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ABSTRACT 

The HEGAR classification of gas cooled reactor for cod-

ing human errors is developed. The classification describes 

the general systems, subsystems, and components of HTGR. 

This classification is flexible to permit expansion, change, 

added for any system, subsy stem, and component and it can be 

adapted to any HTGR design . 

This study shows the importance of human error in Fort 

St. Vrain, HTGR to safety analysis. Human errors contributed 

38.4% to the total reported events. The major sources of 

human error based on manual review of LER's records from 

May 30, 1974 to December 30, 1977 are maintenance error in 

improper handling, did not check/ test, or improper setting 

and administrative errors in procedural deficiencies . The 

systems most frequently involved in human errors are main 

reactor coolant system (38.4 %) , auxiliary electric power 

system (23.3%), reactor protection system (16.4%), and radio-

active waste treatment system (9 .6%) . 

Though the systems most frequently involved are differ-

ent in HTGR and LWR, the components most frequently involved 

show the same pattern. Valves were involved in 15.1% of the 

human errors, while switches contributed 13 . 7% to the human 

error population. Pumps (8.2%) and control rods (6.8%) were 

the second leading category. 



i v 

The failure causes we r e due to p r ocedural deficiency 

(1 7 . 8%) , improper handling (13.7 %), and did not test/check 

(11 . 0%). 

Pat tern recognition tec hniques were u t i l ized in the 

analy s is of the data and the ide ntification of generic and 

s ystem specific problems . 
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I. INTRODUCTION 

The relevance of human errors to radioactivity release 

and radiation exposure of both the public and workers is con-

sidered due to its importance to safety analysis (1). Human 

error and other combination of failures have recently con-

tributed to the ill-controlled accident of the Three Mile 

Island nuclear power station of Metropolitan Edison Company 

( 2) • 

The purpose of this study is to estimate the human errors, 

and failure (error) rates with 90% confidence bounds based on 

actual nuclear reactor operating experience of Fort St.Vrain 

reactor (HTGR), and to identify the most frequently occurring 

human errors, failure mode, and error consequences for the 

period from May 30, 1974 to December 30, 1977. Also, the im-

pacts of human errors on plant systems, components, and on 

the environment are evaluated for the same duration of ex-

perience . 

The Reactor Safety Study (RSS) WASH-1400 estimated the 

public risk in the operation of U.S. commercial power plants 

which could result from potential accidents in light water 

reactors (LWR's) (3). 

The risks were estimated because there have been no nu-

clear accidents to date resulting in risk to the public. The 

methods used to develop the risk estimates were based on 

event trees and fault trees techniques which were used to 
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define potential accide nt paths a nd their likelihood of 

occurrence. Since no actuarial data base for human error 

rates in nuclear power plants exists, it was necessary to 

obtain data from other industries f o r the relevant operation 

tasks and with good judgment of technica l personnel. 

Accident Initiation and Progression Anal ysis (AIPA) 

study has been applied to obtain guidance i n choosing nuclear 

s a f e t y research and development that is most worthwhile for 

HTGR nuclear power plants (4, 5). The pro ba b i l istic techniques 

u sed a r e similar t o those employed in the RSS for LWR's , 

WASH-14 00, which are based on initiating e v ent se l ection , 

ev e nt/fault/ tree construction , block diagram , probab ility 

evaluation , and consequence e valuation . The stu dy was di-

v ided int o two p hases. Phase one; the pre limi nary phase: 

(1) est ablishes a framework f or the ranking of HTGR abnormal 

ev e nt sequences with respect to safety as a n aid in the 

s e l ection of future efforts, (2) provides qu a n t i tative dat a 

f or t he identification of risk and design t asks , (3) provides 

bases for selection of syste ms suitable f or t he studies of 

e c onomic aspects of alternative d e sign options for the safet y -

r elated systems, and (4) provides ins i ghts as t o wh ich a s pects 

of t he risk ana l y sis need t o be emphasized in the future to 

achieve necessa ry matur i ng o f the probabilistic methodology . 

Seventeen initia ting events were chosen and evaluated , t hese 

be ing r epresentative o f the c omplete spec t r um of classes of 
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potential radioactive sources in the plant and having po-

tent ially the highest probabilistics of release within each 

class . In phase two the study was extended to consider a 

much broader range of accident sequences in terms of both an 

i ncreased number of initiating events and a wider spectrum 

of plant responses to core heat up transients. 

Joos et al . (6) developed a computer program for storing 

t h e human error information for PWR ' s, BWR's between June 1, 

1973 and June 30, 1975 . Human errors, error rates, and 95% 

confidence interval were calculated. 

Husseiny et al. (7) introduced a taxonomy of occurrences 

as a framework for data collection. Human factors effects on 

Fort St . Vrain were investigated in regard to human and sys-

t ems interfaces . Also Mean Times Between Failure (MTBF) were 

calculated for both routine and vigelance tasks. 

Sabri et al . (8) suggested a taxonomy of operation tasks 

a nd operator errors . A scheme for collection of data on re-

liab ility of nuclear power plants was outlined. The scheme 

was designed for sorting and storing of failure information 

i n a data library for ease of retrieval by reliability anal-

ysis codes . Kalman filter techniques, to evaluate the oper-

ator performance , to predict and to update human failure 

rates were introduced . 

Danofsky et al . (9) developed a model to examine the 

i n fluence of operator performance on reactor shutdown system 
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reliability. The model provides a tool to monitor the oper-

ator response in different operational tasks. Also the model 

allows the use of existing data on human response. 

A systematic approach (10) was developed to analyze 

operation experience in commercial nuclear power plants by 

providing a measure of the gain and deterioration in the 

operation skill. The model provides a tool to deal with 

collective performance of plant operators or to examine the 

skill of individual operators. The model was tested for 

Dresden I, Yankee Rowe, and for LWR experience in 1974 and 

1975. 

Kherich et al. (11) reviewed nuclear power plant exper-

ience to determine causes, frequency, and duration of forced 

shutdowns of commercial nuclear power stations. Correlations 

were made among component failure rates, human factors, plant 

sizes , reactor types, and plant downtime. The study provides 

further improvement on availability which can be achieved by 

identification of causes of forced outages through parametric 

analysis of relevant operation data. 

NSRG (1) developed a computer data management program 

for storage, handling, updating and retrieval of information 

and compiled data extract from the LER's. An operator-

analysis statistical information system (OASIS) using 

alphameric encoding scheme of LER records, and a general event 

classification system (GENCLASS) containing more detail 
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des cription of event were presented. An analysis of the 

int errelationships between operator and human error rates, 

and different operation parameters were conducted. Several 

statistical techniques for use in data smoothing and for 

interpretation of LER statistics were examined, and a linear 

recursive Kalman filter were obtained for data smoothing, 

prediction and updating of operator error rates base on a 

l earning model. 

Sabri and Husseiny (12) introduced a human model based 

on cybernetic interactions and allowed for use of available 

data from psychological experiments . The operator model was 

iden tified and integrated in the control and protection sys-

tem . The availability and reliability were given for dif-

ferent segments of the operator tasks and for specific per-

iod of the operator life. 

Cho (13) developed a computer system to retrieve his-

torical and current data from LER ' s. The Weibull Probabil-

ity Plotting method was applied to operator error data, and 

estimates of scale and shape parameters were obtained and 

compared with computer results . It was concluded that the 

Weibull plotting method is suitable to estimate Weibull param-

eters for operator errors that have occurred during operation. 

Three corrunercial power plants were used to evaluate the code 

a nd operator error s . 

Azarm (14) constructed a model i n prediction of future 
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data for operator error rate for two different types of LWR's 

(PWR's, BWR's) with respect to power rate and time, depending 

on smoothing the data extracted from LER's, estimating a 

static model, and estimating a dynamic model. It was con-

cluded that the learning process of BWR's is almost inde-

pendent of power, but in PWR's the power of the reactor is 

one of the important factors on the learning process. 

The general description and the safety features of 

typical HTGR are given in Chapter II. Chapter III describes 

the classification of the general systems, subsystems, com-

ponents of HTGR's, for coding the human error based on infor-

mation provided in LER records. Appendix A lists the sub-

system abbreviation, components, failure mode, and other 

classification codes. Brief description of the events, their 

causes and consequences, and the error population for each 

system based on extracted data from LER between May 30, 1974 

and December 30, 1977 for Fort St.Vrain reactor HTGR are 

given in Chapter IV. Method of analysis, failure signifi-

cance, number of errors, failure (errors) rates, 90% confi-

dence bounds, and the analysis of the distribution of human 

error over 43-month period are given in Chapter V. Finally, 

conclusions and recommendations for further work are provided 

in Chapters VI and VII. 
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II. HTGR GENERAL DESCRIPTION 

High temperature gas-cooled reactor (HTGR) is an ad-

vanced thermal reactor, that produces steam, using helium as 

t he primary coolant, graphite as the neutron moderator and 

as the structural portion of the fuel elements, and a uranium-

thorium fuel cycle. The fuel cycle is based on highly en-

riched uranium for the initial and make-up fissile material, 

thorium for the fertile material, with the bred U-233 being 

recycled at the earliest opportunity. Advanced system may 

use gas turbines. Ceramic fuel is used in the form of coated 

t horium/uranium carbide or oxide pellets (15). The use of 

t horium in the fuel cycle results in low fuel cost, conser-

vation of fuel and in adding the large deposit of thorium 

available to fuel reserves. 

The high-temperature and high thermal efficiency (about 

39%) of HTGR's result in economic and environmental advan-

tages; such as 

1. high performance through conservation of fuel, 

2. competitive cost, 

3 . lower thermal discharge because of its higher 

efficiency, 

4. lower release of radioactive waste because of the 

high integrity of fuel and the inert gas used as 

coolant, and 
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5. low consumption of raw materials because of high 

efficiency and use of thorium in the fuel cycle. 

Gas cooling makes it possible to achieve high operating 

temperatures at moderate pressures. Helium has the funda-

mental advantage that it always remains in the same phase, 

making complete loss of coolant no longer a problem. Among 

the important special features of helium are 

1. pure single-phase operation, no voids 

2. it absorbs essentially no neutrons 

3. inertness, both chemical and radioactive 

4. compatibility with water, air, and fuel 

5. total coolant loss is impossible, only depressuri-

zation (adequate cooling after shutdown is available) 

6. optical transparency permits visual control during 

fueling and maintenance operation. 

Graphite is an excellent moderator, which has been used 

in thermal reactors. Its low neutron-capture cross section 

places it high among moderator candidates. No neutrons are 

lost wihin the core through absorption in metallic fuel 

cladding or structural material supports. In addition to its 

nuclear characteristics, graphite is ideally suited to high-

temperature operation, since, unlike most materials, it in-

creases in strength at higher temperatures, reaching a maxi-

mum at about 4500°F, well above the reactor operating range, 

and continues to maintain significant strength at much higher 
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temperatures (16, 17). The attractive features of graphite 

can be summarized as follows: 

1. very low neutron capture cross section, 

2. excellent thermal conductivity, 

3. excellent mechanical strength even at temperatures 

well beyond the HTGR range, 

4. high specific heat, and 

5. ease of fabrication. 

Graphite provides an adequate sink in case of loss of 

coolant pressure. Nevertheless, high temperature graphite 

technology is still in the developmental stage. Cracks have 

occurred in the relatively low power plants operated until 

now. Thus, quality of graphite in HTGR's is yet to be im-

proved . 

The fact that experience in boilers and water coolants 

far exceeds utility experience in gas and liquid metal cool-

ants have affected the development of HTGR's and Liquid 

Metal Cooled Reactors. This is since earlier efforts of 

development have been devoted to Light Water Reactors (LWR's) . 
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III. HUMAN ERROR CLASSIFICATION, HEGAR: I 

In order to provide a format for coding failures, root 

causes, and consequences related to human errors in HTGR's 

it is convenient to develop a classification system appro-

priate for computer analysis and for data collection. The 

classification of Human Errors in Gas-cooled Reactors 

(HEGAR) developed here the general systems, subsystems, com-

ponents of HTGR, for coding the human errors based on in-

formation provided in the licensee event reports (LER's). 

This classification does not provide all systems for each 

particular design of HTGR, but it mainly includes most safety 

related systems. However this classification is flexible to 

permit expansion, change, added for any system, subsystem, 

and component, and it can be adapted to any HTGR design. 

The HEGAR classification is divided into ten systems, 

each system is represented by an alphabetical character as 

a letter coding (18-25). Name, abbreviation, description, 

redundant trains and equipments, function and purposes is 

presented for each subsystem. For the sake of comparison 

the WASH-1400 Code (3), and NCR Code (15) is given. The sys-

tem list is given in Table 3.1. The classification is given 

in Tables 3.2 to 3.9. 
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Table 3.1. System code 

Code 

A 

B 

c 

D 

System 

Auxiliary Electrical Power System 

Reactor Protection System 

Emergency Cooling System 

Main Reactor Coolant System 

Abbreviation 

AEPS 

RPS 

ECS 

MRCS 

E Prestressed Concrete Reactor Vessel System PCRVS 

F Auxiliary System AS 

G Radioactive Waste Treatment System RWTS 

H Instrumentation and Monitoring System IMS 

I Other Systems O 

J Unknown U 



Table 3.2. Subsystem of A: Auxiliary electrical power system 

Subsystem 

Off-Site AC 
Power System 

On-Site AC 
Power System 

On-Site DC 
Sources 

Auxiliary 
Equipment for 
AEPS 

Abbreviation Description and Function 

EPS-Of f Two AC power sources to supply the 
emergency power needs for EPF systems, 
and shutdown. (The preferred source.) 

EPS-DG There are two standby diesel generator 
sets to provide emergency, in-house power 
in sufficient quantity to drive all 
electrical auxiliaries that are essential 
for shutdown cooling. These generators 
are started automatically on loss of both 
off-site sources. 

EPS-DC 

EPS-EQP 

Two station batteries provide separate and 
normally independent sources of power for 
essential DC-powered auxiliaries and ser-
vices. Each battery is large enough to 
supply all shutdown direct-current loads 
for not less than one hour following loss 
of all alternating-current power. 

This includes transformers, cables, buses, 
protective devices, etc. 

WASH 
1400 
CODE 

Q 

Q, X 

Q 

Q 

NRC 
CODE 
CODE 

EA 

EB 

EC 

EG 



Table 3.3. Subsystem of B: Reactor protection system 

Subsystem Abbreviation 

Reactor Pro- RPERS 
tection Control 
Rod System 

Reactor Pro-
tection Logic 
System or Scram 
System 

Coolant Loop 
Protection 
System 

Circulator-
Trip System 

RPLS 
SS 

CLPS 

CTS 

Description and Function 

This system is made up of the control rod 
drive mechanisms, the control rods, and 
the hydraulic control modulus; these com-
ponents provide for the rapid insertion 
of the control rods when a trip condition 
exists. 

A general two-of-three logic system is used 
in the scram circuits of the plant protection 
system. Three independent sensing circuits 
are provided for each scram parameter (neu-
tron flux, temperature, pressure, moisture, 
etc . ) . 

WASH 
1400 
CODE 

3 

3 

Tripping of the two helium circulators and 3 
shutting off feed water and steam to and 
from the steam generator of one loop. The 
reactor remains in operation, and the control 
system limits plant power to 50% of rated 
power during a loop shutdown. A logic system 
(two out of three) is provided for the loop 
to shutdown in the event of high moisture 
level in one loop, both loop circulators 
tripped, etc. 

It is a shutting down of a single helium 3 
circulator. The reactor and both cooling 
loops remain in operation following the 
trip of a single circulator. The tripping 
of two circulators in a loop results in a 

NRC 
CODE 

RB 

IA 

CJ 

CJ 

I-' 
w 



Table 3.3 (Continued) 

Subsystem Abbreviation Description and Function 
WASH 
1400 
CODE 

Steam-Water 
Dump System 

Reactor 
Reserve 
Shutdown 
System 

SWDS 

RRSS 

loop shutdown . A logic system is provided 
for each of the four circulators to shut 
them down in the event of loss of bearing 
water, over-and-under speed, and other 
malfunctions . 

The detection of moisture in a helium loop 3 
or high primary-coolant pressure results in 
f eedwater shutoff and steam and water dump 
of a steam generator . Each stem generator 
has its own dump system . The sequence of 
events in a dump is first, to close off the 
feedwater supply while simultaneously 
tripping the reactor; then second, to open 
both parallel dump valves . 

A reactor reserve shutdown system function- 3 
ally independent of the normal control rod 
system is provided. Neutron absorbing ma-
terial, in the form of spheres of boron, carbide 
in graphite, will be stored in a hopper in 
each refueling penetration. This absorber 
material can be released from hoppers into 
the core, if required. The system operates 
by breaking a rupture disc with gas pressure, 
and letting the boron carbide fall into the 
reserve shutdown hole in the control element. 

NRC 
CODE 

IC 



Table 3.4. Subsystem of C: Emergency cooling system 

Subsystem 

Primary 
Coolant Loop 
Helium Circu-
lator 

Primary 
Coolant Loop 
Steam 
Generator 

Core Auxil-
iary Cooling 
System 

Core Auxiliary 
Cooling System 
Auxiliary 
Circulator 

Abbreviation 

PCL-HC 

PCL-SG 

CACS 

CACS-AC 

Description and Function 

See Main Reactor Coolant System. Each 
helium circulator of MRCS can use to 
circulate sufficient coolant to remove 
decay heat. MRCS is designed as residual 
heat removal. 

See Main Reactor Coolant System. The 
function of SG is to transfer the required 
decay heat load. 

WASH 
1400 
CODE 

M,B 

M 

CACS is an independent mean of cooling the M 
reactor in the event that none of the pri-
mary coolant loops are available. CACS has 
sufficient cooling capacity to provide ef-
fective core cooldown and prevent damage to 
either the core or primary coolant system 
components. CACS is designed as another 
separate system for residual heat removal. 
CACS consists of two independent auxiliary 
core cooling loops for the 2000 MWt - reactor. 
Each loop contains an auxiliary circulator, 
an auxiliary heat exchanger, an auxiliary 
primary cooland shutoff valve, and an 
auxiliary circulator service system. 

The auxiliary circulator consists of M 
electric-motor-driven compressor installed 
in auxiliary loop penetration. AC pumps 
the cold helium through the upper cross-duct 

NRC 
CODE 

CF 

CF 

SF 

SF 

I-' 
Ul 



Table 3.4 (Continued) 

Subsystem Abbreviation 

Core Auxiliary CACS-ACSS 
Cooling System 
Auxiliary Circu-
lator Service 
System 

Core Auxiliary 
Cooling System 
Auxiliary Heat 
Exchanger 

CACS-AHE 

Core Auxiliary CACS-APCSV 
Cooling System 
Auxiliary Primary 
Coolant 
Shutoff Valve 

Description and Function 

into the core top plenum for circulation 
through the core before beginning another 
auxiliary cooling loop cycle. 

The auxiliary circulator service system 
provides cooling to the circulator motor 
starter windings. ACSS transports heat 
from the heat exchanger to an ultimate 
heat sink which operates on either the 
water/air or water/water principle. 

WASH 
1400 
CODE 

M 

The auxiliary heat exchanger is designed M 
to provide adequate heat removal during all 
postulated transients and accidents. The 
loss of one CACS loop will not prevent the 
remaining heat exchangers from providing 
the required heat removal capability. 

The function of the auxiliary primary 
coolant shutoff valve is to limit back-
flow through an auxiliary coolant loop 
when the main circulators are operating. 

M 

NRC 
CODE 

SF 

SF 

SF 



Table 3.5. Subsystem of D: Main reactor coolant system 

Subsystem 

Main Loop 
Cooling 
System 

Primary 
Coolant 
System 

Abbreviation 

MLCS 

PCS 

Description and Function 
WASH 
1400 
CODE 

The system consists of primary and l 
secondary coolant systems. Its function 
is to generate steam in a main superheat-
reheat steam cycle for subsequent conver-
sion into electrical energy by turbine-
generator unit. Steam is generated by 
circulating primary coolant through the 
core in series with the steam generators 
via the main circulators, which are driven 
by cold reheat steam. In addition to the 
power operation function, the main cooling 
loops constitute the principal heat removal 
system during shutdown of the reactor. 

The primary coolant system consists of four 1 
primary coolant loops for the 2000 MWt re-
actor. Each loop contains a steam generator, 
a circulator, and a main helium shutoff 
valve. The function of PCS is to remove 
core heat by circulating helium through the 
core in series with the steam generators. 
The PCS is contained within the PCRV so 
that no primary coolant helium leaves the 
PCRV during its main function of trans-
ferring heat from the core to secondary 
coolant system. 

NRC 
CODE 

CB 

CB 



Table 3.5 (Continued) 

Subsystem 

Primary 
Coolant Loop 
Helium 
Circulator 

Abbreviation 

PCL-HC 

Primary PCL-MCSS 
Cooland Loop 
Main Circulator 
Service System 

Description and Function 

HC consists of a single-stage axial-flow 
helium compressor and single-stage steam 
turbine drive together with a water-lubri-
cated bearing system and a helium buffer 
seal system. The circulators are designed 
to operate under normal and abnormal con-
ditions, including 
1. Normal plant operation between rated 

load and minimum load. 
2. Plant startup. 
3. Routine plant shutdown for refueling 

or other maintenance. 
4. Plant shutdown following a reactor 

scram, turbine trip, loop shutdown, 
steam leak, or primary coolant system 
depressurization. 

MCSS provides the following 
1. A continuous noninterruptible supply of 

high-pressure, clean, cooled water for 
circulator bearing support while the 
circulator shaft is rotating. 

2. A continuous cooling capability to re-
move heat from the water used to sup-
port the circulator bearings. 

3. A drain water recovery capability which 
prevents reduction of system water in-
ventory when supplies from external 
sources are interrupted. 

4. A circulator brake and static seal 
actuating capability. 

WASH 
1400 
CODE 

1 

l 

NRC 
CODE 

CB 

CB 



Table 3.5 (Continued) 

Subsystem 

Primary 
Cooland Loop 
Steam Gen-
era tor 

Primary 
Cooland Loop 
Main Helium 
Shutoff Valve 

Secondary 
Coolant 
System 

Abbreviation 

PCL-SG 

PCL-MHSV 

scs 

Description and Function 

5. A supply and purge from each main helium 
circulator of buffer helium to the lower 
helium labyrinths. 

6. A supply of clean, high-pressure cooled 
water for system make up purpose and for 
backup to the water supplies described 
under item (1). 

WASH 
1400 
CODE 

The six steam generation modules are 1 
grouped together and called one steam 
generator. Each steam generation module 
has an evaporator-economizer-superheater 
section and a reheater section . Hot helium 
flows through the generator entering at the 
reheater and leaving at the economizer end. 
Steam and water flow counter-current to 
helium through the economizer, evaporator, 
and reheater section, but co-current through 
the superheater section . 

The purpose of MHSV is to prevent reverse 1 
flow through a nonoperating circulator. 
Each main circulator is provided with a 
primary coolant shutoff valve. 

It consists of the following major com- 1 
ponents: consenser, low-pressure feedwater 
heater, deaerating feedwater heater heater, 
steam generator feedpump and drive, high 
pressure feedwater heaters, plant and loop 
feedwater piping, main steam sections of 

NRC 
CODE 

CB 

CB 

cc 



Table 3.5 (Continued) 

Subsystem Abbreviation Description and Function 

the steam generators, loop and plant main 
steam piping, high pressure turbine and 
main bypass system, cold reheat p lant 
piping, circulator turbines, cold reheat 
steam at temperation, cold reheat loop 
piping, reheater sections of the stem 
generators, loop and plant hot reheat 
piping, and intermediate-pressure and low-
pressure t urb ines and bypass system which 
di s charge s team to the condenser. 

WASH 
1400 
CODE 

NRC 
CODE 

N 
0 



Table 3.6. Subsystem of E: PCRV system 

Subsystem 

PCRV 

PCRV-
Pressure 
Relief 
System 

PCRV-
Cooling 
System 

Abbreviation 

PCRV 

PCRV-PRS 

PC RV-CS 

Description and Function 

It includes the concrete, reinforcing 
bars, prestressing systems, cavity and 
penetration liners, penetration closures, 
and lines cooling tubes. The PCRV con-
tains the primary coolant system, with 
its associated equipment for controlling 
circulation, and portions of secondary 
coolant system. The ves sel is leak 
tight within specified limits and is 
capable of resisting normal operating 
loads plus loads under upset, emergency, 
and faulted conditions. 

WASH 
1400 
CODE 

It is provided for backup protection S 
against overpressure in the incredible 
event that all plant protection system 
action should fail. The system will limit 
the PCRV to the maximum cavity pressure. 
The system consists of two redundant pres-
sure relief trains. Either of which is 
adequate to prevent exceeding the PCRV 
maximum cavity pressure in the event of any 
credible overpressure accident. 

The PCRV concrete requires protection against 
thermal damage from reactor heat. To insure 
this, cooling tubes, divided into two system, 
are fastened to the concrete side of the steel 
membrance by continuous fillet. Each of the 
systems is capable alone of controlling con-
crete temperature within safe limits . 

NRC 
CODE 

SA 

SA 

SB 



Table 3.7. Subsystem of F: Auxiliary system 

Subsystem 

Circulator 
Auxiliary 
System 

Helium 
Purification 
System 

Helium 
Storage 
System 

Liquid 
Nitrogen 
System 

Abbreviation 

CAS 

HPS 

HSS 

LNS 

Description and Function 
WASH 
1400 
CODE 

It supplies buffered helium for injection, 
bearing water and emergency drive water for 
the water turbine. All major equipment in 
both the buff er helium subsystem and the 
bearing water subsystem--pumps, compressors, 
heat exchangers, and filters--are duplicated. 

It provides purified helium for circulator 
seals and the top PCRV seals. It purifies 
helium after the initial fill at plant com-
missioning, before it is pumped to storage, 
and after a boiler-tube failure. The system 
also collects active impurities passing 
through it. The system has two, full-size 
processing trains; one is operating, while 
the other is in activity decay, regeneration, 
or standby. 

It provides storage volume for plant helium 
inventory during depressurization, furnishes 
a supply of high-pressure purified helium 
for plant use. It consists of the following 
major components: High pressure supply tanks, 
low pressure storage tanks, oil absorber, 
transfer compressor, and valves and pumps. 

It is provided in the plant to furnish the 
temperature required by the low-temperature 
charcoal absorbers in the helium purif ica-
tion system and a source of cold, dry gas 
for use in the primary coolant moisture 

NRC 
CODE 

AD 

PC 

AD 

PC 



Table 3.7 (Continued) 

Subsystem 

Reactor Plant 
Cooling Water 
Systems 

Reactor 
Building 
Ventilation 
System 

Abbreviation 

RPCWS 

RBVS 

Description and Function 

monitors. The system consists of nitrogen 
recondensers, storage vessels, and inter-
connecting piping system. 

WASH 
1400 
CODE 

They are comprised of three systems; viz: E 
1. Two closed demineralized-water loops 

serving the PCRV, core support structure, 
helium purification fuel storage, fuel 
purge, and the liquid nitrogen system. 

2. The service water system serving the 
water turbine coolers, helium transfer 
compressors, buffer helium and circulator 
bearing coolers, radwaste pumps and com-
pressors, the closed demineralized-water 
loop coolers, and the booster service 
water system. 

It has restricted leakage features through 
the use of appropriate joint designs and 
sealing materials. It is a "once through" 
type with separate supply and exhaust sys-
tems. The supply system has two 100% ca-
pacity subsystems. The exhaust system has 
three 50% capacity subsystems. 

z 

NRC 
CODE 

WB 

AA 



Table 3.8. Subsystem of G: Radioactive waste treatment system 

Subsystem 

Waste 
Processing 
System--
Liquid 
Handling 

Abbreviation 

WPS-LH 

Description and Function 
WASH 
1400 
CODE 

The (liquid waste handling) system provides N 
limited holdup capacity to permit monitoring 
and controlled release of the liquid wastes, 
because significant quantities of liquid 
radioactive waste arise only as the result 
of planned operations (decontamination of 
equipment following refueling, or adsorber 
regeneration}. The system provides two 3000-
gal liquid-waste-receivers and one 3000-gal 
liquid-waste-monitoring tank. In addition a 
pair of demineralizers, with the resin con- · 
tained in replaceable cartridges, would be 
provided to permit processing of any solu-
tions having unexpectedly high radioactivity. 
Disposal of liquid wastes could be achieved 
by pumping at controlled rate into the 
cooling-tower blowdown line for dilution 
prior to release from the plant site. Al-
ternatively the use of filters and a re-
verseosmosis unit in the liquid-waste-
purification train to supplement the resin-
bed demineralizer could provide high-purity 
water suitable for reuse within the plant. 
There would be no liquid-waste release from 
the system, and all radioactivity removed 
could be shipped off-site in solid form. 

NRC 
CODE 

MA 



Table 3 . 8 (Continued ) 

Subsystem 

Waste 
Processing 
System--
Gas Handling 

Waste 
Processing 
System--
Solid 
Handling 

Abbreviation 

WPS-GH 

WPS-SH 

Description and Function 
WASH 
1400 
CODE 

Gaseous wastes result primarily from N,8 
regeneration of the low-temperature 
absorption beds in the helium purification 
system. The gas contains essentially only 
85Kn. The gas handling system typically 
provides two 1100-f t3 surge tanks together 
with compressors to permit temporary stor-
age and decay of gaseous waste. The gas 
can be processed by the radioactive-gas 
recovery system, which separates the gas 
into a nonradioactive stream for release 
to the atmosphere and a radioactive con-
centrate. This concentrate is stored with-
in the operating helium-purification sys-
tem. The radioactive gaseous wastes can be 
withdrawn from the system for disposal by 
off-site shipment or by controlled release 
to the atmosphere. 

Solid radioactive waste, other than spent 
f uel, has a low radioactivity level. 
Tritium can be removed from the h elium-
purification system as solid with the 
titanium getter unit. Other solids in-
clude l aboratory waste, fi lters, and 
used reflector blocks . 

N 

NRC 
CODE 

MB 

MD 



Table 3.9. Subsystem of H: Instrumentation and monitoring system 

Subsystem 

Area Radia-
tion Monitor-
ing System 

Process 
Radiation 
Monitoring 
System 

Abbreviation 

ARMS 

PRMS 

Description and Function 

The ARMS has about 20 area monitors. 
They are: 
1. Refueling--machine control room 
2. Hot-service-facility platform 
3. Hot-service-facility blower suction 
4. Instrument room-analytical board 
5. Valve-operating stations (2) 
6. Radiochemical laboratory 
7. Stairwells (3) 
8. Walkways (4) 
9. Operating area (2) 

10. Reactor-plant-exhaust filter room 
11. Office area 
12. Control room 
13. Condensate-demineralizer area 
Monitors are chosen to match the expected 
radiation levels. They are including 
equipment monitors, liquid monitors, gas 
monitors, and particulate and iodine 
monitors. 

Its function is to monitor certain plant 
processes to detect radioactivity in excess 
of acceptable limits. 
1. Steam and water dump tank monitoring 
2. Loop reheat steam header monitoring 
3. PCRV relief-valve piping monitoring 
4. Loop reheat steam header condensate 

monitoring 
5. Helium circulator bearing water drain 

monitoring 

WASH 
1400 
CODE 

NRC 
CODE 

BA 

MC 



Table 3.9 (Continued) 

Subsystem 

Reactor 
Control and 
Information 
System 

Abbreviation 

RCIS 

Descrip t ion and Fu nc tion 

6 . Radioactive-liquid a nd gas-waste exhaust 
mon itoring 

7. Rad ioactive- ga s -waste compressor c ool ing 
water monitori ng 

8. Reactor-plant ventilatio n (low and long 
range) monitoring 

9. Building-air radioactivity monitoring 
10. Air-ejector exhaust line monitoring 
11. Primary coolant system monitoring 

WASH 
1400 
CODE 

12. Helium-purification-system outlet monitor-
ing 

The control-rod drives are controlled by the 
operator with switches on the reactor con-
trol board. Electric power to each drive 
mechanism is supplied through a reversible 
motor starter. The contactor coils are 
energized directly by control switches. 
There are three sets of controls. 
1 . individual rod control 
2. rod-group selection and control 
3 . automatic rod control 
Each set can be operated under appropriate 
conditions. Position indicators are provided, 
one for each drive. A flashing feature on 
the limit lights indicates: which rods are 
being driven at any instant and in which 
direction. 

NRC 
CODE 

IE 



Table 3.9 (Continued) 

Subsystem Abbreviation 

Reactor and RICI 
In-core 
Instrumentation 

Description and Function 
WASH 
1400 
CODE 

1. Nuclear measurements: C 
a. Neutron sensors: They are out-

of-core to measure neutron flux 
and gamma exposure rate. 

b. Installation sensors: They are 
installed inside the PCRV. 

c. Channels: They use to prevent con-
trol rod withdrawal without source 
indication and to produce the flux-
controller input signal. 

2. Temperature measurement: 
a. Thermocouples: Used to increase 

various core, coolant, and steam 
generator, circulator, and core-
support temperatures. 

b. Acoustic thermometry: (Peach Pottom) 
As an added in-core temperature-measur-
ing system. 

3. Neutron sensors for in-core monitoring: 
It provides information on the neutron 
flux distribution. 

4. Failed-fuel-element detection: They 
are located by physical inspection 
during fuel handling. 

5. PCRV-instrumentation and data acquisi-
tion: The system includes signal con-
ditioning, programming , excitation, and 
alarms required for monitoring vibrating-
wire strain gages etc. Output of the 
system appears on printed tape and 

NE 
CODE 

IB 

IV 
co 



Table 3.9 (Continued) 

Subsystem Abbreviation Description and Function 

punched paper tape for further computer 
processing. The system can continually 
or intermittently monitor all the chan-
nels or selected channels. 

WASH 
1400 
CODE 

NRC 
CODE 
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IV. DATA CLASSIFICATION AND ERROR POPULATION 

For the 43-month period from May 30, 1974 to December 30, 

1977, the LER's were manually reviewed to extract events re-

lated to human error for the Fort St.Vrain, HTGR. An event 

occurring during startup period or normal operation (con-

struction period not included) which has involved human 

errors; such as, operator error, human maintenance error, or 

administrative error is recorded. Human error in design or 

installation was not considered . 

Operator errors include only those errors directly at-

tributable to licensed operators only which are not caused by 

deficiencies in procedures or by failure of component or in-

strumentation. Operator errors must be distinguished from 

system errors which involve inadequate or the lack of opera-

tion procedures, instruments, logistics or personnel (6, 26). 

An operator performing a task incorrectly because a checklis t 

procedure gives the operator incorrect operation instruction 

is not considered as an operator error. Errors in chemical 

analysis, testing and calibration are considered as operator 

errors. 

Maintenance errors include only those directly attribut-

able to maintenance personnel and not those caused by de-

ficiencies in maintenance procedures. Component failures 

that may have been avoided by more stringent preventative 

maintenance are not considered. Errors in filter changing 
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and installation of equipment after commercial operation be-

gan is included among maintenance errors. 

Administrative errors basically include all those human 

errors not directly attributable to operator or maintenance 

or installation personnel. Examples include errors or de-

ficiencies in procedures, calculational errors, judgmental 

errors and insufficient control over plant operations. 

The taxonomy given in Table 4.1 is designed such that 

information of great importance are included. Emphasis is 

placed upon subsystems and components involved, number of 

components involved, the failure mode, the effect of the 

error on the subsystems and components involved, the effect 

of the error on environment, mode of the human error (omis-

sion/commission, common mode/recurring unusual) , and a 

very brief description of each event , its cause and conse-

quence. The classification in Chapter III and component 

code, failure mode code , subsystem abbreviation in Appendix 

A are used for coding human errors in Table 4.1 . 

The human events are then classified for anal ysis. 

Error population for each subsystem and component involved , 

type of error, failure mode , type of the effect of the error 

on the involved subsystem and component, type of the effect 

of the error on environment, and the type of mode of the 

human error are collated and categorized by system , and they 

are presented in Table 4.2 through Table 4.19. 



Table 4.1. Error leadin9: to si9:nif icant events 
. 

Cl . . H 
0 z . >t 'tl 

0 .µ Q) . z ·rl s :> .µ r-l Q) r-f c Q) ·rl Q) Q) .µ 0 
Q) tJ1 4-l u o.c .µ (/) :> 
'tl rtl Q) rtl >t rt! >t c 
H 0.. p:: ~8 Cl (/) H 

1 36 092176 FSV 053074 RPCRS 

2 37 093028 FSV 060374 PCL-HC 

3 37 093706 FSV 061074 RPCRS 

4 38 095383 FSV 081674 EPS-DG 

5 40 096069 FSV 092474 RPCRS 

6 42 097144 FSV 103174 EPS-DG 

.µ 
C'tl 
Q) Q) 
c :> 
Or-f o.co 
E :> 
0 c 
UH 

Rod 

Valve 

CRD (drive 
mechanism) 

Switch 

Connectors 

Switch 

"t1 
I Q) 
0 :> 
o.c~ 
E o 
0 :> c c .µ 
UC 0 0 c 

H Q) 
44 .µ E .µ c 
0 (/) u Q) u 0 .µ Q) .µ Q) o.c . c 44 Ill 4-l s 
0 Q) 4-l >t 4-l 0 z c ril (/) ril u 

2 N N 

u D D 

1 D F 

1 F F 

u N F 

1 F D 



Procedural 
Deficiency-A 

Improper 
Setting-M 

Improper 
Operation-M 

Carelessness-M 

Installation-M 

0 N/A NO 

0 N/A NO 

0 N/A NO 

C N/A NO 

0 N/A NO 

Misadjustment-M 0 N/A NO 

33 

NO 

NO 

NO 

NO 

NO 

NO 

R 

c 

2 rod groups were with-
drawn as a test to de-
termine the difference 
in critical rod height 
with the core in air 
and helium. This move-
ment violated tech. 
spec. 
Several small valve 
packing leaks which 
were repaired caused 
a significant loss of 
plant helium. 
Inadv. operation of CRD 
drive motor with ship-
ping/manual tool in 
placed resulted in dam-
aging 3 bolts & 2 dowel 
pins & limit switches. 
A loss scr~w in a 
switch caused improper 
switch operation. 
During removal of con-
trol rods, a small 
quantity of moisture 
contacted the connec-
tors. This caused to 
destroy the pressure 
sealing capability of 
the connectors. 
The shutdown mechanism, 
actuated by tow oil 
pressure or engine over 
speed, had tripped. 
This caused the engine 
of diesel generator 
failed to start. 



Table 4.1 {Continued) 

. 
Cl . H 

0 z . ~ "Cl 
0 .µ Q) . z .,.; e: :> .µ .--i Q) .--i 

s::: Q) .,.; Q) Q) .µ 0 
Q) O'I 4-1 u 0.. .µ Ul :> 

"O m Q) m ~ m ~s:: 
H Al p:: ~8 Cl Ul H 

7 43 097491 FSV 112074 RCS 

8 44 099094 FSV 120174 WPS-GH 

9 44 099095 FSV 120974 WPS-GH 

10 45 100077 FSV 010475 PCL-HC 

11 47 099706 FSV 020475 WPS-GH 

.µ 
s:: "O 
Q) Q) 
s:: :> 
0 .--i 
0..0 e: :> 
0 s:: 
UH 

Event 

Valve 

Rupture 
disc 

Valve 

Rupture 
disc 

I 
"O 
Q) 

0 :> 
0.. .--i e: 0 
0 :> 

CJ s:: 
H 

4-1 
0 Ul .µ • s:: 
0 Q) z s:: 

1 

1 

1 

1 

s:: s:: .µ 
0 0 s:: 

Q) 
.µ e: .µ s:: 
u Q) u 0 
Q) .µ Q) 0.. 

4-1 Ul 4-1 s 
44 ~ 4-1 0 
~ Cl) ~CJ 

NO 

D F 

D F 

D N 

D F 



Event-A 

Left 
Closed-0 

Wrong 
Proced.-A 

Deenergized-0 

Wrong 
Proced.-A 

35 

0 N/A NO NO 

0 N/A RWL NO 

0 N/A RWL NO 

0 N/A NO NO 

0 N/A RWL NO 

A conflict in the limits 
for moisture in the pri-
mary coolant 

U The inlet valve of gas 
waste tank B had been 
handjacked shut from 
last release to prevent 
leakage. This caused a 
release uncontaminated 
gas to the ventilation 
system exhaust. 
The high flow exceeded 
the capacity of both gas 
waste compressors and 
blew the rupture disc. 
This caused a release 
uncontaminated helium. 
While removing tempor-
ary jumpers, it con-
tacted station ground 
blowing a fuse. This 
deenergized a relay 
causing to release the 
static seal on helium 
circulators 

U The regeneration com-
pressor was started, two 
valves opened disc in 
the gas waste vacuum 
tank to fail from over-
pressure. The procedure 
failed to specify the 
proper valve line-up 
prior to starting the 
compressor. 



Table 4 .1 (Continued) 
'O . I Q) 

0 0 :> . 04M . H e: 0 
0 .µ 0 :> i:: i:: .µ z >t 'O i:: 'O u i:: 0 0 i:: 

0 .µ Q) Q) Q) H Q) . z ·M ID~ i:: :> 44 t ID .µ i:: 
.µ M OM o rn CJ 0 
i:: Q) ·M Q) Q) .µ 0 °' 0 

.µ Q) .µ Q) 0.. 
Q) tJl ~ CJ °' .µ rn :> e: :> • i:: 44 rn ~ e: 
'O '° Q) '° >t '° >ti:: 0 i:: 0 Q) 44 ~ 44 0 
H Pl i:i::: µ.. 8 0 Ul H UH z i:: ~ Ul ~u 

12 48 099663 FSV 020775 EPS-DG Relay 1 F F 

13 48 105284 FSV 030475 RCS Event D 

14 52 103052 FSV 050775 EPS-DG Engine 1 D D 

15 54 103638 FSV 061775 EPS-DG Engine l NO NO 

16 58 106330 FSV 090575 EPS-DG Engine 1 NO NO 

17 58 100029 FSV 092275 RPCRS CRD 1 NO NO 



~ 
0 

Improper 
Setting-M 

Inadvertent 
Actuation-0 

Did Not 
Test-M 

Procedural 
Defic i ency-A 

Improper 
Setting-M 

Procedural 
Deficiency-A 

i::: -....... o 
i::: ·ri 
0 Cl) 

·ri Cl) 
Cl) ·ri 

-~ § 
68 

0 N/A NO 

0 NO 

0 N/A NO 

0 N/A NO 

0 N/A NO 

0 N/A NO 

37 

Q) 
1-1 
;:j 
Cl) 
0 
0.. x 
~ 

NO 

NO 

NO 

NO 

NO 

NO 

Diesel generators A 
started but the A bus 
relay sensing voltage 
was low, this caused a 
start signal to be not 
generated for B unit. 
Inadverte nt release of 
one hopper into the core 
and excessive moisture 
in main coolant caused 
a reactivity anomaly to 
be observed. 
Diesel engine tripped 
from high water jacket 
temperature. 
During DG overspeed 
testing, the engine ran 
at 1900 RPM and the max. 
recommended is 1650. 
This caused to shutdown 
the engine. 

The different pressure 
in fuel rack setting 
between A and B engines 
caused to shutdown one 
of the engines auto-
matically. 
Procedures did not re-
quire a check of the 
orientation position 
caused control rod drive 
to be inserted in im-
proper rotation. 



Table 4.1 (Continued) 
ro 

I Q) 
0 0 > . 0.. r-i 
H s 0 . .µ 0 > s::: s::: .µ 

0 . . ~ 'O s::: ro CJ s::: 0 0 s::: z 0 0 .µ Q) Q) Q) H Q) 
z z ·r-i s :> s::: :> IH .µ s .µ s::: 

.µ ........ Q) ........ 0 ........ 0 (/) () Q) () 0 
s::: Q) . ·r-i Q) Q) .µ 0 0..0 .µ Q) .µ Q) 0.. 
Q) tJ"I IH () 0.. .µ (/) :> s > • s::: IH Cl) 4-! s ro en Q) en~ en ~s::: 0 s::: 0 Q) 4-! ~ IH 0 
H p... p:; rz.. E-! 0 CJ) H CJ H z g M CJ) MU 

18 59 106623 FSV 092675 EPS-DC Cable NO NO 

19 60 109201 FSV 092975 RPCRS CRD 1 N D 

20 62 108272 FSV 111875 EPS-EQP Breaker 1 F F 

21 62 109250 FSV 111875 PCL-HC Seal 1 F N 

22 63 108522 FSV 120475 EPS-DG Engine 1 F N 

23 66 110311 FSV 011576 PCRV-PRS Valve N N 

24 67 110312 FSV 012676 PCL-HC Seal F N 

25 69 112722 FSV 031876 RPS-CTS Switch F F 



44 
0 

s::: 
.......... 0 
s::: •.-t 
0 C/l 

·.-t C/l 
C/l ·.-t 

.~ ~ s 0 
OU 

Carelessness-M o N/A NO 

Inadvertent C N/A NO 
Actuation-M 

Did Not 0 N/A NO 
Check-M 

Lack of 0 N/ A NO 
Repair-M 

Communication-0 0 N/ A NO 

Communication-A 0 N/ A NO 

Carelessness-M 

Improper 
Handling-0 

N/ A NO 

0 N/ A NO 

39 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

A sharp metal cut 
through a cable insula-
tion causing the battery 
charg er tripped open. 
Inadvertent admitted 
water into PCRV satu-
rated the gas, some 
entered the hopper and 
leaked part of the 
boric acid out of the 
balls. 
Loose electrical con-
nection on the bus of 
supply fan breaker 
caused to fail to start 
the fan. 
Repair work caused to 
release the static 
seal. 
Losing the information 
about setting the 
switches caused to fail 
to start. 
Modification to oil sys-
tem relief valves made 
without proper approval . 

Either the holding cir-
cuit was interrupted or 
the reset circuit was 
made up. This caused to 
release seal set on 
helium circulator. 

C Each trip was initiated 
by buff er seal differ-
ential pressure switches . 



Table 4.1 (Continued) 
'O . I Q) 

Cl 0 !> . 0.. rl . H e: 0 
0 +.J 0 :> s:: i:: +.J z . . ~ 'O s:: 'O CJ i:::: 0 0 s:: 

0 0 +.J Q) Q) Q) H Q) . z z ·.-l 
ID ~ s:: !> ~ t ID 

+.J s:: 
+.J rl 0 rl 0 Ul 0 0 s:: Q) ·.-l Q) Q) +.J 0 0..0 +.J Q) +.J . Q) 0.. 
Q) O"> ~ 0 0.. +.J Ul !> e: !> • s:: ~Ul ~e: 
'O rel Q) rel~ rel ~s:: 0 s:: 0 Q) ~ >t ~ 0 
H ll< Cl:: ~8 Cl Cl) H CJ H z s:: µ:::i (/) µ:::i CJ 

26 69 112722 FSV 031876 RPS-CTS Switch F F 

27 69 112722 FSV 031876 RPS-CTS Switch F F 

28 69 112722 FSV 031876 RPS-CTS Switch F F 

29 69 112722 FSV 031876 RPS-CTS Switch F F 

30 70 112699 FSV 040176 PCL-HC Valve F N 

31 71 113197 FSV 041476 EPS-DG Clutch 1 D D 

32 72 113958 FSV 051376 PCL-HC Valve 1 N F 



Improper 
Handling-0 

Improper 
Handling-0 

Procedural 
Deficiency-A 

Procedural 
Deficiency-A 

Did Not Follow 
Proced.-M 

Procedural 
Deficiency-A 

Improper 
Permission-A 

c 
0 

C·.-1 o en .,... en 
en.,... 
-~ § 
E o ou 

Q) 
en • 
(tj c 
Q) 0 
r4 )-1 
Q) ...... 
0:: :> c 
·~ 'O 

(tj 0 
0:: .µ 

C N/ A NO 

C N/A NO 

C N/A NO 

C N/A NO 

C N/A NO 

0 N/A NO 

C N/A NO 

41 

Q) 
)-1 
::l en 
0 
0.. x 
~ 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

c 

c 

c 

Each trip was initiated 
by buff er seal differ-
ential pressure switches. 

Each trip was initiated 
by buff er seal differ-
ential pressure switches. 

Each trip was initiated 
by buff er neal differ-
ential pressure swi tch e s. 
Each trip was initiat ed 
by buff er seal differ-
ential pressure switc h e s . 
The valves were c l o s ed 
rapidly causing a pres-
sure surge in sensing 
lines . This caused t o 
trip helium circulat or . 
The clutch control link-
age was set too close to 
center and clutch en-
gaging torque was too 
high. This caused t o 
move the clutch in d e -
clutch direction . 
Shift supervisor gave 
improper permission for 
the valve striking wi th 
loop 1 operation, caused 
to trip the circulator . 



Table 4.1 (Continued) 
ro . I Q) 

Q 0 :> . o..~ . H s 0 
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33 73 113959 FSV 051376 PCL-HC Pump D F 

34 73 114636 FSV 060176 PCL-HC Pump D F 

35 74 114635 FSV 060776 PCL-HC Pump D F 

36 76 115505 FSV 061776 PCL-HC Event D F 

37 77 115500 FSV 062676 PCL-SG Valve 1 N N 

38 78 115506 FSV 062676 PCL-HC Pumps F F 



4-4 
0 

Improper 
Handling-0 

Improper 
Handling-0 

Procedural 
Deficiency- A 

Did Not Follow 
Proced .-0 

Left Open- 0 

Improper 
Handling-0 

c 
.......... 0 
C ·n 
0 Ul 
·n Ul 
Ul ·n 
-~ § s 0 OU 

0 N/A NO 

0 N/A NO 

C N/A NO 

0 N/A NO 

0 N/A NO 

C N/A NO 

43 

NO 

NO 

NO 

NO 

NO 

NO 

Operator didn't have 
surge tank makeup from 
either the bearing water 
makeup pumps or from the 
makeup bearing water 
system. This caused to 
the circulator to trip. 
A plugged filter in 
buff er gas return line 
resulted flow blockage 
which caused to trip 
helium circulator . 

R Steam turbine trips were 
reset. The procedure 
for reset had not been 
revised. This caused to 
trip the circulator . 

Procedure not followed 
caused in an anticipated 
trip signal to two 
helium circulators . 

U The operator noticed 
that a steam water dump 
valve in each loop was 
open and the alarm light 
was lit . No cause has 
been found . 

R The operator didn 't make 
the surge tank makeup 
supplied from either the 
bearing water makeup 
pumps or from backup 
bearing water system . 
This caused to trip both 
helium circulators . 



Table 4 .1 (Continued) 
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39 79 116263 FSV 062876 PCL-HC Bearing 1 F F 

40 80 115253 FSV 071676 PCL-HC Breaker 1 F N 

41 80 115884 FSV 072676 PCL-H Valve 1 F F 

42 81 118726 FSV 093076 WPS-LH Pump 1 N N 



Q) 
Cl) . 

i:: rd i:: 
'-... 0 Q) 0 
i:: .,.; i:: r-i H 

Q) 4-1 0 ti) 0 Q) .,.; 
H 0 . ,.; ti) .,.; fl:: :> 
::1 H ti).,.; +J i::: 
r-i Q) Q) 0 

-~ ~ rd • l1l 
.,.; "O I ~H H "O 
rd 0 >. H 58 ::1 rd 0 
~~ 8 l1l Cl fl:: +J 

Procedural 0 N/A NO 
Deficiency-A 

Mispositioning-0 O N/A NO 

Did Not Follow 
Proced.-A 

Procedure 
Vi o l ation-A 

C N/A NO 

0 N/A RWL 
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NO 

NO 

ti) 
+J 
i:: 

Q) Q) 
"O :> 
0 bl l1l 
~ i::: 
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Changing rapidly in 
backup bearing water 
pressure resulted a 
negative buffer differ-
ential pressure. This 
caused to trip the 
circulator. 
The handles for adjust-
ing voltage and the 
output breaker were 
identical and above 
each other, the operator 
closed the breaker when 
he intended to adjust 
the voltage this caused 
to trip the circulator 

U Scheduling this test 
without shutting down 
the circulator auxiliary 
system caused to trip 
the circulator. 

U A reactor building sump 
pump was found to be 
running concurrently 
with a liquid waste re-
lease in violation to 
technical specifications 
because the operator 
failed to remember the 
note which omitted one 
step which appeared 
early in the procedure. 



Table 4.1 (Continued) 
'O . I <LI 

0 0 > . 0..r-4 
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0 . . :>t 'O c 'O UC 0 0 c z 0 0 .+.J <LI <LI <LI H <LI z z ·r-1 e > c > ~ +' e .+.Jc 
.+.J r-1 <LI r-i Or-I 0 (/) u <LI u 0 
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43 82 120092 FSV 101476 PCL-HC Transmitter 1 F F 

44 83 119004 FSV 102076 EPS-DG Tube F D 

45 84 120090 FSV 110976 IMS Detector N N 

46 85 121547 FSV 010677 EPS-DG Tube F D 

47 86 121603 FSV 010677 PCL-HC Filter 1 F F 

48 86 121548 FSV 011477 RPLS Connector 1 F F 

49 87 121602 FSV 011977 ECS-CACS Pump 1 D F 



Ca.+ibration-M 

Did Not 
Check-M 

Procedure 
Violation-A 

Did Not 
Check-M 

Improper 
Handling-0 

Did Not 
Connect-M 

Did Not 
Connect-M 

c 
........... 0 c ·r-i 
0 CJ) 

·r-i CJ) 
CJ) ·r-l 

-~ § 
68 

QJ 
CJ) • 

m c 
QJ 0 

r-1 H 
QJ ·r-i 
p:; ::> c 

• rx:i 
'O m o 
p:; +' 

0 N/ A NO 

0 N/A NO 

0 N/ A NO 

C N/A NO 

0 N/ A NO 

0 N/A NO 

0 N/A NO 

47 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

U The main drain to buf-
f er helium differential 
controller caused the 
circulator high pres-
sure separator to flood 
allowing water enter 
the main cooling sys-
tem. 

C Dirty tubes in heat 
exchangers caused to 
trip both engines on 
diesel generators. 
It was found that a 
conflict existed be-
tween 2 technical specs. 
on moisture limits. 

R Dirty tubes in heat 
exchangers causerl to 
trip both engines. 

R The filter in line was 
plugged caused to trip 
the helium circulator. 
The connector in the 
molded plug assembly 
was not proper contact . 
This caused the shut-
down logic to fail. 
The speed switch drive 
cable was disengaged 
from the spindle. This 
caused the interim 
auxiliary cooling method 
diesel driven pump to 
shutdown. 



Table 4.1 (Continued) 
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Q . . H 

0 .µ 
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50 89 121598 FSV 011977 PCL-HC Event 

51 91 122399 FSV 021077 EPS-DC Battery 
charger 

52 91 122210 FSV 021477 PCL-HC Valve 

53 93 122432 FSV 021477 SCS Valve 

54 93 122432 FSV 021477 IMS Detector 

55 93 122433 FSV 021477 PCRV-CS Switch 

56 93 122580 FSV 021477 PCL-HC Seal 

57 94 123161 FSV 022277 EPS-EQP Breaker 

'O 
I Q) 
0 > 
0. r-i e o 
0 > c c .µ 
u c 0 0 c 

H Q) 
44 tm .µ c 
0 U> u 0 .µ Q) .µ Q) 0. . c 44 U> 4-1 e 
0 Q) 4-1 >i 4-1 0 z i:: ri.1 (J) ri.lU 

F 

1 D F 

1 D F 

1 D D 

1 D F 

1 D F 

1 D F 

1 F F 



~ 

0 

Procedural 
Deficiency-A 

Improper 
Handling-a 

Did Not 
Check-M 

Did Not 
Check-M 

Improper 
Handling-M 

Did Not 
Check-M 

Ruptured-A 

Connection-M 

0 N/A NO 

0 N/A NO 

0 N/A NO 

0 N/A NO 

0 N/A NO 

0 N/A NO 

0 N/A NO 

0 N/A NO 
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Q) 
1--l 
::l 
Ill 
0 
0.. x 
l'.il 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

R Procedural deficiency 
caused the circulator 
to trip on loss of 
bearing water. 

U Improper switching and 
battery charger failure 
interrupted instrument 
bus voltage which 
caused to an automatic 
reactor scram. 
Grease and dirt on 
valve stem caused the 
valve to fail to close. 
Fine rust colored de-
posit caused the steam 
outlet valve to fail to 
operate properly. 
The circuit board be-
came partially unplugged 
from excessive handling. 
This caused moisture 
monitor response to be 
unsatisfactory. 
Dirt in the hydraulic 
oil reservoir level 
switch caused to trip 
the pumps. 

R Fatigue-cycle caused 
the helium circulator 
static seal bellows to 
fail. 
Loose terminal block 
connections caused the 
breaker to fail to open 
automatically. 



Table 4.1 (Continued) 
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0 . . H 
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58 95 123162 FSV 030977 EPS-DG 

59 97 124335 FSV 042577 AS-LNS 

60 102 126017 FSV 071377 WPS-LH 

61 102 126016 FSV 071377 PCL-HC 

62 103 126978 FSV 072177 WPS-LH 

.µ 
s:: "d 
Q) Q) 
s:: > 
Or-I 
~o e: > 
0 s:: 
UH 

Breaker 

Event 

Radiation 
monitors 

Event 

Event 

63 105 128936 FSV 090277 EPS-EQP Switch 

64 106 130092 FSV 100377 AS-RBVS Switch 

65 106 130093 FSV 100677 Cooling Event 
pond 
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11-l 
0 

Procedural 
Deficiency-A 

Event-A 

Did Not 
Monitor-M 

Did Not Follow 
Proced.-0 

Calculation-A 

Improper 
Setting-M 

Carelessness-a 

Procedural 
Deficiency-A 
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0 N/A NO 
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0 N/A NO NO 
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Control device broken 
during maintenance work, 
caused the DG output 
circuit breaker to fail 
to close. 

U Late delivery of liquid 
nitrogen caused to shut 
down the reactor. 

C Radiation monitor fil-
ter plugged which caused 
to release liquid waste 
with no monitoring. 
The operator failed to 
follow procedures. 
This caused to trip 
the circulator. 
Incorrect calculations 
caused a liquid waste 
to be released. 
Electrical connector im-
properly mated caused 
steam pipe rupture de-
tector to fail to trip. 

U The control switch for 
the louver group found 
in an intermediate posi-
tion. This caused a 
group of louvers to be 
inadvertently opened. 
Inadequate procedures 
caused the circulating 
water storage pond level 
to be below limit. 



Table 4.1 (Continued) 
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66 107 130762 FSV 103177 Support Snubber 12 N F 
structure 

67 108 130761 FSV 110477 PCL-HC Valve 1 F N 

68 108 131768 FSV 120577 PCL-HC Event F 

69 109 132170 FSV 121477 PCL Event N 

70 110 132154 FSV 121477 EPS-DG Relay 1 F F 

71 111 132153 FSV 121477 PCL-HC Circuit 1 D D 
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'O °' :> 0 ......... 0 QJ 0 0 ~ c ri:l ·r-1 
C·r-l c r-i H ~ +.J QJ ~ 0 Cl) 0 QJ ·r-l x ·r-l rl H 0. H 0 ·r-l Cl) ·r-l p::; :> ri:l CH r1j QJ ·r-l 

::l H Cl) ·r-l +.J c 0 H ::l ..C:: H rl QJ QJ 0 .~ § r1j • ri:l ~ ::l Cl) +.J 0 
·r-l 'O I ~H H 'O 'O 0 ::l H cn 
r1j 0 !>-11--1 68 ::l r1j 0 r1j 0 QJ c ::l QJ 

ll:-4 ~ 8 ri:l Q p::; +.J p::; up::; :::::> ll:-4 Q 

Did Not 0 N/ A NO NO c Hydraulic snubber found 
Check-M inoperable due to leak. 
Improper 0 N/ A NO NO Feed water valve set 
Setting-M too high caused to trip 

the circulator. 
Improper 0 N/ A NO NO Circulator auxiliary 
Action-a controls were failed by 

personnel error. 
Improper 0 N/ A NO NO u Excessive level of car-
Handling-A bon monoxide and dioxide 

caused primary coolant 
impurities to exceed 
limit. 

Procedural 0 N/ A NO NO Improper procedures 
Deficiency-A caused to actuate the 

relay and to trip the 
g enerator . 

Midadjustrnent-M 0 N/ A NO NO u Electronic circuit un-
balance caused circ u-
la tor speed indication 
reading incorrect. 



Table 4.2. Error leading to significant events in auxiliary 
electric power system 

Subsystem Component 

EPS-DG Switch 

EPS-DG Switch 

EPS-DG Relay 

EPS-DG Engine 

EPS-DG Engine 

EPS-DG Engine 

EPS-DC Cable 

EPS-EQP Breaker 

EPS-DG Engine 

EPS-DG Clutch 

EPS-DG Tube 

EPS-DG Tube 

EPS-DC Charger 

EPS-EQP Breaker 

EPS-DG Breaker 

EPS-EQP Switch 

EPS-EQP Relay 

Type of 
Error 

Maintenance 

Maintenance 

Maintenance 

Maintenance 

Administrative 

Maintenance 

Maintenance 

Maintenance 

Operator 

Administrative 

Maintenance 

Maintenance 

Operator 

Maintenance 

Administrative 

Maintenance 

Administrative 

Failure 
Mode 

Carelessness . 

Misadjustment 

Improper Setting 

Did not test 

Procedural Deficiency-·, 

Improper Setting 

Carelessness 

Did not check 

Communication 

Procedural Deficiency-

Did not check 

Did not check 

Improper Handling 

Connection 

Procedural Deficiency-

Improper Setting 

Improper Deficiency-
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Effect on Effect on Omission Radiation Common Mode ID. 
System Component Commission Release to Recurring No. 

Environment Unusual 

F F c No 4 

F D 0 No 6 

F F 0 No 12 

D D 0 No 14 

N N 0 No 15 

N N 0 No 16 

N N 0 No 18 

F F 0 No 20 

F N 0 No 22 

D D 0 No 31 

F D 0 No c 44 

F D c No R 46 

D F 0 No u 51 

F F 0 No 57 

D F 0 No 58 

F N 0 No 63 

F F 0 No 70 
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Table 4.3. Error population in auxiliary electric power 
system 

Subsystem 
EPS-DG 
EPS-EQP 
EPS-DC 
EPS (other) 

Component 
Switch 
Relay 
Engine 
Cable 
Breaker 
Clutch 
Tube 
Charger 

Type of Error 
Maintenance 
Administrative 
Operator 

Failure Mode 
Carelessness 
Communication 
Connection 
Did not test/ check 
Improper Handling 
Improper Setting 

No. of Events 

11 
4 
2 

0 

3 
2 

4 

1 

3 

1 

2 

1 

11 

4 

2 

2 

1 

1 
4 

1 

3 
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Table 4.3 (Continued) 

Misadjustment 
Procedural Deficiency 

Effect on Subsystem 
Degraded 
Failed 
None 

Effect on Component 
Degraded 
Failed 
None 

Omission/Commission 

No. of Events 

1 

4 

4 
10 

3 

5 
8 
4 

Omission 15 
Commission 2 

Radiation Release to Environment 
No Release 17 
Release within Limits 0 
Release Exceeds Limits 0 

Common Mode Recurring Unusual 
Common Mode 
Recurring 
Unusual 

1 

1 
1 



Table 4. 4. Error leading to significant event in reactor 
protection system 

Subsystem Component 

RPCRS CRD 

RPCRS CRD 

RPCRS CRD 

RPCRS Connectors 

RPCRS CRD 

RPCRS CRD 

RPC-CTS Switch 

RPC-CTS Switch 

RPC-CTS Switch 

RPC-CTS Switch 

RPC-CTS Switch 

RPLS Connector 

Type of 
Error 

Administrative 

Administrative 

Maintenance 

Maintenance 

Administrative 

Maintenance 

Operator 

Operator 

Operator 

Administrative 

Administrative 

Maintenance 

Failure 
Mode 

Procedural Deficiency -

Procedural Deficiency -

Improper Operation 

Installation 

Procedural Deficiency -

Inadvertent Activation -

Improper Handling 

Improper Handling 

Improper Handling 

Procedural Deficiency -

Procedural Deficiency -

Did not connect 
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Effect on Effect on Omission Radiation Common Mode ID . 
System Component Commission Release to Recurring No. 

Environment Unusual 

N N 0 No 1 

N N 0 No 1 

D F 0 No 3 

N F 0 No c 5 

N N 0 No 17 

N D c No 19 

F F 0 No c 25 

F F c No c 26 

F F c No c 27 

F F c No c 28 

F F c No c 29 

F F 0 No 48 
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Table 4.5. Error population in reactor protection system 

Subsystem 
RPCRS 
RPC-CTS 
RPLS 
RPS (other) 

Component 
CRD 

Connector 
Switch 

Type of Error 
Administrative 
Maintenance 
Operator 

Failure Mode 
Did not Connect 
Improper Handling 
Improper Operation 
Inadvertent Actuation 
Installation 
Procedural Deficiency 

Effect on Subsystem 
Degraded 
Failed 
None 

No. of Events 

6 

5 
1 

0 

5 

2 

5 

5 
4 

3 

1 

3 

1 
1 
1 

5 

1 

6 

5 
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Table 4.5 (Continued) 

No. of Events 

Effect on Component 
Degraded 
Failed 
None 

Omission/ Commissio n 
Omission 
Commission 

Radiation Release to Environment 
No Release 
Release Within Limits 
Release Exceeds Limits 

Common Mode Recurring Unusual 
Common Mode 
Recurring 
Unusual 

1 
8 

3 

7 

5 

12 
0 
0 

6 

0 

0 



Table 4.6. Error leading to significant events in emergency 
cooling system 

Subsystem Component Type of 
Error 

ECS-CACS Pump Maintenance 

Failure 
Mode 

Did not connect 



Effect on 
System 

D 

Effect on Omission 
Component Commission 

F 0 

63 

Radiation 
Release to 
Environment 

No 

Common Mode 
Recurring 

Unusual 

ID· 
No. 

49 
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Table 4.7. Error population in emergency cooling system 

Subsystem 
ECS-CACS 
ECS (other) 

Component 
Pump 

Type of Error 
Maintenance 
Administrative 
Operator 

Failure Mode 
Did not Connect 

Effect on Subsystem 
Degraded 
Failed 
None 

Effect on Component 
Degraded 
Failed 
None 

Omission/Commission 
Omission 
Commission 

No. of Events 

1 

0 

1 

1 

0 

0 

1 

1 

0 
0 

0 
1 

0 

1 

0 
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Table 4.7 (Continued) 

No. of Events 

Radiation Release to Environment 
No Release 1 
Release Within Limits 0 
Release Exceeds Limits 0 

Common Mode Recurring Unusual 
Common Mode O 
Recurring 0 
Unusual O 



' ,. J .. 



Table 4.8. Error leading to significant event in main 
reactor coolant system 

Subsystem 

PCL-HC 
PCL 
PCL-HC 
PCL 
PCL-HC 
PCL-HC 
PCL-HC 
PCL-HC 
PCL-HC 
PCL-HC 
PCL-HC 
PCL-HC 
PCL-SG 
PCL-HC 
PCL-HC 
PCL-HC 
PCL-HC 
PCL-HC 
PCL-HC 
PCL-HC 
PCL-HC 
scs 
PCL-HC 
PCL-HC 
PCL-HC 
PCL-HC 
PCL 
PCL-HC 

Component 

Valve 
Event 
Valve 
Event 
Seal 
Seal 
Valve 
Valve 
Pump 
Pump 
Pump 
Event 
Valve 
Pump 
Bearing 
Breaker 
Valve 

Type of 
Error 

Maintenance 
Administrative 
Operator 
Operator 
Maintenance 
Maintenance 
Maintenance 
Administrative 
Operator 
Operator 
Administrative 
Administrative 
Operator 
Operator 
Administrative 
Operator 
Administrative 

Failure 
Mode 

Improper Setting 
Event 
Deenergized 
Inadvertent Activation -
Lack of Repair 
Carelessness 
Did not follow Procedure-
Improper Permission 
Improper Handling 
Improper Handling 
Procedural Deficiency -
Did not Follow Procedure-
Lef t Open 
Improper Handling 
Procedural Deficiency -
Mispositioning 

Transmitter Maintenance 
Did not Follow Procedure-
Calibration 

Filter 
Event 
Valve 
Valve 
Seal 
Event 
Valve 
Event 
Event 
Circuit 

Operator Improper Handling 
Administrative Procedural Deficiency -
Maintenance Did not check 
Maintenance Did not check 
Administrative Ruptured 
Operator Did not Follow Procedure-
Maintenance Improper Setting 
Operator Improper Activation 
Administrative Improper Handling 
Maintenance Misadjustment 
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Effect on Effect on Omission Radiation Common Mode ID . 
System Component Commission Release to Recurring No. 

Environment Unusual 

D D 0 No R 2 
N - 0 No 7 
D N 0 No 10 
D - 0 No 13 
F N 0 No 21 
F N - No 24 
F N c No 30 
N F c No 32 
D F 0 No 33 
D F 0 No 34 
D F c No R 35 
D F c No 36 
N N 0 No u 37 
F F c No 38 
F F 0 No 39 

F N 0 No 40 

F F c No u 41 

F F 0 No u 43 

F F 0 No R 47 

F - 0 No R 50 

D F 0 No 52 

D D 0 No 53 

D F 0 No R 56 

F - 0 No 61 

F N 0 No 67 

F - 0 No 68 

N - 0 No u 69 

D D 0 No u 71 
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Table 4.9. Error population in main reactor coolant system 

Subsystem 
PCL-HC 
PCL- SG 
scs 
PCL (other) 

Component 
Valve 
Event 
Seal 
Pump 
Bearing 
Breaker 
Transmitter 
Filter 
Circuit 

Type of Error 
Administrative 
Maintenance 
Operator 

Failure Mode 
Calibration 
Deenergized 
Did not Check 
Did not Follow Procedure 
Event 
Improper Actuation 
Improper Handling 
Improper Permission 

No . of Events 

23 
1 

1 
3 

9 

7 
3 
4 

1 
1 

1 

1 

1 

9 

9 

10 

1 

1 
2 
4 

1 
1 

5 
1 

/ 



69 

Table 4 . 9 (Continued) 

Improper Setting 
Inadvertent Actuation 
Lack of Repair 
Left Open 
Misadjustment 
Mispositioning 
Procedural Deficiency 
Ruptured 
Carelessness 

Effect on Subsy stem 
Degraded 
Failed 
None 

Main Reactor Coolant System 
De graded 
Failed 
Non 

Omission/ Commission 

No. of Events 

2 

1 

1 
1 

1 

1 

3 
1 
1 

11 
13 

4 

3 

12 
7 

Omission 21 
Commission 6 

Radiation Release to Environment 
No Release 28 
Release Within Limits 0 
Release Exceeds Limits 0 
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Table 4 . 9 (Continued) 

Common Mode Recurring Unusual 
Common Mode 
Recurring 

Unusual 

No. of Events 

0 

5 
5 



Table 4.10. Error leading to significant event in prestressed 
concrete reactor vessel system 

Subsystem Component Type of 
Error 

PCRV- PRS Valve Administrative 

PCRV-CS Switch Maintenance 

Failure 
Mode 

Communication 

Did not check 
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Effect on Effect on Omission Radiation Common Mode ID. 
System Component Commission Release to Recurring No . 

Environment Unusual 

N N 0 No 23 

D F 0 No 55 
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Table 4.11. Error population in prestressed concrete reactor 
vessel system 

Subsystem 
PCRV-PRS 
PC RV-CS 
PCRV (other) 

Component 
Valve 
Switch 

Type of Error 
Administrative 
Maintenance 
Operator 

Failure Mode 
Communication 
Did not Check 

Effect on Subsystem 
Degraded 
Failed 
None 

Effect on Component 
Degraded 
Failed 
None 

Omission/Commission 
Omission 
Commission 

No. of Events 

1 
1 

0 

1 

1 

1 

1 

0 

1 
1 

1 
0 

1 

0 
1 
1 

2 

0 
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Table 4.11 (Continued) 

Radiation Release to Environment 
No Release 
Release Within Limits 
Release Exceeds Limits 

Common Mode Recurring Unusual 
Common Mode 

Recurring 
Unusual 

No. of Events 

2 

0 
0 

0 

0 
0 



Table 4.12. Error leading to significant events in auxiliary 
system 

Subsystem Component Type of 
Error 

AS-LNS Event Administrative 

AS-RBVS Switch Operator 

Event 

Failure 
Mode 

Carelessness 
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Effect on Effect on Omission Radiation Common Mode ID . 
System Component Commission Release to Recurring No. 

Environment Unusual 

F c No u 59 

D N 0 No u 64 
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Table 4.13. Error population in auxiliary system 

Subsystem 
AS-LNS 
AS-RBVS 
AS (other) 

Component 
Switch 
Event 

Type of Error 
Administrative 
Operator 
Maintenance 

Failure Mode 
Carelessness 
Event 

Effect on Subsystem 
Degraded 
Failed 
None 

Effect on Component 
Degraded 
Failed 
None 

Omission/Commission 
Omission 
Commission 

No. of Events 

1 

1 

0 

1 
1 

1 

1 

0 

1 

1 

1 

1 

0 

0 

0 

1 

1 
1 
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Table 4.13 {Continued) 

Radiation Release to Environment 
No Release 
Release Within Limits 
Release Exceeds Limits 

Common Mode Recurring Unusual 
Common Mode 
Recurring 

Unusual 

No . of Events 

2 

0 

0 

0 

0 
2 



Table 4.14. Error leading to significant events in radio-
active waste treatment system 

Subsystem Component 

WPS-GH Valve 

WPS-GH Rupture 
Disc 

WPS-GH Rupture 
Disc 

WPS-LH Pump 

WPS-LH Monitor 

WPS-LH Monitor 

WPS-LH Event 

Type of 
Error 

Operator 

Administrative 

Administrative 

Administrative 

Maintenance 

Maintenance 

Administrative 

Failure 
Mode 

Left Closed 

Wrong Procedure 
Followed 

Wrong Procedure 
Followed 

Procedure Violation 

Did not Monitor 

Did not Monitor 

Calculation 
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Effect on Effect on Omission Radiation Common Mode ID. 
System Component Commission Release to Recurring No. 

Environment Unusual 

D F 0 RWL u 8 

D F 0 RWL 9 

D F 0 RWL u 11 

N N 0 RWL u 42 

D F 0 RWL c 60 

D F 0 RWL c 60 

D 0 RWL 62 
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Table 4.15 . Error population in radioactive waste treatment 
system 

Subsystem 
WPS-GH 
WPS-LH 
WPS (other) 

Component 
Valve 
Rupture Disc 
Pump 
Monitor 
Event 

Type of Error 
Administrative 
Maintenance 
Operator 

Failure Mode 
Calculation 
Did not Monitor 
Left Closed 
Procedure Violation 
Wrong Procedure Followed 

Effect on Subsystem 
Degraded 
Failed 
None 

No . of Events 

3 

4 
0 

1 

2 

1 

2 

1 

4 

2 

1 

1 
2 

1 

1 
2 

6 

0 

1 



Table 4.15 (Continued) 

Effect on Component 
Degr aded 
Failed 
None 

Omission/ Commission 

82 

No . of Events 

0 
5 
1 

Omission 7 
Commission 0 

Radiation Release to Environment 
No Release 0 
Release Within Limits 7 
Re l ease Exceeds Limits 0 

Common Mode Recurring Unusual 

Common Mode 
Recurring 
Unusual 

2 

0 
3 



Table 4 .16. Error leading to significant events in instru-
mentation and monitoring system 

Subsystem Component Type of 
Error 

IMS Detector Administrative 

IMS Detector Maintenance 

Failure 
Mode 

Procedure Violation 

Improper Handling 
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Effect on Effect on Omission Radiation Common Mode ID. 
System Component Commission Release to Recurring No. 

Environment Unusual 

N N 0 No 45 

D F 0 No 54 
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Table 4.17. Error population in instrumentation and monitor-
ing system 

Subsystem 
IMS 

Component 
Detector 

Type of Error 
Administrative 
Maintenance 
Operator 

Failure Mode 
Improper Handling 
Procedure Violation 

Effect on Subsystem 
Degraded 
Failed 
None 

Effect on Component 
Degraded 
Failed 
None 

Omission/Commission 
Omission 
Commission 

No. of Events 

2 

2 

1 

1 
0 

1 

1 

1 

0 

1 

0 

1 
1 

2 

0 
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Table 4.17 (Continued) 

No . of Events 

Radiation Release to Environment 
No Release 2 
Release Within Limits 0 
Release Exceeds Limits 0 

Common Mode Recurring Unusual 
Common Mode 0 
Recurring 0 
Unusual 0 



Table 4 .18. Error leading to significant events in other 
system 

Subsystem 

Cooling 
Pond 

Support 
Structure 

Component 

Event 

Snubber 
(12) 

Type of 
Error 

Administrative 

Maintenance 

Failure 
Mode 

Procedural Deficiency -

Did not check 
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Effect on Effect on Omission Radiation Common Mode ID . 
System Component Commission Release to Recurring No. 

Environment Unusual 

N N 0 No 65 

N F 0 No c 66 
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Table 4 .19. Error population in other system 

Subsystem 
Cooling Pond 
Support Structure 

Component 

Snubber 
Event 

Type of Error 
Administrative 
Maintenance 
Operator 

Failure Mode 
Did not Check 
Procedural Deficiency 

Effect on Subsystem 
Degraded 
Failed 
None 

Effect on Component 
Degraded 
Failed 
None 

Omission/ Commission 
Omission 
Commission 

No. of Events 

1 

1 

12 
1 

1 

1 
0 

1 

1 

0 
0 
2 

0 
1 
1 

2 

0 
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Table 4.19 (Continued) 

No. of Events 

Radiation Release to Environment 
No Release 2 
Release Within Limits O 
Release Exceeds Limits 0 

Common Mode Recurring Unusual 
Common Mode 
Recurring 
Unusual 

1 

0 
0 
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V. DATA ANALYSIS 

A. Failure Significance 

The data show a cumulative total of 190 errors occurring 

during the 43-month period reviewed. This review of the LER 

records shows that about 38.4% of the causes are human errors 

which are related to administration, maintenance, or operator. 

Maintenance, administrative, and operator errors represent 

41.1%, 34.2% , 24.7% of all human errors respectively. The 

systems most frequently involved in human errors are the main 

reactor coolant system, auxiliary electric power system, re-

actor protection system, and radioactive waste treatment sys-

tem. About 38.4% , 23.3%, 16.4%, and 9.6% of the total human 

errors are related to main reactor coolant system, auxiliary 

electric power system, reactor protection system, and radio-

active waste treatment system respectively. Also, 41.1% of 

the total human errors caused part of the systems to fail, and 

35.6% of the total human errors caused to degrade part of the 

systems. The components most frequently involved in human 

errors are valves, switches, pumps, and control rods. About 

15.1%, 13.7%, 8.2%, and 6.8% of the total human errors related 

to valves, switches, pumps, and control rods respectively. 

Also, 55.4% of the total human errors caused components to 

fail, and 13.8% of the total human errors caused to degrade 

components. The effect on the systems and components indicates 
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the significance of the human errors because of its great im-

portance in safety and reliability analysis. Such errors 

cause delay in operation, increase in down time and reduction 

in plant availability factor. Improvement in human errors 

would require a careful study of the frequency of the failure 

modes. 

The failure modes most frequently resulted in human errors 

are procedural deficiency, improper handling, did not test/ 

check, and improper setting. About 17.8%, 13.7%, 11%, and 

6.8% of the total human errors related to procedural deficiency, 

improper handling, did not test/check, and improper setting 

respectively. Any faulty action resulted in human errors is 

described by two categories, omission, and commission. Also, 

80.6% of the total human errors related to omission, and 19.4% 

of the total human errors related to commission. 

Common mode, reoccurring, or unusual events of human 

errors have a direct effect on safety and reliability , espe-

cially in estimating the reliability of redundant systems. 

About 15.5%, 14.1%, and 8.5% of total human errors related to 

unusual, common mode, and reoccurring events respectively. 

Only 9.6% out of the total human errors resulted in some form 

of radiation release to environment within limits. 
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B. Method of Analysis 

The failure (error) rate per month for specific task, 
A 

A, is defined as 

A 

A = n T per month (1) 

where 

n = failure (error) count 

T = reactor-month surveyed. 

The 90% confidence bounds on A are 

2 
A x0 . 095 ,2(n+l) 

< A < A 2n (2) 

2 where XN is the a-percentile of the chi-square distribution 
~,r 

with r degrees of freedom. 

Human failure (error) rates in the operation of the Fort 

St.Vrain, high temperature gas cooled reactor (HTGR) during 

the time period from May 30, 1974 through December 30, 1977 

are calculated and the results are given in Table 5.1. Table 

5.1 presents the actual number of errors, n, committed during 

the 43-month period, the estimated error rate, A, in errors/ 
A 

month, and 90% confidence bounds on A based on A and n, also 

in errors/month. In Table 5.1, number of errors, error rates, 

and 90% confidence bounds are given for the following, 

1. for each system involved 

2. for each component involved 



94 

3. for each type of error (administrative, maintenance, 

operator) 

4. for each failure mode 

5. for each type of effect on systems and components 

(failed, degraded, none) 

6. for each mode of human error (omission/commission, 

common mode/reoccurring/ unusual). 

Figures 5.1-5.22 show the distribution of human error 

over the 43-month period of the plant age for the most fre-

quent systems, components, types of error, types of effect 

on systems and components, and modes of human error involved 

( . .O-:l9) . 

Table 5.1. Number of error, error rate, and 90% confidence 

No. of Failure 90 % Confidence Error Events Rate (n) (A.) 

FOR ALL PLANT 

System Involved 
Auxiliary Electric Power 
System 17 .3953 .2519 .5929 
Reactor Protection System 12 .2791 .1610 .4522 
Emergency Cooling System 1 .0233 .0012 . 1103 

Main Reactor Coolant System 28 .6512 .4628 .7578 
Prestressed Concrete Reactor 
Vessel System 2 .046 5 .0083 .1464 

Auxiliary System 2 .0465 .0083 .1464 

Radioactive Waste Treatment 
System 7 .1628 .0764 .3058 
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Table 5 .1 (Continued) 

No. of Failure 90% Confidence 
Events Error 

(n) Rate 
A 

Instrumentation and Monitoring 
System 2 .0465 .0083 .1464 
Other System 2 .0465 .0083 . 1464 

Component 
Switch 10 .2326 .1262 .3945 
Relay 2 .0465 .0083 . 1464 
Engine 4 .0930 .0318 .2129 
Cable 1 .0233 . 0012 .1103 
Breaker 4 .0930 .0318 . 2129 
Clutch 1 .0233 .0012 .11 03 
Tube 2 .0465 .0083 .14 64 
Charger 1 .0233 .0012 .1103 
Control Rod 5 .1163 .0458 .2445 

Connector 2 .0465 .0083 . 1464 

Pump 6 .1395 . 0608 .2754 

Valve 11 .2558 . 1435 .42 34 

Event 10 .2326 .1262 . 3945 

Seal 3 .0698 .0190 .1803 

Bearing 1 .0233 . 0012 .1103 

Transmitter 1 .0233 . 0012 .1103 

Fitter 1 .0233 .0012 .1103 

Circuit 1 .0233 .0012 .1103 

Rupture Disc 2 .0465 .0083 .1464 

Monitor 2 .0465 . 0083 .1464 

Detector 2 .0465 .0083 .1464 

Snubber (one time) 12 .2791 .1610 .4 522 
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Table 5.1 (Continued) 

No. of Failure 90% Confidence Error Events Rate (n) (A) 

TlEe of Error 
Administrative 25 .5814 .4042 .8120 

Maintenance 30 .6977 .5022 .9463 

Operator 18 .4186 .2706 .6207 

Failure Mode 
Carelessness 4 .0930 .0318 .2129 

Communication 2 .0465 .0083 .1464 

Connection 1 .0233 .0012 .1103 

Did not Test/Check 8 .1860 .0926 . 3357 

Improper Handling 10 .2326 .1262 .3945 

Improper Setting 5 .1163 .0458 .2445 

Misadjustment 2 .0465 .0083 .1464 

Procedural Deficiency 13 .3023 .1788 .4807 

Did not Connect 2 .0465 .0083 .1464 

Improper Operation 1 .0233 .0012 .1103 

Inadvertent Actuation 2 .0465 .0083 .1464 

Installation 1 .0233 .001 2 .1103 

Calibration 1 .0233 .0012 .1103 

Deenergized 1 .0233 .0012 .1103 

Did not Follow Procedure 4 .0930 .0318 .2129 

Event 2 .0465 .0083 .1464 

Improper Permission 1 .0233 .0012 .1103 

Improper Actuation 1 .0233 .0012 .1103 

Lack of Repair 1 .0233 .0012 .1103 

Left Open 1 .0233 .0012 .1103 

Misposition 1 .0233 .0012 .1103 

Ruptured 1 .0233 .0012 .1103 

Calculation 1 .0233 .0012 .1103 
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Table 5.1 (Continued) 

No. of Failure 90% Confidence 
Events Error 

(n) Rate 
( A) 

Did not Monitor 2 .0465 .0083 .1464 
Left Closed 1 .0233 .0012 .1103 
Procedure Violcation 2 .0465 .0083 .1464 
Wrong Procedure Followed 2 .0465 .0083 .1464 

Effect on Part of the sistem 
Degraded 26 .6047 .4237 .8 390 
Failed 30 .6977 .5022 .9463 
None 17 . 3953 .2519 .5929 

Effect on Component 
Degraded 9 .2093 .1092 .3652 
Failed 36 .8372 .6221 1.1058 
None 20 .4651 .3082 . 67 59 

Omission/Commission 
Omission 58 1.3488 1.0733 1.6756 
Commission 14 .3256 .1968 .5090 

Radiation Release to Environment 
No Release 66 1. 5349 1. 2407 1.8802 
Release Within Limits 7 .1628 .0764 .3058 
Release Exceeds Limits 0 .0000 .0000 .0000 

Common Mode/Reoccurrin~/Unusual 
Common Mode 10 .23 26 .1262 .3945 
Reoccurring 6 .1395 .0608 . 27 54 
Unusual 11 . 2558 .14 35 . 4234 



Table 5.2. Error committed during 43-month period for all systems of 
the plant 

Reactor Months 
System 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

MRCS 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 

EPS 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 2 0 1 1 0 0 0 

RPS 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 5 

WPS 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

PCRVS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

AS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

IMS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ECS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 
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Reactor Months 

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 

1 2 6 2 0 0 1 0 0 2 3 0 0 0 0 1 0 0 0 1 3 

1 0 0 0 0 0 1 0 0 1 2 1 0 0 0 0 0 1 0 0 1 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Total 
of 

Events 

28 

17 

12 

7 

2 

2 

2 

2 

1 
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C. Analysis of Human Error Distribution Curves 

by Pattern Recognition Principles 

A simple and intuitive approach to the general analysis 

of human events in a nuclear power plant is to utilize the 

concept of pattern classification by distance functions. The 

representation of input data is by arranging measurements in 

the form of a ~easurement or pattern vector: 

x = 

x n ( 3) 

The most obvious way of establishing a measure of similarity 

between pattern vectors, which we consider as points in 

Euclidean space, is by determining their proximity. The 

Euclidean distance between an arbitrary pattern vector X 

and the ith prototype is given by 

D . = X - Z. = (X 
1 1 

Z . ) t (X - Z . ) 
1 - 1 

( 4) 

where z. is the cluster center (mean vector), and 't' is the 
1 

transpose of a matrix . 

The minimum-distance classifier computes the distance 

from a pattern ~ of unknown classification to the prototype 

(cluster center) of each class, and assigns the pattern to 
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the class to which it is closest. In other words, X is as-

signed to class wi if Di < Dj' for all j~i. If D. > D . I x ]. J 

is assigned to class wj. 

The pattern recognition procedure presented here is 

called the K-means algorithm. This algorithm is based on the 

minimization of a performance index which is defined as the 

sum of the squared distances from all points in a cluster 

domain to the cluster center . This procedure consists of the 

following steps . 

Step 1. Choose k initial cluster centers z 1 (1), z 2 (1), . .. , 

Zk(l). These are arbitrary and are usually selected 

as the first k samples of the given sample set . 

Step 2. At the kth iterative step , distribute the samples 

(X) among the k cluster domains, using the relation, 

x £ sj (k) if II~ - zj (k) ll < I I~ - zi (k) ll (5) 

for all i=l,2, . .. ,k, i~j, where sj (k) denotes the 

set of samples whose cluster center is Z. (k) . 
-2 

step 3. From the results of Step 2, compute the new cluster 

centers z. (k+l), j=l,2, . . . ,k such that the sum of 
-2 

the squared distances from all points in sj (k) to 

the new cluster center z. (k+l) is minimized. In 
-2 

other words, the performance index 

J. = 
J 

2 
11 x - z . ( k+ 1) 11 I j = 1, 2 I • • • I k - -2 

( 6) 
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is minimized. The Z. (k+l) which minimizes this 
-2 

performance index is simply the sample mean of Sj(k). 

Therefore, the new cluster center is given by 

z. (k+l) 
-2 

1 = N E X, j=l,2, ... ,k 
j X£S . (k) 

- J 

( 7) 

where N. is the number of samples ins. (k) . This 
J J 

indicates that the cluster centers are sequentially 

updated. 

Step 4 . If Z. (k+l) = Z . (k) for j=l,2, ... ,k, the algorithm ___]_ -2 
has converged and the procedure is terminated . 

Otherwise go to Step 2. 

A computer program has been written for the above algorithm 

in the FORTRAN language (Appendix B) . The initial cluster 

centers are taken arbitrarily to be z1 and z2 , i.e ., k=2. 

The program analyses a set of pattern vectors and divides 

them into two classes or domains. The eventual result is 

the cluster centers of the two classes are obtained from the 

sample set . 

The distribution of human error over the 43-month period 

of the plant age for systems, components, types of error, 

types of effect on system and component, and modes of human 

error which are most fr equently involved are analyzed by using 

a simple pattern recognition computer program developed by 

NSRG . The output shows that seven of the distribution curves , 
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Figures 5.2 , 5.5 , 5.8, 5.9, 5.10, 5.12, 5.15. 5.18, 5.22, 

characterized by Pattern (II) g iven in Figure 5.24, and 14 

of the distribution curves, the rest, characterized by 

Pattern (I) given in Figure 5.23. The frequent errors 

(error/ month) in Pattern I are greater than in Pattern II , 

but the two patterns show almost a constant rate followed 

by an increase of error rate with passage of time and then 

the increase decline afterward. This shows that there is a 

learning behavior . 

The computer program listing and the output are given 

in Appendix B. 
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VI. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

The HEGAR classification of gas cooled reactor for coding 

human errors is developed. The classification describes the 

general systems, subsystems, and components of HTGR. This 

classification is flexible to permit expansion, change , added 

for any system, subsystem, and component and it can be adapted 

to any HTGR design. 

This study shows the importance of human error in Fort 

St . Vrain, HTGR to safety analysis. The major sources of human 

error based on manually review of LER's records from May 30, 

1974 to December 30, 1977 are maintenance error in improper 

handling, did not check/test, or improper setting and admin-

istrative errors in procedural deficiencies. The systems most 

frequently involved in human errors are main reactor coolant 

system , auxiliary electric power system, reactor protection 

system, and radioactive waste treatment system. 

So far this study is adequate for identifying the most 

frequently involved s ystems, components , failure modes, and 

t h eir significance and effects on the plant and the environ-

ment , but not enough data have been accumulated on human 

errors for HTGR in the U.S. to warrant a risk a ssessment study 

based on actual data which is very necessary for safety anal-

ysis and the availability of nuclear power plants . 

For improving human performance emphases should be 

placed on identification the most frequently involved systems, 
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components, failure modes, and types of error and in the 

same time evaluation, training, updating, and decision-making 

programs should be carried out to provide means of reducing 

the human errors in the plant. 
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VII. SUGGESTIONS FOR FUTURE WORK 

The following are suggestions for future work related 

to this study. 

1. More data need to be collected on human errors for 

HTGR's to conduct probabilistic analysis based on 

event/ fault/tree construction, block diagram, and 

probability consequence evaluation. 

2 . Theoretical and experimental studies have to be per-

formed on data prediction and updating of human errors 

in HTGR power plants. 

3. Evaluation, training, updating, and decision-making 

stud ies for system, components, failure modes, and 

error types which most frequently involved in human 

errors have to be fulfilled on HTGR plants to reduce 

human errors, to find out the impact of the studies on 

safety analysis and the availability of HTGR power plants, 

and to obtain guidance in optimum design of HTGR power 

plants. 
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X. APPENDIX A. HEGAR: II 

Component Codes, Failure Mode, and Taxonomy 

The following tables of subsystem abbreviation, com-

ponents, failure modes, and classification codes are to 

assist the process of (LER) analysis for coding the human 

errors. The subsystem abbreviation is given in Table A.l in 

alphabetical order to aid in identification of the system 

and in the classification of the human errors. The component 

list is given in Table A.2 to aid in coding the failed com-

ponent due to human error. The list is divided into two 

parts to distinguish between mechanical and electrical com-

ponents (3, 15, 23). The failure mode is given in Table A. 3. 

It is self-explanatory (6, 23). A brief description of the 

major components of the classification taxonomy (24, 25) is 

as follows: 

- Identification Nurnber--I.D. assigned to each human 

event recorded 

- Page--LER data printout page number 

- Reference Number--LER-assigned event I . D. 

- Facility Identification Number--number code assigned 

to each nuclear facility 

- Type--reactor type; i.e., H-HTGR, P-PWR 

- Date--date of event occurrence if given; otherwise 

date of report. 
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System Involved--the system (subsystem) involved in 

the error. 

Component Involved--the major component involved in 

the error. 

- Number of Components Involved--the number of similar 

components involved in the error. 

- Effect on System--effect of the error on the involved 

system (subsystem): N - None' D - Degraded State; 

F - Inoperative or Failed State. 

- Effect on Component--ef fect of the error on the com-

ponent ( s) involved: N - None; D - Degraded State; 

F - Inoperative or Failed State. 

- Failure Mode--the action omitted or committed which 

resulted in error. 

- Type of Error--A - Administrative or Procedural Error; 

M - Maintenance Error; 0 - Operator Error. 

- Omission/ Commission--delineates the error as being one 

of omission or commission. 

- Duration--the time elapsed between error occurrence 

and discovery (in hours) when given: N/ A - Not Avail-

able. 

- Radiation Release to Environment--sig nif ies if the 

error resulted in an environmental radiation release 

(quantity listed in Further Description): NO - No 

Release; RWL - Release Within Limits; REL - Release 
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Exceeds Limits; RU - Release but Unknown Limits. 

- Radiation Exposure--signif ies whether there was any 

radiation exposure as a result of the error (rate 

listed in Further Description): NO - No Exposure; 

XP - Exposure; N/ A - Not Available/ Not Applicable . 

- Common Mode/ Reoccurring/ Unusual Events--C - Common 

Mode Error; R - an event which is Reoccurring for a 

particular facility; U - Unusual Event . 

- Further Description--a short summary outlining relevant 

details of the occurrence. 

The classification taxonomy with human error data is 

given in Table 4.1 . 
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Table A.l. Subsystem abbreviations 

ARMS Area Radiation Monitoring System 
CACS-AC Core Auxiliary Cooling System-Auxiliary Cir-

culator 
CACS-ACSS 

CACS-AHE 

CACS-APCSV 

CAS 
CLPS 
CTS 
EPS- DC 
EPS-DG 
EPS- EQP 

EPS- OFF 
HPS 
HSS 
LNS 
MLCS 
PCL-HC 
PCL-MCSS 

PCL- MHSV 
PCL-SG 
PC RV-CS 

PCRV-PRS 

PCS 
PRMS 
RBVS 
RCIS 

Core Auxiliary Cooling System-Auxiliary Cir-
culator Service System 
Core Auxiliary Cooling System-Auxiliary Hea t 
Exchanger 
Core Auxiliary Cooling System-Auxiliary Pri -
mary Coolant Shutoff Valve 
Circulator Auxiliary System 
Coolant Loop Protection System 
Circulator- Trip System 
On- Site D.C . Sources 
On-Site A. C. Power System 
Auxiliary Equipment for Auxiliary Elect r ic 
Power System 
Off-Site Power System 
Helium Purification System 
Helium Storage System 
Liquid Nitrogen System 
Main Loop Cooling System 
Primary Coolant Loop Helium Circulator 
Primary Coolant Loop Main Circulator Ser vic e 
System 
Primary Coolant Loop Main Helium Shutoff Va l ve 
Primary Coolant Loop Steam Generator 
Prestressed Concrete Reactor Vessel-Cooling 
System 
Prestressed Concrete Reactor Vesse l -Pressure 
Relief System 
Primary Coolant System 
Process Radiation Monitoring System 
Reactor Building Ventilation System 
Reactor Control and Information System 
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Table A.l (Continued) 

RICI 
RPCPS 
PRCWS 
RPLS 
RRSS 
scs 
SWDS 
WPS-GH 
WPS-LH 
WPS - SH 

Reactor and Incore Instrumentation 
Reactor Protection Control Rod System 
Reactor Plant Cooling Water Systems 
Reactor Protection Logic System or Scram System 
Reactor Reserve Shutdown System 
Secondary Coolant System 
Stearn-Water Dump System 
WasteProcessing System-Gas Handling 
Waste Processing System-Liquid Handling 
Waste Processing System-Solid Handling 
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Table A.2. Component code 

Mechanical Components 
AC - Accumulator 
BL - Blower 
BK - Boron Injection Tank 
AK - Chemical Addition Tank 
CK - Condensate Storage Tank 
CN - Condenser 
CD - Control Rod Drive Unit 
FA - Cover Plate 
CM - Damper 
CL - Diesel 
DW - Drywell 
XJ - Expansion 
FL - Filter or 
GB - Gas Bottle 
BK - Gasket 

Joint 
Strainer 

HE - Heat Exchanger 
IP - Incore Probe 
OR - Orifice 
PP - Pipe 
CP - Pipe Gap 
PV - Pressure Vessel 
PZ - Pressurizer 
PM - Pump 
ED - Reactor Control Rod 
RF - Refrigeration Unit 

RK - Refueling Water Storage 
Tank 

SL - Sluice Gate 
SG - Steam Generator 
ST - Subtree 
SK - Surge Tank 
SP - Sump 
TK - Tanks, Other 
TG - Tubing 
TB - Turbine 
CV - Valve, Check 
EV - Valve, Explosive Operated 
HV - Hudraulic Operated 
xv - Valve, Manual 
MV - Valve, Motor Operated 
AV - Valve, Pneumatic Operated 
RV - Valve, Relief 
sv - Valve, Safety 
FV - Valve, Safety-Relief 
KV - Valve , Solenoid Operated 
DV - Valve, Stop Check 
vv - Valve, Vacuum Relief 
VT - Vent 
WL - Well 
WW - Wetwell 
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Table A.2 (Continued) 

Electrical Components 
AM - Amplifier 
AN - Annunciator 
BY - Battery 
BC - Battery Charger 
BS - Bus 
CA - Cable 
CB - Circuit Breaker 
CL - Clutch 
co - Coil 
cs - Control Switch 
DI - Detector 
DE - Diode or Rectifier 
DC - DC Power Supply 
FS - Flow Switch 
FU - Fuse 
GE - Generator 
GS - Ground Switch 
HT - Heat Tracing 
HG - Heating Element 
IM - Input Module 
IV - Inverter (solid State) 
ES - Level Switch 
LT - Light 
LA - Lightning Arrester 
LS - Limit Switch 
SW - Manual Switch 
MO - Motor 

MS - Motor Starter 
ND - Neutron Detector 
PT - Potentiometer 
RM - Radiation Monitor 
RC - Recorder 
RE - Relay 
CN - Relay or Switch Contact 
RS - Reset Switch 
RT - Resistor, Temperature Device 
AD - Signal Comparator 
PS - Switch, Pressure 
TS - Switch, Temperature 
QS - Switch, Torque 
TM - Terminal Board 
SB - Test Pushbutton 
OL - Thermal Overload 
TI - Timer 
CT - Transformer, Current 
OT - Transformer, Potential 
TR - Transformer, Power (or 

Control) 
TF - Transmitter, Flow 
TL - Transmitter, Level 
TP - Transmitter, Pressure 
TT - Transmitter, Temperature 
WR - Wire 
00 - Event (No Component Involved) 



Table A.3. Failure mode code 

AR - Improper Addition Rate 
AS - Improper Assembly 
CN - Carelessness/Negligence 
CP - Left Partially Closed 
CL - Left Closed 
CD - Closed 
CM - Communication 
CC - Did Not Connect 
CT - Connection (Other) 
CB - Calibration 
CA - Calculation 
CO - Open Circuit 
CS - Short Circuit 
DG - Damage (Other) 
DI - Inadvertent Damage 
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DD - Did Not, Deenergize/ Disengage/Stop 
DV - Inadvertent Deenergization 
DL - Left Deenergized 
DS - Deenergized/Disengaged/Stopped 
ED - Did Not, Energize/Engage/Start 
EI - Inadvertent Energization 
EL - Left Energized 
ES - Energized/Engaged/Started 
EV - Event (No Failure Mode) 
EX - Lack of Experience 
FD - Did Not Fill 
FO - Overfilled 
FR - Improper Flow Rate 
HI - Improper Handling 
IA - Inadvertent Actuation 
IS - Installation 
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Table A.3 (Continued) 

LK - Leakage 
LU - Exceeds Upper Limit 
LL - Exceeds Lower Limit 
LD - Did Not Lock 
LB - Lubrication 
MD - Did Not Monitor/Inattention/Failure to Observe 
MT - Misinterpretation/Misunderstanding 
MJ - Misjudgment 
MS - Misadjustment (during repair) 
MP - Mispositioning/Misalignment/Improper Setting 
OP - Left Partially Open 
OL - Left Open 
OD - Opened 
OI - Improper Operation (other) 
OR - Overloaded 
OZ - Overpressurized 
OT - Overtorqued 
PT - Painted 
PG - Plugged 
PR - Procedure Violation (other) 
PD - Did Not Follow Procedure 
PW - wrong Procedure Followed 
PU - Procedure Unfamiliar 
RA - Did Not Record 
RM - Incorrect Recording/Misread 
RR - Did Not Remove After Repair 
RB - Did Not Remove From Service 
RC - Removed From Service 
RJ - Inadvertently Removed From Service 
RG - Improper Replacement 
RI - Improper Repair 



Table A.3 (Continued) 

RL - Lack of Repair 
RE - Erroneous Repair 
RH - Did Not Reset 
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RS - Slow Response/Time-Too Long 
RF - Fast Response/Time-Too Short 
RN - No Response 

RO - Over Response/Overcompensation 
RT - Did Not Return to Service 
RD - Ruptured/ Deformed 
SQ - Improper Sequence 
SV - Severed 
TG - Did Not Tag 
TD - Did Not Test/Check 
TN - Did Not Tighten 
UL - Left Unattended 
VI - Improper Verification 
WP - Left In Wrong Position (other) 

WL - Left Withdrawn 
WI - Improper Withdrawal 
WR - Wiring 



145 

XI. APPENDIX B. COMPUTER PROGRAM 



0001 

00 02 
0003 
0004 
00 05 
0006 
0007 
00 08 
0009 
001 0 
0011 
0012 
001 3 
00 1~ 

001 5 
001 6 
0017 
001 8 
0019 
0020 
0021 
002 2 
00 23 
00 2~ 

0025 
002 6 

0027 
0028 
0029 
0030 
0031 

3 
1 0 

1 
11 

85 

86 

87 

88 

89 

90 
101 

91 

92 

41 
c 
c 

202 
20 1 
c 

DIMENSION X( S 0, 25 ), Z(50),ZZ(50 ), A( 5 0), B( 50 ), 
$ S J1451(50), SU"'1S2( 50 ),1 X(5 0 1 25 ) 1LL (25) 1KK ( 25 ) 

RE Au (5,1J,~~D=3 6 o ER~=30 ) M1N 
F ORM~T {213) 
DD 1 J=l,N 

R= AO (5.11, E\10 = 34 1=R R=3 2 ) CIX(l,J) 1l=t, 14) 
= oRMAT( 431 l ) 

WR IT E ( o , 85 ) 
F OR"4ATC26X1' INPJT DATA') 
WR IT=(6,86) 
FOR"1AT( '+' 1 25X t10(' ')) 
WRIT:=(6,87) 
FOR"1AT( //6X 1 23( •-=tG• , 2X)) 
WRIT~( 6 , 96)(11,II=l,N) 

FORM~T(3X123(15)) 

~~IT::'.( 6 ,89) 

F ORM AT('+' 1:5X1113(' ')) 
DO 101 11=1 ,"4 

WRIT E (6 ,~J )(IXCil1JJ),JJ = l1~) 

=oRMAT(3X123 (1 5 )) 
CONTINUE 

WRITE(6 19 1) 
FORM~T('1'1 6X1'DUTPUT 1 ) 

WRIT:C6192) 
FORMAT('+• 10X , 6 (' ')) 
W~ITE ( 6 ,41) '41\1 

FORM AT(ll6X 1' M='1141 ' 

DO 20 1 J=l,N 
) 0 202 1=1,M 

X( I ,J) =FL;J AT( IX( I ,J)) 

CONTIN'J E 
C:JNTINUE 

N= • , I 4) 



0032 
0033 
0034 
0035 

0036 
0037 

0038 
0039 
0040 
0041 
0042 
0043 
0044 
0045 
0046 

0047 
0048 
0049 
0050 
0051 
0052 
0053 
0054 
0055 

0056 
0057 
0058 
0059 
0060 
0061 
0062 

12 
c 

21 
c 

2 

2 4 
c 

14 
c 

16 

DO 12 I= 1 • M 
ZCU = XCI.t) 
ZZ(I) = XCI. 2 ) 
CONTINUE 

WR IT.:: (6.21) (Z(l).ZZ{I).I=l•~> 

=Jq~~T (//( 2 (3X. F l0e 5 ))) 

MM = 0 
MM ='4"<1+1 
IF ('4'4eGTelJ) ~3 TO 20 
L=O 
K=O 
DO 2 4 J=l•l.4 

SJMSl(J)=~ 

SuMS2(J)=O 
CONT INI.J c 

DiJ 13 J=l• N 
SJMl=O 
SUM2=0 
:>u 14 1=1.M 

l\{l) :X(l.J)-l(l) 
8 (I)=X( I.J)-ZZ(I) 
SUM1=5JM1+ACl)**2 
SU~2=SUM2•8(1)**2 

CONTI NJE 

I F ( SUMi .GT. SUM2) GO T3 15 
L=L+l 

LL(L)=J 
D ::J 16 JJ = l.'4 

SU~SlCJJ)=SJMSl(JJ)•X(JJ.J) 

CONTI NU=: 
GO TO 13 



0063 
0064 
0065 
0066 
0067 
0068 

0069 
0070 
0071 
0072 

0073 
0074 
0075 
0076 
0077 
0078 

0079 
0080 

0081 
0082 
0083 
0084 
0085 
0086 
0087 
0088 
0089 

c 
15 

66 
13 
c 

17 
c 

18 
c 

22 
c 

23 

av 
81 
82 
c 

K=K+l 
KK(K )=J 

;)Q 56 JJ=l ,\4 
SU~S2(JJ)=SUMS2(JJ)+X(JJ,J) 

CONTI NJ E 
ONTINUE 

DO 1 7 I= 1, "4 
SUMSl(l ) =SUMSl(l)/ L 
SU~S2(1)=SU~S2(1)/~ 

CONTI NU!:: 

551=0 
SS2=0 
DO 18 I = l , M 

SSl=SSl+( SUMS1 (1)-Z(l))** 2 
5:52=552+( SuMS2( I )-ZZ( I) )**2 
CONTINUE 

wt R IT~ (6,2 2 ) (SJ\4S1(1),SUMS2CI>.I=l,M) 
FORMAT (/( 2 (3X,Fl0.5))) 

WR ITC'. (6,23) M~ 

FJ~MAT ('ONO. J~ IT E~ ATI ONS •,12) 

WRITEC6e 8 0) L 
WRIT:(5, 8 l)( LL CII),Il = l, L ) 
WRIT::(6, 8 0) K 
WRifE ( 6 ,82)(<~Clllell=1,K) 

FORMAT(3X , J2 ,• ') 
=oR14~T < •+• . e x, 2s < 13 > > 
FORMAT(•+•, 9 x,25(J3)) 



0090 
0091 
0092 
0093 
0094 1 00 
0095 

c 
0096 2~ 

0097 25 
0098 

c 
0099 30 
0·100 31 
0101 
0102 32 
0103 33 
0104 
0105 34 
0106 
0107 
0108 35 
0109 36 
0110 

IF ((SSl.~~. O) .AN).(552. :~.0)) 

DO 1 0 ~ I=lo'4 
Z(l)=SUMSl( I) 
ZZ( I )=SU~52( I) 
CONTI NU;:; 

Ga TO 2 

GO TO 20 

WRIT= ( S ,25) (5u~Sl(l)oSJ~S 2 (l)ol=1.~) 

=o~M4T ( 1 :oNV:::RGENCE IF MM< l0'o/( 2 (3X, F10 .3))) 
GO T:J 3 

WRITE (!>,31) 
~JRMAT (// 1 IM?ROPER SUBSCRI~T5 1 ) 

STOP 
WRITE (S,33) 

FJ~~4T (//t IM~~J~= ~ /NJN-Nu~=~r: VALJ :s ~=AD 1 ) 

3TOP 
NU'41N=(J-l)•~+l-1 

"4XN="4*'4 

END 

W~ITS ( 6 035) NJMIN,MXN 
=J~M\T (// 1 '40T :::NOU~H VALJ =S ~=~o l'4 1 o/ol5o 1 

STOP 
OUT 0F 'ol4) 
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®Ie!.!I 

M= 43 N= 23 

o.o 3 . 00000 
o.o o.o 
1.00000 o.o 
o.o 1.00000 
1.00000 o.o 
o.o o.o 
o.o o.o 
o.o o.o 
1.00000 o.o 
o.o o.o 
o.o o. o 
1.00000 o.o 
1.00000 o.o 
o.o o.o 
o.o o.o 
2.00000 2.00000 
o.o o.o 
1.00000 o.o 
1.00000 o.o 
o.o o.o 
o.o o.o 
o.o 5.00000 
1.00000 o.o 
o.o o.o 
o.o o.o 
o.o o.o 
o.o o.o 
o.o o.o 
1.00000 o.o 
o.o o .o 
o.o o.o 
1.00000 1.00000 
2.00000 o.o 
1.00000 o.o 
o.o o.o 
o.o o.o 
o.o o.o 
o.o o.o 
o.o o.o 
1.00000 o.o 
o.o o.o 
o.o o.o 
1.00000 o.o 
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1.42857 o.66667 
o.14286 o.o 
0.21429 o.44444 
0.28571 0.33333 
o.35714 0.22222 
0. 3 5714 o.o 
o. 64 2 86 0.33333 
o . 357 14 0.11111 
0.71429 0.33333 
o.28571 0.11111 
o.o o.o 
o.42as1 o.o 
o.42857 0.11111 
o.o o.o 
o.o o.o 
1.42857 o.44444 
o.o o.o 
o.64286 0.33333 
o.28571 0.22222 
0.71429 0.11111 
0.01143 o.o 
o.57143 4.11111 
0.71429 0.33333 
Oa64286 o.55556 
1.78571 2.00000 
0.64286 0.55556 
o.o o.o 
o.42857 o.o 
o.1142c; 0.44444 
o.35714 o.o 
o.o o.o 
1.50000 1.33333 
2.50000 1.22222 
o.35714 0.22222 
0.21429 0.22222 
o.o o.o 
o.o o.o 
1.07143 o.66667 
o.o o.o 
o.35714 0.22222 
1.00000 o.55556 
o.42857 0.11111 
1 .42 857 e).66607 
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NO. OF ITERATIONS 1 
14 1 3 4 6 7 1 1 13 14 16 17 19 20 21 23 

9 2 5 8 9 10 12 15 18 22 

1.42857 0.66667 
o.14286 o.o 
0.21 .. 29 u.44444 
0.28571 0.33333 
0.35714 0.22222 
0.35714 o.o 
o.64286 0.33333 
0.35714 0.11111 
0.11429 0.33333 
0.28571 0.11111 
o.o o.o 
o.42857 o.o 
o.42857 0.11111 
o.o o.o 
o.o o.o 
1.42857 o.44444 
o.o o.o 
o.64286 0.33333 
0.29511 0.22222 
0.71429 0.11111 
0.07143 o.o 
o.57143 4.11111 
0.11429 0.33333 
o.64286 o.55556 
1.78571 2.00000 
o.64286 0.55556 
o.o o.o 
0.42857 \) • 0 
0.11429 0.44444 
o.3s114 o.o 
o.o o.o 
1.501)00 1.33333 
2.50000 1.22222 
o.35714 0.22222 
0.21429 0.22222 
o.o o.o 
o.o o.o 
1.07143 0.66667 
o.o o.o 
o.35714 0.22222 
1.00000 o.~5556 

0 .42857 0.11111 
1.42857 0.66667 
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NO. OF ITERATIONS 2 
14 : 1 3 4 6 7 1 1 13 14 16 17 19 20 21 23 

9 2 5 8 9 10 12 15 18 22 
CONVERGENCE IF MM < 10 

1.42857 0.66667 
0.14286 o.o 
0.2142<; 0.44444 
o. 285 71 0.33333 
0.35714 0.22222 
o.35714 o.o 
0.64286 0.33333 
o.~5714 0.11111 
0.71429 0.33333 
0.29511 0.11111 
o.o o.o 
0.42S57 o.o 
o.42857 0.11111 
o.o o.o 
o.o o.o 
1.42857 0.44444 
o.o o.o 
0.64286 0.33333 
o.2as71 0.22222 
o.71429 0.11111 
0.07143 o.o 
o.57143 4.11111 
o.71429 0.33333 
o.64286 o.55556 
1.78571 2.00000 
o.64286 0.55556 
o.o o.o 
o.42857 o.o 
o.71429 0.44444 
0.35714 o.o 
o.o o.o 
1.50000 1.33333 
2.soooo 1.22222 
o.35714 0.22222 
Oe2142S 0.22222 
o.o o.o 
o.o o.o 
1.07143 o.66667 
o.o o.o 
o.35714 0.22222 
1.00000 o.55556 
o.42857 0.11111 
1.42857 0.66667 


