S0,7)J 

7 FORMAT ( I8 ) 
INT=O.O 
FINT=O.O 

Z= (4 .8182D-8,0.0DO) 
v0=(51.37d6,7.848d6 ) 
a=0.631 
r0=1 .575 

x1=exp ( 2) *exp (-r0/ a ) 

DD 3 I=1,100000000 
IF (X.LT.10.0) THEN 

c v1 this is the nuclear potential which is a Wood ' s-Saxon potential . 
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c f 3-f8 are the second through seventh derivatives of the wave function . 
y=exp((x- r O) /a) 
y11=x+x*y 

V1 =(x* (v0) -x1 *(exp (x/a)-1 ) )/ (y11) 
v2 =(v0-(x1/ a )*exp(x/a)-v1*( 1+y+x/a*y))/y11 
v3= (-(x1*exp(x/a))/a**2)-(v1 *x/ (a**2))*y-2*v1*y/ a-v2*x*y/a 

+ -2*v2* (y+1)/y11 
v4= ( ( ( -x1*exp (x/a)) /a**3)-3*v1*y/a**2-v1*x*y/a**3-5*v2*y/ a 

+ -3*v3*(y+1 ) -2*v3*x*y/a-2*v2*x*y/a**2) /y11 
v5= (-x1*exp (x/a) /a**4- 10*v2*y/a**2-4*v1*y/a**3-3*v2*x*y/a**3 

+ - v1*x*y/a**4-10*v3*y/a-4*v3*(y+1) -3*v4*x*y/a-4*v3*x*y/a**2 ) /y 11 
v6=((-x1*exp(x/a)/a**5 ) -24*v3*y/a**2-17*v2*y/ a**3-5*v1*y/a**4 

+ -7*v3*x*y/a**3-4*v2*x*y/a**4-v1*x*y/a**5-17*v4*y/a-5*v5* ( 1+y) 
+ -4*v5*x*y / a-7*v4*x* y/a **2)/y11 

F3=- (E+V1)*F1 *Z 
F4=- ( (E+V1) *F2+V2*F1 ) *Z 
F5= - ( (E+V1)*F3+2.DO*V2*F2+V3*F1 )*Z 
F6=- ((E+V1 ) *F4+3 .DO*V2*F3+3 .DO* V3*F2+V4*F1 )*Z 
F7=- ((E+V1 )*F5+4 .DO*V2*F4+6 . DO*V3*F3+4.DO*V4*F2+V5*F1 )* Z 
F8=- ((E+V1 ) *F6+5.DO*V2*F5+10. DO*V3*F4+1 0. DO*V4*F3+5.DO*V5*F2 

+ +V6*F1 )*Z 

ELSE 

c this is the colornb potential and its derivatives, and the screening 
c potential due to the electron distribution within the cell. 
c the f 's are the wave function derivatives . 

V1= (1.44D6 )/(X)-(2 . *1 . 44d6*X**2 ) /R**3 
V2=( -1 .44D6 )/(X**2)-4 . *1. 44d6*X/ R**3 
V3=(2.D0* 1 .44D6 )/ (X**3) -4 .*1.44d6/ R**3 
V4= ( -6 . D0*1 .44D6)/ (X**4) 
V5=(24.D0*1.44DO)/ (X**5 ) 
V6=(-120.D0*1.44D6)/(X**6) 

END IF 

F3= (-E+V1 )*F1*Z 
F4= ((-E+V1 ) *F2+V2*F1 )*Z 
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F5=( (- E+V1)*F3+2 . DO*V2*F2+V3*F1 )*Z 
F6= (( -E+V1 ) *F4+3 .DO*V2*F3+3. DO*V3*F2+V4*F1 ) *Z 
F7=((-E+V1) *F5+4 .DO*V2*F4+6 . DO*V3*F3+4.DO*V4* F2+V5* F1 )* Z 
F8=((-E+V1) *F6+5 . DO*V2*F5+10 . DO*V3*F4+10.DO*V4*F3+5 . DO*V5*F2 

+ +V6*F1 ) *Z 

c this is the steps we are moving from the center of the cell 
c towared the edge in order to calculate the wave function . 

H= (ABS ( 1.D-6*720.DO* (F2+.2DO*F3)/F8))**(1.D0/6 .DO) 

X=X+H 
IF (X. GT.250000 .) GOTO 250 

c these are the complex con j ugates of the wave 
c function and its derivatives and the complex con j ugate 
c of the nuclear potential. 

CV1=DCONJG(V1 ) 
CF1=DCONJG (F1 ) 
CF2=DCONJG(F2 ) 
CF3=DCONJG(F3 ) 
CF4=DCONJG(F4 ) 
CF5=DCONJG(F5 ) 
CF6=DCONJG(F6) 

c FPR this is the value of thelast part in the iteration fornrula . 

FPR= (H* (F1*CF1 ) +(H**2 ) /2 . *(F1*CF2+F2*CF1 ) +(H**3)/3 .*((F1*CF3/2.DO 
+ ) +F2*CF2+ (F3*CF1/2 . DO) ) +(H**4)/4 .*((F1*CF4/ 6.DO )+(F2*CF3/ 
+ 2.DO)+ (F3*CF2/2. DO)+( F4*CF1 / 6 . DO)) +(H**5)/5 .* (( F1*CF5 /24 
+ .DO)+(F2*CF4/6.DO)+(F3*CF3/4 . DO ) +(F4*CF2/6.DO ) +(F5*CF1 
+ /24 . DO )) +(H**6)/6 .*((F1*CF6/120.DO ) +(F2*CF5/24.DO ) +(F3*CF 
+ 4/12.DO ) +(F4*CF3/12.DO)+(F5*CF2/24 . DO ) +(F6*CF1/120.DO) 
+ ) +(H**7 ) /7.*( (F2*CF6/120. DO )+(F3*CF5/48 .DO)+(F4*CF4/36 . DO 
+ ) +(F5*CF3/48 . DO ) +(F6*CF2/120. DO )) +(H**8 )/8 . *((F3*CF6/240 . 
+ DO ) +(F4*CF5/144 .DO) +(F5*CF4/144.DO ) +(F6*CF3/240 . DO )) +( 
+ H**9 ) /9 .*((F4*CF6/720 . DO ) +(F5*CF5/576.DO) +(F6*CF4/720. DO)) 
+ +(H**10) /10 .*((F6*CF5/2800 .DO)+ (F5*CF6/2800.DO) ) +(H**11 ) /11 .*(F6 
+ *CF6/14400.DO)) 
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c PR this is the value of the first part in the iteration formula. 

PR=FPR* (V1-CV1) 
c FINT this is the last integral in the iterat ion formula . 
c INT this is the first integral in t he iteration fornn.ila. 

FINT=FINT+FPR 
INT=INT+PR 

F1=F1+H*F2+(H* *2)*F3/2 . DO+ 
+ (H* *3)*F4/6.DO+(H**4)*F5/24.DO+(H** 
+ 5)*F6/120.DO 

F2=F2+H*F3+ (H**2 )*F4/2. DO+(H**3)*F5 /6.DO+ (H**4)* 
+ F6/24 .DO+(H**5 ) *F7/ 120 .DO 

3 CONTINUE 

250 X=X-H 
H=250000.-X 

OPEN (4, 'SS .DAT') 
WRITE (4,42 )X ,F1 ,F2 

F1=F1+H*F2+(H**2)*F3/2.DO+ 
+ (H**3 )*F4/6.DO+(H**4)*F5/24.DO+(H* * 
+ 5)*F6/120.DO 

F2=F2+H*F3+ (H**2)*F4/2.DO+(H**3) *F5 /6.DO+(H**4)* 
+ F6/24 .DO+(H**5 )*F7/ 120.DO 

X=X+H 

OPEN(l, 'S.DAT') 
WRITE(1,42)X,F1,F2 

42 FORMAT (F15.4,3X ,G16 .9 ,G16.9,4X ,G16 .9, G16 .9) 

V1=( 1.44D6 )/(X) - (2.*1. 44d6*X**2)/R* *3 
V2=(-1.44D6)/(X**2)-4.*1.44d6*X/R**3 
V3=(2.D0*1.44D6)/(X**3)-4.*1.44d6/R**3 
V4=( - 6 .D0*1.44D6)/(X**4) 
V5=(24.D0*1.44DO)/(X**5) 
V6=(-120.D0*1.44D6)/(X**6) 
F3= (-E+V1 )*Fl*Z 
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F4= (( -E+V1 )*F2+V2*F1)*Z 
F5= (( -E+V1)*F3+ 2.DO*V2*F2+V3*F1)*Z 
F6= (( -E+V1)*F4+3 . DO*V2* F3+3.DO* 

+ V3*F2+V4*F1 )*Z 
F7= (( -E+V1 ) *F5+4.DO*V2*F4+6 .DO* 

+ V3*F3+4.DO*V4*F2+V5*F1 ) *Z 
F8=((- E+V1 ) *F6+5.DO*V2*F5+10 . DO* 

+ V3*F4+10.DO*V4*F3+5 .DO*V5*F2 
+ +V6*F1 ) *Z 

CV1 =DCONJG (V1) 
CF1=DCONJG (F1 ) 
CF2=DCONJG(F2) 
CF3=DCONJG(F3 ) 
CF4=DCONJG (F4) 
CF5=DCONJG (F5 ) 
CF6=DCONJG (F6 ) 

FPR= (H*(F1 *CF1 ) +(H**2)/2.*(Fl*CF2+F2*CF1)+ (H**3)/3. *((F1 *CF3/ 2.DO 
+ )+F2*CF2+(F3*CF1/2.DO)) +(H**4)/4.*((Fl*CF4/6 .DO) +(F2*CF3/ 
+ 2 .DO) +(F3*CF2/2.DO)+(F4*CF1 /6.DO))+(H**5)/5 .*(( Fl*CF5/ 24 
+ .DO) +(F2*CF4/ 6 .DO)+(F3*CF3/ 4.DO) +(F4*CF2/6.DO) +(F5*CF1 
+ /24 .DO )) +(H**6 )/6.*((F1*CF6/120 .DO) +(F2*CF5/ 24 . DO) +(F3*CF 
+ 4/ 12 .DO) +(F4*CF3/ 12.DO) +(F5*CF2/24.DO)+(F6*CF1 / 120. DO) 
+ ) +(H**7)/7.*((F2*CF6/ 120.DO) +(F3*CF5/48.DO)+ (F4*CF4/36 .DO 
+ ) +(F5*CF3/ 48 .DO) +(F6*CF2/ 120.DO )) +(H* *8)/8.* (( F3*CF6/240 . 
+ DO ) +(F4*CF5 /144.DO)+(F5*CF4/144 .DO)+(F6*CF3/240.DO)) +( 
+ H**9)/9.*((F4*CF6/720.DO) +(F5*CF5/576.DO) +(F6*CF4/720.DO) ) 
+ +(H**10)/10.*((F6*CF5 /2800.DO) +(F5 *CF6/2800 .DO)) +(H**ll )/11 .* (F6 
+ *CF6/ 14400. DO )) 

PR=FPR* (V l-CVl ) 

INT=INT+PR 
FINT=FINT+FPR 

CC=(2./9.6364E-8) *CF1*F2 
Yl=DBLE (CC) 
Y2=DBLE (FINT) 
Y3=DBLE(INT) 
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Y4=INT-Y3 

WRITE(S0,19)1 
WRITE (SO, 20)Y4 
WRITE(50,21)Y2 
WRITE(50,22)Y1 
DER= (Y3+Y1)/Y2 
DEI=Y4/Y2 
E=E+DER 
E=E+(0.00,1.DO )*DEI 
LAMDA=2.*DEI/6.58217E-16 
WRITE(SO,*) 
WRITE(S0,8) E 
WRITE(50,9)DER 
WRITE(50,10)DEI 
WRITE(S0,11) LAMDA 
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IF (CDABS(DER) .LT.1.D-15) GOTO 66 
IF(J.GT.2) GO TO 66 
GO TO 6 

19 FORMAT (2X,'NO. OF ITERATIONS= ', I8 ) 
20 FORMAT (2X,'INT.=' ,G16 .9 ,2X,G16 .9) 
21 FORMAT (2X,'FINT.='G16 .9,2X,G16 .9) 
22 FORMAT (2X, ' CC ='G16 .9,2X,G16 .9) 
9 FORMAT (4X,'DE REAL =' , G16 .9,3X,G16 .9) 
8 FORMAT (4X,'THE ENERGY=',G16.9,3X,G16 .9) 
10 FORMAT (4X,'DEIMAG . =' ,G16 .9,3X,G16 .9) 
11 FORMAT (4X,'LAMDA =' ,2G16.9 ) 

STOP 
END 


